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Abstract: Photorealism has become a growing requirement for real-time graphics applications.
Among the components needed to obtain photorealism, one of the most important is the simulation
of the light transport, the result of which is called global illumination. With the growing interest in the
research in this field, the need to develop a learning approach for the methods that produce real-time
global illumination and a technological basis have become important topics. In this paper, we present
a framework for the rapid development and testing of such methods. The framework itself does
not contain their implementations, but contains a set of components that underlie them. It has been
developed with a multi-pass architecture that allows the reuse of pass implementations in several
technique pipelines. Moreover, this framework can be used in the process of learning real-time global
illumination methods thanks to an editor with graphical user interface (GUI) that offers a rich amount
of information and a set of such methods, created in the framework for demonstration purposes. We
evaluated the proposed framework in two ways. First, through a comparative analysis with other
frameworks, which have been created or at least can be used for educational purposes and the rapid
implementation of real-time global illumination techniques. The second evaluation was made for the
applicability of the framework in learning by using it as software support in the process of testing
global illumination knowledge on eight participants with background in computer graphics.

Keywords: educational framework; computer graphics; real-time global illumination

1. Introduction

Photorealism in real-time graphics applications has become an important research
topic, with the increasing capabilities of graphics processing units (GPUs). One of the
most important components needed to achieve this result is the correct physical simulation
of the light transport. Simulating the light transport from a light source to the observer
after the reflection on a single surface of the scene or after reflection on several surfaces,
the interaction of light with translucent or transparent surfaces and the interaction of light
with air particles represent only a part of the phenomena necessary to obtain a correct
physical result. This result is called global illumination [1]. Several methods [3? ] have
been proposed to produce the result in real time or have been adapted to achieve real-time
performance as the GPU capabilities have grown.

As the interest in this topic grew, so did the need to facilitate the learning of real-time
global illumination methods. However, the subject of learning these methods has not been
investigated extensively. Furthermore, the real-time global illumination approaches differ
quite a bit, so the implementation and management of several techniques in the same
software can be difficult. Thus, the need for a framework that supports a large set of such
methods has become important for the learning and research processes in the field.

In this paper, we present a support framework for the development of a wide range of
real-time global illumination techniques. The source code of the framework is available in
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the Supplementary Materials. The framework itself does not contain their implementations,
but contains a set of basic components needed to facilitate the rapid implementation of
such methods. This framework has a multi-pass architecture that allows the reuse of code
for several pipelines. In addition, it contains an editor with GUI that provides debugging
information that is important in the implementation process. Thanks to this editor and the
set of real-time global illumination methods implemented for demonstration purposes, this
framework can be used in the process of learning these methods.

We also performed an evaluation of the proposed framework. First, we have conducted
a comparative analysis with several other frameworks that have applicability in the learning
and rapid implementation of real-time global illumination techniques. The criteria chosen
for the comparison was whether or not the frameworks contain implementations of such
methods, because they represent a good educational support and the capacity of the
frameworks to allow the implementation of new techniques. The second evaluation was
made for the applicability to learn real-time global illumination methods. We used the
proposed framework as software support to test real-time global illumination knowledge
on eight participants with a background in computer graphics.

This paper is structured as follows. Section 2 presents the related works on frame-
works intended for real-time global illumination approaches and which were designed for
educational purposes and have applicability in research. Section 3 describes the proposed
framework with technical details and software architecture and Section 4 presents a set of
real-time global illumination methods implemented in the framework for demonstration
purposes. Section 5 analyzes the framework applicability in the learning process, with
respect to the rapid implementation of new methods. Section 6 shows the results repre-
sented by a comparative analysis between the proposed framework and those analyzed in
Section 2 in terms of their use both for educational purposes and for rapid implementation
of techniques. Additionally, an evaluation from the point of view of using the proposed
framework for learning real-time global illumination methods is presented in this section.
Section 7 presents our conclusions.

2. Related Work
2.1. Real-Time Global Illumination Methods

The software applications that contain implementations of global illumination meth-
ods are complex. They can be considered to contain three major stages:

1. Management of geometric data and illumination properties in the scene;
2. Light transport simulation;
3. Result display, which may require post-processing effects and adaptation to display

hardware requirements.

Usually, the implementation of global illumination methods is done in the light trans-
port simulation stage and remains independent of the other two stages, which are in the
management of the software application. However, due to the nature of the processes
required for such methods, this stage is the most complex.

To achieve the light transport simulation in real time, several pre-processing steps
are used, which obtain the light transport information for the scene geometry, possibly
followed by several steps of processing the information obtained in the acquisition stages.
The last step of the light transport simulation is the lighting computation for the geometry
visible by the observer by extracting the information produced in the previous stages.

