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Abstract: Granitic residual soils are soils formed by the in situ weathering of intrusive granitic rocks
and are present in different parts of the world. Due to their large presence, many civil engineering
projects are carried out on and within these soils. Therefore, a correct characterization of the slopes is
necessary for slope stability studies. This investigation aims to study the influence of the values of
geomechanical parameters (specific weight, cohesion, and friction angle) and the geometry of a slope
(height and inclination) on slope stability of residual granitic soils in dry and static conditions. To this
end, an automatic system was developed for the numerical study of cases using the finite element
method with limit analysis. The system allows modeling, through Monte Carlo simulation and
different slope configurations. With this system, the safety factors of 5000 cases were obtained. The
results of the models were processed through the SAFE toolbox, performing a Regional Sensitivity
Analysis (RSA). The results of this research concluded that the order of influence of the factors were:
slope angle > slope height > cohesion > friction angle > unit weight (β > H > c > φ > γ).

Keywords: slope stability; residual soil; weathered granite; sensitivity analysis; finite element method;
limit analysis; regional sensitivity analysis

1. Introduction

Soil mechanics has traditionally been focused on the study of sedimentary soils; how-
ever, recently, there has been growing interest in residual soils. Granitic residual soils are
a type of residual soil originating from the in situ weathering of granitic intrusive rocks
exposed at or near the surface. These types of soils are common in numerous parts of
the world. The geotechnical characteristics of residual granitic soils have been studied
in Brazil [1,2], China [3,4], Hong Kong [5], Malaysia [6], Portugal [7], South Korea [8],
and Thailand [9], to name a few. A granitic residual soil, locally known as “maicillo” is
commonly found in Chile. Maicillo is a residual soil resulting from the in situ weathering of
granitic rocks formed from intrusive bodies of the Cordillera de la Costa coastal batholith
situated parallel to the Pacific coast of Chile. It is one of Chile’s most abundant residual soils
and can be found between the Valparaíso Region (33◦00′ S) and the Nahuelbuta mountain
range, (40◦00′ S) [10,11], covering a length of approximately 600 km. Due to the widespread
occurrence of this type of soil in Chile and other parts of the world, infrastructure works
frequently encounter zones composed of this material, and, therefore, excavations in it are
common. Thus, a correct characterization of the materials that make up slopes is necessary
for slope stability studies and to guarantee the safety of excavations. The understanding
of the influence of each of the factors that determine the stability of a slope in this type of
material facilitates its characterization, particularly parameters whose characterizations are

Appl. Sci. 2022, 12, 5574. https://doi.org/10.3390/app12115574 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115574
https://doi.org/10.3390/app12115574
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0705-0388
https://orcid.org/0000-0002-2281-0456
https://orcid.org/0000-0001-5541-5922
https://doi.org/10.3390/app12115574
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115574?type=check_update&version=1


Appl. Sci. 2022, 12, 5574 2 of 17

much more sensitive. However, the applicability of sophisticated sensitivity analysis meth-
ods in geotechnical engineering is normally limited by the amount of available information,
both field measurements and information obtained using numerical modeling.

Probabilistic and sensitivity analyses are useful tools for studying slope stability
in rocks and soils. Hamm et al. [12] mentioned that slope designers are interested in
understanding which factors influence slope failure in order to implement mitigation,
maintenance, and repair measures. Therefore, these probabilistic analyses proved to be
interesting research topics. Navarro et al. [13] stated that engineers are not completely
satisfied with the solutions to given problems provided by traditional approaches, neces-
sitating additional results. They emphasized that, on occasion, knowing the safety factor
(SF) or the characterization of the geometry of the failure surface is insufficient. Baker
and Leschinsky [14] proposed the inclusion of safety maps as a source of information on
parameter changes and how they modify the slope’s safety factor and the resulting failure
surface. Meanwhile, Li et al. [15] proposed the inclusion of the influence of human activities
on stability.

Sensitivity analysis is a powerful method that can be used to derive information on the
influence of different parameters on the stability of a slope. For example, Agam et al. [16]
carried out a sensitivity analysis for an unreinforced slope composed of a stratum of
residual soil over a sandstone stratum located in Kuala Lumpur, Malaysia. The study used
Spencer’s method [17] and the general limit equilibrium method of slices (GLE) to obtain
the safety factor associated with variations in cohesion, friction angle, unit weight, and
water table position. The authors found the following order of parameter influence: water
table position, followed by the residual soil friction angle, cohesion, and unit weight. They
also stated that the underlying sandstone stratum parameters did not influence the analysis,
as the failure surface did not reach this material.

