
Citation: Qi, Y.; Li, Q.; Zhao, Z.;

Zhang, J.; Gao, L.; Yuan, W.; Lu, Z.;

Nie, N.; Shang, X.; Tao, S.

Heterogeneous Parallel

Implementation of Large-Scale

Numerical Simulation of

Saint-Venant Equations. Appl. Sci.

2022, 12, 5671. https://doi.org/

10.3390/app12115671

Academic Editors: Daniel Dias and

Yuzhu Wang

Received: 25 April 2022

Accepted: 31 May 2022

Published: 2 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Heterogeneous Parallel Implementation of Large-Scale
Numerical Simulation of Saint-Venant Equations
Yongmeng Qi 1, Qiang Li 1,* , Zhigang Zhao 1, Jiahua Zhang 1 , Lingyun Gao 2, Wu Yuan 2, Zhonghua Lu 2,
Ningming Nie 2, Xiaomin Shang 1 and Shunan Tao 1

1 School of Computer Science and Technology, Qingdao University, Qingdao 266071, China;
2019025931@qdu.edu.cn (Y.Q.); zgzhao@qdu.edu.cn (Z.Z.); zhangjh@radi.ac.cn (J.Z.);
2020025815@qdu.edu.cn (X.S.); 2021023842@qdu.edu.cn (S.T.)

2 Computer Network Information Center Chinese Academy of Sciences, Beijing 100083, China;
gaolingyun@cnic.cn (L.G.); yuanwu@sccas.cn (W.Y.); zhlu@sccas.cn (Z.L.); nienm@sccas.cn (N.N.)

* Correspondence: chucklee@qdu.edu.cn; Tel.: +86-18669818931

Abstract: Large-scale floods are one of the major events that impact the national economy and
people’s livelihood every year during the flood season. Predicting the factors of flood evolution is
a worldwide problem. We use the two-dimensional Saint-Venant equations as an example and for
high-performance computing in modelling the flood behavior. Discretization of the two-dimensional
Saint-Venant equations with initial and boundary conditions with the finite difference method in
the explicit leapfrog scheme is carried out. Afterwards, we employed a large-scale heterogeneous
parallel solution on the “SunRising-1” supercomputer system using MPI, OpenMP, Pthread, and
OpenCL runtime libraries. On this basis, we applied communication/calculation overlapping and
the local memory acceleration to optimize the performance. Finally, various performance tests of the
parallel scheme are carried out from different perspectives. We have found this method is efficient
and recommend this approach be used in solving systems of partial differential equations similar to
the Saint-Venant equations.

Keywords: Saint-Venant equations; finite difference method; parallel computing; heterogeneous computing

1. Introduction

Reservoir dams have played a huge role in flood control, water supply, power gen-
eration, etc. [1], and are one of the important components of the hydraulic engineering
system. But if a dam is damaged due to various factors, the consequences are generally
catastrophic. Excessive flooding is one of the natural causes of dam failure. Floods are the
most frequent natural disasters, affecting large numbers of people and agricultural lands,
as well as causing casualties and damage to infrastructure. Increased runoff rates due to
urbanization, prolonged rainfall, and insufficient river capacity are some of the main causes
of flooding. After entering the flood season in 2020, there have been multiple rounds of
heavy rainfall in southern China, resulting in severe floods in many places. As of 9 July
2020, flood disasters had affected 30.2 million people in 27 provinces (district and cities),
with direct economic losses of 61.79 billion yuan. In 2021, Henan, Shanxi, and other places
were also hit by heavy rainstorms. Therefore, understanding the behavior of water flow
in a channel is critical for early flood disaster management and saving lives. The research
direction of this paper is to study the behavior of flood through numerical simulation of
surface water flow, and to perform heterogeneous parallel processing and visualization of
the simulation process.

Mathematical models are scientific or engineering models constructed using math-
ematical logic methods and mathematical language to solve various practical problems.
In hydraulic science, mathematical models are often used to simulate fluids of different
phenomena, and numerical methods are used to control the fluid models. What we use in

Appl. Sci. 2022, 12, 5671. https://doi.org/10.3390/app12115671 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115671
https://doi.org/10.3390/app12115671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3153-8113
https://orcid.org/0000-0002-2894-9627
https://doi.org/10.3390/app12115671
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115671?type=check_update&version=2

Appl. Sci. 2022, 12, 5671 2 of 17

our research is the flood wave propagation dynamics equation, which was first proposed
by Saint-Venant [2], so it is also called the Saint-Venant (SV) equations. It consists of a
continuity equation reflecting the law of conservation of mass and an equation of motion
reflecting the law of conservation of momentum, and is widely used to predict surface flow
parameters such as velocity, depth, or height. Nowadays, they are used to model flows
in a wide variety of physical phenomena, such as overland flow, flooding, dam breaks,
tsunami [3]. SV equation was originally only used to describe one-dimensional surface wa-
ter flow, for two-dimensional, SV equation is derived from the Navier-Stokes equation [4],
and two-dimensional SV equation is often referred to as the shallow water equation(SWE).
Since SV equations are mathematically quasi-linear hyperbolic partial differential equations
(PDE), it is difficult to obtain the analytical solution of SV equations by analytical method.
Therefore, different numerical methods have been proposed to simulate surface water flow.