Among the real-time global illumination methods, there are several approaches
that use certain data structures to store the light transport information, as presented by
Ritschel et al. [? ] and more recently by Lambru et al. [3]. This research field is complex and
goes beyond the scope of this paper, so for a comprehensive analysis, the work cited above
can be consulted. Here, we give a brief overview of the real-time global illumination meth-
ods in terms of the requirements of a software application to contain the implementations
of a wide range of approaches. We analyze the nature of the processes and data structures
required for such applications to provide the necessary flexibility.
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Among the real-time global illumination methods, we further analyze those based
on images and voxel volumes. The image-based methods extract information from the
scene by using a set of light fields, obtained by rendering the scene from certain positions.
A light field contains 2D information along the projection lines of the camera, but can be
used to extract the light transport information. In this class, we note the methods that use
the information on the screen, obtained by rendering the scene from the position of the
observer to produce diffuse indirect illumination [4] and glossy reflections [5]. From the
class of image-based methods, there are also those that use the information from the light
space, obtained by rendering the scene from the position of the light. Dachsbacher and
Stamminger [6] introduced the concept of the reflective shadow map (RSM), which is a set
of buffers that store the light transport information for the geometry visible from the light
position. Initially, this approach was proposed to compute the diffuse indirect illumination.
Another large class of real-time global illumination methods is represented by those that
produce a voxels volume [7,8] in which the information about light transport is stored.

There are several approaches [3? ] that process these data structures after the acquisi-
tion stage. Moreover, there is a wide range of techniques that sample them. Additionally,
some methods use several such data structures, some simultaneously at the step of extract-
ing lighting information or sequentially to obtain different data structures.

2.2. Learning Real-Time Global Illumination Methods

The subject of learning real-time global illumination methods has not been touched
upon much in the literature. An analysis [9] of the topics addressed by several universities
in introductory computer graphics courses shows that these methods are not part of the
core curriculum. However, the subject of global illumination has been addressed within
most of these courses, but in the context of offline rendering through techniques such as
ray tracing. The next topics that were addressed within many courses were those related to
real-time rendering, but without touching the subject of real-time photorealism.

The subject of real-time global illumination is also little addressed in the literature
of technologies and tools designed for learning computer graphics [10]. Several tools
have been proposed for learning offline global illumination methods, such as ray tracing,
but without touching on the subject of real-time photorealism. Moreover, the possibility of
using commercial products, such as Unity [11] game engine, to learn computer graphics has
been investigated [12]. Although this engine contains the implementation of some real-time
global illumination methods and allows their modification and extension, the possibility of
learning global illumination has not been addressed.

Recently, Vitsas et al. [13] proposed an online software application that allows the
implementation and visualization of ray tracing-based methods for educational purposes.
They have successfully used the application for educational purposes by using the applica-
tion to teach techniques based on ray tracing. However, they did not analyze other classes
of real-time global illumination and the application cannot be extended by users for other
such classes of techniques.

2.3. Rapid Implementation of Real-Time Global Illumination Methods

As presented in Section 2.1, the software applications that contain the implementation
of global illumination methods are complex and contain several processing stages. For this
reason, as Slusallek and Seidel [14] observe, over time, research groups have used their
own development frameworks and the use of code between two such frameworks has been
deficient. Moreover, the transfer of technology from research to industry has been difficult.

The development of a flexible software kernel for rapid and easy implementation
of global illumination methods has been a topic of research interest in order to unify the
various approaches in this field. Several frameworks have been described, but most are old
and have been proposed in the context of offline global illumination methods, such as ray
tracing. Kirk and Arvo [15] proposed such a kernel for the particular method of ray tracing
and its variations. This kernel was later extended by Shirley et al. [16].
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A framework that has allowed the implementation of several global illumination
methods was developed by Cornell University [17]. Another flexible framework, which
allowed the implementation and extension of a larger set of global illumination methods
was proposed by Slusallek and Seidel [14]. An interesting approach was provided by
Debattista et al. [18], who proposed a theoretical system that provides control over the
rendering of the scene in terms of global illumination. The approach is independent of
the lighting method. Subsequently, Dutre et al. [19] described in the “Advanced Global
Illumination” book several methods, in parallel with the software architecture required to
implement them.

Over time, several frameworks have been used for research in the field. However,
these frameworks have not focused on the flexibility of use for different approaches, but on
the ease of use and quality of results for certain classes of techniques and certain particular
purposes. The suite of applications known as Radiance [20] is an example. Another system
is known as Physically Based Rendering Toolkit [21], which offers similar capabilities.
A rendering system that offers more flexibility and introduces a scripting language is
Mitsuba 2 [22].

Several approaches to real-time application architectures have been proposed. Dollner
and Hinrichs [23] presented a software architecture of real-time rendering techniques,
but without the focus on global illumination methods. The book Real-Time Rendering by
Akenine-Moller et al. [24] presents the state of the art for real-time rendering methods,
together with software details for the implementation of such approaches. However,
particularly for global illumination, the techniques are mentioned from a theoretical point
of view, without emphasis on the software component.

Subsequently, several real-time global illumination methods have been proposed [3?
]. Research in the field of development frameworks for these methods has been directed
towards proprietary and commercial game engines. However, most of these engines contain
a monolithic global illumination system that implements a fixed set of methods.