Aladejare and Akeju [18] used a Monte Carlo simulation to determine the failure
probability of a rock slope in Sau Mau Ping, Hong Kong. They employed the model
proposed by Hoek [19] and Hoek and Bray [20] to compare the results with those found by
other authors for the same location [19,21–25]. Two types of slope stability analyses were
performed, one considering the existence of a tension crack, and the other not considering
it. In both cases, cohesion, friction angle, tension crack depth, and water column height
were modified in order to determine the influence of height on the design of rock slopes.
The authors concluded that it is effective to include the variability and uncertainty of rock
properties and slope geometry in the design.

Chang et al. [26] and Liang and Sui [27] used the control variable method (CVM)
and the orthogonal design method (ODM) to study the influence of freeze-thaw cycles
on slope stability in sandstones and dry cohesionless slopes in the Chinese provinces of
Xinjiang and Yingpan, respectively. Chang et al. [26] found that safety factor decreased as
density, cohesion, and friction angle decreased. The authors concluded that the friction
angle presented the highest sensitivity index in their case study. Meanwhile, Liang and
Sui [27] used a simplified analytical model with a plane failure surface and concluded that
the parameters with the greatest sensitivity index were both friction angle and cohesion.

Xie et al. [28] and Ning et al. [29] implemented the Grey relational method (GRM) [30]
combined with the Universal Distinct Element method (UDEM) to determine the factors
influencing toppling and bending of layers of rocks inclined perpendicular to the angle of
the slope. Xie et al. [28] carried out a theoretical study based on normal parameters, while
Ning et al. [29] applied a similar methodology to the study of a slope located on the Yalong
River in southeast China. This method requires fewer tests than the orthogonal test method
(OTM) and allows the influence of sub-factors on the main factor to be determined. These
sub-factors are the geometry, the physical and mechanical parameters of the materials, and
the mechanical parameters of the discontinuities or joints.

Hamm et al. [12] applied the combined slope hydrology and stability model (CHASM)
to analyze the slope stability of sandy and clayey materials under the influence of the
water table position, using cases found in the literature [31,32]. They performed modeling
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using the limit equilibrium method, specifically Bishop’s method [33]. The soil strength
parameters were analyzed using the variance-based sensitivity analysis (VBSA) method
of Sobol’s [34] and the replicated Latin hypercube sampling (rLHB) [35]. In the analyzed
cases, the authors reported that the parameter with the greatest influence in sandy clay is
cohesion, while in sand, it is the friction angle. Xu et al. [36] used the least angle sensibility
regression (LASR) [37] and Sobol’s method combined with Monte Carlo simulation to
determine the range of input factor values. The authors used the simplified analytical
expression for infinite slopes, and stated that LASR presents better performance and that it
is not possible to distinguish between sensitivity to slope geometry and soil parameters,
with slope inclination being the factor with the highest sensitivity index. Li et al. [15]
implemented the sparse polynomial chaos expansion (SPCE) model to quantify uncertainty,
combined with the upper bound limit analysis theory and a pseudo-static analysis using
a horn-type failure surface. The probabilistic analysis was performed using Monte Carlo
simulation, defining the performance function and failure probability. Latin hypercube
sampling was used to obtain the cohesion, friction angle, horizontal seismic coefficient,
specific weight, slope angle, and width-height ratio parameters required for the 3D model.
The parameters with the greatest influence on the safety factor were cohesion and friction
angle, with the authors proposing future studies in which anthropogenic effects on slope
stability and dynamic activity could be included.

Based on the reviewed literature, it can be highlighted that, in general, geometry is
the most influential factor, with slope height and inclination being the factors that produce
the greatest safety factor variation. In second place, rock and soil strength parameters
(cohesion and friction angle) follow slope geometry in the influence ranking. However, if
the model includes them, these parameters are relegated to the mechanical parameters and
properties of discontinuities or joints. Finally, parameters such as the specific weight of
the material, the Poisson coefficient, or the Young module generally have less influence on
slope stability.

Most of the revised studies used either limit equilibrium or finite elements to obtain
the data. In soil slope stability analysis, limit equilibrium is used more often, and due to
their simplicity, simplified analytic formulations are commonly used along with the slice
method. The most frequent failure criteria used are Mohr–Coulomb and Hoek for soils and
rocks, respectively.

