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Abstract: Telepresence robots are becoming popular in social interactions involving health care,
elderly assistance, guidance, or office meetings. There are two types of human psychological ex-
periences to consider in robot-mediated interactions: (1) telepresence, in which a user develops a
sense of being present near the remote interlocutor, and (2) co-presence, in which a user perceives
the other person as being present locally with him or her. This work presents a literature review on
developments supporting robotic social interactions, contributing to improving the sense of presence
and co-presence via robot mediation. This survey aims to define social presence, co-presence, identify
autonomous “user-adaptive systems” for social robots, and propose a taxonomy for “co-presence”
mechanisms. It presents an overview of social robotics systems, applications areas, and technical
methods and provides directions for telepresence and co-presence robot design given the actual and
future challenges. Finally, we suggest evaluation guidelines for these systems, having as reference
face-to-face interaction.

Keywords: social robotics; co-presence; copresence; social presence; telepresence; cognitive robotics;
telerobotics

1. Introduction

Telepresence robots are becoming popular in the context of social interactions. Typi-
cally, these systems enable people to look at a distant place via teleoperating a robot and
interacting with another person at a remote location using the built-in communication
devices. Some relevant applications include health care, elderly assistance, autism therapy,
guidance, and office meetings [1–7].

This literature review aims to gather knowledge to help roboticists design improved
user- and environment-adaptive systems and technical methods that contribute to en-
hancing the sense of presence or co-presence via social robot mediation. Reviews have
addressed user-adaptive systems [2,8] and environment-adaptive systems [9] for social
robotics (in which the robot is generally an autonomous agent serving the bystander user).
However, we further explore telepresence social robotics, with an emphasis placed on the
relationship between the robot’s operator and the bystander user.

Within social telepresence robots interactions, two types of human psychological
experiences can be considered (see Figure 1). The first one involves the remote user, in
which he or she should sense being in the local environment (i.e., telepresence) [10,11], and
the second type involves the local user, in which ultimately he or she should sense that
the remote user is with him or her in the local environment (i.e., co-presence) [12,13]. This
research will focus on this last type of interaction, or how to enhance the sense of co-presence
via robot mediation. To clarify the role of each agent in the interaction, the following
terminology is adopted:

1. Mobile robotic telepresence (MRP) system: remotely controllable mobile platform
with video conferencing equipment that allows remote users to navigate within a local
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environment and socially interact with other persons. These systems can incorporate
semi-autonomous functionalities to mitigate operation loads such as navigation aids,
points to follow, and obstacle avoidance.

2. Robotic telepresence (RP) system: remotely controllable or semi-autonomous robotic
device with video conferencing capabilities that enable social interaction with people
in the local environment without locomotion means. Remote users can explicitly
control parts of the robot (e.g., the head’s panning, swinging, tilting, eye gazing, and
facial expressions, as well as arm or hand gestures) or enable some semi-autonomous
behaviors (e.g., blinking, face tracking, eye saccade, and breathing).

3. Remote user: user that steers the robot from a distant location or simply connects to
the robot through a computer interface.

4. Local user: user that shares the physical environment with the robot (bystander).
5. Local environment: environment shared by the local user and robot.

Nonverbal behaviour cues
gestures, facial expression, forward
postures, interpersonal distance, height, 
eye contact, mutual gaze, blink

Video, Audio, Haptics

Local user

Human Operator

Remote Operation

Action

Feedback

(Video, Audio, Haptics)

Telepresence robot

Social signals:

Vocal behaviour

Co-presence

Local environment

Remote user

Figure 1. Interaction scenario with telepresence and co-presence.

Presence is often defined as the sense of being there in a mediated environment [14,15].
Additionally, Sheridan [16] differentiates presence (virtual) from telepresence (experiential).
Presence describes the experience of being present within a virtual world, while telepresence
refers to the sense of being in a mediated remote real environment. Co-presence has been
used to refer to the sense of being together with others in a mediated (either in remote real or
virtual) environment [13,17–19].

Marvin Minsky introduced the telepresence concept in the teleoperation context to
describe the phenomenon in which a human operator feels physically present at a remote
location through interaction with the human’s sensing systems [11] (i.e., “through actions
of the user and the corresponding perceptual feedback provided by the teleoperation
technology”) [10].

Paulos and Canny [20] developed one of the first telepresence robots and referred to it
as a personal roving presence (PRoP) device. The goal was to “provide a physical mobile
proxy, controllable over the Internet to provide tele-embodiment”. The system consisted
of a simple controllable mobile platform with a video conference set-up (microphone,
speaker, and a video camera with 16x zoom and a 30-cm screen on the top of a plastic
pole). Additionally, the robot enabled simple gesturing through a two-DoF pointer. They
introduced the concept of tele-embodiment in the robotics context to describe the sensation
of embodiment of a human in a real distant location [21]. Tele-embodiment was defined
as telepresence with a personified perceptible body [22]. However, they did not address key
conditions such as body ownership [23] or agency [24]. Li [25] surveyed and compared
33 experimental works involving people’s interactions with virtual agents, telepresence
robots, and co-present robots, concluding that robots are more persuasive and positively
perceived when they are physically present in the user’s environment.
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Short [12] introduced the concept of social presence, defining it as the degree of salience
of the participants involved in an interaction and their interpersonal relationship. He
mentioned that social presence relied on two concepts: intimacy and immediacy. Intimacy
senses the degree of connectedness between the interactants, and immediacy refers to the
psychological sense of togetherness between the communicators. Taking face to face (FtF)
as the reference, both concepts are determined by a set of verbal and nonverbal cues such as
vocal cues, gestures, facial expressions, and physical appearance. The capability to deliver
such cues differs from communication means, so Short considered social presence as the
quality of the medium itself. Later, Biocca [13] referred to social presence as the effect on one
person’s behavior caused by the presence of another or caused by knowing that he or
she could be observed. Co-presence, defined as the “psychological connection to and with
another person” [17,26], has been explored in several works [27–30].

Cognitive robotics aims to provide robots with intelligent behavior through a pro-
cessing architecture that involves perception, long- and short-term memory, learning, and
reasoning. These approaches try to deal with people’s behavior unpredictability and with
real-world complexity. Cognitive technologies are a form of hyper-automation that may
combine areas such as symbolic representation, automation, prediction, user-adaptive
systems, computer vision (CV), machine learning (ML), deep learning (DL), or artificial
intelligence (AI) [2,9,31]. Nevertheless, the use of AI methodologies to emulate or interpret
human subjective experiences, such as emotions, should be inspired by neurophysiologic-
psychological foundations [32].

An inner issue related to teleoperated telepresence robots is the time delay issue
(mainly due to the communication channel and less due to the hardware performance).
This can affect synchronicity (rate of message exchange between operator and bystander),
compromising the social presence [33] (e.g., degradations in audio and video streams,
control streams, and haptic feedback). Problems regarding latency, bandwidth limitations,
and channel corruptions should be mitigated, and while early solutions involved user
interface design and control theory-based models (e.g., supervisory control or passivity-
based teleoperation), the approaches evolved to predictive displays and control. Advanced
solutions for time delay issues are using time series prediction methods to predict the
time delay, a robot’s movements, and user intentions. These new adaptive-based control
methods make use of nonlinear statistical models and neural network (NN) or machine
learning (ML) techniques (e.g., recurrent neural networks, sequence to sequence, long
short-term memory, or generative adversarial networks) [31].

The method for this literature review and article selection consisted of retrieving and
collecting review studies on social presence, co-presence, and the principles and heuristics
of human–robot interaction (HRI), with emphasis on teleoperated telepresence robots.
Searches were performed on bibliographic scientific databases, such as ACM’s digital
library, Google Scholar, MIT Press Direct, Elsevier’s ScienceDirect, IEEE’s Xplore, PubMed,
Scopus, and Springer. Queries included general keywords such as social robots, social
robots survey, co-presence taxonomy, copresence or co-presence robots, telepresence robots,
adaptive systems, and more specifically, the compositions of these keywords. The selection
of papers for in-depth reading was determined by the number of citations, being a recent
publication, being a journal (e.g., IEEE transactions, Elsevier’s, or Springer), being a book,
including user evaluations studies, or being an article in a reputable conference in the
field (e.g., ACM HRI conferences, IEEE Robotics and Automation Society, ICRA, or the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)). Citations
in these papers directed new readings and paper selections. Figure 2a depicts the article’s
citation distribution per main topic, Figure 2b is from the Co-Presence Taxonomy/Preditors
topic, Figure 2c is from the From Telepresence to Co-Presence Design topic, and Figure 2d
shows the article citation distribution per year.