Long before the advent of computers, some people solved the SV equations through
numerical simulation. Reinaldo and Rene [5] long ago used the explicit MacCormack
time-splitting scheme to establish a mathematical model for solving two-dimensional SV
equations. Two industrial applications at the time are also presented, demonstrating the
validity of the model. Later, Fiedler and Ramirez [6] also used this method to simulate
a discontinuous two-dimensional hydrodynamic surface flow equation (a variant of the
two-dimensional SV equations) with spatially variable properties. The method was devel-
oped to model spatially variable infiltration and microtopography, and can also be used
to model irrigation, tidal flat and wetland cycles, and flooding. With the development of
computers and the improvement of computing performance, more and more people put the
simulation process on the computer. For example, Kamboh [7] et al. also established a math-
ematical model with initial conditions and boundary conditions using two-dimensional
Saint-Venant PDE in order to predict and simulate flood behavior. Next, the corresponding
models are discretized and implemented on MATLAB using the common explicit finite
difference method. The finally generated graph structure can visually see the changes of
each parameter over time. Asier [8] also used the two-dimensional Saint-Venant equation
to simulate precipitation or runoff events, but the method used was the finite volume
method. He developed and compared the following three programming methods: se-
quential, multi-threaded and many-core architectures. The multi-threaded code is written
using OpenMP and the many-core architecture is written using CUDA. He concluded
that the performance of the GPU parallel version using CUDA is strongly affected by
the size of the problem. It is also proposed that combining MPI and GPU methods can
improve computational efficiency and data capacity, but this is not implemented in the
paper. In the field of heterogeneous computing, Ding [9] et al. transplanted, parallelized,
and accelerated the solver of the one-dimensional S-V equation based on MPI and athread
library. The athread library is an accelerated thread library designed for the master-slave
acceleration programming model of the SW26010 processor. They use MPI to realize the
parallelization between the master cores, and use athread to accelerate the slave cores. After
that, optimization methods such as SIMD (Single Instruction Multiple Data) vectorization
and communication/calculation overlapping were carried out. In addition to the above
work, adaptive mesh refinement (AMR) is also an important part of the algorithm perfor-
mance. AMR is generally efficient and effective in treating problems with multiple spatial
and temporal scales. AMR improves the quality of solution on a mesh by refining cells only
in places where a high grid resolution is desired, thereby increasing the memory efficiency
and computation speed [10]. Xin Zhao [11] proposed a 3D volume-of-fluid method based
on the adaptive mesh refinement technique. He introduced projection methods on adaptive
grids to solve the incompressible Navier–Stokes equations. In order to simulate ocean
wave propagation, Michael [12] et al. proposed a method for numerical simulation of
dynamically adaptive problems on adaptive triangular grids with recursive structure. They
used a grid generation process based on recursive bisection of triangles along marked
edges to achieve 2D dynamically adaptive discretization. Kevin and Frank [13] used a
multilayer lattice Boltzmann model (LBM) to solve the 3D wind-driven shallow water flow

Appl. Sci. 2022, 12, 5671 3 of 17

problems, and studied the performance of the parallel LBM for the multilayer shallow water
equations on the CPU-based high performance computing environment using OpenMP.
It is concluded that explicit loop control with cache optimization in LBM provides better
performance than the implicit loop control on execution time, speedup, and efficiency as the
number of processors increases. There are many more applications of the two-dimensional
Saint-Venant equation, such as [14–17].

There are already some frameworks for solving PED using GPUs or accelerated de-
vices. For example, Bhadke [18] et al. used CUDA to develop a 3D-CFD computing
framework for the conduction process. They discretized the model into a three-dimensional
grid and solved it using an alternating-direction implicit method. In summary, although
many different studies have modeled the SV equation (e.g., [19,20]), and there are discus-
sions on parallelization and performance optimization, there are few studies on large-scale
Saint-Venant systems. Therefore, this research aims to build a two-dimensional simple
finite difference model and use MPI, OpenMP, Pthread, and OpenCL for heterogeneous
large-scale processing. In this work, we first introduce the governing equation and cal-
culation method of SV equations. Then we introduce the basic implementation of our
heterogeneous massively parallel computing. Finally, the parallel strategy is optimized and
the performance is tested.

2. Governing Equations and Numerical Method

The governing equations used in our research are as follows:

∂z
∂t

+
∂(zu)

∂x
+

∂(zv)
∂y

= 0 (1)

∂(zu)
∂t

+
∂
(

zu2 + gz2

2

)
∂x

+
∂(zuv)

∂y
= gz

(
S0x − S f x

)
(2)

∂(zv)
∂t

+
∂(zuv)

∂x
+

∂
(

zv2 + gz2

2

)
∂y

= gz
(

S0x − S f x

)
(3)

Equation (1) is derived from the conservation of mass, and Equations (2) and (3) are
derived from the conservation of momentum in the x and y directions, respectively. Among
them, z refers to the elevation (depth or height) of the water flow in the open channel,
u and v are the water velocity in the x and y directions respectively, t is the time, g is the
acceleration of gravity. S0 and Sf refer to the water surface gradient and frictional resistance.
In order to use this system of equations more conveniently in the computer, we need to
use the product rule of differentiation to further simplify the system of equations. We then
discretize the equations using an explicit finite difference scheme, where the time and space
derivatives are respectively discretized by the following expressions:

∂u
∂t

≈
uk+1

i,j − uk−1
i,j

2∆t
,

∂u
∂x

≈
uk

i+1,j − uk
i−1,j

2∆x
,

∂u
∂y

≈
uk

i,j+1 − uk
i,j−1

2∆y

This format is the central difference format, in which the central difference in time is
also called the leapfrog format, and its advantage is that it can enhance the stability of the
calculation. In this way, the discretized equations become the following form:

zk+1
i,j − zk−1

i,j

2∆t
+ uk

i,j

zk
i+1,j − zk

i−1,j

2∆x
+ zk

i,j

uk
i+1,j − uk

i−1,j

2∆x
+ vk

i,j

zk
i,j+1 − zk

i,j−1

2∆y
+ zk

i,j

vk
i,j+1 − vk

i,j−1

2∆y
= 0 (4)

uk
i,j

zk+1
i,j −zk−1

i,j
2∆t + zk

i,j
uk+1

i,j −uk−1
i,j

2∆t +
(

uk
i,j

)2 zk
i+1,j−zk

i−1,j
2∆x + 2zk

i,ju
k
i,j

uk
i+1,j−uk

i−1,j
2∆x + gzk

i,j
zk

i+1,j−zk
i−1,j

2∆x +

uk
i,jv

k
i,j

zk
i,j+1−zk

i,j−1
2∆y + zk

i,jv
k
i,j

uk
i,j+1−uk

i,j−1
2∆y + zk

i,ju
k
i,j

vk
i,j+1−vk

i,j−1
2∆y = gzk

i,j

(
S0x − S f x

) (5)