A large portion of the studies found in the literature on the influence of the value of
geomechanical parameters and geometry is limited to the use of unsophisticated analysis
tools or the simplification of the problem to enable a quantity of data sufficient to perform
the study [12,16,18,24,27,38,39]. In both cases, it cannot be guaranteed that the analysis and
its methodology do not influence the results. In this study, along with sensitivity analysis,
a methodology is proposed to automatically perform a large number of slope stability
simulations, utilizing a geotechnical model composed of the finite element model, along
with using limit analysis (FELA) with lower bound and upper bound theorems, the shear
strength reduction factor method (SSRM), and the Mohr–Coulomb constitutive model.
The usage of a calculation methodology, based on limit analysis, allows the obtainment of
maximum and minimum theoretical values of the safety factor of slopes without the need
for calculation hypotheses as in limit equilibrium methods or geometric simplifications in
the definition of the failure surface such as those performed in analytical methods and limit
equilibrium methods. Finally, the influence of each of the studied slope stability parameters
were obtained through regional sensitivity analysis (RSA). The modeling was performed
for parameter values typically found in the literature for residual granitic soils in order to
ascertain the influence of each on the resulting safety factor.

The objective of this investigation is to study the influence of the parameters that
characterize both the material and the geometry of a slope on its stability. Dry static
conditions for the typical ranges of parameter values of roadworks in residual granitic
soils found in Chile were studied. The selected sensitivity analysis method requires a large
database to function. However, stability analysis of relatively complex geometries are slow,



Appl. Sci. 2022, 12, 5574 4 of 17

and usually, the available software does not include a built-in sensitivity analysis tool. If
the software does include it, it is limited to elementary analyses. Therefore, a system to
obtain large datasets has been designed for the present work. This system uses Monte
Carlo simulation to enable the model-building and running process based on the random
generation of input variables. It uses a uniform probability distribution in the generation
of the variables and allows the value ranges of the geometric and mechanical variables of
the material that defines a slope to be specified. While in some studies, it was stated that
two of the most important factors for the stability of any slope were the water table height
and the seismic effect, these factors have not been included in the present investigation in
order to better enable the influence of the study parameters to be obtained.

2. Materials and Methods

To carry out this investigation, two geotechnical constitutive models were used for
the finite element simulations. Equal slope, geometry, and soil parameters were simulated
using different finite element types based on the upper and lower bound plasticity theorems.
To assess the safety factor using finite element simulations, the Shear Strength Reduction
Method (SSRM) was used. In these conditions, two safety factors were determined for
every simulation, corresponding to each limit theorem.

Traditionally, slope stability analysis has been performed using limit equilibrium meth-
ods, generally based on the slice method or expressions devised for simplified geometrical
conditions. The methodology employed in the present investigation solves a large part of
the problems associated with the use of these methods, as it more realistically represents
the geotechnical behavior of slopes. In addition, the finite element limit analysis method
does not presuppose the geometry or position of the failure surface and does not require
a calculation hypothesis to resolve the static indeterminacy generated in the slice method.
To analyze the influence of the geomechanical parameters and the geometry of a slope,
once the simulations were performed, regional sensitivity analysis (RSA) was used to
determine the area of influence of the input with respect to the outputs corresponding to
the safety factor.

2.1. Geotechnical Model

The implementation of lower and upper bound plasticity theorems using finite el-
ements was described by Sloan [40,41]. The limit analysis theorems are employed to
determine the maximum and minimum stress that the soil could achieve (according to the
stress boundary surface), ensuring than their actual value is within its theoretical range.
The theory of plasticity assumes the soil to be a perfectly plastic material. Implementing
the lower bound theorem in finite element establishes that the estimation of the lower
bound of the actual load limit is given by any statically admissible stress field, where stress
discontinuities are only permitted at the interface of the triangular elements of the model.
In the software used in this investigation, first-order triangular elements with a linear
variation of the stresses between the nodes and a Gauss point are used [42]. Meanwhile,
implementing the upper bound theorem in finite elements establishes that the upper bound
of the actual load limit can be deduced by comparing the dissipated power of any kine-
matically admissible velocity field and the power dissipated by external loading, where
the displacements between elements are continuous. In this case, triangular elements with
six nodes, linear interpolation of stresses, quadratic interpolation of displacements, and
three Gauss points are used [42]. Figure 1 shows a diagram of the two types of elements
used in this study.
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The shear strength reduction method (SSRM) [43] was employed to obtain finite
elements’ safety factor values. It represents the same safety factor concept that is typically
used in conventional calculations of slopes using analytical or limit equilibrium methods,
applying a reduction factor to the strength parameters. The shear strength reduction
method is an algorithm used to complement the analysis with finite elements. To perform
any finite element analysis, the first step is to discretize the area of study with elements that
replace the original geometry in computations. As shown in Figure 1, each of these elements
is composed of different types of nodes. Conventional finite element analysis calculates
the node displacements, and based on them, the stresses and deformations produced in
the elements that constitute the model are determined. To use the finite element method,
a constitutive model that allows deformation to be related to stress is necessary. The most
typical constitutive model in soil mechanics is the perfect elastoplastic model with the Mohr–
Coulomb failure criterion, which is used in this investigation. The shear strength reduction
method introduces an equal reduction factor to the strength parameters and searches for
the maximum value it can have for the model to remain stable. This parameter’s maximum
value is the analyzed slope’s strength reduction factor (SRF). In its most typical form, the
Mohr–Coulomb criterion uses a linear envelope, such that the parameters that define it,
called strength parameters, are cohesion (c) and friction angle (φ). The maximum shear
stress (τ) as a function of the effective normal stress (σ’) can be obtained using the linear
Mohr–Coulomb failure envelope, which is defined using Equation (1).