This survey presents an overview of social robotics systems and focuses on how to en-
hance the sense of co-presence via robot mediation. It reviews the literature to define social
presence and co-presence, identifies predictors, and proposes a taxonomy for “co-presence”
and “user-adaptive systems” mechanisms. It provides technical methods to support robotic
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social interactions. The structure of this article is composed of four parts. Section 2 identifies
potential predictors for social presence, suggesting a taxonomy for “co-presence”. Section 3
presents several robotic telepresence systems currently available in the market or used in
research. It also reviews autonomous user-adaptive systems for social robots, aiming for
a taxonomy, and additionally provides design guidelines for mechanisms that enhance
the sense of co-presence in communications through a teleoperated telepresence robot. It
includes guidelines for the evaluation of these systems, having as reference the face-to-face
interaction. Finally, Section 4 presents the conclusions and future work.
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Figure 2. (a) Article’s citation distribution per main topic, (b) per Co-Presence Taxonomy / Preditors
topic, (c) per From Telepresence to Co-Presence Design topic, and (d) the article’s citation distribution
per year.

2. Co-Presence Taxonomy

Social presence has been defined as the sense of being together with another, which includes
primitive reactions to social cues and automatic creation of simulations or mental models of
“other minds” [13]. Short et al. [12] defined social presence as “the degree of salience of the other
person in the interaction and the consequent salience of the interpersonal relationship”.

Co-presence is a different concept, introduced by Goffman [26] to describe the active
state in which a person perceives his or her interlocutor, and the interlocutor also perceives
him or her. Copresence refers to a “psychological connection to and with another person”,
in which “interactants feel they were able to perceive their interaction partner and that
their interaction partner actively perceived them” [17]. With co-presence being a subjective
concept, it involves different dimensions and interpretations depending on the social
science discipline and application area (e.g., sociology or psychology) [18,29,30].

Social presence appears in the literature as being related to the quality of the commu-
nication’s medium [12] and the user’s perception of the medium. Therefore, preliminary
studies have focused on the effect of modality on social presence. They identified potential
predictors of social presence by analyzing the technology’s capability to reproduce social
cues (e.g., visual representation, audio, and haptic feedback). The findings were biased
by the considered concept definitions. Some predictors contribute directly to presence,
co-presence, or social presence, while others affect them indirectly by acting on a person’s
involvement and immersion. Therefore, it is important to distinguish the “immersion”
concept and the “presence” concept [15,34].

Immersion, also known as sensorimotor immersion, refers to the extent and fidelity of
physical stimulation affecting the human sensory systems and the system’s responsiveness
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to the motor inputs. The immersive level depends on the number and range of sensors
and the motor channels connected to a remote agent in a real environment (e.g., a robot)
or to a mediated virtual environment. Immersion is determined by the naturalness and
coherence between actions (head, body, and gesture movements) and the expected sensory
feedback [35–38].

Presence is the psychological product of technological immersion, defined as the per-
ceptual illusion of non-mediation [39] or simply referred to as the sense of being there in a
mediated virtual environment [15,34]. Sheridan [16] differentiates presence (virtual) from
telepresence (experiential), in which presence describes the experience of being present
within a virtual world while telepresence refers to the sense of being in a mediated remote
real environment [19,40].

Co-presence has been used to refer to the sense of being together with others in a mediated
environment, either remote real or virtual [18,41]. As described in the definitions, the use
of concepts such as co-presence and social presence should not be confused as they are
assessed differently [17].

In the context of social robotics, there are agents with autonomous and semi-autonomous
behaviors that are seen by the local person as the “other”. Additionally, some agents simply
mediate the communications between two persons (the remote and local users). In the
former case, the sense of co-presence is assessed between an artificial system and a person,
while in the second scenario, co-presence involves two humans. Typically, in robotic
telepresence, the representation of the remote real person is shaped by the technology
that mediates communication. This affects the perception of thoughts and emotions when
compared with actual face-to-face (FtF) interaction. Such representation of remote humans
may be supported through text, images, video, 3D avatars, 3D reconstruction, virtual
human agents, computers, and robots. Zhao [18], Cummings [33], and Oh, Bailenson, and
Welch [29] reviewed the concepts of social presence and co-presence, and their studies
suggest a classification for co-presence predictors. This paper adopts some of these literature
predictors, framing them in the context of telepresence social robotics.

To unveil a list of technological predictors of social presence, the authors of [33]
performed a literature review of empirical studies and grouped them according to similar
manipulations. They performed a bottom-up analysis process and identified the following
predictors (Table 1):

Table 1. Technological predictors.

Technological predictors of social presence [33]

Behavioral realism.
Anthropomorphism.
Perceived agency of interactant
Level of embodiment
Synchronicity
Inclusion of imagery
Inclusion of imagery (dynamic)
Inclusion of voice
Inclusion of haptic feedback
Others

Initial studies were centered on immersive qualities, but the recent literature also
began to address contextual and individual factors, given the subjectivity of the social
presence concept [29]. Nevertheless, studies on technological predictors dominate the
literature, enlarging the immersive qualities class.

The categorization of predictors that affect social presence or co-presence, based on
related works, point to (1) immersive qualities, (2) contextual and social properties, and (3)
individual traits (see Table 2).



Appl. Sci. 2022, 12, 5557 6 of 36

Table 2. Categorization of predictors.

Immersive qualities
Modality, visual representation, interactivity,
haptic feedback, audio quality, depth cues,
video and display.

Co-presence factors Contextual and social properties
Personality / traits of virtual human,
agency, physical proximity, task type,
social cues, identity cues.

Individual traits Demographic variables, psychological traits.

2.1. Immersive Qualities
2.1.1. Modality

The first studies on social presence analyzed the effect of the modality on the levels
of presence achieved, given that the immersion degree varies. These studies on general
modality identified technological features with an impact on the social presence (e.g.,
visual representation, interactivity, depth cues, audio quality, and display). However,
medium communication comprises multiple features, and it is a challenge to discriminate
the contribution of each affordance. In [42], the media richness theory refers to varying the
technological qualities of the medium affording distinct levels of social presence. General
modality was also identified in [43] as a predictor of telepresence while analyzing the influ-
ence of immersion. Initial studies analyzed the influence of modality on social presence by
comparing (1) Face-to-face (FtF) real interactions with computer-mediated communication
(CMC), (2) text-based CMC with mediums supporting visual and audio modalities, and
(3) immersive virtual environments with non-immersive virtual environments.

Face-to-face (FtF) interaction is considered the ground truth for social presence [44],
and several works compare face-to-face (FtF) interaction and CMC, evaluating the capa-
bility of these mediated communications to elicit social presence. In general, these studies
reveal that the sense of social presence is higher in an FtF interaction when compared
with CMC conversation. Cortese et al. [45] designed a task in which participants had to
discuss a news article for 20 min, either with FtF interaction or through computer-mediated
communication (CMC) (chat). Communication apprehension was one of the psycholog-
ical factors to be assessed (i.e., “the level of anxiety or fear associated with either real or
anticipated communication with another person or persons”). They found that the CMC
participants experienced a lower level of social presence. Researchers assessing the socia-
bility of a partner and the level of co-location again found higher social presence levels for
FtF interaction.

In studies involving decision-making scenarios [44] and in online learning achieve-
ment [46], the results privileged FtF interaction. One study [47] involving a series of online
seminars for 2 months (the same teacher teaching the same contents online and via in-
person, FtF interaction) reported no differences in the levels of social presence between both
forms of interactions. One justification might be related to the fact that students had enough
time to adapt their communication skills to an online learning platform, the evolution of
e-learning technologies, and the fact that the students felt more comfortable not moving to
a classroom for 2 months. However, this study did not address the characterization of the
subjects’ ages in their concluding remarks, which could reveal a tendency.

Video and audio modalities guarantee higher degrees of social presence when com-
pared with text-based CMC. However, this difference is not so clear when comparing
video-audio modality against audio-only modality. Studies have shown that the introduc-
tion of video modality increases the social presence feeling if participants are required
to perform visual tasks [48,49]. In studies that compared video-audio vs. audio modali-
ties when involving tasks that do not require visual feedback, such as interview tasks or
decision-making tasks, the researchers did not report a significant difference in the social
presence [50].
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These studies suggest that increasing the quality of an immersive component, such as
a video feature, may not be proportional to the social presence felt. There seems to exist
a threshold from which further enhancements of a given modality may not produce an
additional contribution.

Table 3 summarizes the relevant aforementioned and next predictor’s references, their
significant conclusions, and insights on statistics comparisons.

2.1.2. Visual Representation

In communication, the visual representation of interactants is a feature with an impact
on social presence. Research has explored to what extent a representation form of the
partner can contribute to the sense of social presence. Typically, studies manipulate (1)
inclusion or no inclusion of visual representation and (2) the level of realism of the visual
representation. The authors of [51] defined realism as the extent to which a digital human
representation behaves and appears like a real human. The overall concept is referred to
as being based on three components: photographic, anthropomorphic, and behavior’s
communicative realism.

The photographic component assesses the human-like visual appearance in a represen-
tation. Most studies report that the existence of a visual representation of the partner leads
to higher social presence levels. In [52], participants who spoke with their partners through
an avatar while shopping in a virtual mall felt a higher social presence in comparison
with those who talked without seeing any partner representation. In [53], in an online
support-seeker activity, users reported a higher sense of social presence when a profile
picture of the counselor was present, as opposed to to not having a picture. The users also
demonstrated a higher willingness to answer questions when the pictures were available.