Appl. Sci. 2022, 12, 5671 4 of 17

vk
i,j

zk+1
i,j −zk−1

i,j
2∆t + zk

i,j
vk+1

i,j −vk−1
i,j

2∆t +
(

vk
i,j

)2 zk
i,j+1−zk

i,j−1
2∆y +2zk

i,jv
k
i,j

vk
i,j+1−vk

i,j−1
2∆y + gzk

i,j
zk

i,j+1−zk
i,j−1

2∆y +

uk
i,jv

k
i,j

zk
i+1,j−zk

i−1,j
2∆x + zk

i,jv
k
i,j

uk
i+1,j−uk

i−1,j
2∆x + zk

i,ju
k
i,j

vk
i+1,j−vk

i−1,j
2∆x = gzk

i,j

(
S0y − S f y

) (6)

Then, after simply shifting the term and removing the denominator, the three variables
z, u, and v can be solved iteratively. As shown in Figure 1, each time an iteration value is
calculated, the results of the previous two iterations are used, which is also a feature of the
leapfrog format. Because of this, the stability of the calculation process is strengthened.

Figure 1. The value used by the iterative process.

It is also because of the solution value range shown in Figure 1 that the boundary
of the grid will be exceeded when calculating the edge value. At this time, we need
to introduce boundary conditions and add a circle of ghost cells around the standard
grid. Balzano [21] gives a general review of existing wetting and drying (WD) methods.
He gave expressions for boundary conditions at moving boundaries, which can be solved
on fixed grids, adaptive grids and moving grids based on natural coordinates. Moreover,
a number of solutions or models for dealing with boundary problems based on this method
are introduced. Finally, a discussion on implicit finite-difference models is carried out.
Heniche [22] et al. also gave specific boundary conditions based on the WD model. They
proposed two kinds of boundary conditions: solid boundary and open boundary. Specific
conditions must be imposed when dealing with solid boundaries, while open boundaries
are used to specify flow regimes. The basic idea of the boundary conditions we use is
to bounce incoming particles toward the boundary back into the fluid [23]. In order to
achieve this boundary condition, it is only necessary to make the boundary value equal to
the edge value.

After that, showing the initial conditions, we consider using a rectangular area with
no bottom stress and wind stress. The water surface at each location is stationary and has a
height of 10 and the flow is zero, i.e., z = 10 m, u = 0 m/s, v = 0 m/s. Then a flood wave
with a maximum height of 1 m is generated at the entrance of the water to simulate the
flow behavior of fluid in a single channel, through the formula:

z = e−
(a−a0)

2+(b−b0)
2

k2

In this formula, a0 and b0 are the location of the highest flood wave in the x and y
directions respectively, where a0 = 25, b0 = 1 is taken to locate the center of the entrance. k is
the initial height of the water wave, where k = 10 m. As for a and b, they are the coordinates

Appl. Sci. 2022, 12, 5671 5 of 17

of each grid node on the coordinate axis. This will get the highest value when a = a0, b = b0.
The initial state of a small-scale simulation process is shown in Figure 2.

Figure 2. Schematic of a small-scale initial state.

3. Heterogeneous Implementation

First of all, our heterogeneous implementation works together through the CPU and
accelerator. The CPU also participates in the calculation process while being responsible
for communication, while the accelerator is only responsible for calculation. After that,
we used MPI, OpenMP, Pthread, and OpenCL runtime libraries. Among them, MPI is a
parallel program interface based on multiple processes with good performance, which is
used in this paper for point-to-point communication between nodes. Both OpenMP and
Pthread are thread-parallel interfaces. OpenMP is a portable API that is very convenient
to use because it does not bind the program to a pre-set thread. But because of this, we
cannot use OpenMP to manage specific threads individually. So, we introduced Pthread.
The Pthread API handles most of the behavior required by threads. These behaviors
include creating and terminating threads, waiting for threads to complete, and managing
interactions between threads. Combining the advantages and disadvantages between the
two, we use OpenMP when performing simple thread parallelism, and use Pthread when
more complex thread operations are required. OpenCL is the first open, free standard for
general-purpose parallel programming for heterogeneous systems. It is widely used in
parallel processors such as multi-core CPUs, GPUs [24–26], accelerators, etc. We are here to
process the accelerator and take care of some of the computing tasks, through OpenCL.

A heterogeneous parallel framework can be used across multiple platforms, but dif-
ferent clusters are equipped with different equipment, and the program will be changed
accordingly. This experiment is performed on the domestic advanced computing system
“SunRising-1”. The specific experimental environment is shown in Table 1.

Table 1. SunRising-1 experimental environment.

Hard/Software
Environment Name Details/Version

Hard environment
(single node) CPU 32-core domestic × 86 processor × 1

RAM 16 GB DDR4 × 8

Acceleration device
Domestic GPGPU accelerator × 4,

16 GB HBM2 VRAM,
bandwidth 1 TB/s

Network InfiniBand HDR network,
Fat-tree topology, 200 Gbps

Appl. Sci. 2022, 12, 5671 6 of 17

Table 1. Cont.

