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Abstract: Modern cellular communication networks are already being perturbed by large and steadily
increasing mobile subscribers in high demand for better service quality. To constantly and reliably
deploy and optimally manage such mobile cellular networks, the radio signal attenuation loss
between the path lengths of a base transmitter and the mobile station receiver must be appropriately
estimated. Although many log-distance-based linear models for path loss prediction in wireless
cellular networks exist, radio frequency planning requires advanced non-linear models for more
accurate predictive path loss estimation, particularly for complex microcellular environments. The
precision of the conventional models on path loss prediction has been reported in several works,
generally ranging from 8–12 dB in terms of Root Mean Square Error (RMSE), which is too high
compared to the acceptable error limit between 0 and 6 dB. Toward this end, the need for near-precise
machine learning-based path loss prediction models becomes imperative. This work develops a
distinctive multi-layer perception (MLP) neural network-based path loss model with well-structured
implementation network architecture, empowered with the grid search-based hyperparameter tuning
method. The proposed model is designed for optimal path loss approximation between mobile station
and base station. The hyperparameters examined include the neuron number, learning rate and
hidden layers number. In detail, the developed MLP model prediction accuracy level using different
learning and training algorithms with the tuned best values of the hyperparameters have been applied
for extensive path loss experimental datasets. The experimental path loss data is acquired via a field
drive test conducted over an operational 4G LTE network in an urban microcellular environment.
The results were assessed using several first-order statistical performance indicators. The results
show that prediction errors of the proposed MLP model compared favourably with measured data
and were better than those obtained using conventional log-distance-based path loss models.

Keywords: path loss models; log-distance models; neural networks models; MLP-based models;
optimal predictive modelling; multi-layer perception neural network; urban microcellular radio net-
works
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1. Introduction

Path loss models are unique prediction models employed by telecom network en-
gineers to estimate the signal coverage area being served by a given transmitter during
networking and management [1–3]. However, developing these signal path loss models
with the optimal accuracy it deserves is a complex and significant problem in the planning
of telecommunication networks. The conventional log-distance-based statistical models
available in the literature, such as the cluster factor model, COST 234 Hata Model, free space
model, Hata model and Lee models, lack accuracy for realistic path loss prediction applica-
tions in cellular mobile networks environments [4–11]. The aforementioned fundamental
limitation of the conventional models is usually very pronounced when the respective
models have been applied in cellular radio environments other than the developed and
designed environment [12,13]. This scenario is mainly due to dissimilarities and variations
in environmental formations (hilly, mountainous or quasi-plain), weather conditions, soil
electrical properties and terrain type (open, rural, suburban or urban) that exist in different
radio propagation locations, cities and countries [14–23]. For example, the Hata loss model
was developed based on extensive practical measurements carried out in Japan at transmis-
sion frequency ranges of 150 to 1920 MHz and macrocellular communication distances of
1 to 100 km, with the mobile station and base station antenna heights of 2 to 3 and 30 to
1000 m, respectively [24]. This model, including other aforementioned conventional ones,
is also generally limited in capturing the non-linear relationship between the independent
variable (e.g., path loss) and dependent variable (e.g., distance) [25]. The precision of these
conventional models on path loss prediction has been reported in many previous works
to generally range from 8–12 dB in terms of Root Mean Square Error (RMSE), which is
exceptionally higher than the acceptable values [9,14,15].

Recently, an Artificial Neural Network (ANN), a unique artificial intelligence soft
computing and modelling technique, has been acknowledged and proven to solve function
approximation and pattern classification problems [26]. Some ANN models exist in the
literature; the key ones are Radial Basis Function models, Multilayer Perception Models,
Generalized Neural Network models, etc. Among these models, the MLP ANN models
have stood out most recently because they are very robust and popular for learning, func-
tion approximation, and pattern classification [27–30]. The MLP ANN possess many robust
algorithms that can be explored to carry out more proficient adaptive nonlinear statistical
modelling over the classical logistic regression methods [14–23] that are frequently engaged
in developing predictive models. This robustness can be ascribed to their acknowledged
special ability to learn, predict, and classify non-linear data using experience and preced-
ing samples introduced to the network model. Huang [31] also noted that the MLP is
characteristically good for input-output data mapping. Generally, a clear-cut underlining
capability of ANN-based models over the conventional log-distance-based models is their
large degrees of freedom structure which provides means for fitting many datasets with
non-linear or linear correlation patterns. The concept of intelligent-based ANN models
for optimal and adaptive prognostic estimations of path losses was introduced to sur-
mount the limitations of existing empirically and deterministically developed log-distance
models [32,33]. In the paper, the availability of manifold resourceful training algorithms
and hypermeters of MLP ANN that can be tuned to further boost its extrapolative data
analysis is worth exploring in this paper for optimal predictive modelling. Hence, the
“Development of a Multilayer Perception Neural Network for Optimal Predictive Modeling
in Urban Microcellular Radio Environments is self-evident.” Other key robust advantages
of the general ANNs are highlighted in Section 2.3.