Anthropomorphism contributes to communicative realism because physical attributes
such as the mouth, eyes, arms, and legs are involved in speech to generate facial expressions,
gestures, and movements. It addresses the level of interpretation of what is not human
or personal in terms of human or personal characteristics. Apart from behavioral realism,
this manipulation focuses on the degree to which interactants are presented as human-
like on the visual and auditory plane. For instance, users would interact via video as
opposed to users who would interact via motion capture-controlled cartoons or by means
of anthropomorphic agents or avatars vs. animated forms or emoji.

Communicative realism addresses the degree to which a digital representation of the
partner presents physical and social human-like behavior (e.g., breathing, natural blinking,
and posture changes). Behavior realism studies manipulate the presence or absence of
nonverbal behavior (e.g., animation) or the degree to which the nonverbal behavior of a
virtual human resembles a real human (e.g., with or without eye gazing). The effect of
communicative (behavioral) realism is more evident when the behavior of an agent or
avatar reflects the awareness of the partner’s presence (e.g., nodding at the right time,
mutual gazing, or blushing). Von der Pütten et al. [54] found that nodding the head
of a computer-controlled agent during an interaction contributed to a higher degree of
social presence in opposition to no nodding. In another study [55], the participants of
an interaction with a virtual agent reported a higher level of social presence when they
saw the agent blushing, a consequence of some mistake during a presentation. Study 1
in [50] found that the participants felt higher levels of social presence when the partner’s
representation (e.g., avatar) was able to maintain a mutual eye gaze in opposition to the
absence of eye gazing. However, Study 2 in [50] realized that maintaining a mutual eye gaze
for too excessive a time for video and avatars decreased social presence (i.e., an unnatural
behavior). Bent’s studies carefully tracked participants’ nonverbal behavior using the
head’s orientation and position sensors, eye gaze trackers, a breath-monitoring chest belt,
and data glove-based finger movement trackers. In the avatar’s mediation condition, the
tracked data were used to animate the avatars in real time (head and body movements, eye
movements, and hand and finger movements). Their findings showed a similar activity
in terms of visual attention and nonverbal activity either in video or in avatar conditions,
contributing both positively and quite similarly to eliciting social presence. This suggests
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that avatars can be used as a tool to assess social presence, with the advantage that they
enable behavior cue segmentation. Another interesting fact is that users tend to direct their
heads to their partner’s image but their gazes towards the workspace. A justification for
this behavior, even knowing that it is a computer representation of the partners, might be
related to the human’s unconscious social etiquette, that being to keep the face directed to
the interaction partner.

Studies show that behavioral realism tends to contribute consistently and positively to
social presence [28,30], while photographic and anthropomorphic realism presents varying
effects (positive [56], neutral [50,57], or even negative contributions [17]). The justification
for these discrepancies might be related to several facts reported in the literature: (1)
photographic realism is not the main contributor to social presence (i.e., the appearance
of the visual representation has a secondary role in comparison with cues from social
behavior) [58], (2) manipulations of small features of the visual representation may not
be reflected in social presence questionnaires, and (3) the degrees of behavioral realism
differ from study to study, making a quantitative comparison with photographic realism
vary [59].

In [60,61], the researchers evaluated the effect of visual and behavioral realism on
the perceived quality of communication using avatars. They found a positive effect on
social presence when there was consistency between both realism components [60]; that is,
although visual representation does not represent a major contribution, the participants
felt a greater social presence when the avatar, demonstrating more realistic behaviors (e.g.,
inferred vs. random eye gaze) which were complemented by a higher level of photographic
realism (avatar with a human-like face instead of a dummy face). Bailenson [61] pointed
out the consistency between photographic and behavioral realism as a positive social
presence predictor.

In [62], the effect of the 3D avatar type (character-like vs. realistically reconstructed)
on users’ trust and co-presence in a mixed reality-based collaborative teleconference was
explored. Visual representation based on realistically reconstructed avatars has been shown
to elicit the user’s sense of co-presence.

In [30], virtual humans that demonstrated higher responsiveness to events (behav-
ioral realism) contributed positively to the co-presence in mixed reality environments.
Experimental conditions involved remote collaboration, in-person collaboration, and com-
munication interactions via mixed reality, augmented reality, virtual reality, video chat, text
apps, and virtual assistants.

2.1.3. Interactivity

The definitions of social telepresence, in the context of robot-mediated interaction,
rely on the capability to put forward the robot operator’s presence to the local person
(bystander). Additionally, the extent to which this person is aware that he or she is
talking to or interacting with a human being has an impact on social presence [15] and
co-presence [63]. Studies on this subject try to understand the effect of the interactivity of
the agent on social presence. Such interactivity may refer to a computer agent, a person’s
avatar, or a telepresence robot, but the focus of this analysis is on the use of a telepresence
robot for conversation mediation. Thus, the level of social presence depends on the fidelity
of the medium to support the interactivity that characterizes persons’ conversations. It
includes visual and audio cues, nonvisual sensing (i.e., directional sound and haptics like
force feedback and touch) and environmental interactivity (e.g., response rate to user input,
reciprocity of the interaction capability between the remote user and local user, and clarity
of causal relationships between remote user actions and local user reactions).

2.1.4. Haptic Feedback

To improve the sense of reality, it is important to provide some type of physical
feedback to the operator or bystander. Useful contributions include providing tactile cues
to let the user recognize the surface texture and materials or support kinesthetic feedback



Appl. Sci. 2022, 12, 5557 9 of 36

to help the user experience the weight of a virtual object. These kinesthetic and tactile
sensations enable haptic perception.

Haptic feedback is a challenge. However, it may improve the degree of presence
considerably. Considerable progress has been made in the field of visual and auditory dis-
plays, but haptic feedback is in its early stages, gaining much attention nowadays [64–66].
Touch contact plays an important role in human interactions. From an early age, babies
explore their surroundings with their hands and feel physical contact with parents holding
them, and at older ages, handshakes, kisses, and embraces trigger emotions and strengthen
relationships. Nevertheless, the physical contact of a robot with a person raises safety
issues, and that may justify why haptic feedback is not so prevalent.

Touching a robot’s part (e.g., hand or body) or sensing that component pulling our
hand, operated by a remote party, can improve co-presence. Remote hand-shaking has
been explored [67], and examples include the Nao robot hand-shaking the bystander while
the robot’s operator uses a low-cost haptic device (WiiMote) to feel it [68]. In [69], a robot
hand was attached under a videoconferencing terminal’s display, and their evaluation
demonstrated that mutual touch enhances the feeling of being close. However, the partner’s
action should not appear in the video. Gregory Welch et al. [70] developed a tactile
telepresence system prototype that enables a remote visitor to convey touching patterns on
the forehead of an isolated patient through a tablet touch video interface. Regarding human–
robot first encounters [5] and greetings, the authors of [71] used Kendon’s model [72] to
develop an interaction that included six phases (initiation of approach, distance salutation,
head dip, approach, final approach, and close salutation). Human tracked gestures were the
inputs for a decision module (based on the hidden Markov model and behavior tree [73])
that initiated a specific phase at the right moment.

Telexistence surrogate anthropomorphic robot (TELESAR) VI can mimic the user’s
movements and gestures from a mechanically unconstrained full-body master cockpit
and provide haptic feedback to the operator [74]. The 10 fingers of the teleoperated robot
are equipped with vibration, force, and temperature sensors that can realistically deliver
these components of haptic information. Operators can shake the hand of another person
through the robot and feel it.

2.1.5. Depth Cues (Stereoscopy and Motion Parallax)

Considering an interaction between two persons through a teleoperated robot, the
depth cues become more important for the remote user, since the local user is with the
robot, and has natural depth cues. On the other side, if the remote user can perceive the
local user in a 3D space, it improves the scene’s realism and the co-presence. The use of 3D
displays or head-mounted displays (HMDs) by the remote user are common approaches
to delivery depth cues. However, this requires 3D sensors in the robot’s side (e.g., stereo
cameras and RGBD sensors). Additionally, with the inclusion of an autostereoscopic or 3D
display in the robot to present the remote user to the local user, it is possible to enhance the
closeness [75–77].

2.1.6. Audio Quality

As mentioned earlier, audio modalities guarantee higher levels of social presence. The
audio channel should provide bidirectional communication between the remote and local
users to exchange messages. Recognition of a person’s voice plays an important role in
person identification, contributing to the sense of co-presence [78]. Voice transmission is
expected to be fluid without cuts or delays. Telepresence robots quite often make use of
an array of microphones to acquire spatial sound, enabling the remote user to identify the
direction of the sound source [79] or simply detect the movements of the local user.