Hard/Software
Environment Name Details/Version

Software environment MPI Openmpi 4.0.4
gcc/g++ 4.8.5
OpenMP 3.1
Pthread NPTL 2.17

OpenCL

Platform: AMD Accelerated Parallel
Processing

Driver version: 2982.0
OpenCL Standard: OpenCL 2.0

Figure 3 shows the schematic of our heterogeneous parallel framework. We first
initialize MPI and use MPI_Type_contiguous() to create an MPI datatype by replicating
an existing datatype (for example, MPI_INT, MPI_DOUBLE, etc.). These replications are
created into contiguous locations, resulting in a contiguous datatype created. The created
datatype is then committed using MPI_Type_commit(), before it can be used for commu-
nication. After entering the process parallelism, routinely initialize OpenCL, including
obtaining the platform, device, creating context, etc. The next step is to implement the
initial value conditions described in Section 2, and we call this process “initialization”.
The cluster used in our experiment is equipped with 32 CPU cores and four accelerators for
a single node, so for the initialization process, we enable four threads to simultaneously
call OpenCL to start the kernel function. This process does not involve complicated op-
erations, so OpenMP is used. Thread parallelism ends after the kernel function finishes
running. After that the calculation process starts. In this process, both the CPU and the
accelerator participate in the calculation, so we divided two thread groups, one of which
contains four threads to perform operations similar to the previous process to start the
kernel function, and the other is to enable the remaining 28 threads participate in the
computation. The grouping and waiting of threads are involved here, so Pthread are used.
After an iterative calculation is over, because of the existence of ghost cells, communi-
cation is required next. Because of the large scale of computation, a node may need to
exchange data bidirectionally with four adjacent nodes (maybe 2 or 3 times for nodes at the
edge). We use four MPI_Sendrecv() functions to implement this communication operation.
MPI_Sendrecv() combines sending a message to a destination and receiving a message from
another process into one call. Figure 4 shows how MPI_Sendrecv() in the four directions
exchanges data. For the intermediate nodes, each node must send data to the surrounding
adjacent nodes, and also receive data from the surrounding adjacent nodes, which can be
easily implemented by calling MPI_Sendrecv().

Figure 3. Schematic of the heterogeneous parallel framework.

Appl. Sci. 2022, 12, 5671 7 of 17

Figure 4. Schematic of data exchange.

When dealing with nodes at edges, we introduce MPI_PROC_NULL, a constant that
represents a dummy MPI process rank. This allows all MPI processes to issue the same
calls regardless of their position.

After the communication ends, a complete iteration is over, and after that, the iterative
loop continues until the set time is reached. Then we output the result and perform post-
processing to generate a picture, such as the visualization of the output of the z value
shown in Figure 5 (Only the parts with numerical changes are displayed). In this way, you
can intuitively see the change of the water level in the river channel with time.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18

Figure 5. Simulation of water surface elevation at different time steps.

4. Performance Optimization and Testing

In this section, we will optimize the current parallel strategy and test its performance.

4.1. Overlap Computation and Communication

Scaling MPI applications on large high performance computing systems requires ef-

ficient communication patterns. Whenever possible, the application needs to overlap com-

munication and computation to hide the communication latency. For the current parallel

model, we consider implementing an efficient ghost cell exchange mechanism using non-

blocking, peer-to-peer communication (mainly the MPI_Isend() and MPI_Irecv() func-

tions), and domain decomposition of the grid.

First, we must confirm how to decompose the domain, that is, to confirm which part

of the value to be calculated does not involve MPI communication. The grid we use is

composed of real values inside and a dummy value of an outer circle of ghost cells, where

real values are computed and dummy values are communicated. It can be seen from Fig-

ure 1 that the value of the ghost cell is only used when calculating the value of the outer-

most circle of the actual value. Therefore, as shown in Figure 6, we can come up with a

solution for the domain decomposition. We call the outermost circle of the actual value

the “halo cell”, and the part of the actual value that removes the halo is called the “inner

filed”.

Figure 6. Schematic of domain decomposition.

The general iterative scheme is summarized as follows:

Figure 5. Simulation of water surface elevation at different time steps.

4. Performance Optimization and Testing

In this section, we will optimize the current parallel strategy and test its performance.

4.1. Overlap Computation and Communication

Scaling MPI applications on large high performance computing systems requires
efficient communication patterns. Whenever possible, the application needs to overlap
communication and computation to hide the communication latency. For the current
parallel model, we consider implementing an efficient ghost cell exchange mechanism
using non-blocking, peer-to-peer communication (mainly the MPI_Isend() and MPI_Irecv()
functions), and domain decomposition of the grid.

Appl. Sci. 2022, 12, 5671 8 of 17

First, we must confirm how to decompose the domain, that is, to confirm which part
of the value to be calculated does not involve MPI communication. The grid we use is
composed of real values inside and a dummy value of an outer circle of ghost cells, where
real values are computed and dummy values are communicated. It can be seen from
Figure 1 that the value of the ghost cell is only used when calculating the value of the
outermost circle of the actual value. Therefore, as shown in Figure 6, we can come up with a
solution for the domain decomposition. We call the outermost circle of the actual value the
“halo cell”, and the part of the actual value that removes the halo is called the “inner filed”.

Figure 6. Schematic of domain decomposition.

The general iterative scheme is summarized as follows:

1. Copy data of the ghost cells to send buffers;
2. Ghost cell exchange with Isend/Irecv calls;
3. Compute (part 1): Update the inner field of the domain;
4. Call MPI_Waitall();
5. Copy data from receive buffers to the ghost cells;
6. Compute (part 2): Update the halo cells;
7. Repeat.

After completing the calculation and communication overlap, we performed a com-
parison test with the previous version, as shown in Table 2. The calculation amount of a
single node is 200 iterations, and the grid size in each node is 2564 × 4100.

Table 2. Comparison test before and after overlap.

Version Calculating Time (s) Sync Time (s) Total Time (s)

Before 240.61 6 246.61
After 189 5 194

In this test, we performed a total of 200 iterations, and the time obtained after the
average of five times was tested. The total time simply refers to the time to execute
200 iterations, excluding the previous initialization and subsequent output time. The sync
time is the time to wait with MPI_Barrier() before the end of each iteration. It can be seen
that by overlapping communication and calculation, the communication process is hidden
in the calculation process, which can greatly reduce the time consumption, and even when
the calculation amount is large enough, the communication time can be completely ignored.