Though several ANN models exist in the literature, a critical, challenging task remains
in developing and using them appropriately through the correct selection of its network
structural design with the required input elements and hyperparameters to solve peculiar
predictive mapping and functional problems. The quest to address this issue is the leading
motivation for this research paper. However, one primary challenge in using the MLP
model is correctly selecting its network architecture with the required input elements



Appl. Sci. 2022, 12, 5713 3 of 27

(hyperparameters) to solve a particular mapping problem [34]. Another critical challenge
with neural network models is the problem of determining the input data variables that
must correlate with the target variables [35,36].

This paper develops a distinctive MLP-based path loss model with well-structured
implementation network architecture, empowered with the grid search-based hyperpa-
rameter tuning method for optimal path loss approximation between mobile-station and
base-station path lengths. The hyperparameters include the neuron number, learning
rate and hidden layers number. In detail, the developed MLP model prediction accuracy
level using different learning and training algorithms with the tuned best values of the
hyperparameters have been applied for extensive path loss experimental datasets. The
datasets were acquired via field drive tests conducted in Long Term Evolution (LTE) in
urban microcellular radio networks. For the development and implementation of the
MLP-ANNs model, we utilized version 2018a of the MATLAB neural networks toolbox.
The toolbox provides the required user interface, algorithm and platform to train, test,
validate, visualize and simulate networks with the desired number of layers, neurons and
activation functions.

In particular, the contributions of this paper are summarized as follows:
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The remainder of this work is structured in the following manner. Section 2 outlines the
background information, such as radio propagation mechanisms, log-distance-based path
loss prediction models, and the basis of artificial neural networks (ANN). Section 3 presents
the methodology detailing the neural network implementation for predictive modelling.
Section 4 provides the results, analysis, evaluation of the introduced neural network model
at different study locations, comparison of the developed neural network model with
log-distance models, and discussions. Finally, the conclusion is given in Section 5.

2. Theoretical Background

The theoretical background covers the radio propagation mechanism, log-distance-
based path loss prediction models and artificial neural network systems.

2.1. Radio Propagation Mechanism

When radio signals travel, which are a form of electromagnetic waves, they interact
with the media and objects they travel through. In the sequence of their interaction, the
radio signals become weaker owing to refraction, reflection, diffraction, absorption and
other propagation phenomena. The resultant effect of all the phenomena on propagated
signals is signal propagation loss. The characteristics of the pathway or medium through
which the radio signals travel determine the amount of propagation loss and the quality
of the received signal that is attainable at the receiving terminal. Radio propagation loss
is also governed by other sundry elements, particularly the transmitter power, receiver
sensitivity and general antenna parameters such as antenna gain, antenna height and
receiver location [1,2,37,38].
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The prominent factors that influence the number of signal path losses in a medium
include diffraction, reflection, refraction, scattering and absorption, to mention a few. For
example, diffraction arises when radio waves collide with huge obstacles compared to
the propagating signal wavelengths. Moreover, diffraction occurs when radio signals
bend around objects, especially those with sharp edges. This alteration often empowers the
received radio signal energy to spread around the boundaries of the obstructing object [39,40].
Diffraction is also influenced by the phase, amplitude, pathway and frequency of the
transmitted waves.

The environment in which the radio frequency signals travel (or are propagated)
will undoubtedly negatively impact the signal. For example, radio wave signals and
propagation loss vary extensively in correspondence to the terrain landscape, building
structures and population density. Marshy, damp and sandy terrain also attenuate radio
signals, primarily propagated low-frequency signals. In other words, signals travel faster
over conducive terrain than in sandy and marshy or damp terrains.