2.1.7. Video and Display

The sense of being telepresent is also determined by the fidelity and capability of the
medium to present the remote environment, including the visualization of persons (face
expressions, gestures, postural behaviors, etc.). To this end, there are mediation technology
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requirements that include visual display parameters (e.g., latency, frame rate, field of
view (FOV), point of view (egocentric vs exocentric), image resolution, color quality, and
image clarity) and environment presentation consistency across displays [80]. Display
type comparisons reveal a positive effect on co-presence using immersive 3D displays
in nonverbal interactions [81]. For example, the Willow Garage Texai robot rely on the
principle “reciprocity of vision (if I see you, you must see me)”, while Excite robot designers
defend that “The visitor’s [user’s] environment should be immersive so that the user would
have a first-person experience of the destination [remote environment] including full
sensory stimulation focusing on immersive vision, audio, and haptics” [3].

2.2. Contextual and Social Properties

Early studies on predictors of social presence focused on immersive qualities; however,
the research began to address contextual and individual properties. Given the subjectiv-
ity associated to social presence experience, and aside from the physical distance and
the medium’s technological qualities, analyses started to consider a psychological dis-
tance between the interactants [29,82,83]. These include factors such as Personality/traits
of Virtual Human, Agency [17], Physical Proximity [57,59], Task Type [48,84,85], Social
Cues [27,48,86], or Identity Cues [27].

In [30], a contextual responsiveness predictor is explored that assesses the capability
of a virtual human (VH) to detect and respond to events and cues that happen in the
shared space of the VH and the user (e.g., to a broom that falls in the user’s physical
environment or that falls into the virtual VH space). They showed that when the VH
detects and directs gazing at the event or orients itself in that direction, the user presents
higher levels of co-presence. Studies suggest that users’ perception of the physical space
affects their co-presence in mixed reality. Ignoring events in the background, such as objects
moving or a person walking [87], or the inability to shift attention to an external event
does not contribute to co-presence. In [62], the robot that plays a game with the user uses a
“cheat” function to trick the user, which affects the user’s trust, contributing positively to
co-presence.

In [27], users reported a higher level of social presence when communicating simulta-
neously with several remote interlocutors through a telepresence robot than with a single
remote person. In [27], a second study showed that users felt the presence of the remote
interlocutor more when the telepresence robot had a low identity than a higher identity
(e.g., robot’s head LCD with or without a face drawing).

2.3. Individual Traits

Gender and age: social studies showed that female subjects tend to experience higher
degrees of social presence when compared with males [57,88], but age is not a relevant
factor [89].

Attractiveness: in [59], a human’s avatar that looks more attractive in a virtual mirror
raised the person’s level of self-confidence in the next encounters with other person’s
avatars and eventually in the real world (distances between avatars are reduced (prox-
emics)). Such findings provide traits for telepresence and co-presence robot design.

Height: in [59], a human’s avatar that looked taller than its interlocutor tended to
make that person more persuasive in new interactions with others.

Psychological traits: a person with a higher immersive tendency showed higher de-
grees of social presence [89]. Additionally, people more prone to human social interactions
reported higher levels of social presence in experiments involving social robots [90]. In [45],
persons low in communication apprehension (CA) experienced higher levels of social
presence than those high in CA. Less sociable people tended to show lower scores on social
presence assessments.

Table 3 summarizes the relevant aforementioned and next predictor’s references, their
significant conclusions, and insights on statistics comparisons (e.g., N = number of subjects,
µ = mean, σ = standard deviation; subscripts refer to the condition, where superscript + =
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significant condition, d f = degree of freedom, F = ANOVA statistic F, p = p-value, η2 = eta
squared, χ2 = chi square, β = standardized path coefficient, and r = correlation coefficient).

Table 3. Co-presence studies.

Predictor
Category Predictor Evaluation Process Study Quantitative Comparison (Statistics)

Immersion Modality
FtF vs. CMC (Net-
Metting teleconfer-
ence)

[44] N = 70 (38 pairs), µFtF = 34.6, µCMC = 32.1,
F = 40.2, d f = 1, p = 0.00

Immersion Modality FtF vs. CMC (chat) [45] N = 152, χ2(8, N = 152) = 6.267, p = 0.617;
(β = −0.948, p < 0.001)

Immersion Modality FtF vs. CMC [46] N = 257, µFtF = 3.63, σFtF = 0.62; µCMC = 3.48,
σCMC = 0.57; t(255) = 2.077, p = 0.0039

Immersion Modality
FtF vs. CMC (on-
line teaching and
learning)

[47] N = 50, µFtF = 38.9, σFtF = 1.2; µCMC = 36.91,
σCMC = 1.36; F(1, 48) = 1.194, p = 0.28

Immersion Modality Audio vs. Audio +
Video [48] N = 34 (17 pairs), male: µaudio ≈ 53.5,

µaudio+video ≈ 71.75; F(1, 18) = 9.9, p = 0.04

Immersion Modality
Text vs. Audio vs.
Audio + Video vs.
Audio + Avatar

[50]

N = 150, Factor scores: µtext = −0.48, µaudio =
0.26, µaudio+video = 0.22, µaudio+LFavatar = 0.09;
µaudio+HFavatar = 0.10; F(4, 137) = 2.59, p =
0.04, η2

p = 0.09

Immersion Visual Representa-
tion

Photographic Real-
ism (Low- vs. High-
Fidelity Avatar)

[50]
N = 150, Factor scores: µaudio+LFavatar = 0.09;
µaudio+HFavatar = 0.10; F(4, 137) = 2.59, p =
0.04, η2

p = 0.09

Immersion Visual Representa-
tion

Photographic Real-
ism [52]

N = 80, embodiment index: voice =
1.68, voice + avatar = 5.2, d f = 4, p <
0.01, µembodiment = 3.41, σembodiment = 1.94;
µcopresence = 5.27, σcopresence = 1.44;

Immersion Visual Representa-
tion

Photographic Real-
ism [57] N = 50, µ f lat_shaded_ f ace ≈

µphotographic_texture_ f ace

Immersion Visual Representa-
tion Anthropomorphic [17]

N = 134, copresence in-
dex: lowanthropomorphic_image

+,
moreanthropomorphic_image, noimage, R = 0.18,
F = 4.23, p = 0.04

Immersion Visual Representa-
tion

Anthropomorphic,
Behavioral Realism [28] Definitions and it uses, digital representations

Immersion Visual representa-
tion

Behavioral realism
(mutual gaze) [57]

N = 50, women’s social presence score:
µno_mutual_gaze = −13.25, σno_mutual_gaze = 18.58;
µhigh_mutual_gaze = 2.5, σhigh_mutual_gaze = 15.55;
5 conditions (r = 0.30, p < 0.03)

Immersion Visual Representa-
tion

Consistency be-
tween Visual and
Behavioral Realism

[60]

N = 48, low_realism: µrandom_gaze = 1.2,
σramdom_gaze = 0.2; µin f erred_gaze = 0.7,
σin f erred_gaze = 0.2; high_realism: µrandom_gaze =
0.3, σramdom_gaze = 0.1; µin f erred_gaze = 1.1,
σin f erred_gaze = 0.3;

Immersion Visual Representa-
tion

Consistency be-
tween Visual and
Behavioral Realism

[61]

N = 146, copresence: behavioral realism+,
F(3, 133) = 2.72, p < 0.05, η2 = 0.06; visual
representation+ F(6, 133) = 2.18, p < 0.05,
η2 = 0.09

Immersion Visual Representa-
tion

Avatar Behavioral
Realism to Events [30]

N = 65, copresence: µ+
responsive = 4.31,

σresponsive = 0.11; µnonresponsive = 3.96,
σnonresponsive = 0.12;, σ; F(1, 63) = 5.06, p = 0.02
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Table 3. Cont.

Predictor
Category Predictor Evaluation Process Study Quantitative Comparison (Statistics)

Immersion Visual Representa-
tion HMD vs. Desktop [80]

N = 21, presence Q5: µHMD = 5.28, σHMD =
1.58; µDesktop = 3.42, σDesktop = 1.77; F(1, 20) =
26.54, p < 0.0001

Immersion Visual Representa-
tion HMD vs. Desktop [91]

N = 26, presence Q5: µHMD = 5.88, σHMD =
0.52; µDesktop = 2.48, σDesktop = 1.75; F(4, 95) =
32.19, p < 0.0001

Immersion Visual Representa-
tion

2D vs. 3D vs. Ver-
bal vs. Nonverbal [81]

N = 40, copresence: 3D+
nonverbal , 3Dverbal ,

t(16.35) = 7.48, p < 0.05; 2Dnonverbal , 2D+
verbal ,

t(17.967) = −8.05, p < 0.05

Immersion Interactivity Whole Body Inter-
action [92] N = 13, embodiment: immersive+body intention-

based robot control+, F(3, 44) = 19.11, p < 0.0001;

Immersion Haptic Feedback Present vs. Absent [93]

N = 24, Embodiment score: Haptic feedback+

= 49.8, F(1, 23) = 29.67, p < 0.0001; Realism
score: Haptic feedback = 33.0, F(1, 23) = 22.97,
p < 0.0001;

Immersion Depth Cues Stereoscopy (stereo
vs. mono ) [94]

N = 144, copresence: µ+
stereo = 3.85, σstereo =

1.34; µmono = 3.25, σmono = 1.48; F(1, 140) =
6.97, p < 0.01, η2

p = 0.05

Immersion Audio Quality
Binaural vs. Stereo-
phonic vs. Mono-
phonic

[78] N = 82, presence: binaural+, mono−, !2 =
(4, N = 79) = 10.7, p = 0.031

Immersion Audio Quality Attention, Binaural [95] active perception (visuo-auditory, vestibular em-
ulation, Bayesian models), f = 6–10 Hz.

