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Abstract: This paper proposes the fast and accurate electro-thermal model of the existing Simrod
three-phase inverter for an electric vehicle (EV) application. The research focuses on analytical
and dynamic electro-thermal models of inverters that can be applied for multi-applications. The
optimal design approach of passive filters is presented for the DC and AC sides of the inverter.
The analytical model has been established, including a mathematical representation of the inverter
and induction motor (IM). The high-fidelity electro-thermal simulation model of an inverter with
integrated power loss and thermal model is established. The state-space thermal model (for the
IRFS4115PbF device) has been created and incorporated into the MATLAB simulation. The simulation
model is then validated with the PLECS software-based thermal model to confirm the accuracy.
Indirect field-oriented control (IFOC) is designed for squirrel-cage IM at a maximum power rating of
45 kW and implemented on MATLAB/Simulink. The comparative analysis between the real and
simulated results is performed to validate the simulation model at a specific speed, torque, and
current. Furthermore, the electro-thermal simulation model has been validated with experimental
data using efficiency and temperature comparison. The developed simulation model is beneficial
for designing, optimizing, and developing advanced technology-based inverters to achieve higher
efficiency at a particular operating range of temperature and power quality. The new European
driving cycle (NEDC) speed profile simulation results are demonstrated.

Keywords: inverter; power electronic; control system; electric vehicle (EV)

1. Introduction

In the modern era, the technology of battery power EV is gaining utmost importance
and is immensely popular. Researchers are investing full effort into manufacturing a reliable
and efficient powertrain system [1,2]. Because of growing climate change environmental
issues, conventional technology of combustion engine vehicles has transformed into battery
electric vehicles (BEVs). BEVs require to be re-energized with grid electricity, and they
have no exhaust emissions. The BEVs could be a replacement for combustion engine
vehicles because of developments in battery technologies, electric motors, power electronics
converters (PECs), and control design strategies [3–6].

Three different PECs are used in the conventional structure of BEVs, such as AC-DC
converter, DC-DC converter, and DC-AC inverter, as shown in Figure 1. The bidirectional
DC-DC converter interfaces low voltage (LV) and high voltage (HV) energy storage systems
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to the DC link. The bidirectional AC-DC converter is used as an on-board charger to transfer
energy between battery and grid during charging and discharging operations [1]. The
DC-AC bidirectional inverter is used to transfer energy from the DC link to a traction motor,
such as a three-phase IM, and back to the battery during regenerative braking. The traction
motor is connected to the transmission of the EV to drive the vehicle [4].
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As has been previously stated in the literature, the choice of EVs and their control
strategy has a significant impact on the development of EV drivetrains. The permanent
magnet synchronous motor (PMSM), as well as IM, is suitable for automotive applications.
A PMSM is proficient for EVs owing to its unique features such as high torque, high ef-
ficiency, high power density, low torque ripple, low noise, and compact size. However,
PMSM normally has a constant power limit due to its comparatively limited field weaken-
ing capability. Furthermore, the cost is relatively high due to the high cost of permanent
magnets. For this reason, an IM could be a suitable solution for EV applications because of
its low torque ripple, low cost, wide speed range, and robustness [6].

The inverter is the fundamental part of an EV; it drives the car’s electric motor by
controlling the power flow of the battery. The primary concerns for the design of PECs
are reduced power losses, high efficiency, less input/output current ripples, reduced size
and weight of the passive components, compactness, less total harmonic distortion (THD),
high power factor, and high reliability. These factors can be achieved by choosing a suitable
semiconductor device. Therefore, semiconductor devices are the main part of PECs. At
the moment, WBG semiconductor has superior material properties, as shown in Figure 2,
and it is more efficient in high power EV applications in comparison with standard silicon
(Si) [4,7,8]. Currently, policymakers and other stakeholders have further increased efforts
to strengthen the market share of EVs. To accomplish this objective, power electronics
(PEs) researchers pursue to advance the PEs EV system by raising their power density and
reducing volume, system cost, and size [8,9].

The losses, as well as thermal modeling, are essential for developing converters
with performance features such as high efficiency and reliability, high power density,
cost-effectiveness, and compact system size [1]. In the literature, various electro-thermal
modeling strategies have been reported. The modeling method exploited in software such
as LTspice or Saber is highlighted in [10,11]; then again, a major issue concerning this
method is huge computational time. The switching energies Eon (i.e., turn on) and Eoff
(i.e., turn off) are calculated using the rise and fall time of drain to source current (Ids)
and voltage (Vds) of MOSFET. Due to the fast-switching interval, the rise and fall time
can be calculated by dividing the entire PWM cycle of PWM into smaller subintervals.
The energies are further used to estimate switching loss [12]. In [13], the non-parametric
Gaussian process regression (GPR) technique is used to predict missing data points. GPR is
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used to predict Ids on several Vds and Vgs. The kernel function is applied to extract the
information for accurate prediction. The exponential kernel function is used to create a
model, but this method is complicated.
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The lookup table method has been applied in a simulation to approximate switching
as well as on-state losses of the IGBT transistors [14,15]. This method gives an automatic,
compact, and accurate model of semiconductors for the PEs inverter’s analysis by the use
of the average computational time of the CPUs. Thermal simulation of IGBT modules has
been designed to calculate the system’s responses. It is essential to optimize the system,
i.e., reducing design cost, increasing reliability, risks or faults occur, time to be powered off
when overheating, and calculating maximum switching frequency, which would depend
on the junction temperature [16]. The power losses, as well as thermal optimization, have
been in general controlled by modifying electrical parameters. The power losses have been
estimated by means of electrical loading on the devices and then transformed into a thermal
model to generate the junction temperature of the semiconductor devices, as discussed
in [17]. The junction temperature is an important parameter for reliability prediction [18].
The passive filters have been reported to be essential to obtain fewer ripples and high-
efficiency responses from the converter, and system cost, weight, and size are greatly
impacted. Hence the optimum design is mandatory with a variation of the switching
frequency [19]. Analytical-based model is an effective method for controllability analysis,
stability analysis, and control system design [20–22].