τ = c + σ′· tan(φ) (1)

Slope stability is usually analyzed by introducing a material safety factor (SF), that is, the
value by which the value of the strength parameters can be reduced until a strict equilibrium
is reached. To this end, the available shear stress is calculated using Equation (2).

τs =
τ

SF
=

c + σ′· tan(φ)
SF

=
c

SF
+ σ′· tan(φ)

SF
(2)

When the finite element method is used, the instability situation is reached through
the iterative reduction of strength parameters via a strength reduction factor (SRF), which
divides the soil strength parameters, resulting in a new value of the strength parameters
used in the calculation. This process is carried out until it induces a slope collapse. Final
shear strength parameters are determined as the lowest values that produce a stable model,
and the failure surface as the area in the model in which the maximum shear strain is
produced. Therefore, the safety factor (SF) and the strength reduction factor (SRF) are
analogous concepts that can be used interchangeably. Based on the foregoing, both the SF
and SRF can be defined as the ratio of the initial Mohr–Coulomb strength parameters to the
minimum value of the parameters that produce a stable model or the ratio of initial soil
strength to the strength at failure [44]. Equations (3)–(5) show the mathematical expressions
of cohesion, friction angle, and the safety factor, respectively.
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c f =
c0

SRF
(3)

φ f = tan−1 tan φ0

SRF
(4)

SF = SRF =
c0

c f
=

tan φ0

tan φ f
(5)

Lu et al. [45] and Li et al. [15] stated that limit equilibrium methods (LEM) are used
more than finite element methods; however, the latter considered stresses and deforma-
tions in the model. Finite element methods (FEM) provide SF estimates that are slightly
lower than those obtained using limit equilibrium methods ([46–52] in [53]), and their
computational costs are higher [54]. Among the main advantages of FEM compared to
other methods is that a slope failure surface is not assumed, and hypotheses to solve static
indeterminacy that result from the slice division typically used in limit equilibrium meth-
ods for complex geometries are not needed, improving calculation precision [15,45,53,55].
Therefore, as this study aims to determine the influence of the geomechanical parameters
of granitic residual soil and slope geometry on the overall safety factor for slope stability,
the finite element method using the shear strength reduction method was selected as the
analysis method for the geotechnical model. Figure 2 presents a conceptual diagram of the
geotechnical model described.
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2.2. Sensitivity Analysis

Sensitivity analysis methods allow the determination of how the variation of an out-
put factor can be affected by the variation of the values of input factors or parameters of
a numerical model [56]. Pianosi et al. [56] described three elements present in sensitivity
analysis methods: model, input factor(s), and output factor(s). A model is a mathematical
procedure that simulates the behavior of a given system. Inputs are parameters, variables,
and boundary conditions of the model, while outputs are the elements obtained after running
the model. Scalar functions can be derived from the outputs (Equation (6)); they can be
objective functions (performance calculated as the comparison of a model with observations)
or prediction functions (scalar functions that represent a specific place or time).

I ×Ω = O (6)

Sensitivity analyses can be classified according to various criteria: variability (local or
global), approach (quantitative or qualitative), sampling strategy (one at a time or all at
once), and objective (screening, ranking, or mapping), such that an analysis method must
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be adopted in accordance with the objective of the investigation. Thus, to determine the
influence of geomechanical parameters and slope geometry on the safety factor, it must be
ascertained which input factors have the greatest influence on the output factor (ranking)
and in which variability space the influence occurs (mapping).