Unreal Engine 5 [25] offers a monolithic illumination system, known as Lightmass [26],
that offers implementations for offline methods that cache indirect illumination at a pre-
processing step. It also contains another monolithic system, known as Lumen [27], that
offers the implementation of real-time global illumination with the ray-tracing hardware.
The users can implement their own methods insofar as they modify the code [28] which
is currently open source with a subscription to the EpicGames community on GitHub.
However, the code base of the engine is large and difficult to comprehend due to the lack
of documentation. Therefore, the implementation of new rendering pipelines is difficult.

CryEngine [29] provides real-time global illumination through voxel-based methods
in a monolithic system. The user can create their own methods with the modification of the
source code [30]. However, similar to the Unreal Engine mentioned above, the code base is
large and the code is difficult to modify.

Unity [11] game engine offers several approaches through which different rendering
pipelines can be implemented. First, it contains a monolithic system, known as Built-in
Render Pipeline (BRP) [31], which has a set of lighting techniques that require offline pre-
processing steps. To obtain greater flexibility, the developers have created what they call the
Scriptable Render Pipeline (SRP) [32], which allows the user to create rendering pipelines
with a scripting language. This approach uses a multi-pass architecture. They created two
frameworks on top of it. The first, called Universal Render Pipeline (URP) [33] allows the
user some degree of flexibility. However, it is intended to replace the BRP, so it has the
same monolithic illumination system. The second framework is called High Definition
Render Pipeline (HDRP) [34] and contains implementations of several methods that meet
modern requirements of real-time rendering. It also contains the implementation of a suite
of illumination effects obtained with ray tracing hardware. In addition, it uses a higher
application programming interface (API) level of a multi-pass architecture, compared to
the SRP, that offers a certain level of flexibility and allows the user to implement their
own rendering passes. The pipeline offers two types of passes [35], scene render pass and
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post-process render pass, that allow the implementation of a satisfactory large number of
approaches necessary for modern requirements.

In addition to the commercial game engines, there are various open-source game
engines that offer different lighting implementations, but most have monolithic systems.
Godot [36] game engine has a monolithic system that uses its own implementation of
signed distance field global illumination that allows partial real-time indirect illumination.
In addition to some post-processing passes that produce certain real-time illumination
effects, the rest of the approaches require offline pre-processing steps. Open 3D Engine [37]
also has a monolithic system that uses dynamic diffuse global illumination, which applies
ray tracing for real-time global illumination. For the situation where the hardware does not
support ray tracing, it uses the same technique for offline pre-processing. Similar to Godot,
it has different post-processing steps to produce several real-time illumination effects.

Global illumination methods have not been limited to game engines; model editor
applications also offer the implementation of such methods. However, they are based on
offline rendering approaches. An example is Blender [38], which provides several global
illumination systems. Even though this editor offers an experimental game engine, global
illumination implementations are intended for offline rendering and the real-time rendering
is done by methods that do not contain indirect illumination.

NVIDIA company offers a suite of frameworks designed for offline rendering with
the ray tracing method, such as NVIDIA Iray [39], which uses the NVIDIA OptiX Ray
Tracing Engine [40]. Due to technological advances of the GPUs, these frameworks can be
used in applications for real-time rendering, but their use is experimental and is intended
only for ray tracing-based methods. Moreover, in the NVIDIA Gameworks library there
are several open-source demonstration frameworks for different approaches to real-time
global illumination. RTX Global Illumination (RTXGI) [41] is a framework that uses ray
tracing for the hardware that supports this implementation, to obtain real-time illumination.
NVIDIA VXGI [42] is a framework that uses the rasterization pipeline to obtain real-time
global illumination by methods that use the voxel representation of the scene. NVIDIA
Falcor [43] is a more general framework, developed for the implementation of real-time
rendering techniques. Although it contains a set of methods that produce different real-time
illumination effects, this framework does not contain a comprehensive set of demonstration
methods and does not focus on real-time global illumination techniques. This framework
optionally incorporates the others presented above. It uses a multi-pass architecture for its
real-time rendering pipelines.

Furthermore, the development of the frameworks is not limited to NVIDIA company.
AMD company has developed the Radeon Cauldron framework [44], which, similar to
NVIDIA Falcor, provides a set of open-source implementations to produce several real-time
illumination effects, but does not offer a comprehensive set of real-time global illumination
methods. This framework acts as an external library that can be used to implement
rendering pipelines and has a multi-pass architecture.

3. Proposed Framework
3.1. Framework Architecture

As presented in Section 2.1, software applications that contain real-time global illumi-
nation methods require a high degree of flexibility to support a wide range of approaches
and processing steps. Furthermore, some of these processing steps are used by several
different methods.

Due to these requirements, it comes naturally to use the concept of rendering pass
as an atomic unit in a rendering pipeline. Such a rendering pass needs to be unitary and
used in a sequence of passes. One such approach, known as multi-pass architecture, is the
one used in the framework described in this paper, tailored to the needs of real-time global
illumination methods.

The framework architecture contains three major subsystems: Engine, Render and
Editor, as can be seen in Figure 1.
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«Subsystem»

Engine

«Component»

PersistenceManagement

«Component»

SceneManagement

«Component»

RenderSettingsEditor

«Component»

RenderOutputViewer

«Component»

GPUProfiler

«Component»

CPUProfiler

«Component»

SceneObjectsManipulation

«Subsystem»

Editor

«Component»

RenderPipeline

«Component»

SceneDataManagement

«Subsystem»

Render

Figure 1. The components diagram of the proposed framework.