This research aims to design an accurate and fast electro-thermal high-fidelity simula-
tion model for the inverter, which would precisely reflect the functional behavior of the
Si MOSFET-based existing inverter. Therefore, the manufacturer-based data are applied
through the interpolation method, depending on the voltage, current, and junction tem-
perature. This model calculates the instantaneous power loss at every switching interval,
regardless of how fast your switching frequency is. The transfer function of the thermal
model of MOSFET is designed as a virtual sensor to convert power loss into junction
temperature. These features make the model unique from literature. The heatsink model is
created to calculate the inverter case temperature. The complete electro-thermal model runs
such as a real inverter, and the efficiency depends on temperature, voltage, and current. The
WBG devices can easily be integrated into the inverter model to operate at higher switching
frequencies and analyze the power loss and temperatures of the inverter at a higher fre-
quency for the case of GaN and SiC. Moreover, the model allows the pre-establishment and
the post-analysis of the system by varying control design, circuit parameters and operating
switching frequency, etc.
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This paper has been arranged into seven sections. Section 2 comprises the passive
filter design to minimize the ripples at the AC and DC sides of a multi-purpose inverter.
Section 3 illustrates the inverter modeling and control, inverter and motor design param-
eters, analytical model of the inverter and IM, and control strategy for IM. Moreover,
space vector (SV) pulse width modulation (PWM)-based IFOC control is designed using
steady-state feedback analysis and implementation on the simulation model. In Section 4,
an electro-thermal model of an inverter is created. The high-fidelity MATLAB/Simulink
simulation is developed for the three-phase inverters, and the power losses are calculated
through a datasheet-based lookup table technique. The designed state-space thermal model
has been incorporated as a virtual sensor to convert power losses to the temperature. Fur-
thermore, the prediction of the converter’s efficiency by means of total power loss has also
been demonstrated in the section. Section 5 illustrates the validation of the simulation
model with experimental high-frequency data of an existing inverter. Finally, Section 6
presents the electro-thermal simulation results, and Section 7 is the conclusion.

2. Passive Filter Design

This section demonstrates the design approach of passive filters to minimize ripples at
the DC and the AC sides of the inverter [1,19]. The passive filter is designed according to
the power rating of the converter by considering resistive load [2].

2.1. AC Filter

The inductor-capacitor-inductor (LCL) filter is designed as an AC filtering to filter out
the ripples and improve power quality for the bidirectional multi-purpose inverter. The
two inductors and one capacitor are used as filters per phase: Linv is inverter side inductor,
C f is a parallel capacitor, and Lload is the load side inductor calculated as in Equations (1)
and (2), referred to in Figure 3.

Linv =
VDC

n fs IACrated %ripple
(1)

IACrated =

√
2Pload

3VAC
(2)
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In Equation (1), the value of n would be 4 [23] for a three-phase inverter, IACrated (A) is
the rated current at the load side, Pload (W) is load power, fS (Hz) is operating switching
frequency, % ripple is 40%, and VAC (V) is phase-to-neutral voltage. AC capacitor filter at
three phases could be calculated as Equation (3).

C f =
1% Prated

2π fAC V2
AC

(3)

where fAC (Hz) is AC frequency and Prated (W) is rated load power.
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Attenuation factor (Iatt) which would indicate an allowable ripple in the inductor,
and a switching inductor is represented in Equation (4). Iatt has to be minimized while
maintaining a stable and cost-effective filter [24].

Iatt =

∣∣∣∣∣∣ 1

1 + r
(

1− LinvC f (2π fs)
2
)
∣∣∣∣∣∣% (4)

Iatt is considered 5% for this design. The factor r is derived by rearranging the above
equation and represented in Equation (5).

r =

∣∣∣∣∣∣
1

Iatt
− 1(

1− LrectC f (2π fs)
2
)
∣∣∣∣∣∣ (5)

The other load side inductor Lload is determined by multiplying r with Linv, as ex-
pressed in Equation (6).

Lload = rLinv (6)

After filter design, it is essential to calculate the resonance frequency fres (Hz) as shown
in Equation (7), which must meet the required criteria as well as validate the LCL filter
design. The stable region of fres is between 10 times the rated AC frequency (i.e., 50 Hz
frequency in the case of grid applications, or maximum rated speed of the motor can be
considered for electric motor applications) and half of switching frequency. These criteria
avoid issues in the upper and the lower harmonic spectrums.

fres =
1

2π
√

LinvC f

(7)

The remaining variable describes passive damping that could be added in order to
avoid oscillations. The damping resistor rd can be calculated by the use of capacitor and
resonance frequency value as represented in Equation (8).

rd =
1

6π fresC f
(8)

2.2. DC Filter

The DC link capacitance is used on the battery side of the inverter. The DC filter helps to
reduce the ripples on DC voltage. It is quantified using these Equations (9) and (10) [19,24].

R f ilt =
V2

DC
Pavg

(9)

CDC =
1

fs ∆V1%R f ilt
(10)

VDC is DC link voltage, Pavg is average power that is flowing into a converter, ∆V (V)
is the amplitude of the permittable DC link voltage ripple, set at 3%, and R f ilt resistance
can be calculated from average power and DC link voltage.

3. Inverter Modeling and Control

This section describes the analytical modeling of inverter and IM. The closed-loop
IM control of a three-phase inverter is developed for EVs. This controller considers outer
loop speed control, inner loop flux control, and current control, which has been shown in a
block diagram in Figure 5. The controller drives six switches of a two-level DC-AC inverter
for tracking the motor’s reference speed, torque, and currents. Such a control strategy
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is incorporated with a complete dynamic electro-thermal simulation model in MATLAB
to analyze losses and temperature performance. After developing the simulation model,
the results are compared with real inverter data. The IFOC control design approach and
implementation for IM are explained in detail [4–6].

3.1. Parameters and Devices

The details about the parameters and devices of the inverter and IM are stated here.
These quantities are exploited in the simulation model design. The three-phase inverters
and IM are listed: DC voltage, switching frequency, ambient temperature, Si MOSFET
devices, passive filters, frequency, and power rating.

3.1.1. Induction Motor Parameters

Parameters of squirrel-cage IM have been expressed in Table 2. These quantities are
used to model the electric motor and IFOC design.