According to the classification carried out by Pianossi et al. [56], among the sensitivity
analysis methods with the aforementioned characteristics are regional sensitivity analysis
(RSA), correlation and regression methods, variance-based sensitivity analysis (VBSA),
and density-based sensitivity analysis (DBSA). The regional sensitivity analysis (RSA)
method allows the identification of regions in the input space associated with particular
output values and permits mapping and ranking. Correlation and regression methods
allow information on output sensitivity to be obtained by performing ranking or mapping,
but not both at the same time. Due to their characteristics, variance-based methods (VBSA)
allow screening and ranking based on the variance of output distributions. Methods based
on density (DBSA) also allow screening and ranking, but unlike VBSA, they perform these
tasks on the basis of variation of the probability density function (PDF) of the outputs.

The regional sensitivity analysis method (RSA) [57,58] allows regions of the input space
associated with particular output values to be identified. Pianosi et al. [56] added the classifi-
cation of behavioral models (BM) and non-behavioral models (N-BM), differentiating them in
accordance with a threshold or value defined for a previously defined performance measure
or prediction function. The results of both groups can be graphed, and, via visual inspection
of the cumulative distribution functions, spaces of each parameter that allow sensitivity to be
determined or spaces with a positive or negative influence on outputs can be identified. Simi-
larly, the difference between the cumulative distribution functions (CDF) of BM and N-BM
measured by the Kolmogorov–Smirnov statistic is used as a measure or index of sensitivity of
the model outputs to variations of the analyzed parameter (Equation (7)).

Si = maxxi

∣∣∣Fxi |yb
(xi|y ∈ Yb)− Fxi |ynb

(xi|y ∈ Ynb)
∣∣∣ (7)

where Fxi |yb
and Fxi |ynb

are the empirical cumulative distribution functions xi of the behav-
ioral and non-behavioral input samples. This parameter is also known as the maximum
vertical distance (mvd). These empirical functions provide a robust approximation of the
underlying distribution, as in the case in which parameterizations are limited to sub-regions
of the space.

On the other hand, the relative sensitivity index is defined in Equation (8), where xi is
the sensitivity index of ith parameter and n is the number of total parameters.

RSIi =
xi

∑n
j xj

(8)

2.3. Experimental Design

Numerical simulations were carried out using the previously described geotechnical
model. Two input groups can be considered in this model, grouped according to soil and
slope geometry properties. Among the soil factors are strength parameters—cohesion (c)
and friction angle (φ), and the soil state parameters—unit weight, γ The geometry factors
are slope height (H) and slope angle (β).

To perform a regional sensitivity analysis (RSA), Pianosi et al. [56] suggested a number
of simulations between 100 ×M and 1000 ×M, where M is the number of model inputs.
This study includes five input factors (cohesion, friction angle, unit weight, slope height,
and slope angle). First, 1000 simulations were carried out, and the convergence of the results
was studied; however, as no convergence was observed, the number of simulations was
increased to 5000. Convergence of the results was verified for 5000 simulations; therefore,
these simulations were used for all the analyses. The model simulation was carried out
through Monte Carlo simulations, assuming for each input parameter the ranges presented
in Table 1, which correspond to the typical values of the different parameters for the studied
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soil type found in the literature. Parameter values were generated assuming that they are
independent and with a uniform probability distribution for all parameters used.

Table 1. Range of model parameters’ variation, assuming a uniform probability distribution.

Parameter Height, H
(m)

Slope Angle, β
(◦)

Cohesion, c
(kPa)

Friction Angle, φ
(◦)

Unit weight, γ
(kN/m3)

Range 2–30 26–80 0–5 29.5–38 17–21

Slope height depends on the project; it is defined in the slope design and limited by
the design requirements, the technical equipment available for construction, and the project
budget. Thus, slopes with various heights can be found. In this study, the analyzed slope
height range was limited to between 2 and 30 m. According to Chilean regulations for
highway slope construction [59], slopes must have a maximum inclination between 26◦

and 56◦; however, Wesley [60] stated that residual soil slopes can be stable even at 60◦.
Therefore, the slope inclination range for the present analysis was defined as between 26◦

and 80◦ in order to include cases of instability in the analysis and simulations. Flandes [61],
Viana da Fonseca [62], and Au [63] characterized and described residual granitic soils
in Chile, Portugal, and Hong Kong, respectively. Based on these studies, soil strength
parameters range from 0 to 5 kPa for the cohesion values of this type of soil and the
friction angle varies between 29.5◦ and 38.0◦. It bears mentioning that there are cohesion
results greater than 5 kPa in the works of other authors (such as [62,64]). Chilean maicillo
is normally classified as silty sand according to the Unified Soil Classification System
(ASTM D2487-17). Thus, greater cohesion values are considered excessive, as they could
correspond to a granitic residual soil with a greater degree of weathering than the studied
material. Based on the work of Rodríguez [64], in which a geomechanical characterization
of the granitic residual soil of the Cordillera de Nahuelbuta range in Chile was carried out,
a range of 17 to 21 kN/m3 was defined for the unit weight.