Afterwards, we conducted extended tests on this overlapped version. We tested
the parallel performance of the program by continuously increasing the number of pro-
cesses while keeping the amount of computation allocated by each process basically the

Appl. Sci. 2022, 12, 5671 9 of 17

same. The test results are shown in the Figure 7. This test uses four nodes (processes)
as the benchmark, and these four nodes are arranged in a 2 × 2 manner. The number
of iterations and grid size are the same as before. It can be seen that the overlapping of
communication computing can not only shorten the computing time but also maintain a
good parallel efficiency.

Figure 7. Extended test performance graph for overlapped version.

4.2. Work Group Optimization

First of all, a few definitions are briefly described. Each OpenCL device has one or more
compute units, and each compute unit is composed of one or more processing elements.
The basic unit of executing a kernel in OpenCL is called a work-item, and a collection of
several work-items is called a work-group. A work-group executes on a single compute unit.
The work-items in a given work-group execute concurrently on the processing elements of
a single compute unit. There are two ways to specify the number of work-groups. In the
explicit model a programmer defines the total number of work-items to execute in parallel
and also how the work-items are divided among work-groups. In the implicit model,
a programmer specifies only the total number of work-items to execute in parallel, and
the division into work-groups is managed by the OpenCL implementation. We used the
implicit model before, and the optimization method is to use the explicit model. In order to
choose an appropriate work-group size, we conducted tests and the results are shown in
the Figure 8. Finally, the default maximum work-group size is different for different devices.
For example, the device limit we use is 256, which is the same as most devices. At this point,
in the kernel code, add __attribute__((amdgpu_flat_work_group_size(<min>,<max>)))
after the kernel function so that the kernel can be launched on when the working group is
greater than 256. It can be seen from the test results that the best results can be achieved
when the work-group size is 256.

Appl. Sci. 2022, 12, 5671 10 of 17

Figure 8. Tests for different workgroup sizes.

4.3. Using Local Memory

Using Local Memory is related to OpenCL’s memory model. The Local Memory is
the memory belonging to a certain computing unit. The host cannot see or operate on this
part of the memory. This area allows all processing elements inside the computing unit
to read and write, and these processing elements can share it. This also means that this
is a memory area associated with a workgroup and can only be accessed by work items
in that workgroup. Local Memory is the smallest unit that can be shared in the OpenCL
memory structure, so making full use of Local Memory is a deep and very effective
optimization method.

After fully understanding the OpenCL memory structure and the importance of using
Local Memory, we start from the storage and calculation methods of the current parallel
scheme, and continue to use the topology in the previous section to design the Local
Memory usage scheme of this program. When this program uses the OpenCL device
for calculation, it transfers the custom structure array of three iterations to the Global
Memory. The first two iterations store the data that has been calculated before, and the
third iteration is to store the data that will be calculated. Here, resmat (result matrix) is
used to represent the array of the three iterations, resmat[0–2] represents the three iterations
respectively, resmat[0] represents the first iteration, and so on to obtain the representation of
the other two iterations. By analyzing the calculation formula after the simple deformation
of Equations (4)–(6), the frequency of use of resmat[1] has reached 64 times, resmat[0]
has 5 times, and resmat[2] also has 5 times. This means that to complete an iterative
calculation, the Global Memory needs to be accessed at least 74 times in a single device,
and frequent reading and writing of the Global Memory is bound to affect the performance
of the program. Therefore, the optimization idea for this program is to store the data in
resmat[1], which has the highest frequency of accessing the Global Memory, into the Local
Memory of each work group according to the topology.

There is also a prerequisite for Local Memory optimization, that is, the size of Local
Memory is limited, and the increase in read rate is achieved by sacrificing capacity. In order
to ensure that the envisaged solution can be executed, we obtain the device information
through the clGetDeviceInfo function, and by setting the cl_device_info parameter to
CL_DEVICE_LOCAL_MEM_SIZE, the size of the Local Memory area can be obtained.
In the experimental environment used by this program, the size of the Local Memory is
65,536 bytes (B), which is 64 kilobytes (KB). It can be seen that this capacity is very limited,
so it is necessary to control the size of the data passed into the Local Memory.

After there are hardware limitations, go back to the Local Memory usage scheme
of this program. In order to use a piece of continuous data to facilitate writing to Local
Memory and the limitation of Local Memory space, only resmat[1] is considered here, and
resmat[0] and resmat[2] are no longer considered. Since the topology in the previous section
is used, and grid nodes and work items are in one-to-one correspondence, a work group
only undertakes the computing task of a row of 256 grid nodes. When calculating this part
of the task, in addition to the data of the corresponding position in resmat[1], the data of

Appl. Sci. 2022, 12, 5671 11 of 17

the four adjacent positions of each grid node will be used, which can be seen in Figure 1.
Therefore, processing similar to ghost cell is required, that is, the grid data of 3 × 258 scale
is transferred to Local Memory. Each grid node consists of three double-type variables z, u,
and v. Each double-type occupies 8 bytes in the system environment. Therefore, the space
occupied by grid data of 3 × 258 scale is 18,576 B, which satisfies the limitations of OpenCL
devices.

After the scheme is designed, it is the specific implementation. First, a new parameter
with the __local qualifier must be added to the definition of the kernel function. This
parameter is usually a pointer to a memory space, and then clSetKernelArg is used in the
main function to set the parameter. At the same time, the specified size must be the size
allocated by the __local parameter, and the parameter value must be NULL, because the
host cannot access the Local Memory, so the data in the Global Memory can only be copied
to the Local Memory in the kernel function. A set of index functions provided by OpenCL
is used to determine the position of a work item in its own work group and the position
in the global, so that the data in this position in the Global Memory can be copied to the
corresponding position in the Local Memory. Finally, after the above processing methods,
the original resmat[1] accesses the Global Memory 64 times into a single Global Memory
access and 64 local memory accesses. The test results of the final program are shown in
Figure 9.