Table 1. Inverter parameters.

Parameters Values

MOSFET (Si device) IRFS4115PbF
Switching frequency (kHz) 10
Ambient temperature (◦C) 25

Power (kW) 45
DC battery voltage (V) 96

AC Filter

Inductor, Linv (uH) 28
Capacitor, C f (uF) 310

Inductor, Lload (uH) 16

DC Filter

Capacitor, CDC (uF) 7500

Thermal impedance of device (IRFS4115PbF)

Thermal resistance (R1, R2, R3) (C/W) 0.204, 0.146, 0.050
Thermal capacitance (C1, C2, C3) (J/C) 0.023, 0.003, 0.001

3.1.2. Inverter Parameters

The battery voltage and switching frequency are the same as the existing inverter. The
AC and DC passive filter values have been calculated from the abovementioned equations.
This paper presents the modeling of the inverter, which is commercially available. Therefore,
only DC link capacitors are used in simulation as DC filters. The conduction and switching
characteristics of Si MOSFET are applied from the manufacturer datasheet to design an
electro-thermal model of an inverter and for model validation using experimental data. The
specifications of the inverter are given in Table 1. The inverter and motor of Simrod EV are
used to design the model. The details about Simrod EV are mentioned in [25]. According
to the Simrod three-phase inverter topology, 16 upper and lower MOSFETs are connected
in a parallel configuration, as demonstrated in Figure 4. The current is distributed in all
MOSFETS. The same topology of an inverter is proposed in the simulation.

Table 2. Induction motor parameters.

Parameters Values

Power (kW) (rated/max) 15/45
Frequency (Hz) (rated/max) 86/273

Stator resistance Rs (mΩ) 5.43
Stator leakage inductance Lls (mH) 0.01627

Rotor resistance Rr (mΩ) 3.055
Rotor leakage inductance Llr (mH) 0.01627

Mutual inductance Lm (mH) 0.4409
Numbers of poles P (-) 4
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3.2. Analytical Modeling of Inverter

An analytical or mathematical model is useful for understanding the dynamics of a
system. The model is developed with the details of the inverter and its filter parameters.
Analytical modeling is inspiring to perform due to its complexity.

This model can be alterable according to the need and classification of the inverter. It
can also be used for an inverter’s stability analysis to check the system’s stability and the
closed-loop control design [26]. An analytical-based model is constructed for the inverter,
as depicted in Figure 3. The first-order differential Equations (11)–(22) have been derived
and validated with the MATLAB/Simscape model in an abc frame of reference for the three-
phase inverter is presented in Figure 3 [1,23]. This converter model can be applicable for
multi-purpose applications such as grid-connected inverters, bidirectional EV chargers, etc.

0 = −(Rl + rd + Rload)i2a − L2
di2a

dt
+ Vca + Rl i1a (11)

0 = −(Rl + rd + Rload)i2b − L2
di2b
dt

+ Vcb + Rl i1b (12)

0 = −(Rl + rd + Rload)i2c − L2
di2c

dt
+ Vcc + Rl i1c (13)

C f
dvca

dt
= +i1a − i2a (14)

C f
dvcb
dt

= +i1b − i2b (15)

C f
dvcc

dt
= +i1c − i2c (16)

Vca = −(Rl + rd)i1a − L1
di1a
dt

+ Via + Rl i2a + Rloadi2a (17)

Vcb = −(Rl + rd)i1b − L1
di1b
dt

+ Vib + Rl i2b + Rloadi2b (18)

Vcc = −(Rl + rd)i1c − L1
di1c
dt

+ Vic + Rl i2c + Rloadi2c (19)

The input voltages and currents are calculated using the above expressions.

Via =

(
2
3

da −
1
3

db −
1
3

dc

)
Vdc (20)
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Vib =

(
2
3

db −
1
3

da −
1
3

dc

)
Vdc (21)

Vic =

(
2
3

dc −
1
3

da −
1
3

db

)
Vdc (22)

Via, Vib, Vic (V) are three-phase input converter voltages, ia, ib, ic (A) are AC currents
and da, db, dc are duty cycles, Rload (Ω) is the load resistance, Vca, Vcb, Vcc (V) are the
voltages across the filter capacitors, and Vdc (V) is DC voltage.

3.3. Analytical Model of Induction Motor

The Ims are commonly accepted as a more suitable option for electric vehicle applica-
tion because of their rigidity, reliability, lower cost, and less maintenance. Nevertheless,
Ims’ speed as well as torque controls are quite complicated because of their non-linear and
complex structure. Based on IM’s dynamic model, various control strategies have been
developed to surpass control challenges. Hence, the dynamic model of an IM is important
for the design of a control approach to achieve high efficiency. Therefore, the dq model of
IM is considered in the simulation design to implement closed-loop IFOC for the motor
drive. The analytical model of IM has been described in synchronous reference frame [5,6]
by means of the Equations (23)–(29) [27] as follows.

ve
qs = RSie

qs + Lls
die

qs

dt
+ Lm

die
qm

dt
+ ωe(Llsie

ds + Lmie
dm) (23)

ve
ds = RSie

ds + Lls
die

ds
dt

+ Lm
die

dm
dt
−ωe(Llsie

ds + Lmie
dm) (24)

ve
qr = 0 = Rrie

qr + Llr
die

qr

dt
+ Lm

die
qm

dt
+ ωsl(Llrie

dr + Lmie
dm) (25)

ve
dr = 0 = Rrie

dr + Llr
die

dr
dt

+ Lm
die

dm
dt
−ωsl

(
Llrie

dr + Lmie
qm

)
(26)

0 = −R f eie
q f e + Lm

die
qm

dt
+ ωeLmie

dm (27)

0 = −R f eie
d f e + Lm

die
dm

dt
−ωeLmie

qm (28)

Te =
3
2

P
2

Lm

Lr

(
ie
qsie

dr − ie
dsie

qr

)
= Tl + Bωr + J

dωr

dt
(29)

where R f e (Ω) is the basic resistance and the dq variables (ve
qs, ve

ds) (V) and (ie
qs, ie

ds) (A) are
stator voltages and the stator currents, respectively. Moreover, dq variables (ve

qr, ve
dr) (V)

and (ie
qr, ie

dr) (A) are rotor voltages and the rotor currents, respectively. ωr (rad/s) is the
angular speed of IM, ωe is synchronous speed, ωsl is slip speed, and P represents the pole
numbers. Rs (Ω), Rr (Ω), Lls (H), and Lm (H) are stator and the rotor resistances, stator
leakage, rotor leakage, and mutual inductances, respectively. Lr is the rotor self-inductance
(Lr = Llr + Lm). Lastly, Te (Nm), Tl (Nm), B (Nms), and J (

kg
m2 ) are electrical and load

torques, coefficient of friction, and the moment of inertia, respectively.