3.1.1. Engine Subsystem

The Engine Subsystem manages the flow of the framework and the data. The persis-
tence of the data is managed by the PersistenceManagement Component and is ensured on
the disk in specialized files for scene information, such as geometry, lighting information
and material properties of the surfaces. This data is loaded by the SceneManagement
Component and is stored as a hierarchy of objects for the entire scene.

3.1.2. Editor Subsystem

The Editor Subsystem has multiple responsibilities. It deals with the display of
the scene rendering result and the debugging information produced by the other two
subsystems. It also allows real-time modifications of the objects hierarchy in the scene and
the parameters of the rendering pipeline. To enable these user interactions, a GUI has been
created with the Dear ImGui [45] library. This GUI can be seen in Figure 2.

The RenderOutputViewer Component is responsible for managing some of the ren-
dering settings, such as framebuffer resolution, view camera position and direction and
projection properties. It is also the one that deals with the display of the visual result
produced by the rendering pipeline inside the editor GUI.

The SceneObjectsManipulation Component has the responsibility to allow the user to
manipulate objects in the scene. In the window where the result of the rendering pipeline
is displayed, visible in Panel (b) of Figure 2, is an interactive gizmo that allows changing
the position, scale and rotation of the selected object. This change can be made by the user
through the interaction of the gizmo with the mouse. The result of all changes is viewed
in real time. In addition, the hierarchy of the scene objects can be changed in the window
visible in the Panel (a) of Figure 2. Any change in the scene information can be made
permanently by choosing the save option from the menu.

The RenderSettingsEditor Component allows the viewing and modifying the parame-
ters of the rendering pipeline. It also allows a switch between different pipelines. A set of
such information can be seen in Panel (c) of Figure 2. In the same panel, the user can view
debug information of the pipeline, such as intermediate framebuffers.

The CPUProfiler and GPUProfiler Components, through editor GUI, provide real-time
information about the performance of the rendering pipeline. In the window visible in
Panel (e) of Figure 2 is a profiler for the central processing unit (CPU) and GPU. This
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window allows a switch between viewing the performance information on the CPU and on
the GPU.

(a) (b)

(d) (e)

(c)

Figure 2. Editor GUI designed for the framework. Panel (a)—the window that displays the objects
hierarchy of the scene; Panel (b)—the window that displays the result of the rendering pipeline; Panel
(c)—rendering pipeline parameter management window; Panel (d)—debug information display
window; Panel (e)—CPU and GPU profiler information display window.

3.1.3. Render Subsystem
Scene Data Management

The SceneDataManagement Component is responsible for managing the geometry
and illumination properties of the scene and to provide access to this information.

Scene data is loaded from files on disk and stored in a hierarchy of objects that contain
properties. The geometry of the scene objects is transformed into the format required by the
OpenGL 4.6 graphics API and is loaded into the GPU memory when the framework starts.
Any modification of the scene objects, such as creating or deleting an object or loading an
entire other scene, changes the information loaded in the GPU memory.

For better management of drawable objects and lighting information in the scene, such
as the set of directional, point and spot light sources, we stored the scene information in
parallel with the management of the Engine Subsystem. We stored a special scene for the
Render Subsystem, similar to the approach of physics engines such as Bullet. This scene is
stored in RenderScene class, visible in the class hierarchy in Figure 3.

The information in the rendered scene is stored optimized for the processes required for
the rendering pipeline. One of these processes is the specific iteration through certain types
of objects, such as drawable objects or directional, point or spot light sources. Moreover,
objects in the rendered scene can be easily queried for information needed for the rendering,
such as the position or rendering state. In addition, the scene allows the interrogation of
specific information, such as ambient light information.

The scene information in the Engine Subsystem must be synchronized with that in
the scene in the Render Subsystem. Thus, for any modification of the objects, such as the
creation, deletion or change of the rendering state, the information from the render scene
must be updated.
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Rendering Pipeline

The RenderPipeline Component is responsible for supporting the processing stages
specific to the real-time global illumination methods.

The framework contains several implementations of rendering pipelines for different
real-time global illumination methods for demonstration purposes. However, the quality
of the framework is represented by the Rendering Subsystem that allows the rapid and
easy development of such methods. This subsystem has been designed with a multi-
pass architecture.

<<Interface>> 
IRenderPass

+ Init(): void 
+ Execute(
 RenderScene, 
 RenderCamera, 
 RenderParameters,
 RenderVolumeContainer 
): RenderVolumeContainer
+ Clear(): void 

<<Interface>>
IRenderPipeline 

+ renderPasses:
 List<IRenderPass> 

- Init(): void
+ Execute(): void 

RenderVolumeContainer

- volumes:  
 List<IRenderVolume>

+ getRenderVolume(
 std::string name 
): IRenderVolume
+ insertRenderVolume(
 IRenderVolume, 
 std::string name,
 bool stacked
): void 

<<Interface>>
IRenderVolume

RenderScene

RenderCamera

0..*

1..*

RenderParameters

0..*
0..*

Figure 3. The class hierarchy of the rendering subsystem.