2.2. Log-Distance-Based Path Loss Prediction Models

Generally, path loss models are a set of mathematical models, expressions, resources
and algorithms used for signal attenuation loss prediction between the paths of a base
transmitter and the mobile station receiver. These models are helpful planning tools that
assist the radio network designers of cellular telecommunication systems in optimally
positioning base station transmitters to meet the desired signal coverage level and service
quality requirements of the networks.

The predictive performance of any path loss model is determined by the resultant
prediction accuracy with actual field measured loss data.

The log-distance-based path loss models are models whose average power loss loga-
rithmically depends on distance (transmission path length) intertwined with a propagation
exponent modelling parameter. The propagation exponent is usually employed to account
for a specific radio propagation environment. They can also be described as simplified
models that attempt to model variations, fluctuations and attenuations in the received sig-
nal power. Examples of log-distance-based models include the Walficsh–Ikegami, Walficsh
Bertoni, cluster factor, COST 234 Hata, Hata Okumura, SUI model, Lee model, Egli Model
and others [41]. Though these models have varying frequency validity thresholds, different
correction factors have been applied to ease their applicability at the tested frequency band.
Detailed descriptions of these models are contained in [14,17,42].

2.3. Artificial Neural Networks (ANNs)

ANNs, also popularly referred to as artificial neural systems, are efficient computing
systems or relatively simple computational models founded on the neural organization of
the brain with functional changing parameters to process information effectively. ANNs
are distinctive and robust non-linear statistical data modeling networks wherein reasonably
simple connections between inputs and outputs nodes alignments are established. Accord-
ing to Robert Hecht-Nielsen, the first inventor of the neurocomputer, a neural network can
be defined as “a computing system made up of several simple, highly interconnected processing
elements, which process information by their dynamic state response external inputs”. The pro-
cessing elements are called neurons. The neuron is the special mathematical function that
captures and organizes information according to the neural network architecture.

Some of the essential features or advantages of ANNs are [31,34–36].

a. High-speed computation adeptness
b. Global interconnection of network processing elements
c. Robust distributed and asynchronous parallel processing
d. High adaptability to non-linear input-data mapping
e. Robust noise tolerance
f. High fault tolerance utilizing Redundant Information Coding
g. Robust in providing real-time operations
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h. High potential for hardware application
i. Capable of deriving meaning from the imprecise or complicated dataset
j. High capacity to learn, recall and generalize input data training pattern

3. Methodology

As mentioned earlier, the ANN model possesses many robust training algorithms and
hyperparameters that can be explored to conduct proficient adaptive nonlinear statistical
modelling over the classical logistic regression methods. This section contains the materials
and method explored to develop the proposed MLPANN-based model with well-structured
implementation network architecture, empowered with the right hyperparameter tuning
algorithm for optimal predictive analysis of practical path loss data. The stepwise ex-
ploratory method explored to develop the proposed MLPANN-based model is highlighted
as follows:

a. Acquire the path loss datasets
b. Preprocessing the dataset and splitting
c. Obtain the MLP neural network model.
d. Identify the adaptive learning algorithms for MLP neural network model training

and testing
e. Identify the modelling hyperparameters
f. Select a hyperparameter tuning algorithm for the model (e.g., Bayesian optimization

search, grid search, etc.).
g. Obtain a set of the tuned best hyperparameter values.
h. Train the model to obtain the best hyperparameter values combination.
i. Appraise and validate the accuracy of the training process.
j. Repeat the process to optimal configuration and best-desired results for the model.
k. Engage the model with well-structured implementation network architecture, learn-

ing algorithm and set of the tuned best hyperparameter values to conductive predic-
tive path loss modelling.