Immersion Display Face-to-Face Point
of View [75] 3D capture, maintain face-directed gaze through

robot positioning, f = 2.12 Hz

Immersion Display
Three 55-inch
Screens vs. One
55-inch Screen

[94]

N = 144, copresence: µ+
humansize_display = 3.94,

σhumansize_display = 1.46; µsmallsize_display = 3.17,
σsmallsize_display = 1.30; F(1, 140) = 11.41, p <

0.001, η2
p = 0.08

Immersion Display Autostereoscopic
Telepresence [96] 3D capture, 3D display, eye/head tracking,

frame rates: 34, 48, 74 Hz

Context
Personality or
Traits of Virtual
Human

Personality man-
ifested by voice
and match between
content

[97]

N = 144, computer voice with a personality
(extrovert/introvert ) similar to human inter-
locutor, F(1, 67) = 11.13, p < 0.001, η2

p = 0.14;
voice+extrovert, voiceintrovert, F(1, 71) = 17.91 p <
0.001, η2

p = 0.20

Context Agency Avatar vs. Agent [17]

N = 134, copresence in-
dex: agencyhuman_human_interaction ≈
agencyhuman_computer_interaction, R = 0.03,
F = 0.15, p = 0.7;

Context Agency
Conscious experi-
ence of being some-
one

[24] Illusory self-identification

Context Agency Avatar vs. Agent [82]
N = 90, agency+human_human_interaction,
agencyhuman_computer_interaction, F(1, 90) = 10.870,
p = 0.001, η2 = 0.112

Context Physical Proximity Close vs. Distant
(spatial proximity) [98]

N = 134, male social presence:
stdpathestlocation_accessibility_cues+ = 0.21,
stdpathest+richer_medium = 0.06
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Table 3. Cont.

Predictor
Category Predictor Evaluation Process Study Quantitative Comparison (Statistics)

Context Task Type Caregiver: Human
vs. Robot [99]

N = 60, social presence: µ+
robot_as_caregiver = 5.56,

σrobot_as_caregiver = 1.04, µhuman_as_caregiver =
4.20, σhuman_as_caregiver = 0.83;

Context Social Cues Online Buddy:
Present vs. Absent [85]

Context Identity Cues
Telepresence Robot,
Identity Cues:
High vs. Low

[27]

Individual Demographic Vari-
ables

Gender: Female vs
Male [48]

Individual Psychological
Traits

Communication
Apprehension [45]

Individual Psychological
Traits Belonging Feeling [99]

3. From Telepresence to Co-Presence Design

Presently, the market [100] offers full solutions for mobile robotic telepresence (MRP)
systems [5–7,9] (see Table 4), and the research presents telepresence robot solutions such as
the ones listed in Table 5. There are also unmovable robotic telepresence (RP) systems, which
are listed in Table 6. These robotic telepresence systems are depicted in Figures 3 and 4.

Table 4. Mobile robotic telepresence (MRP) systems: full market solutions.

References
Robotic Telep-
resence Sys-
tems

Application Area Expression or Ma-
nipulation Navigation Features Cost

[101] Giraff Eldery Head tilt (screen dis-
play/camera) No USD

11,900.00

[102] Double 2, 3 Office, education,
hospital Motorized height Accelerometer and gyroscope for

balance, kickstands when static USD 2749.00

[103] PadBot 2 Office, education,
hospital Tilt head (screen) Obstacle detection, collision avoid-

ance, anti-falling system USD 1297.00

[103] PadBot U1—
v2

Office, education,
hospital Tilt head (screen) Collision-prevention sensors. Edge

detection and anti-falling sensors. USD 797.00

[103] PadBot T1 Office, home No Collision prevention, cliff sensor USD 185.00

[104] Beam Pro Corporate, manu-
facturing, medical No Crash avoidance, assisted driving USD

14,945.00

[105] Ava 500 Healthcare, office No

2D or 3D imaging, sonars and
lasers for autonomous naviga-
tion, omnidirectional navigation,
scheduling capabilities, cliff sensor

USD
32,000.00

[106] Ohmni Super-
Cam Office, home No Includes downward-facing camera

for full visibility USD 2195.00

[107] VGo Office, education Tiltable head Crash avoidance, notification of ob-
stacles locations, cliff sensor USD 3995.00

[108] TeleMe 2 Office, education Laser pointer option
Crash avoidance: infrared sensors
detect obstacles and will automati-
cally reduce robot’s speed

USD 3995.00

[109] RP-Vita Healthcare, FDA
clearance

Active patient mon-
itoring

Obstacle avoidance, omnidirec-
tional and autonomous navigation

USD
80,000.00

[110] Teleporter Office, factory, hos-
pitals

Laser pointer, sec-
ondary webcam

Crash avoidance: infrared, 3D, or
sonar sensors

USD
14,995.00
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Table 5. Mobile robotic telepresence (MRP) systems: research-oriented solutions.

References
Robotic
Telepresence
Systems

Application
Area Expression or Manipulation Navigation Features Cost

[22] PRoP Research Laserpointer, 2 DOF hand and arm - -

[111] FURo-i Home No Bumpers USD
1800.00

[112] MeBot Research 3 DOF neck for screen and 3 DOF
arms

Collision prevention,
cliff sensor -

[113] Origibot Research Tiltable head for screen, 1 DOF arm
(180◦), 2 DOF gripper No Low cost

[114] Nao Research
Humanoid, 25 DOF, tiltable head,
arms, legs, 4 directional micro-
phones and speakers, 2 cameras

No –

[114] Pepper Research

DOF (head: 2, shoulder: 2, elbow: 2,
wrist: 1, hands (5 fingers): 1, waist:
2, knees: 1, base: 3 wheels), 2D and
3D cameras and sonars

Autonomous naviga-
tion, bumpers

USD
30,000.00

[115,116] GrowMeUp Eldery
research

Robot expression, directional micro-
phones and speakers, 2D and 3D
cameras, sonars, touchscreen

Obstacle avoidance,
autonomous nav-
igation, service,
expression, behaviors

-

Table 6. Unmovable robotic telepresence (RP) systems.

References Robotic Telepresence System Application Area Expression or Manipulation Cost

[117] Kubi Office, education Pan 300◦, tilt 900◦(screen) USD
675.00

[118] TableTop TeleMe Office, education Pan 360◦, tilt head (screen) USD
3995.00

[119] SelfieBot Office, education Pan 180◦, tilt 180◦ head (screen) USD
195.00

[120] Meeting Owl Pro Office Static 360◦ camera (1080p) USD 999

[121] Robovie mR2 Research
Expression, arms, gestures, eye
blinking (cameras), 18 joints (3 in
each eye), 18 servo motors

-

3.1. Co-Presence Design

Mechanisms that contribute to enhancing co-presence in telepresence robots should
consider the robot-side systems and the remote user (robot’s operator) side solutions. Robot-
side interfaces support interactions between the robot and the local user (bystander) and
between the robot and the remote user (operator). Human–robot interfaces can be classified
into sight, hearing, touch, and body-sensing technologies. Technological advances include
robust robot sensory (vision, face and expression recognition, object recognition, activity
identification, pressure, touch, temperature, speech understanding, sound localization,
etc.), acting (mobility, proxemics, gestures, gazing, facial expressions, speech synthesis,
etc.), reasoning (localization, planning, context awareness, grasping, etc.), and appearance
(familiar, unfamiliar, human-like, and mechanical) [3,122,123].
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s)

Figure 3. Mobile robotic telepresence (MRP) systems: (a) PRoP, (b) Giraff, (c) Double 2, 3, (d) PadBot
2, (e) PadBot 3, (f) PadBot T1, (g) Beam Pro, (h) Ava 500, (i) Ohmni SuperCam, (j) VGo, (k) TeleMe, (l)
RP-Vita, (m) Teleporter, (n) FURo-i, (o) MeBot, (p) Origitbot2, (q) Nao, (r) Pepper, and (s) GrowMeUp.

(a) (b) (c) (d) (e)

Figure 4. Unmovable robotic telepresence (RP) systems: (a) Kubi, (b) TableTop TeleMe, (c) SelfieBot,
(d) Meeting Owl Pro, and (e) Robovie mR2.