Figure 9. Extended test performance graph for overlapped version.

It can be seen that the running time is greatly reduced after using Local Memory,
especially in the case of 2 × 2 nodes, the running time is optimized to 1/2 of the original.
At the same time, the rate of decline in parallel efficiency has slightly increased. This is
because the calculation time has been optimized, and there will be no major changes as
the number of computing nodes increases. However, the original synchronization time,
thread opening, and other times remain basically unchanged compared with those before
optimization, and will also change with the increase of computing nodes. As the number
of computing nodes increases, the proportion of computing time in the total time becomes
lower, which affects the parallel efficiency, so the increase in the speed of parallel efficiency
decline is within reasonable expectations.

After that, we further tested the optimization scheme. In the current scheme, the local
memory usage size is 18,576 B, and a large part of the space is still unused compared to
the limit of 65,536 B. In this solution, the size of the working group determines the amount
of Local Memory usage. Therefore, we combined two optimization methods for testing.
We started with 128 work items and increased in units of 128 to test the performance of
the program under different work group sizes and using different sizes of Local Memory.
The results are shown in Table 3.

Appl. Sci. 2022, 12, 5671 12 of 17

Table 3. Comparison of test results for different workgroup sizes.

Workgroup Size Use Local Memory Size (B) Test Results (s)

128 9360 84.36
256 18,576 83.85
384 27,792 84.27
512 37,008 84.64
640 46,224 84.16
768 55,440 84.30
896 64,656 84.30

1024 73,872 Error

As can be seen from the table, in the case of 1024 work items, an error is reported
because the size of the Local Memory used exceeds the limit of 65,536 B. In addition, the rest
of the results are not very different. In OpenCL, logically all threads are parallel, but in
reality, not all threads can execute at the same time from a hardware perspective, but
multiple thread groups are scheduled through the hardware’s own scheduling algorithm.
The thread group is the smallest execution unit that is scheduled in the acceleration device
defined by each hardware manufacturer. For example, on the NVIDIA CUDA platform, this
thread group is called warp and consists of 32 threads, and on the AMD platform and in
this lab environment, they are called wavefronts and consist of 64 threads. How many such
thread groups can be executed at the same time is determined by the number or size of the
Local Memory, cache, registers, and SIMD (Single Instruction, Multiple Data) instruction
set of the computing unit. Therefore, under large-scale computing tasks, the total number
of tasks executed at the same time is roughly the same. Therefore, it can be concluded that
the size of the work group has little effect on the final result when the computing scale is
large and the computing tasks are close to saturation.

Finally, we also conduct further tests on the NVIDIA platform to verify the conclusions,
and the test results are shown in Table 4. This test was carried out on a single-node
NVIDIA GeForce RTX 3090 platform. Due to the memory limitation of the platform,
the grid node size of this test was 32 × 1536, and 100,000 iterations were calculated and
the time was counted. It can be seen that the size of the workgroup does not affect the
final result on the NVIDIA platform. Here, the NVIDIA 3090 graphics card has been
tested to find that its Local Memory limit is 49,152 B, and when the workgroup size is 640
and the Local Memory size is 46,224 B, the reason for still reporting an error is that the
CL_INVALID_WORK_GROUP_SIZE error in OpenCL is triggered, that is the maximum
workgroup size of the OpenCL device is exceeded.

Table 4. Comparison test results of different workgroup sizes under the NVIDIA platform.

Workgroup Size Use Local Memory Size (B) Test Results (s)

128 9360 37.11
256 18,576 37.37
384 27,792 37.75
512 37,008 36.33
640 46,224 Error

4.4. Heterogeneous Parallel Performance Testing

First, let us take a look at the performance of heterogeneous parallelism without any
optimization. In the charts in this section, the bar charts represent time and the line charts
represent parallel efficiency. Only weak scaling tests are performed here, as shown in
Figure 10. Because the performance of the weak extension test is not good and the parallel
efficiency declines too fast, this paper does not perform multiple tests and strong extension
tests on this version. After analysis, it is found that a small calculation scale is used here, as
mentioned above, such problems are greatly affected by the problem size. Then we scaled

Appl. Sci. 2022, 12, 5671 13 of 17

up and performed the optimizations mentioned in the previous section. Figures 11 and 12
are the results of the weak and strong scaling test after optimization.

Figure 10. Unoptimized heterogeneous parallel weak scaling test.

Figure 11. Optimized heterogeneous parallel weak scaling test.

Figure 12. Optimized heterogeneous parallel strong scaling test.

Appl. Sci. 2022, 12, 5671 14 of 17

These tests were performed on the same scale as the previous overlap optimization.
It can be seen that this version of the weak scaling test can still have good parallel efficiency
when the calculation time is greatly reduced. The performance of the strong scaling test
is not good, because the calculation time is optimized and decreases with the number of
nodes, while the synchronization time increases with the increase of computing nodes. This
leads to a lower proportion of computing time in the total time, which affects the parallel
efficiency. So, the increase in the rate of parallel efficiency decline is reasonably expected.

After that, the total scale is expanded to obtain better parallel efficiency. This time, the
scale under 2 × 2 nodes is 10,244 × 16,388, and the scale under 16 × 16 nodes is 1284 × 2052.
The test results are shown in Figure 13, it can be seen that the parallel efficiency is improved
after the total scale is enlarged. In order to further obtain better parallel efficiency, the
calculation scale can continue to be scaled up, but it does not make practical sense to do so.