3.1. Data Collection

The field measurement was conducted to acquire live signal data around three Long
Term Evolution (LTE) transceiver base station antennas for one year (i.e., 12 months).
The measurement took one year to cater to the study locations’ seasonal variations and
three LTE transceiver base station antennas operating at 2600 MHz with 10 MHz band-
width [43]. The transceiver base station antennas (called NodeBs) are sectorized with
17.5 dBi gain and 43 dBm transmit power. The LTE network belongs to one of the major
GSM/WCDMA/HSPA/LTE telecom service providers operating across major towns, vil-
lages and cities in Nigeria. The measurements were performed with field test tools with
TEMS application tools for radio spectrum analysis. The test tools, some of which are
displayed in Figure 1, include a Rover car, scanner, two Samsung mobile phones, and an
HP lap, were explored to assess the performance of eNode B over the LTE radio air interface
by connecting mobile phones directly to the Node B transmitters. To obtain the eNode B
locations and delineate measurement data locations/information, the Global Positioning
System (GPS) equipment was employed. The path loss data to be predicted are related to
the acquired radio signal data by the measured path loss data where PLmea(dB), values
have been obtained from the measured signal, RSRP (dBm) by Equation (1):

PLmea(dB) = EIRP + GA − RSRPmeas (1)
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Figure 1. Illustration of the TEMS Drive Test Measurement System.

With EIRP calculated as Equation (2):

EIRP = PTX + GTX − CLTX (2)

where GTX and GA are the base station (BS) transmit antenna gain and receiver (MS)
antenna gain, respectively, PTX is the transmitted power, and CLTX, denotes transmission
cable loss, all in dB. Table 1 reveals some of the key BS antenna site parameters acquired
during the field drive test for calculation.

Table 1. Measurement Path Loss Computation Parameters.

Parameters Site 1 Site 2 Site 3

BS Operation Transmitting
Frequency (MHz) 2600 2600 2600

BS Antenna Height (m) 28 30 45
MS Antenna Height (m) 1.5 1.5 1.5

BS antenna gain (dBi) 17.5 17.5 17.5
MS antenna gain (dBi) 0 0 0

MS Transmit power (dB) 30 30 30
BS Transmit power (dB) 43 43 43

Transmitter cable loss (dB) 0.5 0.5 0.5
Feeder Loss (dB) 3 3 3

3.2. The MLP Neural Network Model

The first step towards effectively engaging neural networks for predictive modelling
is to know the exact type you want to use and determine network architecture. This
paper considers the most robust and special type of neural network: the multi-layer
perceptrons (MLP). A single perceptron (LP) has limitations in terms of input-desired
output mapping capability. This limitation is because it only contains a single neuron per
adaptable synaptic weights and bias; thus, it is only proficient in catering to ridge-like
function, notwithstanding the type activation function explored [42]. The above limitation
can be catered to using an MLP neural network with more source nodes with data input
and output layers sandwiched with hidden layers nodes. Multiple layers of neurons in the
MLP network provide enhanced input-desired output mapping capability.

Figure 2 displays a structure of a classic feedforward MLP network model composed of
g1,g2, . . . gI , inputs, and predicted output, (y1, y2, . . . , yN) with kh hidden nodes, h number.
The respective weights connecting the input and hidden layer, as well as the weights
connecting the hidden layer and the output layer, are designated by w1

ij and w2
jn, while Cj

indicates the hidden nodes thresholds. The network learns the correlation between input
datasets and predicted output feedback by varying weight and bias values. Accordingly,
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the MLP network predicted output in correspondence to jth neurons with the kth node
could be articulated as (3):

ŷn(t) = ∑kh
j=1 w2

j F
(

∑ w1
ijgi(t) + cj

)
(3)

for 1 ≤ n ≺ m, 1 ≤ j ≺ kh,
(
wj, j = 0, 1, . . . , kh

)
,
(
wij, i = 0, 1, . . . , m; j = 0, 1, . . . , kh

)Appl. Sci. 2022, 12, 5713 8 of 27 
 

 
Figure 2. Scheme of a three-layered ANN multi-layer perceptron. 
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where:
m, h and kh indicate the input node number, hidden node and hidden node number,

respectively; i designate input to j hidden layer neuron.
The F (·) in Equation (1) denotes the sigmoid activation function, an import function

usually utilized in the MLP network. It can be defined by Equation (4):

F(a) =
1

1 + e−a (4)

where F(x) is at all times in the range [−1, 1], with F(a) being a set of real numbers.
The weights w1

ij and w2
jn, including the threshold Cj, are unknown and thus can be

chosen to update and reduce the error during prediction. The prediction error can be
expressed by employing the expression (5):

εn =
1
2∑n=1(yn − ŷn)

2 (5)

where,
yn and ŷn represent the target (i.e., actual) data and their predicted output; and n = 1

. . . , N, with N indicating the actual data sample number.
In MLP training, the error verve for assessing the network learning improvement

related to convergence speed is the generalized aggregate error values. It is often computed
using mean square error (MSE). The MSE can be obtained from the least square formation
of Equation (6).