3.4. Control Strategy

The IFOC is the utmost popular control approach in the reported literature. This
approach is used to accomplish speed control of IM. IFOC can provide decoupling between
the current references linked to the torque and flux in the machine. This reflects that the
stator current of an IM is decoupled into torque and flux-creating components. The flux and
torque components can be controlled individualistically and sustained in a synchronous
frame of reference. The current of the direct axis ie

ds acts to control the flux component, while
the current of the quadrate axis ie

qs controls the torque component. Figure 5 is illustrated for
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speed, flux, and current control strategy of IM using Space Vector Pulse Width Modulation
(SVPWM) [4,5].
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Figure 5. SVPWM-based indirect field-oriented control design (IFOC).

The SVPWM is a progressive computation technique that can generate PWM signals
to drive the MOSFET gates. This paper develops the simulation model according to an
existing inverter’s specification. Therefore, the SVPWM technique is applied to generate
10 kHz PWM signals. Figure 5 shows the SVPWM-based IFOC. This SVPWM technique
delivers a fixed switching frequency. This SVPWM method is used to approximate reference
voltage Vre f instantly by combining switching states according to space vectors. As shown
in Figure 5, the reference voltage Vre f is approximated using the V1, V2 switching vectors
and V0, V7 null vectors. Moreover, Vre f is sampled with the fixed switching frequency
fs = 1

Ts
, and the next subsequent sampled value Vre f (Ts) is used to evaluate stationary

times T1, T2, T0, and T7 using Equations (30)–(32), where Md =
2Vre f
VDC

signifies modulation
index and VDC is DC link voltage [4–6,28].

T1 =

√
3

2
Ts Md sin

(π

2
− θ
)

(30)

T2 =

√
3

2
Ts Md sin(θ) (31)

T0,7 = Ts − (T1 + T2) = T0 + T7 (32)

where dq reference variables stator voltages and the stator currents are (ve∗
qs , ve∗

ds) and
(ie∗

qs , ie∗
ds), respectively. ψ∗r is a reference and ψr is a space vector rotor flux, ψ∗s is the reference

and ψs is the space vector stator flux, ωe is synchronous speed, ωsl is slip speed, θ is flux
angle, τs (s) is stator time constant, τr (s) is rotor time constant, and P represents pole
numbers. Kp, Kp f , and Kpi are proportional gains, and Ki, Ki f , and Kii are integral gains of
proportional integral (PI) controllers for speed, flux, and current, respectively.

The following Equations (33)–(39) are used for control design and implementation.
In Figure 5 of the IFOC control approach, mathematical equations are mentioned in the
block, which are used for the control implementation. It can be observed through equations.
Torque and flux requirements can be easily translated into current requirements.

Ls = Lls + Lm (33)

Lr = Llr + Lm (34)
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Flux angle is calculated using this expression, and it is used for the transformation of
the reference frame to the dq frame.

θ =
∫ t

0
(ωr + ωs)dt (35)

ωs = ωe
P
2

(36)

Reference flux can be calculated as Equation (37). It is used for field weakening. The
flux controller is used for improving the flux dynamics in the case of varying reference flux,
where ωrrat and Ψrated are rated speed and rated flux, respectively.

ψ∗r =
ωrrat Ψrated

ωr
(37)

The flux controller generates reference λe∗
r and current reference i∗ds can be calculated

using Equation (38).

ie∗
ds =

λe∗
r

Lm
(38)

Reference torque coming from speed controller producing current reference i∗qs, and it
is calculated as Equation (39),

i∗qs =
4LrT∗e

(3PLmλe∗
r )

(39)

The control references such as V∗ds and V∗qs in d-q frames come from current con-
trollers, which have also been compensated by the back electromotive force. The refer-
ence dq voltages with the back electromotive force compensation (Ed = ωeσLs Ie

qs and
Eq = ωeσLs Ie

ds + ωr
Lm
Lr

λe∗
r ) is calculated as Equations (40) and (41). These are used to

generate SVPWM signals to drive the inverter [27].

V∗ds =

(
KPi +

Kii
s

)
(ie∗

ds − ie
ds)− Ed (40)

V∗qs =

(
KPi +

Kii
s

)(
ie∗
qs − ie

qs

)
+ Eq (41)

3.5. Control System Design

Three feedback control of speed, flux, and current are designed using the transfer
functions of plants. The design methods of the controllers are illustrated below.

3.5.1. Speed Control

The demand torque of IM comes from the speed controller. The PI controller is
designed to track the reference speed for the IM. The proportional gain Kp and integral
gain Ki are tuned to achieve the desired overshoot, rise time, settling time, and crossover
frequency (ωcp). The speed controller is designed using a plant model and sensor delay
with load torque Tl , as shown in Figure 6, where T∗e , Tl , B, and J are electrical torque, load
torque, coefficient of friction, and the moment of inertia, respectively [4,5,29].
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3.5.2. Flux Control

The second PI controller is designed for flux control. The flux controller is designed using
the plant transfer function, as shown in Figure 7, where τr =

Lr
Rr

is the rotor time constant.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 28 
 

𝑉𝑑𝑠
∗ = (𝐾𝑃𝑖 +

𝐾𝑖𝑖
 
) (𝑖𝑑𝑠

𝑒∗ − 𝑖𝑑𝑠
𝑒 ) − 𝐸𝑑 (40) 

𝑉𝑞𝑠
∗ = (𝐾𝑃𝑖 +

𝐾𝑖𝑖
 
) (𝑖𝑞𝑠

𝑒∗ − 𝑖𝑞𝑠
𝑒 ) + 𝐸𝑞  (41) 

3.5. Control System Design 

Three feedback control of speed, flux, and current are designed using the transfer 

functions of plants. The design methods of the controllers are illustrated below. 