A rendering pass represents a working unit of the pipeline. A sequence of rendering
passes represents a rendering pipeline. This can be seen in Figure 3, through the relationship
between the IRenderPipeline and IRenderPass interfaces. To implement a real-time global
illumination method, a rendering pipeline and a set of rendering passes must be specialized.
The passes can be reused for several pipelines. Concretely, the pipeline specialization must
implement the Init() method in which to insert in the list of passes instances of the pass
specializations. For example:

void SpecializedRenderPipeline::Init ()
{
renderPasses.push_back (new SpecializedRenderPass1 ());
renderPasses.push_back (new SpecializedRenderPass2 ());
renderPasses.push_back (new SpecializedRenderPass3 ());
}

The order of inserting the rendering passes also represents the order of execution.
The Execute() method of the IRenderPipeline interface is called every frame and calls the
Execute(...) method for every rendering pass.

A specialization of the IRenderPass interface must implement the methods shown
in Figure 3. The Execute(...) method is called every frame, so that it can perform data
processing on the CPU or GPU at the frame level. The purpose of this method specialization
is to send to the output a render volume obtained as a result of the pass processing.
The rendering volume can contain any information, such as the framebuffer resulting
from rendering. The class in which this rendering volume is implemented must be a
specialization of the IRenderVolume interface. For simplicity, this volume is stored inside a
volume container. In the Execute(...) method, the rendering pass receives as parameters
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the rendered scene (which was detailed above), the rendering camera, the rendering
parameters and the container of rendering volumes that were produced at the output by
the other rendering passes processed previous to the current one.

The rendering parameters are stored in a structure which contains the information
about the rendering pipeline. This information is persistent on disk in a special file and is
modifiable in the editor GUI in the window visible in Panel (c) of Figure 2.

Sets Iteration

Some real-time global illumination method pipelines require the ability to process
a set of rendering passes for every element of a set, such as point or spot light sources.
To facilitate such a process, we have specialized the IRenderPass interface for a container
of rendering passes that stores and processes a set of subpasses. This approach can be on
several levels, a container can store other containers inside it. An iterable set interface has
also been introduced that must be specialized for a set, such as PointLightsIterator visible
in Figure 4. The construction of a container is as follows:

void SpecializedRenderPipeline::Init ()
{
renderPasses.push_back (
new RenderPassContainer ()
->setRenderIterator (new PointLightsIterator ())
->insertRenderPass (new SpecializedRenderPass1 ())
->insertRenderPass (new SpecializedRenderPass2 ())
);
}

<<Interface>> 
IRenderPass

RenderPassContainer

- renderPasses:  
 List<IRenderPass>
- renderIterator: IRenderIterator 

+ insertRenderPass(
 IRenderPass,
): RenderPassContainer
+ setRenderIterator(
 IRenderIterator
): RenderPassContainer 

PointLightsIterator

 

<<Interface>>
IRenderIterator

 + getNext(
 RenderScene 
): IVolume 

SpotLightsIterator

 
0..*

1

1..*

Figure 4. The class hierarchy used for sets iteration in the rendering subsystem.

A container processes the rendering passes in every frame in the order in which they
were inserted.

Data Generation

Some real-time global illumination methods require data sets that are independent of
scene information, such as sampling patterns. Our approach can support such a scenario
without further modification by using a rendering pass to generate such data. Data sets can
be generated at every frame or generated only once in the Init() method of IRenderPass
specialization and only sent to the rendering pass process in every frame.

3.2. Technical Details

The framework was developed in the C++17 programming language with the OpenGL
4.6 graphics API. The source code of the framework is available in the Supplementary
Materials. It was developed to be used for both Windows and Linux operating systems.
Regarding the build suite, we used Microsoft Visual C++ compiler for Windows and the
gcc compiler for Linux.
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The framework can be built and operated for all versions of Windows 7 and up.
For Linux, several distributions have been tested, such as different versions of Debian
and Arch.

The framework has been used on several machines that contain NVIDIA GPUs.
The type of GPU with the minimum specifications that has been tested is GTX 950 m.
In terms of CPU, it has been used on Intel machines.

4. Demonstrative Methods of Real-Time Global Illumination

The framework contains a set of real-time global illumination techniques for demonstration
purposes. We have implemented a set of illumination effects for four classes of methods that
produce real-time global illumination. More precisely, we chose as lighting effects:

• Diffuse indirect illumination;
• Glossy reflections;
• Subsurface scattering and translucency;
• Direct illumination of area light sources.

These effects have been implemented for global illumination classes that contain:

• Techniques based on RSMs;
• Techniques based on discrete ordinate methods (DOMs);
• Techniques based on voxel volume;
• Techniques based on screen space information.

The field of real-time global illumination is complex and the description of the im-
plemented techniques goes beyond the scope of this article. Below, we only mention the
techniques used to implement the real-time illumination effects.