MSE =
1
N

N

∑
n=1

(yn − ŷn)

2

(6)

In this work, the feedforward MLP network model explored for path loss predictive
modelling is displayed in Figure 3.
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Figure 3. ANN MLP Model Structure for Path Loss Prediction.

3.3. MLP Modelling Parameters and Search Space

Hyperparameters are a special set of regulating parameters that the NN model utilizes
for the adaptive learning process in data training and testing. The special parameters
may be categorical, continuous or integer variables whose values range are usually lower
and upper bounded. Thus, there exists several MLPs directly impacting the predictive
modelling. They include the hidden layers number, neurons number in the hidden layer,
transfer function, etc. A summarised description of the transfer function is given in the
following subsection.

3.3.1. The Hidden Layers

Deciding the number of the hidden layers is one of the most important issues while
investigating the neural network architecture for predictive modelling and data mining.
Using too many hidden layers can result in poor generalization and complex neural network
training. According to authors in [44–47], two hidden layers, combined with m output
neurons, are adequate for a neural network to learn N data samples and produce negligibly
minor errors.

Previous studies have examined the suitability of several machine models for path
loss predictions as contained in [48–50]. The need to overcome the problems of empirical
models when used for path loss predictions led to an artificial neural network [49]. ANN
path loss prediction models were also more efficient and easier to deploy than deterministic
models [51]. In [52,53], analyses of empirical models with different propagation features
were performed, and the model with the lowest RMSE value was then compared with
the prediction from ANN. The ANN-based path loss prediction model produced a much
lower value of MSE upon validation. In [54], a multi-layer perceptron neural network
was introduced for path loss prediction. The MLP network was then trained with a
backpropagation algorithm. The MLP-based prediction was compared with predictions
from analytical models, and the results indicated the former to be efficient for radio network
planning and optimization.
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ANN was also used for path loss prediction in urban areas [55]. The work explored
the effect of the various input parameters and the environmental terrains on the robustness
of the path loss prediction. One key finding from the study is that the accuracy of the
signal prediction model increases with more input parameters: the greater the number
of features, the greater the system’s accuracy. This trend is because machine learning
algorithms thrive well with the availability of large datasets. The model is trained with the
help of the data and, in this case, the input features. An ANN-based path loss model at
800 MHz and 1800 MHz introduced in [47,48] were input for longitude, latitude, distance,
elevation, clutter height and elevation. The ANN method in [56] outperforms the Support
Vector Machine (SVM)- and the Random Forest (RF)-based predictions.

In [57], an artificial neural network was used for path loss prediction in a smart
campus environment at 1800 MHz. There were two hidden layers for this network, and
the performance of the network outperforms the prediction made by using RF. Moreover,
in [58–60], several machine learning-based prediction models were introduced for signal
predictions for wireless sensor networks. The machine learning-based prediction model
in [61,62] also produced the lowest values of RMSE when compared to the other analytical
models in a wireless sensor network.

3.3.2. Neurons Number in the Hidden Layers

Determining the neurons number in the hidden layers remains an integral part of
the inclusive neural network architecture. An inadequate neurons number in the hidden
layers can lead to an underfitting problem. Underfitting arises once there are insufficient
neurons number in the hidden layers to learn or detect the signals satisfactorily, especially
in a multifaceted dataset.

On the other hand, using too many neurons can lead to overfitting problems. Overfit-
ting occurs once the neural network contains too much information processing capacity
problem. It can also result in excessive time increase during neural network training. The
amount of training time can increase to the point that it is impossible to train the neural
network adequately. It is evident that some give and take must be grasped between too
few and too many neurons number in the hidden layers.

3.3.3. Transfer Function

The transfer function is a singular, monotonically increasing and differentiable func-
tion used for translating the input data signals to produce the final output signals of a
neuron. The transfer function is fundamental to the concrete concept of neural networks
mainly for two key reasons. First, without activation functions, the entire organization
of the neural network will be similar to a typical linear function that cannot learn non-
linear relationships. Second, transfer function styles and graces the main computation
accomplished by neural networks.