3.5.1. Speed Control 

The demand torque of IM comes from the speed controller. The PI controller is de-

signed to track the reference speed for the IM. The proportional gain 𝐾𝑝 and integral gain 

𝐾𝑖 are tuned to achieve the desired overshoot, rise time, settling time, and crossover fre-

quency (ωcp). The speed controller is designed using a plant model and sensor delay with 

load torque 𝑇𝑙 , as shown in Figure 6, where 𝑇𝑒
∗, 𝑇𝑙 , 𝐵, and 𝐽 are electrical torque, load 

torque, coefficient of friction, and the moment of inertia, respectively [4,5,29]. 

Tl

𝐾𝑝 +
𝐾𝑖
 Te

*ωr*
ωr

Sensor  

Figure 6. Feedback speed control loop. 

3.5.2. Flux Control 

The second PI controller is designed for flux control. The flux controller is designed using 

the plant transfer function, as shown in Figure 7, where 𝜏𝑟 =
𝐿𝑟

𝑅𝑟
 is the rotor time constant. 

𝐾𝑝 +
𝐾𝑖
 ids

eψr*
ψr

e

 

Figure 7. Feedback flux control loop. 

3.5.3. Current Control 

The IFOC has been designed based on space vector PWM control, with the fixed 10 

kHz switching frequency for a manufacturer-based existing inverter. In this control 

scheme, measured 𝑖𝑑𝑠
𝑒  and 𝑖𝑞𝑠

𝑒  components have been compared to references 𝑖𝑑𝑠
𝑒∗  (by refer-

ence flux) and 𝑖𝑞𝑠
𝑒∗  (by reference torque) as presented in Figure 8. The two PI current control-

lers are working together and provide voltage references 𝑉𝑑𝑠
∗  and 𝑉𝑞𝑠

∗ , which are used for the 

generation of PWM signals. As in Figure 8, computational time delay 𝑇𝑑 models a time delay 

between ADC sampling instant as well as a consequent PWM duty cycle. Such time delay is 

the half of the PWM period, where the sampling period and the PWM period 𝑇𝑠𝑤 are the 

same, so a computation time delay 𝑇𝑑 = 0.5𝑇𝑆𝑤. The current controller is designed using com-

putation time delay, plant model, and sensor delay, as shown in Figure 8, where 𝑇𝑎 =
𝜎𝐿𝑠

𝑅1
 is 

the current model time constant and 𝑅1 = 𝑅𝑆 +
𝐿𝑚
2

𝐿𝑟𝜏𝑟
 is the combined motor resistance [29]. 

Figure 7. Feedback flux control loop.

3.5.3. Current Control

The IFOC has been designed based on space vector PWM control, with the fixed 10 kHz
switching frequency for a manufacturer-based existing inverter. In this control scheme,
measured ie

ds and ie
qs components have been compared to references ie∗

ds (by reference flux)
and ie∗

qs (by reference torque) as presented in Figure 8. The two PI current controllers
are working together and provide voltage references V∗ds and V∗qs, which are used for the
generation of PWM signals. As in Figure 8, computational time delay Td models a time
delay between ADC sampling instant as well as a consequent PWM duty cycle. Such time
delay is the half of the PWM period, where the sampling period and the PWM period Tsw
are the same, so a computation time delay Td = 0.5TSw. The current controller is designed
using computation time delay, plant model, and sensor delay, as shown in Figure 8, where

Ta = σLs
R1

is the current model time constant and R1 = RS + L2
m

Lrτr
is the combined motor

resistance [29].
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Figure 8. Feedback current control loop.

A closed-loop plant transfer function was used to perform a disturbance rejection
analysis. The presence of input and output disturbances provided information about the
designed controller. When a disturbance enters the system, the disturbance rejection plot
could reveal information about the controller’s effectiveness. The system responded quickly
to controller disturbances in order to return to a stable state. The closed-loop step response
of input and output disturbance rejection of speed control, current control, and flux control
is shown in Figure 9. The formulation of each controller and their tuning is carried out by
the use of the gain margin (gM) with gain crossover frequency (ωcg) as well as the phase
margin (PM) with phase crossover frequency (ωcp). The PI controller’s proportional gain
and integral gain are set to achieve desirable controller performance (i.e., rise time, settling
time, overshoot). The speed, flux, and current feedback controllers are depicted in Table 3.

Table 3. IFOC control of IM.

Control Transfer Function gM (dB)
(ωcg (rad/s))

PM
(ωcp (rad/s))

Speed control 2.03 + 4.34
s 54.7 (3.16 × 103) 830 (20.4)

Flux control 16, 640 + 170,430
s 84.3 (8 × 105) 710 (17.4)

Current control 0.08 + 37.2
s 47.4 (5.9 × 105) 690 (991)
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4. Electro-Thermal Modeling

The power loss of the half-bridge PEs module has been derived mathematically. The
inverter’s total power losses, on the basis of conduction and switching losses, are presented
in Figure 10.
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The DC supply is connected as an input to the three-phase inverter, and three phases of
an inverter as output are connected to the three-phase electric motor. During the operation,
each leg of the inverter generates heat. The three-phase electro-thermal simulation model
of the entire inverter has been established by concatenating three half-bridge PE modules
along with their thermal model and power loss. The current and voltage of each leg pass to
the power loss model to estimate the power loss of the inverter half-bridge. The thermal
model takes the power loss as input and estimates the junction temperature of MOSFET
and diode. The heat flow of MOSFET from the thermal model will enter the heatsink
model and provide the heat sink temperature. The superposition of all losses computes
the total power average loss for all three half-bridge PE modules. Inverter’s block diagram
representation with a model of power loss and coupled thermal and heatsink model has
been demonstrated in Figure 11.