The shear strength reduction method (SSRM) was implemented in the finite element-
based geotechnical calculation software OptumG2 2021® (Optum Computational Engineer-
ing, Copenhagen, Denmark). This program allows the geometric and geomechanical condi-
tions of the slope to be modified and its files to be executed based on external programming
codes. To this end, a code in the Python programming language (https://www.python.org,
accessed on 19 January 2022) was developed, allowing Monte Carlo simulations to be
configured, run, and the obtained results to be saved. The processing of the results was
carried out using the SAFE (Sensitivity Analysis For Everybody) Toolbox published by
Pianosi et al. [65] in its Python version. This tool allows regional sensitivity analysis (RSA)
to be performed, and the results of the ranking and mapping to be represented graphically.

To classify the models as behavioral (BM) and non-behavioral (N-BM), safety factors
less than or equal to 1.2 and greater than or equal to 1.2 were used as a prediction measure
in the analysis. Results for the safety factor (SF) less than 1.2 are associated with a slope that
is unstable and therefore, prone to failure, while simulations with SF ≥ 1.2 are considered
stable [53]. The safety factor value necessary to consider the slope stable depends on the
project conditions and the regulations employed.

2.4. Generation of Simulations

The use of the sensitivity analysis method requires a large amount of data. In the case
of this study, each of the points used in the analysis is the result of a numerical simulation
using values in the ranges established by the Monte Carlo simulation as input parameters.
Therefore, in this study, 5000 numerical simulations of slopes with different characteristics
were generated and analyzed. A system that allows the creation of models and extraction
of the results to be automated was used to obtain the results, making the project feasible.
The methodology used to generate the models to be studied was implemented in Jupyter
Notebooks (https://jupyter.org, accessed on 19 January 2022) using the Python kernel,

https://www.python.org
https://jupyter.org
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which allows a well-structured and replicable workflow and simplifies the interaction
between the user and the developed software due to the internal organization of the
notebook, consisting of cells that can be run independently to have access to partial results
in a simple manner. The files produced natively by the program used for modeling
(OptumG2), although they have the extension g2x, they are, in reality, files that use the
standard extensible markup language (XML), such that they are simple to manipulate using
external tools. A “g2x” file is generated for each of the simulations that will be run using
the Jupyter notebook and executed using the OptumG2 calculation engine, and the results
are extracted from the model output file. Each of the files is generated automatically with
upper and lower bound analyses and the desired input parameter values.

Soil parameter values can be incorporated in the OptumG2 file by replacing their value
directly with minor changes in the template file. However, the modification of the slope
geometry, height, and inclination requires the modification of the geometry of the model.
To this end, an initial slope formed by six nodes was used as a template geometry. The
positions of nodes 1, 2, 5, and 6 are maintained in the different model executions, while the
x and y coordinates of node 4 and only the y coordinate of node 3 vary. With this variation,
the slope inclination and height required by each model generated using the Monte Carlo
method are obtained. In Figure 3, a diagram of the model modification is shown.
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The workflow for model creation and calculation is divided into five stages. The
first consists of importing the Python libraries necessary for the code to function, both
to perform mathematical operations, read, and modify OptumG2 files. Next are the cells
used to define the variables that will modify the geometry (height and inclination angle)
and soil strength parameters (cohesion, friction angle, and specific weight), the IDs of
the nodes on which the slope geometry depends, and the ID of the material of which the
slope is composed. The system allows the target intervals for each parameter to be defined
and generates random data using a uniform distribution of each parameter. In this phase,
a list for each input and the number of elements equal to the number of simulations to
be run are obtained. The third stage consists of the modification of the template and the
generation of files for calculation. The soil strength parameters and specific weight values
are assigned based on the material ID. The process of modifying the geometry and behavior
model parameters is carried out iteratively, with a number of cycles equal to the number
of simulations (n). The system generates a file with the model of each of the cases to be
analyzed. The following stage consists of the execution of the new models, for which
the OptumG2 calculation engine is used, accessed via the command line automatically
from the notebook. The solution of the modeling is stored in the same files used for the
calculation. In the fifth and final stage, the results of each of the executed models, that
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is, the SF corresponding to the lower and upper bounds, are retrieved. Finally, Comma
Separated Values (CSV) files with both input values and the resulting output values are
generated for analysis using the SAFE (Sensitivity Analysis For Everybody) Toolbox [65] in
its Python version.