3.3.4. Learning Rate

The learning rate is another vital hyperparameter that regulates or fine tunes the
weights of NN in relation to the loss gradient. Its value must be cautiously chosen to
support both optimization and generalization robustly. A too-large learning rate value
can cause the entire learning process to jump over minima. Similarly, a too-small learning
rate value can make the entire learning process too long to converge, resulting in it being
trapped in negative and spurious local minima.

3.4. Hyperparameter Tuning

Hyperparameter tuning or optimization expresses the robust procedure of identifying
and finding the best feasible values of hyperparameters for a machine learning model
to attain the desired resultant modeling outcome. Popular hyperparameter tuning algo-
rithms in the literature include random search, grid search and Bayesian optimization
search. In this paper, the last two methods are considered. Grid search is a standard
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hyperparameter optimization technique wherein a list of critical parameters is selected
with attached feasible values for each parameter, followed by training the model for every
single blend and then choosing the values that yield the most desired resultant outcome.
The Bayesian optimization method is a special sequential model-based optimization (also
known as Bayesian optimization), utilizing the ‘Bayes Theorem’ to conduct an automatic
hyperparameter search. Particularly, the Bayesian optimization search algorithm utilizes
the upshot from the preceding iteration to select the next hyperparameter values.

3.5. MLP Learning Algorithms

The training algorithm used for a neural network system to learn and solve a problem
is essential. The correct training algorithm from the available sundry types depends on
diverse factors, including data sample size, task type, training time constraints, preci-
sion/accuracy requirements, etc. It is demanding to find out which training algorithm will
produce the most satisfactory results. For example, suppose it is a predictive modelling
task with function approximation. In that case, the dominant or most common ones are
backpropagation training algorithms, which involve carrying out computations backwards
over the network to fine-tune the weights and minimize performance error.

3.6. MLP Network Model Implementation Process

MATLAB is a distinctive programming language with a multi-exemplar numerical
computing environment and a user interface. It provides easy matrix manipulation, graphi-
cal multi-domain simulation, figurative computing, creative functions plotting, excellent
data mining, easy algorithms implementation, etc. MATLAB allows access to optional
toolbox uses. The neural network toolbox has special tools for model-based design, im-
plementation, visualization and simulation of neural networks. MATLAB is employed to
encode the script files for the MLP network model predictive training, testing and quantita-
tive evaluation in this work. The program code for conventional path loss calculation and
assessment is also explored. The proposed MLP neural model consists of five input nodes
and one output node. Flowchart for executing proposed predictive modelling with ANN
while training and testing are shown in Figure 4.

As mentioned earlier, for practical and optimal application of MLP network for pre-
dictive modelling purposes, the right choice of the learning algorithm, and selection of the
network processing elements such as the number of neurons, number of network layers and
transfer functions, are crucial. For example, a network with insufficient neurons number in
a hidden layer may fail to capture complex links between target output and input variables.
Conversely, if the number of neurons allotted in the network hidden layer is too many, the
network would likely follow the latent noise in the dataset owing to over-parameterization,
and this, in turn, can lead to awkward generalization and poor predictive modelling of the
original data [63,64]. Therefore, the determination of the hidden layers number and their
number of neurons is performed by trial and random selection. However, for conciseness
and the need to attain optimal neural network training and testing, the search for the
required number of neurons and hidden layers in the network layers were narrowed down
to 2–50 and 1–3, respectively.

Generally, if a particular algorithm performs well during the dataset training but flops
in the aspect of generalization, we refer to it as overfitting. To improve generalization (or
prevent overfitting) during the path loss data training with each of the NN algorithms, we
employed input/target transformations and early stopping techniques. Thus, the inputs
and targets datasets were scaled to reside in the range [−1, 1] to enhance training and
testing speed. Moreover, the early stopping measures were engaged for training and testing
to avoid overtraining, eliminate contemptuous impact stimulated by the initial values, and
develop robust adaptive predictive ability. Although many learning algorithms are avail-
able for MLP neural network training and testing in MATLAB software, it is demanding to
identify which algorithm works best for a given predictive modelling problem concerning
convergence speed and accuracy [16]. Therefore, an exhaustive search is employed in this
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study to accelerate the convergence and evaluate the impact of all the available learning al-
gorithms during network training. The respective learning algorithms assessed to develop
an optimal MLP network predictive model and their weight adaptation techniques are
listed in Table 2. The target of the weight adaptation is to determine the optimum weight
update for the input-output data array pair during training.