4.1. High-Fidelity Power Loss Model

In the following section, the power electronics three-phase inverter model has been
designed in the MATLAB Simulink, transforming the DC power to AC power at a fixed
10 kHz switching frequency. Loss assessment and thermal analysis of electronic systems is
a major concern because of their impact on system life, reliability, and efficiency. Power
loss because of the PWM switching period of a power electronic device has been divided
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into switching loss (turn-on and the turn-off loss), conduction loss, and the total power
loss (with the addition of the switching and the conduction loss) [14,18]. Piece by piece
modeling of the single module first, after that accumulation of the three modules, afterward
assembling to develop the electro-thermal model of the three-phase inverter, as explained.
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4.1.1. Conduction Power Loss

In this method, conduction power loss is anticipated using datasheet characteristics
by Equation (42).

Pcondloss
= Vds(t)Ids(t) (42)

Vds (V) and Ids (A) represent forward saturation voltage and the drain current of
MOSFET. Vds and Ids are functions of a junction temperature Tj (◦C) and depend on
one another.

Vds(t) = f
(

Ids(t), Tj
)

(43)

The voltage could be calculated by interpolation using lookup tables. The lookup
table reveals datasheet specified characteristics. Therefore, during each sampling step of
a simulation, it can deliver information consistent with the datasheet specs of a power
module. For example, Figure 12 shows the input and the output relation of a lookup table
for the conduction loss [18,30–34].
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Integrating instantaneous power loss over the switching cycle Ts =
1
f s would provide

the average value of MOSFET conduction losses [30,32], as shown in Equation (44).

PCM =
1
Ts

Ts∫
0

Pcondloss
(t)dt (44)

In such a way, MOSFET conduction loss could be calculated by multiplying at every
simulation time step a sample data of Vds with Ids.

Estimating conduction loss through a body diode is comparable to the above Equa-
tion (42) for MOSFET. The diode conduction loss could be found by Equation (45).

PD condloss
= Vf (t)i f (t) (45)

Vf (V) and I f (A) represent a forward saturation voltage and the diode’s current. Vf
and I f are functions of a junction temperature Tj and dependent on one another.

Vf (t) = f
(

I f (t), Tj

)
(46)

The average diode conduction losses across the switching period Ts (s) [30,32], are
expressed in Equation (47).

PCD =
1
Ts

Ts∫
0

PD condloss
(t)dt (47)

4.1.2. Switching Power Loss

Precise estimation of the switching loss in a device is essential. The switching loss
offers information about the amount of lost energy because of on-state to turn-off and
off-state to turn-on transitions [18,30–34]. Application of a complex strategy is needed for
quantifying the on and off losses with the small simulation step size. Owing to switching,
the lookup table [11] method was preferred to estimate switching power loss due to the
complex physics process of switching. With the aid of the switching energy values, i.e.,
Esw on (mJ) and Esw off (mJ), one could estimate switching power loss in a device. Calculation
of switching energy by the use of datasheet specifications has been performed as the
function of drain current and the junction temperature [14,18,34].

Eswon(k) = f
(

Ids(k), Tj(k), Vdd(k)
)

(48)

Eswo f f (k) = f
(

Ids(k), Tj(k), Vdd(k)
)

(49)

where k denotes the kth PWM switching pulse. Switching characteristics from the datasheet
for switching the energy losses (Esw on and Esw off) of MOSFET against the drain current
versus the junction temperature have been represented in Figure 13. At each kth time step
of a simulation, the total energy is calculated by Equation (50).

Etotal = Eswon + Eswo f f (50)

Given a switching frequency fs (Hz), switching power loss is estimated as represented
in Equation (51).

Pswloss =
(

Eswon + Eswo f f

)
fS (51)

Now, switching loss for a body diode is calculated by reverse recovery character-
istics [19]. In that case, reverse recovery loss is a function of the diode current as well
as its junction temperature in Equation (52). The Err is estimated using the datasheet
characteristic according to Figure 14.

Err(k) = f
(

i f (k), Tj(k)
)

(52)
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I f (A) is the forward current of a diode, as depicted in Figure 14. Therefore, the
switching power loss calculation across a diode is performed as in Equation (53).

PDloss = Err fS (53)

The switch’s total average power loss and body diode are computed with Equation (54).

Ptotal = PDloss + Pswloss (54)

4.2. Thermal Modeling and Implementation

MOSFETs are susceptible to the working temperature; in addition, thermal cycling is
the major reason for various PE component failures and reduction in lifetime. MOSFET’s
temperature impacts the design of a power electronic converter; also, the cooling system
has an influence on the size of a converter. The maximum operational temperature of a
MOSFET indicates the cooling capacity of the device required and what kind of cooling is
required, for example, liquid cooling or air cooling with a proper heatsink [35].

In the operation of the semiconductor devices, for instance, in the course of turn-on
and -off, conduction and the switching losses depend on the device’s temperature (and
vice versa). Therefore, careful design is essential for confirming accurate functionality with
all the temperature-dependent conditions over the entire expected temperature range.

The power losses have been injected into the fourth-order, Cauer-type, thermal net-
work, as represented in Figure 15, and the thermal parameters have been extracted from
the producer’s MOSFET datasheet. Equivalent thermal impedance Zth of MOSFET and
body diode are calculated using Equation (55) and the time constant τ (56).

Zth = Rth

(
1− e−

t
τ

)
(55)

τ = RthCth (56)
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Now, MOSFET and the diode junction temperature could be calculated by using our
designed state-space thermal model. Such a model has been based on the one element
section of the Cauer network, which would total a third-order equivalent thermal resistance
Rth and equivalent thermal capacitance Cth network for MOSFET or the diode, about
which the details have been given in the datasheet. Such a compact thermal model consists
of two inputs: the total power loss (Ptotalloss

(W)) and case temperature (Tc (◦C)) of an
inverter, and its two outputs are heat flow (Pc (W)) and junction temperature (Tj (◦C))
(Figure 16). The basic heatsink has been modeled in the MATLAB/Simulink according to
thermal conductivity from a case to the sink and from a sink to the ambient (convective
for air cooling). It is at that time incorporated with the thermal model that determines
heat flow and an ambient temperature, the case, and sink temperatures, as presented in
Figure 16. The state-space thermal model has been defined by (57) and (58).