3.1.1. Sensing

Robotic sensing technologies are becoming more efficient, lighter, and cheaper. Early
human–robot interfaces used to integrate few sensors and relied mainly on video and
audio data and low-resolution proximity sensors (e.g., sonars). Current robots can be
equipped with 3D or 2D cameras (e.g., low-cost RGB-D cameras), pressure sensors, touch
sensors, directional sound sensors (arrays), high-precision proximity sensors (e.g., range
laser finder (lidar)), and robot pose and position sensors (e.g., gyroscopes, accelerometers,
and GPS). The fusion of these sensors combined with high-accuracy robots, person localiza-
tion algorithms (e.g., simultaneous localization and mapping (SLAM) or Open Pose), and
deep learning approaches, have improved robot operations in an environment, enhanc-
ing HRI between operators and bystanders. Valuable information can be extract due to
advances in sensor technologies and software, such as sound locations [95,124,125], speech
segregation [126,127] and recognition [128,129], attention [79], gesture recognition [130,131],
human action analysis [132,133], human intentions [134,135], object recognition [136], and
scene understanding [137,138].
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3.1.2. Action Capabilities

Advances in robot software and hardware, lighter and stronger materials, compo-
nent miniaturization, and lighter and more powerful batteries have broadened robots’
capabilities. Robot mobility has improved significantly, enabling robust navigation in
an unstructured environment and in rough terrain [139,140], and they can climb stairs,
walk fast, and run, such as the Boston Dynamics ATLAS robot [141] or Honda ASIMO
Robot [142]. Advances in humanoid mobility and equilibrium are remarkable, including
compliant interactions and variable speed [143]. Having arms, hands, and fingers with
more degrees of freedom (DOFs) enabled new types of interactions such as high-fidelity ges-
tures, grasping objects smoothly [144], or even open doors and pass though them [141,145].
Whole-body expressive movements [146], facial features to support expression synthe-
sis [147], and speech synthesis technologies are enabling better HRIs.

3.1.3. Reasoning

Robots are designed to perform several tasks, but task execution is not always perfect
(e.g., motion constraints, impaired sensory, control, and communication delays). Thus,
advancements in software reasoning processes have been developed to supervise tasks,
aiming not for perfect execution but optimum performance. Namely, notable advances
have been made in localization and mapping [148,149] and in grasping [144]. In [150], the
authors explored approaches for a telepresence robot to detect and position itself with
a group of people for social interactions (maintaining an egocentric perspective). The
inclusion of these autonomous algorithms can help operators and bystanders in their
interactions with the robot, simplifying the control, reducing the effort, and improving
the intuitiveness.

3.1.4. Appearance

The acceptability of the robots enrolled in a human assistive task also depends on
their appearance. Designers have created robots with human-like appearances [151]. The
Geminoid robot has an incredibly realistic head and facial features [152]. This approach
enables more effective communication through facial expressions and natural gestures.
Additionally, given the human-like robot morphology, it is simpler to map the human
gestures and movements in the robot. The search for realism, however, suggests some
warnings regarding Mori’s “uncanny valley” [153,154]; that is, if a robot or agent is an
imperfect replica of a human being, people may feel defrauded in their expectations
regarding the affinity as a pair, triggering strange, familiar feelings of unease and revulsion.

3.1.5. Managing Robot Autonomy in Telepresence Systems

Advances in robot autonomy do not eliminate the role of human operators. Human
skills remain crucial in an unstructured environment or when dealing with unpredicted
events. The integration of autonomous mechanisms aims for process simplification, and it
changes the nature of human–robot interaction (HRI). However, there are cases where the
complexity increases [155] (e.g., 2019 Boeing 737 Max autopilot problems with deadly con-
sequences). The availability of automated behaviors for telepresence or in humanoid robots
may lead people to use them indiscriminately, diverting attention from the interaction
essentials. Nevertheless, autonomous mechanisms aim to reduce users’ mental workload,
performing increasingly complex tasks and now being part of our daily lives (e.g., self-
driving cars, autonomous vacuum cleaners, and chatbots). The literature refers to methods
to integrate autonomy mechanisms in telerobotics [156], and they can be classified into
direct control, supervisory control, shared control, traded control, collaborative control,
and cooperative control [157,158].

Direct control: The robot has no autonomy. An operator controls all the robot’s functions
manually. Mirroring is a type of direct control in which the robot replicates the human’s
movements and expressions.
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Supervisory control: The robot is programmed intermittently according to the contin-
uous information received from the robot. The human and the robot integrate a closed
control loop focused on task performance [159].

Shared control: The human operator controls the robot continuously. However, those
commands may be strictly followed by the robot (similar to direct control) or be modified
by the robot’s system to improve performance or run safely.

Collaborative control: The operator and the robot work together as peers to determine
the robot’s behavior. In Fong’s work [160], there is an explicit semantic dialogue between
humans and robots to mediate the sharing of control.

Traded control: The human operator starts a behavior or task that is autonomously
performed by the robot. At any time, the operator can stop that behavior or task and start a
new one.

Cooperative control: The behavior of a single robot results from the controlled coopera-
tion of several operators using any of the aforementioned methodologies.

In the shared control method, the operator provides continuous commands to the
robot, aiming for high-level behavior from the robot. However, the robot may change those
inputs to reach the perceived system goals [161]. The method assumes that the operator
knows how to direct the robot’s high-level behaviors but may not be sufficiently skilled to
express the right commands due to a lack of situation awareness, embodiment, telepresence,
or lack of robot motor accuracy and sensor information. Typically, the shared control
method includes “safeguard” mechanisms, in which the operators’ command actions are
overwritten if they violate the robot’s safety rules, such as collision with a wall or person or
losing balance [162]. The software of HPR-1s or HRP-5P humanoid robots was developed
to discard commands that could make the robot lose balance, limiting joint angles [163–165].
In Almeida et al. [92], given the robot’s height, the wheel’s initial acceleration provided
by the operator had to be supervised by the robot to avoid its falling down. In Crandall
and Goodrich’s works, the robot’s desired trajectory was provided through a joystick as
the intended general direction and not as low-level position commands [166].

In the traded control method, a task or subtask is performed autonomously by the
robot, but it is initiated by the operator and may be stopped at any time. The method is
useful for simultaneously controlling multiple robot’s appendages, such as in teleoperation
of humanoids [167–169]. The Geminoid HI-1 robot [169] relies on a traded control known as
state-based control, in which the operator selects the state from a library of states. It includes
five conscious behaviors, namely right looking, left looking, listening, speaking, and being
idle. For each state, the robot assumes autonomous behaviors (i.e., motion files), avoiding
an explicit operator’s control of 50 robot actuators. The integration of multiple semi-
autonomous mechanisms is essential while controlling the eyes, head, torso, arms, hands,
and fingers simultaneously in a humanoid robot. Quite often, operators need to control low-
level robot behaviors and additionally focus their attention on high-level tasks, such as (1)
robot navigation, (2) obstacle avoidance, (3) triggering robot’s unconscious and conscious
behaviors [169], (4) object and scene understanding [137,170,171], (5) mission planning,
or (6) people‘s interaction. Osawa et al. [172] evaluated the automation of involuntary
and voluntary movements using a teleoperated telepresence robot (robovie-mR2). The
implemented behavior generation architecture (bi-layered architecture [173]) enabled the
combination of autonomous movements and manual movements controlled by a remote
operator. The results showed that bystander users evaluated both the involuntary and
voluntary movements positively but also revealed that from the remote operator’s point
of view, the automation of voluntary movements should require additional care (agency
issue conflicts).

3.1.6. Time Delay Mitigation

The dynamic nature of the communication medium has an impact on the complexity
of teleoperated systems. Time delay, jitter, distance, bandwidth constraints, packet loss,
or blackout in internet-based solutions can delay or distort interactions. This can affect
the synchronicity (rate of message exchange between operator and bystander), compro-
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mising the social presence [33] (e.g., degradations in audio and video streams, control
streams, or haptic feedback). Traditional methods to mitigate time delay in telerobotics
involved user interface design and control theory-based models (e.g., supervisory control
or passivity-based teleoperation) and evolved into predictive displays and control [159]. Re-
cent solutions for time delay issues use time series prediction methods to predict the time
delay, robot movements, and user intentions (e.g., user’s gaze prediction [174]). These
new adaptive-based control methods make use of nonlinear statistical models and neural
network (NN) or machine learning (ML) techniques.

Ferrell and Sheridan [175] determined that a time delay affects human operators’
performance while teleoperating manipulators. They realized that the person within the
control loop of teleoperated systems under time delays used to adopt a move-and-wait
strategy to accomplish certain tasks. To address this problem, they proposed supervisory
control [176], in which the robot is preprogrammed or programmed online to perform
certain subtasks autonomously. By transmitting only high-level commands, there is a
data communication reduction, and task time completion improves. Meanwhile, several
extensions of supervisory control were developed, including specific languages to chain
tasks or predictive displays (i.e., visualization of a phantom robot model that predicts the
motion of the real robot) [177,178].