Figure 13. Optimized heterogeneous parallel strong scaling test. In the first section, we mentioned
that Bhadke et al. also proposed a computing framework for solving PDE using GPU. However,
according to our calculation method of parallel efficiency, the parallel efficiency calculated according
to the speedup results provided by them is not ideal. For example, the speedup ratio calculated
based on the grid size of 1000 (10 × 10 × 10) in their article, the speedup ratio also increases with the
increase of the grid size, but the parallel efficiency is only below 30%.

4.5. Computational Time Comparison Tests

In this section, we conduct various performance comparison tests for CPU and accel-
erator respectively.

4.5.1. CPU Single-Core and Multi-Core Comparison

The first is to test the acceleration performance of the CPU using Pthread compared
to the single-core serial mode. In our program, Pthread is used to launch 28 threads to
be responsible for some calculations, and its acceleration performance is shown in the
Figure 14. The horizontal axis is the calculation scale. We first fix the length to expand
the width, and then fix the width to expand the length. It can be seen that no matter what
the expansion is, the speedup is stable at around 3. Therefore, using Pthread can not only
achieve more complex thread operations, but also obtain stable acceleration effects.

Appl. Sci. 2022, 12, 5671 15 of 17

Figure 14. Single-core CPU vs multi-core CPU comparison chart.

4.5.2. CPU and Accelerators Comparison

We then compared CPU and accelerators that perform computations simultaneously.
Because the cluster used in our experiment is equipped with 32 CPU cores and 4 accelera-
tors for a single node, we did two sets of tests, one is to compare a single 28-thread CPU
with a single accelerator under the same scale, and the other is to compare four accelera-
tors with a single 28-thread CPU under the same scale. Figures 15 and 16 are the result
graphs of the above two tests. It can be seen that the acceleration effect of the accelera-
tor is very obvious, which is why a good parallel solution must use GPU or accelerator.
Heterogeneous computing can make full use of the performance of CPUs and acceleration
devices, reflecting that heterogeneous computing will be the future development direction
of parallel computing.

Figure 15. Single CPU vs. single accelerator comparison chart.

Appl. Sci. 2022, 12, 5671 16 of 17

Figure 16. Single CPU vs. 4 accelerators comparison chart.

5. Conclusions

In this work, two-dimensional Saint-Venant equations were implemented by using the
leapfrog-style finite difference method for the purpose of studying flood behavior. Large-
scale heterogeneous parallel solution is implemented using MPI, OpenMP, Pthread, and
OpenCL runtime libraries. The heterogeneous strategy is optimized by overlapping com-
munication calculation, setting up work groups, etc., and performance tests from various
perspectives are also carried out. Finally, a large-scale heterogeneous parallel solution for
2D SV equations with good performance is obtained. In the future, we hope that our work
can become a large-scale heterogeneous parallel solution framework capable of solving
SV equations -like PDE. For example, the heat conduction equation as an important PDE
should also be able to use our computational framework. It describes how the temperature
in a region changes with time, and like the Saint-Venant equation, it is difficult to obtain
analytical solutions, and numerical methods are usually used to obtain numerical solu-
tions. There are also some other problems that may also be able to use our computational
framework, such as phase transitions, elasticity, electrical potential, etc. The purpose of
our current research is to propose a massively heterogeneous parallel framework based on
Saint-Venant’s equations in domestic advanced computing systems. Therefore, a simple
model is used to facilitate heterogeneous parallel implementation. In the future work, we
will consider more complex and more types of models to simulate various actual situations
(such as floods, tsunamis, dam failures, etc.).

Author Contributions: Conceptualization, Q.L. and N.N.; methodology, Q.L. and N.N.; software,
Y.Q.; validation, L.G., W.Y. and Z.L.; formal analysis, Q.L.; investigation, Y.Q.; resources, Q.L.; data
curation, Y.Q. and X.S.; writing—original draft preparation, Y.Q.; writing—review and editing, Q.L.,
Z.Z. and J.Z.; visualization, Y.Q. and S.T.; supervision, Q.L.; project administration, N.N. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (Grant
No. 2020YFB1709501), GHFund A (No. 20210701) and the Shandong Province Natural Science
Foundation (Grant No. ZR201910310143).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 5671 17 of 17

References
1. Xiang, Y.; Sheng, J.B.; Yang, M.; Zhang, S.C.; Yang, Z.H. Impacts on ecological environment due to dam removal or decommis-

sioning. Chin. J. Geotech. Eng. 2008, 30, 1758.
2. Saint-Venant, B.D. Theory of unsteady water flow, with application to river floods and to propagation of tides in river channels.

Fr. Acad. Sci. 1871, 73, 148–154.
3. Hu, J. A simple numerical scheme for the 2D shallow-water system. arXiv 2017, arXiv:1801.07441.
4. Dawson, C.; Mirabito, C.M. The Shallow Water Equations. 2008. Available online: https://users.oden.utexas.edu/~{}arbogast/

cam397/dawson_v2.pdf (accessed on 20 April 2022).
5. Garcia, R.; Kahawita, R.A. Numerical solution of the st. venant equations with the maccormack fi-nite-difference scheme. Int. J.

Numer. Methods Fluids 2010, 6, 259–274. [CrossRef]
6. Fiedler, F.R.; Ramirez, J.A. A numerical method for simulating discontinuous shallow flow over an infiltrating surface. Int. J.

Numer. Methods Fluids 2000, 32, 219–239. [CrossRef]
7. Kamboh, S.A.; Sarbini, I.N.; Labadin, J.; Eze, M.O. Simulation of 2D Saint-Venant equations in open channel by using MATLAB. J.

IT Asia 2016, 5, 15–22. [CrossRef]
8. Lacasta, A.; Hernández, M.M.; Murillo, J.; García-Navarro, P. GPU implementation of the 2D shallow water equations for the

simulation of rainfall/runoff events. Environ. Earth Sci. 2015, 74, 7295–7305. [CrossRef]
9. Ding, Z.-Z.; Chu, G.-S.; Hu, C.-J.; Li, Y. Parallelization and optimization of Saint-Venant solver on Sunway many-core processor.