dx
dt

=

[
− 1

Rth Cth

]
x +

[
1

Rth Cth

1
Cth

][
Tc

Ptotalloss

]
(57)

[
Tj
Pc

]
=

[
1
1

Rth

]
x +

[
0 0
− 1

Rth
0

][
Tc

Ptotalloss

]
(58)
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The procedure mentioned above is a simple method for estimating the power module’s
junction temperatures; in addition to this, the transfer function of the thermal model is
easily executed in the simulation. The state-space thermal model is implemented after
discretization in the MATLAB simulation (with the integration of the non-linear loss model).
In the lookup table block of Figure 16, the switching and conduction characteristics of
MOSFET are modeled using Ids, Vds, and Tj. Average total power loss is calculated by
accumulating average switching and conduction power loss. The thermal state-space
model is further applied to estimate the junction temperature and total heat flow. The heat
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flow is used as the input of the heatsink model to estimate the sink temperature and case
temperature with respect to the ambient temperature.

4.3. Efficiency Estimation

Inverter efficiency is essential for observing the total performance of a system. The
efficiency of an inverter is estimated using power loss. The efficiency has been calculated
as the percentage with the aid of relation between total average power loss and the output
AC power of an inverter according to Equations (59) and (60).

Pin = Pout + Ploss (59)

E f f iciency = η =
PAC

PAC + Ploss
100 (%) (60)

5. Experimental Validation

This dynamic simulation is applicable for overall system parameters such as current,
voltage, speed, torque, efficiency estimation through output power, and total average
power loss of a three-phase inverter with closed-loop motor control.

The IM model, IFOC controller, complete loss model, and thermal model with three-
phase inverter are integrated into MATLAB Simulink. This simulation can examine the
controller performance, with power losses, thermal characteristics, and system efficiency.

5.1. Installed Setup and Measurements

The 96 V and 200 Ah LiFePO4 battery pack feed a Simrod inverter. The squirrel-cage
IM with the four poles 15/45 kW (rated/max.) drives the rear axle through a reduction
with a factor of 7.13. The outer diameter of the wheel was 576 mm [36].

NEDC or other speed profiles can be applied as a reference speed. In this way, the
designed controllers’ performance can be investigated. Generally, the speed profile such
as NEDC and WLTC are in km/h or m/s. However, the controller takes input reference
speed in RPM. Therefore, it is essential to convert from m/s to the RPM using the relation
represented in Equation (61). As an example of the NEDC speed profile, the speed of the
motor (in RPM) has been attained as an average of both motorized wheel speeds, which
is multiplied by a gearbox ratio of 7.13. The NEDC speed profile in RPM is shown in
Figure 17.

Speed (RPM) =
30 ∗ Speed(m/s)

π ∗ radius o f wheel (m)
Gr (61)
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As mentioned in Section 3.5.1 of speed control design, the rotational speed (RPM) can
be calculated using the s-domain transfer function as represented in Equation (62). The
relation is modeled in simulation to estimate the speed using load and electrical torque.

Speed (RPM) =
Te − Tl
Js + B

(62)

The thrust can be calculated using the relation of torque, thrust, and radius of the wheel,
i.e., T [Nm] = F [N]× r [m]. Using the above Equations (61) and (62), the dependency of
speed (m/s) on thrust can be calculated as Equation (63).

Speed
(m

s

)
=

(
1

Js + B

)
(Fe − Fl) r2 π

Gr
(63)

where Te (Nm), Tl (Nm), B, and J are electrical torque, load torque, coefficient of friction,
and the moment of inertia, respectively. Fe (N), Fl (N), r (m), and Gr are the electrical thrust,
load, radius of the wheel, and gearbox ratio, respectively.

The source (battery), inverter, and motor are connected in the arrangement [36], as
shown in Figure 18.
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Figure 18. Instrumental powertrain schematic view.

The data are logged from the installed test setup [36], as shown in Figure 19, and used
to validate the simulation model. The DC side of the three-phase inverter is connected to
the battery, and the AC side is connected to the three-phase induction motor. DC and AC
voltages and currents are measured using transducers. The Kistler RoaDyn wheel force
transducer measures the 6-DOF forces and the wheel’s speed and torque. The throttle
device is connected to the inverter to adjust the throttle input. The electrical current and
voltage are measured on the inverter’s DC as well as AC sides using the three voltage
probes (Tektronix P5200A) and the three zero-flux current transducers (LEM IN 1000-S) [36].

The data acquisition has been made with the Siemens (SCADAS) mobile system at a
different sample rate that depends on the bandwidth of examined quantities. Particularly
for phase voltages, high-frequency measurement was needed. The square wave character
of the PWM AC voltage refers to the presence of an inverter’s 10 kHz switching frequency.
Therefore, the electrical quantities such as voltages and currents are logged at a sample
rate of 204.8 kHz. In addition to the 92 kHz cut-off frequency built-in anti-aliasing filter, an
additional low pass filter (zero phase) of 5 kHz cut-off frequency has been fitted. These
filters wash out switching harmonics from high-frequency Yokogawa measurements.
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5.2. Simulation vs. Real Results

Simulation results are generated by setting the parameters of the inverter and IM
as mentioned in Tables 1 and 2. In this section, a comparison takes place between the
simulation results and the existing inverter data of the Simrod EV. Real high-frequency
data are logged by considering three different cases for this comparison. In case-1, the
reference speed was set at 2760 RPM, and the motor tracked the command with measured
torque of 105 Nm. In case 2, the reference speed was set at 5382 RPM, and the torque
became 24.6 Nm, and in case 3, the reference speed was set at 7700 RPM, and the torque
was 14.5 Nm. Thus, the simulation results of the three-phase currents are perfectly matched
with existing inverter data. Comparison plots are shown in Figures 20–22. Hence, the
inverter’s dynamic simulation model with control is as accurate as the inverter.
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5.3. Thermal Model