3. Results

Figure 4 presents the scatter plots of the lower bound (SF-LB) and upper bound
(SF-UB) safety factors. Similar behavior is observed in both cases. Behavioral models (BM)
are mainly observed when the inclination angle (β) is less than 50◦. In the case of slope
height (H), BM are observed along all the ranges studied; however, the number of BM
increases with lower H values. In the case of cohesion (c) and friction angle (φ), BM are
associated with high c and φ values. Meanwhile, safety factor sensitivity to unit weight (γ)
is not observed.
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The representation of both lower bound and upper bound safety factors in Figure 4
shows similar distributions for each parameter on the two datasets. Figure 5 presents
the cumulative distribution functions (CDF) for SF-LB and SF-UB, grouped into deciles
from the most stable 10% of the models (greater SF, brown) to the least stable 10% of the
models (lower SF, blue). It is observed that the most stable 10% of the models (SF > 1.4) are
clustered at lower height values (H) and, in general, at H < 10 m (P50 = 10 m). In contrast,
the least stable 10% of the models are concentrated above 10 m. Although SF-LB and
SF-UB decrease as H increases, stable models (SF > 1.2) can be obtained when H > 20 m
(P90 = 20 m). Regarding slope angle (β), it is observed that the lower the slope inclination
angle, the greater the SF, with the most stable 10% of the models (SF > 1.4) concentrated at
β ≤ 39.5◦ (P90). Meanwhile, the least stable 10% of the models occur over 53◦. It is also
noted that SF-LB and SF-UB increase when cohesion is greater than 2 kPa (c > 2 kPa), with
the most stable 10% of the models (SF > 1.4) concentrated above that value. Alternatively,
the least stable 10% of the models are clustered at values of c < 2 kPa (P80). For the
friction angle (φ), the most stable 10% of the models (SF > 1.4) are concentrated above
31.6◦ (φ > 31.6◦), while the least stable 10% of the models are obtained for φ < 31.6◦. The
unit weight does not present a particular concentration of models for each group.
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Figure 6 presents a parallel coordinates plot for the lower bound and upper bound
SF, grouped by deciles from the most stable 10% of the models (greater SF, brown) to the
least stable 10% (lower SF, blue). This plot indicates how the variable values are related
to each other according to the performance of the analyzed models. As with the CDF, the
SF-LB and SF-UB parallel coordinates plots are similar. Regarding the most stable 10%
of the models (SF-LB and SF-UB > 1.4), parameter behaviors are identified. First, stable
models are observed throughout the range of H variability (0–30 m), associated mostly with
β values lower than 39.5◦. However, it is also possible to find models among the most stable
10% in the range of 39.5◦ to 53◦ and a small number between 53◦ and 66.5◦. This behavior
is attributed to cohesion, friction angle, and unit weight, as a concentration of models is
observed when c > 2.5 kPa, φ < 33.8◦, and 18 kN/m3 < γ < 21 kN/m3. Meanwhile,
another group of stable models is observed for slopes with c < 2.5 kPa, φ > 33.8◦, and
γ < 19 kN/m3.
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Figure 7 presents the boxplots of the sensitivity index calculated for each factor. In
addition, the median of the sensitivity index (SI) and the relative sensitivity index (RSI).
In this case, the sensitivity index (SI) corresponds with the maximum vertical distance
(mvd), obtained as the maximum difference between the cumulative distribution curves of
well-behaved and non-well-behaved models, as defined in Equation (7). On the other hand,
the relative sensitivity index was defined in Equation (8). The values of the sensitivity
index and the relative sensitivity index are presented in Table 2.
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Table 2. Values of the sensitivity index and relative index of each variable.

Parameter Slope Height
H

Slope Angle
β

Cohesion
c

Friction Angle
φ

Unit Weight
γ

Sensitivity Index 0.261 0.755 0.182 0.162 0.041
Relative Sensitivity Index 0.159 0.557 0.134 0.119 0.030

In accordance, the order of influence of each of the variables on SF-LB and SF-UB is:
β > H > c > φ > γ. Both SF present high sensitivity to β, decreasing as this parameter
increases. H, c, and φ have a smaller influence than β, with the SF increasing as c and φ
increase, while the SF decrease when H increases. Based on these results, it can be stated that
the geometric attributes of a slope are the variables that most influence its stability within
the parameter value ranges characteristic of residual granitic soils, followed by soil strength
parameters and then its geomechanical properties. However, this statement is limited to
the scope of the study, as the effects of rain or hereditary structures are not considered.