Control-based approaches for time delay mitigation in teleoperation systems can be clustered
into two classes [31,179]: (1) predictive control-based methods (e.g., a discrete linear quadratic
Gaussian (LQG) controller for teleoperation acting on the sampling rate or output feedback
control of multiple-input and multiple-output (MIMO) systems) and (2) passivity-based
methods that model the master–slave operator systems and unsure stability and performance
under time delay variability (e.g., a two-port network, hybrid matrix, impedance matrix,
constant time delay, scattering approach, wave variable, scaling, and geometric scattering).

Time series prediction approaches for time delay mitigation in teleoperation systems try to
compensate for the time delay, observing past intrinsic patterns to predict the future
values [31,156]. They integrate trends, seasonality, and white noise and can be clustered
into two types: statistical methods and neural network (NN) or machine learning (ML) methods:

(1) Statistical methods (e.g., moving average (MA), linear auto-regression (AR), auto-
regression + moving average (ARMA), and auto-regression + moving average + nonlinear
component (ARIMA) [180]);

(2) NN or AI methods (e.g., recurrent neural networks (RNNs) [181,182], long short-
term memory networks (LSTMs) [183,184], sequence to sequence (Seq2Seq) [185,186], and
generative adversarial networks (GANs) [187,188]).

Statistical methods have the advantage of not requiring training with data and are
simpler to implement. Although times series prediction traditionally relied on statistical
approaches, it has difficulties in modeling the entire set of nonstationary signals. Neverthe-
less, methods like ARIMA can cope with nonstationary signals. Statistical methods are not
appropriate for modeling complex tasks, being more suitable for short-term predictions.
Neural networks, on the other hand, have an advantage over statistical approaches in that
they enable data description without explicit knowledge of its distribution and can model
more complex time series data based on past observations. Neural networks are more
prone to adapt their behaviors as the input data increases [31].

3.2. User-Adaptive Systems Taxonomy

Social robots aim to assist people, enable telesurveillance of elderly people, guide
people on tours, promote physical and mental exercise, keep company, or entertain [1,5,6].
In short, they contribute to the user’s well-being, adapting to people, to the environment,
and ultimately to the context. Case studies include interaction of a service robot for 1 week
in an elderly care center [116]. Several types of user-adaptive mechanisms are described in
the robotics literature [2,8,9,31,189,190].

Typically, a framework for a user-adaptive system comprises two components (see
Figure 5): the interface layer that is used for the exchange of information between the user
and the system (It integrates sensors for the system to perceive the user and actuators
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to provide stimuli.) and the decision-making module which, based on perceived informa-
tion, makes algorithmic decisions and generates response actions to be synthesized by
the interface.

Robot systems with autonomous and semi-autonomous behaviors can be classified
with the following taxonomy [8]:

Autonomous and semi-autonomous - Adaptive systems with no user model
behaviors supported by - Systems based on static user models

- Systems based on dynamic user models

1. Adaptive systems with no user model: systems with reactive behavior regarding the
user’s immediate feedback and with no cache of the user’s information (see Figure 6);

2. Adaptive systems based on static user models: systems that rely on pre-loaded
knowledge retrieved from the relevant attributes of the user and used to adjust the
system’s behavior (see Figure 7);

3. Adaptive systems based on dynamic user models: similar to the previous exam-
ple, these systems explicitly maintain user models. They are task-oriented models,
updated with users’ information during their interactions (see Figure 8).

User-adaptive systems require information about the user which is typically stored
in the form of a user model [9,191]. As reported in an early survey [192], a new field of
research emerged concerning with acquisition, organization, and representation of the
system’s user.

Adaptive systems without user modeling can implicitly map the characteristics of a
generic user in the architecture of the decision-making module (Figure 6). Nevertheless,
it is a reactive adaptation that shapes the system’s behavior directly based on the user’s
feedback. The user’s behavior changes are monitored and trigger an immediate switch
to a new system’s operational state, while no storage or user model update is performed.
Table 7 summarizes several works that adopt this type of architecture.

Adaptive systems based on static user models assume that the person’s profile does not
evolve during the interaction. These static models can be built during an initial phase of
the interaction (Figure 7), similar to the calibration process, or the user’s profile can be pre-
supplied using external questionnaires. These types of systems are not able to dynamically
learn the characteristics of the user. Examples of related works are listed in Table 8.

Decision 
Making

and 
User 

Model

User
Interface

Action

Feedback

Stimuli

Reaction

User

Figure 5. Overview of a generic user-adaptive system, which includes a user interface layer and a
decision-making module.
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Figure 6. General schematic of a user-adaptive system without the user’s model. The system’s
behaviors are direct reactions to the user’s feedback, and decisions are made without the user’s
previous knowledge.
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Figure 7. General schematic of a user-adaptive system based on static user models.
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User
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Model
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parameters

Feedback

Figure 8. General schematic of a user-adaptive system based on dynamic user models. The user’s
feedback reactions are used to continuously update robot knowledge and consequently tune the
system’s behavior.

Adaptive systems based on dynamic user models perceive, learn, and update the knowl-
edge regarding the context model and the user model. The stored user model is updated
during the interaction based on the user’s reactions. This category of systems is consid-
ered the best performing user-adaptive solution, although its implementation is more
complex [191,193,194]. Table 9 compiles several references for systems based on dynamic
user models.

Additionally, one of the described categories, such as adaptive systems based on
dynamic user models, can coexist in a telepresence teleoperated robot [1,3,172,173], thus
adding adaptiveness functionalities either for the robot’s operator (remote user) or for the
local user that is with the robot. The general architecture of a teleoperation system with
user adaptiveness is depicted in Figure 9.
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Figure 9. A schematic of the general architecture of a teleoperation system that includes an adap-
tive system.

The decision-making modules of the listed user-adaptive systems include different
frameworks, such as the Markov decision process (MDP), partially observable Markov de-
cision process (POMDP) (αPOMDP [195]), Mixed Observability Markov Decision Processes
(MOMDP), fuzzy control, rule-based, hidden mode stochastic hybrid system (HMSHS),
Bayes-adaptive, dynamic factor graph (DFG), active leaning, or reinforcement learning.
Recent approaches for these frameworks are described in [196].

Table 7. Adaptive parameters, input modalities, framework of decision, output modalities, and social
robot evaluation with no user model.

Adaptive
Parameters Study Input

Modality
Decision
Making

Output
Modality

Evaluation
Process Evaluation Metrics

Robot’s Naviga-
tion Goal [197]

Brain-
actuated
controls

Rule-based Robot com-
mands

Measurements,
questionnaires, Robot path

Decisions
takele f tturn [198] Physical con-

trols POMDP Image and
sound

Measurements,
questionnaires

POMDP rewards, perceived con-
trol, driving performance, simi-
larity to real world, naturalness,
social appropriateness

Robot Speed [199] User’s pose
and speed MOMDP Motor con-

trol Measurements Speed difference and distance to
the user

Decisions (object
to move) [200] Speech, gaze Rule-based Robot arm

movement
Measurements,
questionnaires

Prediction accuracy, projection
accuracy, perceived awareness,
response time and intentionality

Robot Speed [201]
Odometry,
Physical
controls

Fuzzy control motor con-
trols - -

Decisions (warn
driver or inter-
vene)

[202] Physical con-
trols

Hidden mode
stochastic hy-
brid system

Image and
sound Measurements Time in unsafe and safe states

Decisions (room
to clean) [203]

User loca-
tions, task
success

Motor control Rule-based - -

Robot’s Naviga-
tion Goal [204] Physical con-

trols Rule-based Robot com-
mands Measurements Recognition accuracy

Voice Pitch [205] User speech Rule-based Robot
speech Questionnaires

Persistence and learning gain,
rapport, perceived social pres-
ence
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Table 7. Cont.

Adaptive Pa-
rameters Study Input

Modality
Decision
Making

Output
Modality

Evaluation Pro-
cess Evaluation Metrics

Robot’s Gestures [206] Vision,
speech Rule-based Robot com-

mands
Measurements,
questionnaires

Information distance, perceived
behavior performance, per-
ceived gesture recognition,
enjoyment, perceived social
interaction

Robot Speed and
Path [207] Physical con-

trols Rule-based Robot com-
mands - -

Decisions (navi-
gation goal) [208] Physical con-

trols POMDP Robot com-
mands Measurements State variables, robot path, des-

tination probabilities
Decisions (what
objects to move,
when to speak)

[209] Speech, vi-
sion, depth Rule-based

Speech,
robot com-
mands

Measurements User’s speech time

Table 8. Adaptive parameters, input modalities, framework of decision, output modalities and social
robot evaluation with static user model.