After implementing the thermal model of the MOSFET and body diode in MATLAB, it
was validated with a thermal model (based on Si IRFS4115PbF device) of PLECS software.
Due to the lack of experimental thermal data, the temperature rise of the electro-model
has not been validated by comparing it with experimental results, as stated similarly in
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the paper [37]. However, in PLECS software, the electro-thermal model is created with
the library of the manufacturer’s device, which has conduction, switching, and thermal
characteristics. It has been observed that the response of the junction temperature and
heat flow coming from developed MATLAB simulation is similar. PLECS versus MATLAB
comparison results have been presented in Figure 23.
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5.4. Efficiency and Temperature

In this section, the efficiency and case temperature of the simulation model is validated
with actual experimental results at specific speed and torque. The thermocouple is mounted
on the case of the inverter to monitor the case temperature. The ambient temperature during
the test was 25 ◦C. It depends on case temperature; therefore, it is considered the same as
the experimental data in the simulation model. Designed passive filters in Section 2 can
be applied to reduce the ripples. However, in the Simrod inverter, there are no AC filters,
and the inverter is directly connected to the IM. The loss of DC link capacitors is negligible
because 44 capacitors are connected in parallel. Therefore, it has not been included in
the electro-thermal modeling of an inverter. Three cases are considered for validation, as
depicted in Table 4. Therefore, the simulation model gives more or less similar results to
the real Simrod EV inverter.

Table 4. Actual vs. simulation validation.

Cases Torque (Nm) Speed (RPM)
Ambient

Temperature
(◦C)

Efficiency
(%)

Case Temperature
(◦C)

Actual Simu. Actual Simu.

1 105 2760 25 96.3 96.5 - -
2 24.6 5382 25 97.6 97.5 51 51.5
3 14 7700 25 98.0 97.8 44 45.2

6. Simulation Results

This research objective is to design a closed-loop electro-thermal model of an EV
inverter and validate it through real data. Therefore, the complete MATLAB simulation
of an inverter with IM control has been developed. According to Figure 24, results are
obtained from the simulation model using the NEDC speed profile in Figure 17. In the
simulation, nearly three cases are produced by varying the load torque of a motor. The
load torque is changed from 10 Nm to 105 Nm from 268 s to 278 s at an NEDC speed of
2106 RPM, as shown in the zoom plots of Figure 24. Similarly, the other two cases produced
the torque of 24.6 Nm (from 850 s to 890 s) and 14 Nm (from 1075 s to 1095 s) at NEDC
speeds of 4600 RPM and 6571 RPM, respectively, as shown in zoom plots of Figure 24.
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The ambient temperature is considered at 25 ◦C. The implemented controllers track the
speed and torque reference command generated by the speed controller, as depicted in
Figure 24. The efficiency (%), case temperature (◦C), and power flow (kW) of three cases
of the inverter are investigated using a simulation model, as shown in Figure 25. The
zoom plots of Figure 25 depict the efficiency and case temperature are similar as declared
in the experimental results of Table 4. The simulation results of Figure 25 reflect the
efficiency and temperature of case-1, case-2, and case-3 at time intervals of 268–278 s,
850–890 s, and 1075–1095 s, respectively. The simulated efficiencies and temperatures for
case 1 are 96.5% and 87 ◦C, for case 2 are 97.5% and 51.5 ◦C, and for case 3 are 97.8%
and 45.2 ◦C. The simulation model estimates the junction temperature of MOSFET and
diode by using a thermal model as presented in Figure 16. These junction temperatures
are used for power loss calculation for the next iteration. The power loss (W) in power
electronic modules of the inverter and junction temperature (◦C) of the MOSFET and the
diode of each leg for the entire NEDC speed have been depicted in Figure 26. Three-
phase inverter currents (A), voltage (V), conduction power loss (W), and instantaneous
switching power loss (W) of an upper and a lower MOSFET as well as body diodes are
depicted in Figures 27 and 28. Thus, this accurate simulation model of Si-based MOSFET
can be applied to design and optimize the new WBG technology-based EV inverter. The
simulation model can be parameterized easily by varying the devices, i.e., GaN, SiC, and
Si materials, switching frequency, input/output voltage, power rating, motor parameters,
control gains, and operating range of temperature. The analysis can be performed to
enhance inverter efficiency, power quality, and control system performance. Due to the
limitation of Si-based MOSFET devices, it is not possible to increase the switching frequency
beyond 20 kHz. However, there is no limit to this simulation model for investigating
performance and power quality by parameterizing according to the WBG-based power
electronic devices. WBG can operate at high switching frequencies. Using the simulation
model, it can be possible to analyze the inverter’s efficiency at higher switching frequencies
and examine temperatures to meet the device’s operating temperature range. A developed
simulation model can also be useful for predicting the system’s reliability by preparing an
appropriate algorithm.
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7. Conclusions

This research proposes a rapid and accurate simulation method for a power loss as
well as the thermal estimation of the three-phase inverter, which is based on the manufac-
turer’s datasheet characteristics. The work was performed to derive linear and non-linear
modeling of the multi-purpose inverter and IM for EV’s application. Dynamic simula-
tion of three-phase inverter had been performed to estimate efficiency and power loss,
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including conduction and switching loss in the MATLAB Simulink innovatively by lookup
table technique. Electro-thermal model of an inverter has been developed to estimate the
device’s junction and case temperatures. The model is validated using experimental data
for three industrial mission profiles (speed and torque). The developed model shows a
close similarity with the experimental values of efficiency and case temperature. This
scalable parameterization-based high-fidelity dynamic simulation tool can be beneficial
for the design and development of power electronic systems. This tool could be used
to enhance system efficiency and power quality by modifying device parameters using
advanced technology, namely GaN, SiC, and Si materials, and the switching frequency over
a certain operating range of temperature. The designed simulation model makes it likely
to develop EV inverters to achieve high power density, reduced size, weight, and volume.
The developed electro-thermal model can be easily applied to design and develop traction
inverters and charging systems for EV applications. This electro-thermal model can be
integrated with the MOSFET of power electronic converter, only need to parameterize
according to the specification and device properties. The developed closed-loop simulation
model can also be used for control design optimization to make it robust.

The accurate electro-thermal model of the power electronic converter plays an im-
portant role in the design and development of modern PE converters. Nevertheless, new
applications require a highly efficient converter design with low weight and volume, with
WBG devices being implemented to operate at high switching frequencies. Future research
will focus on this area.
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