From the class of the RSM-based methods, we implemented diffuse indirect illumina-
tion according to the sampling technique proposed by Dachsbacher and Stamminger [6]
and both glossy reflections and refraction according to the approach that uses 2D ray casts
in RSM proposed by Lambru et al. [46]. For the 2D ray cast process on images, we used
the approach proposed by McGuire and Mara [47]. This class is the only one that cannot
produce direct illumination for area light sources.

From the class of DOM-based methods, we implemented all the illumination effects
based on the method proposed by Kaplanyan and Dachsbacher [7] that uses a light propaga-
tion volume (LPV). Moreover, from the class of voxel-based techniques, we implemented all
the effects based on a single approach, more precisely the one proposed by Crassin et al. [?
].

From the class of techniques that use the information on the screen, we imple-
mented diffuse indirect illumination, illumination, following the method proposed by
Ritschel et al. [4] and the glossy reflections together with the translucency, based on the
one proposed by Sousa et al. [5]. Direct illumination of area light sources is obtained with
these methods.

The visual results of the four lighting effects in the same scene can be seen in Figure 5.
As previously mentioned, the RSM-based methods cannot produce direct illumination for
area light sources, so the light source has been excluded. The visual results are not identical
due to the significant differences between the implemented approaches.

In addition, the framework provides a set of parameters that can be changed interac-
tively by the user through the GUI and for which the visual results are modified in real time.
This set of parameters are presented in Table 1. The DOM- and voxel-based techniques
have a set of generic parameters for the properties of the 3D volumes they use.
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(b)(a)

(d)(c)

Figure 5. Diffuse indirect illumination, glossy reflections, subsurface scattering, translucency and
direct illumination for area light sources implemented for different classes of methods for real-
time global illumination. Panel (a)—RSM-based methods; Panel (b)—DOM-based methods; Panel
(c)—voxel-based methods; Panel (d)—screen space methods.

Table 1. Parameters that can be modified in real time provided by the framework.

Real-Time Global
Illumination Generic Diffuse Indirect

Illumination Glossy Reflections
Subsurface
Scattering &
Translucency

Direct Illumination
for Area Lights

RSM-based methods –

intensity, number of
samples, sampling

radius, screen
interpolation
parameters

intensity, number of
iterations, sample

thickness

intensity, number of
iterations, sample

thickness
N/A

DOM-based methods

LPV resolution,
number of

propagation
iterations, use of

geometry occlusion

intensity intensity, number of
iterations

intensity, number of
iterations

number of samples
per triangle

Voxel-based methods

voxel volume
resolution, use of

continuous
voxelization, voxel
volume mipmap

levels

intensity, cone
distance in voxel

volume space

intensity, cone
radius/height ratio,

cone distance in
voxel volume space

intensity, cone
radius/height ratio,

cone distance in
voxel volume space

–

Screen space
methods –

intensity, number of
samples, sampling

radius, screen
interpolation
parameters

intensity, number of
iterations, sample

thickness

intensity, number of
iterations, sample

thickness
–
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5. Use Cases for the Proposed Framework
5.1. Using the Framework for Learning

The educational use of the proposed framework has as main purpose its use for
learning real-time global illumination methods. For this purpose, one can take advantage
of the fact that a set of such techniques is already implemented within the framework.

The framework can be used to investigate final and intermediate visual results ob-
tained by several real-time global illumination methods. In the video attached in the Sup-
plementary Materials, the final and intermediate results for diffuse indirect illumination
and glossy reflections for all classes of real-time global illumination methods implemented
in the framework are visible.

Furthermore, for every method there are several rendering parameters that can be
modified from the editor, as shown in Table 1. As mentioned in Section 3.1.2, the change of
rendering parameters is done through user interactions and parameters are modified in
real time. For this reason, the rendering pipeline and implicitly its visual result are updated
in real time.

The framework allows the investigation of the real-time global illumination pipeline
implementations. Due to the use of a multi-pass architecture, such an implementation can
be investigated at several levels, such as an overview of the sequence of rendering passes
and the code of a single pass independently of the rest of the pipeline.

Due to the implementation of a rendering pipeline through a sequence of passes, there
is the possibility to modify the code without affecting or interacting with the rest of the
pipeline. This approach allows the creation of new rendering passes and the modification
of the code of some techniques or shaders used inside the passes without affecting a part of
the other rendering passes.

A suitable scenario to use the framework for education purposes would be to allow
the student to implement particular illumination effects in a rendering pipeline. Implemen-
tations can be available for all other rendering passes. The ones aimed for implementation
by the students should contain only a skeleton in which they can complete important
steps in a rendering pipeline. Such code locations could be the creation of the output data
structure of a rendering pass and the indirect lighting computation for different effects,
after a description of the theory beforehand.

5.2. Using the Framework for Rapid Implementation of Real-Time Global Illumination Methods

The software applications that contain implementations of global illumination meth-
ods are complex. Thus, the implementation requires the use of a large set of approaches.
However, the use of a multi-pass architecture together with the real-time global illumi-
nation techniques that are already implemented in the framework, as presented in the
previous section, offers some advantages.