Adaptive Parameters Study Input
Modality

Decision
Making

Output
Modality

Evaluation
Process Evaluation Metrics

Robot’s Gestures and
Speech [210] Speech Rule-

based
Gestures,
speech Questionnaires Preference toward a

type of adaptation

Decisions (placement of
objects) [211]

Crowd-
sourced
data

Rule-
based

Robot con-
trols Measurements F-scores

Robot Location, Inter-
face Complexity, Warn-
ing Levels, Font Size

[212] - Rule-
based - - -

Decisions (how to dress
the user) [213]

User’s
pose,
speech

Rule-
based

Robot com-
mands Measurements Task completion speed

Decisions (how to dress
users) [214]

User’s
pose,
speech

Rule-
based

Robot com-
mands Measurements Classification accuracy

Speech Output Gender,
Sound Volume, Robot’s
Name, Robot Speed

[215] Speech,
touch

Rule-
based

Robot
commands,
speech

Questionnaires Acceptance, perceived
usability

Sequence of dance
movements [216] User’s

pose
Rule-
based

Robot com-
mands

Questionnaire,
manual classifi-
cation

Gaze position, body lan-
guage, facial emotion,
perceived bond, amuse-
ment, satisfaction, enjoy-
ment, anxiety, observed
leadership, expectancy
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Table 9. Adaptive parameters, input modalities, framework of decision, output modalities, and evaluation of the social robots with a dynamic user model.

Adaptive Parameters Study Input Modality Decision Making Output Modality Evaluation Process Evaluation Metrics

Promote Regular Physical
Activity Habits [84] User’s position, pose (exer-

cise performance), speech Rule-based Navigation, robot commands,
speech (avatar coach)

Measurements, ques-
tionnaires

User’s exercise performance,
flow

Decisions (service, navi-
gate, turn to the person,
stop, smile)

[116,195]
Person detection, speech,
emotion recognition,
touchscreen

αPOMDP, SOA-based
model

Navigation, robot commands, ap-
proach, speech, robot expression,
recognition, service

Measurements, ques-
tionnaires

Usability, appearance, satisfac-
tion

Human
Robot Greetings Phase [71] Tracking human gestures MDP

Kendom phase trigger (initiate ap-
proach, distance salutation, head
dip, approach, final approach, and
close salutation)

Measuments, observa-
tion Sequence estimation accuracies

Colors of LEDs [217] Physical controls Rule-based LED colors Measurements Cumulative reward from
users, error estimation

Decisions (what interac-
tions to perform with the
user)

[218] Physical controls robot Rule-based Commands Measurements, ques-
tionnaires

Child learning rate, human in-
tervention ratio

Reading Difficulty Level [219] Speech, touch Active learning Number of words learned Measurements, ques-
tionnaires Images, speech

Decisions (adaptation to
user’s subtask selection) [220] Vision, speech Rule-based Robot commands, speech Measurements Number of communications

required of the user

Decisions (moments to
take action, including pa-
rameter adjustment and
services )

[221] Gesture sound, projected
mages MDP Questionnaires

Perceived coherence,
user satisfaction, ease
of use, perceived help-
fulness, originality,
perceived adaptivity

Decisions (when to deploy
services) [222] Speech, touch Equilibrium mainte-

nance Speech, images, robot commands Measurements Opportunity relevance for the
selected service

Decisions (dialogue to
play) [223] Tactile sensors, sound,

touch Dynamic factor graph Image, speech, robot commands Questionnaires User’s opinion

Decisions (select learning
content type) [224] Speech, physical controls Rule-based LEDs, robot commands - -
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Table 9. Cont.

Adaptive Parameters Study Input Modality Decision Making Output Modality Evaluation Process Evaluation Metrics

Decisions (sounds to play) [225] Physical controls Context-free stochas-
tic grammars Sound (music) Measurements, ques-

tionnaires

Engagement, perceived diffi-
culty, progression, conformity,
number of user interventions,
speed

Decisions (placing a
shared object) [226] Vision, physical controls MAMDP Robot commands Measurements, ques-

tionnaires

Perceived trustworthiness,
ratio of users that change
strategies

Decisions (positive, nega-
tive, or neutral output) [227]

Facial expressions, RGBD,
electrodermal data, touch
screen

Rule-based Images, speech, gestures Questionnaires Understanding, perceived en-
joyment, trust

Decisions (where to guide
the user) [228]

Vision, user’s attention,
robot position, odometry,
speech

Rule-based Robot commands, navigation Questionnaires User’s opinion (score)
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Co-presence mechanisms: the availability of robotic autonomous mechanisms enables
a robot’s voluntary or involuntary behaviors that contribute to enhancing co-presence [172],
such as those listed in Table 10.

Table 10. Robotic mechanisms to enhance co-presence.

Type Voluntary Involuntary

Eye contact X -
Gaze following X -
Gazing at the closest face X -
Gazing at a random face X -
Gazing at the closest object X -
Gazing at a random object X -
Gazing at a moving object X -
Looking around the gazing position X -
Joint attention X -
Sleeping X -
Changing LED colors X -
Mouth movement X -
Nodding in response to human speech X -
Waving both hands at a random human X -
Waving left hand at a random human X -
Waving right hand at a random human X -
Waving left hand in response to palms X -
Waving right hand in response to palms X -
Waving both hands in response to palms X -
Reflexive blinking with eye movement - X
Spontaneous blinking - X
Avoiding objects at close range - X
Eye saccade - X
Breathing - X

3.3. Evaluation Methods

To assess co-presence, telepresence systems require objective and qualitative metrics.
Quantitative measures may include physiological signals (such as heart rate, skin tem-
perature, electrodermal activity (EDA), and skin conductance responses (SCRs) [229], eye
scan patterns, electroencephalography (EEG), or functional magnetic resonance imaging
(fMRI)) [34,230,231], as well as other metrics that are simpler to obtain, such as accuracy,
time to perform a task, and the number of errors or communication delays. However,
given the human factor and the psychological components of interaction, questionnaires
remain essential tools. There are methodologies for measuring the presence, social presence
or co-presence, and flow state of the users using technological devices [19,232–235].

Flow is a psychological state that people describe when they are fully engaged in
some events to the point of forgetting time, fatigue, and everything else but the activity
itself [40,236]. Table 11 lists the available questionnaires to measure the levels of presence,
co-presence, immersion, and flow.
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Table 11. List of questionnaires to assess presence, flow, and game.

Psychological Questionnaire Number of Ref.
Phenomena Questions

Presence Slater, Usoh and Steed (SUS) 6 [237]
Presence Temple Presence Inventory (TPI) 42 [238]
Presence Igroup Presence Questionnaire (IPQ) 14 [239]
Presence Sense of Presence Inventory (ITC-SOPI) 38 [240]
Presence Presence Questionnaire, version 3 (PQ) 29 [241]
Presence Networked Minds Social Presence 34 [41,242]

Inventory (NMSPI)
Presence Multimodal Presence Scale (MPS) 15 [243]
Presence Spatial Presence Experience Scale (SPES) 8 [244]
Flow EduFlow Scale (EFS) 12 [245]
Flow Flow Short Scale (FSS) 13 [246]
Flow Reading Flow Short Scale 8 [247]
Game and Flow EGameFlow (EGF) 42 [248]
Usability Nielsen Norman Group - [249,250]

Usability, testing and accessibility–Jakob Nielsen, one of the most active proponents
of usability processes, referred to the following elements that comprise a definition of
usability [249–251]:

1. Ease of use: the use of products or tasks should be natural and easily performed by
the user.

2. Simplicity of learning: tasks and product features must be intuitive and present a
logical and consistent sequence to simplify learning.

3. Improved reliability: levels of satisfaction and performance are increased when the
action’s results correspond to the user’s expectations.

4. Reduction in errors: usability can be increased if designers attribute the errors to the
product or task (rather than the user), redesigning it based on the user’s feedback.

5. Enhanced user satisfaction: the user’s satisfaction principle must guide all of the
design process, making the product or task pleasing to use or perform.

In [252], a taxonomy of usability guidelines for the design of telepresence teleoperated
robots (interaction effectiveness and efficiency, information presentation, interface visual
design, robot surroundings and environment awareness, robot state awareness, and cogni-
tive factors) is proposed. The usability testing process is an effective use of materials and
time [17,249,253,254] that should not be overlooked.

4. Conclusions

This work presented a survey of recent works, proposing the development of support
for social robotic interactions with applications in health care, elderly assistance, guidance,
or office meetings. It focused on enhancing social presence via telepresence robot mediation,
in which a user should sense his or her remote interlocutor as being locally present with
him or her. The research gathered knowledge to help roboticists design improved user-
and environment-adaptive systems and technical methods that contribute to enhancing the
sense of presence or co-presence. This literature review aimed to define social presence,
identify autonomous “user-adaptive systems” for social robots, and propose a taxonomy
for “co-presence” mechanisms. The referred works address robot sensing, perception,
action, reasoning, appearance, automation, and cognitive approaches (e.g., statistics models
and AI). Additionally, it presents an overview of social robotics systems and application
areas and provides directions for telepresence and co-presence robot design, considering
the actual and future challenges. Finally, some guidelines for the evaluation of these
systems are left, having as reference face-to-face interactions. Based on survey findings
in engineering and psychology, our future work includes the design of telepresence and
co-presence robots that better emulate or interpret human subjective experiences.
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