4. Discussion

Wesley [66] mentioned that residual soil slopes with inclinations over 45◦ are not
infrequent; however, the author did not differentiate between the different types of residual
soils. Results shown in Figures 5 and 6, where it is observed that the most stable 10% of the
models are concentrated in a range between 26◦ and 53◦, can corroborate the statement from
Wesley [66] regarding residual granitic soils. The author also mentioned that cohesion plays
an important role in stability, as shear strength depends on this parameter. The present
study results are consistent with Wesley’s conclusions [66], only if the Mohr–Coulomb
strength parameters are analyzed, as, in accordance with the sensitivity order, cohesion is
third in influence on the SF. It bears mentioning that the works of Flandes [61], Viana da
Fonseca [62], and Rodríguez [64] presented different cohesions, which are directly related
to the degree of weathering of the material. The degree of weathering was not included in
this study; therefore, its analysis may or may not represent the influence of cohesion on the
SF, according to Wesley [66].

Siddque and Pradham [53] mentioned a “metastable” state when SF = 1. The authors
stated that in this condition, slopes are stable but could fail in conditions of intense rain or
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due to seismic activity. In addition, Wesley [66] explained that landslides in residual soils
occur under intense rainfall, as the increase in pore pressure reduces the effective stress
and, therefore, the shear strength of the soil. The author also mentioned that landslides
can be triggered by earthquakes. This metastable state is represented in Figures 5 and 6
in orange (1 < SF-LB < 1.1; 1 < SF-UB < 1.2). In Figure 6, it is observed that the metastable
models occur at higher slope inclination angles than in the case of the most stable 10% of
the models, that is, even with β near 70◦. These models are associated mainly with small
heights (H < 7.5 m) and cohesions around 5 kPa. This consideration is important since these
slopes can be stable before excavation in dry and static conditions but can easily become
unstable after heavy rains or seismic activity.

Li et al. [15] mentioned that slope failure probability depends not only on geomechan-
ical parameters but also on slope geometry. While the case studies of Liang and Sui [27],
Xie et al. [28], and Ning et al. [29] did not consider the same materials, geometry, and pore
pressure conditions as this study, similarities in the results were found. Liang and Sui [27]
also found that geometry factors have the most influence on slope stability; however, they
determined that slope height (H) has a greater influence than slope angle (β) on SF. As in
this study, Xie et al. [28] and Ning et al. [29] found that factors associated with geometry
have a greater sensitivity index than soil geomechanical parameters but in rock slopes.
Likewise, this study presents a ranking that places geomechanical parameters below slope
geometry, even though the cohesion sensitivity differs from the results of Hamm et al. [12].
In the case of these authors, for sandy clays, cohesion presented the greatest influence,
while in the case of sands, friction angle did; however, in the present study, a granitic
residual soil is analyzed, classified by Au [63] as silty sand, for which it could be expected
that the friction angle would have a greater influence than cohesion on SF.

5. Conclusions

In most cases, the use of sophisticated sensitivity analysis systems in geotechnical
engineering is conditioned by limited data availability. One way of obtaining data is the
use of numerical simulations, however, manual generation of these data requires much
preparation time. In this study, a system that allows this process to be automated and
results to be generated by using Monte Carlo simulations for the ranges of the geometric
and soil parameter values that define a slope was developed. The system was used to
build a dataset with the results of 5000 simulations, which allowed the use of regional
sensitivity analysis (RSA) to study the relative influence of each of the analyzed parameters
on the stability of a slope. The data were generated by using value ranges reported in the
literature for residual granitic soils.

Limit equilibrium analysis is faster than traditional finite element calculations and pro-
duces similar results in terms of safety factors, with a minimal difference between lower and
upper bound values for the analyzed slopes. Furthermore, all 5000 simulations were carried
out without errors, even though their parameters were randomly obtained within given value
ranges, and data extraction from the models was simple by using a Jupyter notebook.

Based on scatter plots and cumulative distribution curve graphs, it can be observed
that the safety factors of the lower bound and upper bound models converge at similar
values, limiting the overall safety factor range of the slope. Therefore, it can be con-
cluded that within the slope parameter values studied in the present work, the calculated
safety factors are influenced mainly by slope geometry and, to a lesser extent, by soil
geomechanical parameters. The order of influence of the factors obtained in this study were
slope angle > slope height > cohesion > friction angle > unit weight (β > H > c > φ > γ).
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