One of the most important advantages of such an architecture is the ability to use the
implementation of the same rendering pass in several different pipelines. Thus, the creation
of new rendering pipelines can take advantage of the reuse of rendering pass implementa-
tions that are already in the framework. This is done, as specified in Section 3.1.3, by creating
an instance of the same rendering pass for every pipeline in which the pass is used. This
situation in which a rendering pass is used in several pipelines is quite necessary for the
real-time rendering methods and also applies to real-time global illumination ones. This
can be seen in our previous work [3], where the generation of G-buffers [49] and RSMs [6] is
required for several techniques, so the rendering passes that produce these data structures
are reused in several pipelines. Furthermore, the post-processing effects, implemented in
rendering passes, can be reused in several rendering pipelines.

The reuse of the rendering passes that already exist in the framework facilitates the
rapid implementation of pipelines. However, the process of creating a new rendering pass
also takes advantage of existing implementations in the framework, as it contains a set
of helpful interfaces that facilitate the implementation of certain types of passes, such as
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post-processing passes. Several such interfaces are implemented in the framework, but they
are missing from the presentation of the architecture visible in Figures 3 and 4 for simplicity.

Furthermore, the proposed framework has an editor with many debugging capabilities,
as presented in Section 3.1.2. The facilitation of debugging through the editor GUI with all
the capabilities presented in Section 3.1.2 are important in the implementation process.

5.3. Other Use Cases

With little effort, the framework can be used for other use cases. Due to photorealistic
visual results, it can be used to visualize virtual worlds for various purposes, such as
virtual reality applications, visualization of robotics or car simulations and designs made
in computer-aided design software.

Another example is the use for data extraction, such as lighting information for virtual
scenes or temporal information, such as video streams, from actions performed in those
scenes. This data can be used directly by other frameworks for their own purposes or for
comparative analysis between different results. Moreover, the information can be used for
the training process in techniques that use machine learning.

6. Results
6.1. Comparison with Other Frameworks

We decided to compare the proposed framework with the ones described in Section 5.2.
We only chose the frameworks for real-time global illumination. The comparison criteria
are the possibility of using the framework as educational software and that of using it for
the rapid implementation of real-time global illumination techniques. More precisely, we
chose the information that tell us whether the framework contains the implementation
of techniques that can be used for demonstration purposes, because it represents a good
educational support, correlated with the possibility to allow the implementation of other
new methods. The result of our analysis can be observed in Table 2.

Table 2. Comparison between the frameworks and game engines for real-time global illumination im-
plementaion.

Framework/Game Engine Contains Demonstrative Real-Time Global
Illumination Technique Implementations

Allows the Implementation of New
Methods

Unreal Engine 5 [25] Monolithic, Lightmass [26] and Lumen [27] Only by ground-up implementation

CryEngine [29] Monolithic, Voxel-Based Global Illumination Only by ground-up implementation

Unity BRP [31] Monolithic, requires offline pre-processing No

Unity SRP [32] No Yes, multi-pass architecture

Unity URP [33] Monolithic, requires offline pre-processing No

Unity HDRP [34] Ray tracing methods Yes, multi-pass architecture

Godot [36] Monolithic, signed distance field global
illumination Only by ground-up implementation

Open 3D Engine [37] Monolithic, dynamic diffuse global
illumination Only by ground-up implementation

NVIDIA OptiX [40] Only methods based on ray tracing Only methods based on ray tracing

NVIDIA RTXGI [41] Only methods based on ray tracing Only methods based on ray tracing

NVIDIA VXGI [42] Voxel-Based Global Illumination Only by ground-up implementation

NVIDIA Falcor [43] Several illumination effect implementations Yes, multi-pass architecture

Radeon Cauldron [44] Several illumination effect implementations Yes, multi-pass architecture

As can be seen, most frameworks are not intended for learning real-time global illumination
techniques. Most of them were not created for this purpose and have monolithic system for
other purposes, which are difficult to modify and have a lack of varied implementations.
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The two frameworks, NVIDIA Falcor [43] and Radeon Cauldron [44], at the time of
this paper, contain the implementations of several illumination effects, such as ambient
occlusion, reflections and shadows, but not of a comprehensive set of real-time global
illumination techniques. This is due to the fact that the purpose of these frameworks is
mostly support for research. However, it should be noted that the currently implemented
techniques can be investigated and evaluated together with a GUI at a detailed level, so that
for certain techniques in particular, these frameworks can be a good source for education in
this domain.

The frameworks that contain arranged implementations of some real-time global illu-
mination techniques are the only ones that, among others, also have educational purposes.
These are NVIDIA OptiX, NVIDIA RTXGI and NVIDIA VXGI [42]. However, they focus
on a certain class of techniques and do not offer a varied set of illumination methods.

Regarding the possibility to implement new methods, the frameworks that contain
the implementation of lighting techniques in monolithic systems have the least flexibility.
Although access to the source code is possible for all chosen frameworks, except for Unity,
it is not feasible to implement a real-time global illumination technique from the ground
up, due to the fact that the code base is large and often lacks documentation.