Comput. Eng. Sci. 2020, 43, 820–829.
10. Huang, X. Adaptive mesh refinement for computational aeroacoustics. In Proceedings of the 11th AIAA/CEAS Aeroacoustics

Conference, Monterey, CA, USA, 23–25 May 2005.
11. Zhao, X. A three-dimensional robust volume-of-fluid solver based on the adaptive mesh refinement. Theor. Appl. Mech. Lett. 2021,

11, 100309. [CrossRef]
12. Bader, M.; Böck, C.; Schwaiger, J.; Vigh, C. Dynamically Adaptive Simulations with Minimal Memory Requirement—Solving the

Shallow Water Equations Using Sierpinski Curves. SIAM J. Sci. Comput. 2010, 32, 212–228. [CrossRef]
13. Tubbs, K.R.; Tsai, T.C. Multilayer shallow water flow using lattice boltzmann method with high performance computing. Adv.

Water Resour. 2009, 32, 1767–1776. [CrossRef]
14. Esteves, M.; Faucher, X.; Galle, S.; Vauclin, M. Overland flow and infiltration modelling for small plots during unsteady rain:

Numerical results versus observed values. J. Hydrol. 2000, 228, 265–282. [CrossRef]
15. Valiani, A.; Caleffi, V.; Zanni, A. Case Study: Malpasset Dam-Break Simulation using a Two-Dimensional Finite Volume Method.

J. Hydraul. Eng. 2002, 128, 460–472. [CrossRef]
16. Caleffi, V.; Valiani, A.; Zanni, A. Finite volume method for simulating extreme flood events in natural channels. J. Hydraul. Res.

2003, 41, 167–177. [CrossRef]
17. Kim, D.-H.; Cho, Y.-S.; Yi, Y.-K. Propagation and run-up of nearshore tsunamis with HLLC approximate Riemann solver. Ocean

Eng. 2007, 34, 1164–1173. [CrossRef]
18. Bhadke, Y.; Kawale, M. Development of 3D-CFD code for heat conduction process using CUDA. In Proceedings of the 2014

International Conference on Advances in Engineering and Technology Research, ICAETR, Unnao, India, 1–2 August 2014.
[CrossRef]

19. Di Cristo, C.; Greco, M.; Iervolino, M.; Martino, R.; Vacca, A. A remark on finite volume methods for 2D shallow water equations
over irregular bottom topography. J. Hydraul. Res. 2020, 59, 337–344. [CrossRef]

20. Altaie, H.; Dreyfuss, P. Numerical solutions for 2D depth-averaged shallow water equations. Int. Math. Forum 2018, 13, 79–90.
[CrossRef]

21. Balzano, A. Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coast. Eng.
1998, 34, 83–107. [CrossRef]

22. Heniche, M.; Secretan, Y.; Boudreau, P.; Leclerc, M. A two-dimensional finite element drying-wetting shallow water model for
rivers and estuaries. Adv. Water Resour. 2000, 23, 359–372. [CrossRef]

23. Yang, Z.; Bai, F.; Xiang, K. A lattice Boltzmann model for the open channel flows described by the Saint-Venant equations. R. Soc.
Open Sci. 2019, 6, 190439. [CrossRef]

24. Wang, Y.; Guo, M.; Zhao, Y.; Jiang, J. GPUs-RRTMG_LW: High-efficient and scalable computing for a longwave radiative transfer
model on multiple GPUs. J. Supercomput. 2020, 77, 4698–4717. [CrossRef]

25. Wang, Y.; Zhao, Y.; Jiang, J.; Zhang, H. A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model.
Appl. Sci. 2020, 10, 649. [CrossRef]

26. Wang, Y.; Zhao, Y.; Li, W.; Jiang, J.; Ji, X.; Zomaya, A.Y. Using a GPU to Accelerate a Longwave Radiative Transfer Model with
Efficient CUDA-Based Methods. Appl. Sci. 2019, 9, 4039. [CrossRef]

https://users.oden.utexas.edu/~{}arbogast/cam397/dawson_v2.pdf
https://users.oden.utexas.edu/~{}arbogast/cam397/dawson_v2.pdf
http://doi.org/10.1002/fld.1650060502
http://doi.org/10.1002/(SICI)1097-0363(20000130)32:2<219::AID-FLD936>3.0.CO;2-J
http://doi.org/10.33736/jita.47.2015
http://doi.org/10.1007/s12665-015-4215-z
http://doi.org/10.1016/j.taml.2021.100309
http://doi.org/10.1137/080728871
http://doi.org/10.1016/j.advwatres.2009.09.008
http://doi.org/10.1016/S0022-1694(00)00155-4
http://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460)
http://doi.org/10.1080/00221680309499959
http://doi.org/10.1016/j.oceaneng.2006.07.001
http://doi.org/10.1109/ICAETR.2014.7012898
http://doi.org/10.1080/00221686.2020.1744752
http://doi.org/10.12988/imf.2018.712102
http://doi.org/10.1016/S0378-3839(98)00015-5
http://doi.org/10.1016/S0309-1708(99)00031-7
http://doi.org/10.1098/rsos.190439
http://doi.org/10.1007/s11227-020-03451-3
http://doi.org/10.3390/app10020649
http://doi.org/10.3390/app9194039

	Introduction
	Governing Equations and Numerical Method
	Heterogeneous Implementation
	Performance Optimization and Testing
	Overlap Computation and Communication
	Work Group Optimization
	Using Local Memory
	Heterogeneous Parallel Performance Testing
	Computational Time Comparison Tests
	CPU Single-Core and Multi-Core Comparison
	CPU and Accelerators Comparison

	Conclusions
	References