NVIDIA OptiX and NVIDIA RTXGI frameworks offer great flexibility for the imple-
mentation of methods based on ray tracing and less on techniques that use the rasterization
pipeline, for which the frameworks are similar to the monolithic ones, whose situation
was presented above. The same goes for NVIDIA VXGI framework, which focuses on
techniques that use the voxel representation of the scene.

The two frameworks, NVIDIA Falcor [43] and Radeon Cauldron [44], are similar to
the proposed one. Both were created for the rapid implementation of rendering techniques
in general and have a multi-pass architecture. However, unlike the proposed framework,
they act as an external library used by applications that implement the techniques and have
a lower level. They leave a lot of responsibilities to the user’s management, such as the
sequence of steps contained in a pipeline. Although possible through access to the source
code, they do not have their own management of several pipelines at the same time and
the interactive transition between them remains in the management of the user.

The Unity SRP and HDRP systems are the most similar to the proposed framework.
Unity SRP has a low level, but Unity HDRP offers high level facilities similar to those
proposed by the framework. However, it should be noted that due to lack of open sources,
these systems may have limitations, such as the export and use of data to which there is
only internal access.

Thus, the proposed framework offers facilities that none of the analyzed frameworks
offer on their own. The closest, which offer capabilities for rapid implementation of real-
time global illumination techniques and have at some level educational purposes, are
NVIDIA Falcor [43] and Radeon Cauldron [44] frameworks. However, they offer a much
lower level and the demonstration techniques they contain do not focus on real-time global
illumination, but rather on rendering techniques in general.

6.2. Evaluation for Educational Purposes

We have made an evaluation of the possibility to use the proposed framework to
learn real-time global illumination methods. More precisely, we used diffuse indirect
illumination and glossy reflections, implemented with the class of techniques that use the
information on the screen as a case study. As described in Section 5.1, we have implemented
an incomplete skeleton of these two methods within the proposed framework, with clear
indications on the actions that must be performed for the complete implementation of them.
We also made an informative video about the theoretical description of the two methods.
The code locations to be covered were diverse and included:

• The generation of a set of samples used to extract the VPLs on the screen;
• Accommodation with the framework architecture, in particular with the use of render-

ing passes and the management of rendering settings;
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• Mathematical theory for the computation of diffuse indirect illumination;
• The ray cast process that uses the information on the screen.

We gave this skeleton to eight participants to implement the two techniques. All
participants had a background in computer graphics. The evaluation results are visible in
Table 3.

Table 3. The results of the evaluation for educational purposes.

Participant Implementation Time Implementation Correctness Number of Times They Asked
for Help

Participant 1 45 min 100% 0
Participant 2 45 min 100% 0
Participant 3 75 min 91% 1
Participant 4 23 min 100% 0
Participant 5 150 min 100% 0
Participant 6 33 min 100% 0
Participant 7 70 min 91% 0
Participant 8 75 min 91% 1

As can be seen, all of the participants managed to implement the two methods in
a reasonably short time, with an average of 65 min. The resulted implementations were
largely correct. It should be mentioned that all participants were provided with the final
visual results of the two techniques, so all of them used these results for self-checking and
obtained similar final visual results. For this reason, the resultant mistakes in implementa-
tion had subtle or non-existent effects on the final visual result and were related to the use
of the parameters for the two techniques.

Most participants did not need help. However, it should be mentioned that the
two participants who asked for help encountered technical problems with the build and
execution of the framework for different development environments. Once the framework
could be started, they no longer needed help.

From all this analysis and the experimental results obtained after evaluation, we
conclude that the framework was used successfully in an evaluation close to the learning
processes within a faculty. In fact, this was only a test for the use of the framework
for educational purposes and we intend to use it in the near future for a larger number
of participants.

7. Conclusions

In this paper, we have presented a framework for the development of real-time global
illumination methods. This framework can be used for the rapid implementation of such
techniques due to the use of a multi-pass architecture and the fact that there is an editor
with GUI through which debugging information can be viewed and modified. Due to
these aspects and the fact that the framework contains several implementations of real-time
global illumination methods for demonstration purposes, this framework can also be used
for the learning process of such methods.

We evaluated the proposed framework in two different ways. First, we performed
a comparative analysis with a total of 13 other frameworks with similar applicability.
From our analysis, it resulted that only two of them are close to the goals proposed by
us, namely the use for learning and rapid implementation of real-time global illumination
techniques. However, these frameworks were created for rendering methods in general,
and none focus on lighting techniques in particular. The second evaluation was performed
to test the use of the proposed framework for educational purposes. An incomplete
implementation of two methods was created within the framework and was sent for
complete implementation to eight participants with a background in computer graphics.
They managed to use the framework successfully in order to implement the two methods.
Thus, we have demonstrated the applicability of the framework both for teaching and for
rapid implementation of real-time global illumination techniques.
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This framework facilitates the rapid implementation of new methods, but the process
requires a certain level of implementation. An option to further reduce the implementation
time can be the development of a visual language to describe the rendering pipelines.

Supplementary Materials: The following supporting information (video) can be downloaded at:
https://www.mdpi.com/article/10.3390/app12115654/s1. The source code of the framework can be
accessed at: https://doi.org/10.5281/zenodo.6574191, accessed on 5 May 2022.
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