Figure 4. Flowchart for the execution of Proposed Predictive Modelling with MLP Neural Network.
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Table 2. Respective MLP Network Learning Algorithm.

Learning Algorithm Weight Adaptation Training Acronym

Levenberg–Marquardt (lm)

The weight of the lm algorithm is updated via:

wq+1 = wq − (H
′
+ η I)

−1∇εq

where the Hessian matrix, H
′
= JT J.

trainlm

Bayesian Regularization (br)

The br approach involves the modification of the performance
function, εq plus regularisation term
F(w) = βεq + αεw
where β & α are special function parameters and a
regularisation term, εw = ‖w‖2

trainbr

Polak–Ribiere Conjugate Gradient (cgp)

The weight of cgp algorithm is updated by:
wq+1 = wq + aq pq

With pq = −gq + bq pq−1 and bq =
∆gT

q−1
gq

gT
q−1gq−1

traincgp

Fletcher-Powell Conjugate Gradient (cgf)

The weight of scg algorithm is updated by:
wq+1 = wq + aq pq

With pq = −gq + bq pq−1 and bq =
gT

q−1
gq

gT
q−1gq−1

traincgf

Scaled Conjugate Gradient (scg) The weight of scg algorithm is updated by:
wq+1 = wq + aq pq

trainscg

Resilient Backpropagation (rp)

With RP algorithm, weight update is by

wq+1 = wq − sign
(

∆εq
∆wq

)
.∆(q)

where ∆(q) = individual step size for weight adaptation

trainrp

BFGS Quasi-Newton (bfg)
bfg weight update is accomplished via
wq+1 = wq − H−1gq

where H−1
q indicates the Hessian matrix inversion on iteration q.

trainbfg

Conjugate gradient with Powell/Beale
Restarts (cgb)

The cgb employs update search direction by:
gq−1gq = 0.2

∥∥gq
∥∥2 traincgb

Gradient Descent with Adaptive
Learning Rate (gda)

gda weight update is accomplish via wq+1 = wq +
∆ε

ηq+1∆w q
where α indicates the user-defined momentum factor and it
ranges from 0 to 1

taingda

Gradient Descent Variable Learning Rate
(gdx)

With gdx algorithm, weight update is by

wq+1 = wqηq+1 − sign
(

∆εq
∆wq

)
.∆(q)

where ∆(q) = individual step size for weight adaptation and ηq
= variable learning rate

traingdx

One Step Secant (oss)
With oss algorithm, weight update is by
wq+1 = wq − H−1

q gq
where Hq = Hessian matrix (2nd derivatives)

trainoss

Gradient Descent with Momentum (gdm)

gdm weight update is accomplish via
wq+1 = wq − ηgq + α ∆ε

∆w q−1
where α indicates the user-defined momentum factor and it
ranges from 0 to 1

traingdm

Gradient Descent (gd)
With gm algorithm, weight update is by
wq+1 = wq − ηgq
where η = learning rate

traingd

4. Results and Discussions

As mentioned earlier, many factors directly impact the development of an excellent
back-propagation neural network predictive model, especially with a trial and error method,
as adopted in this work. They include training algorithm, hidden layers number, neurons
number in the hidden layer, transfer function, momentum term, learning rate, etc. Here, the



Appl. Sci. 2022, 12, 5713 13 of 27

concentration is on the training algorithm, hidden layers number and neurons number in
the hidden layer. To obtain the predictive path loss modelling results, first we divided the
path loss data into portions and employed the grid search-based hyperparameter tuning
method to generate configurations for the parted data chunks for training and testing. The
performance results of the proposed method were evaluated and reported for each machine
learning algorithm described in Table 1, using Mean Absolute Error (MAE), Mean Square
Error (MSE), Root Mean Square Error (RMSE), Coefficient of Efficiency (COE), Correlation
Coefficient (R) and Standard Deviation Error (STD) [65].

Secondly, the predictive path loss modelling was conducted for three study locations
using the standard Bayesian optimization for hyperparameter tuning. The results were
compared to our first results using the grid search-based hyperparameter tuning method.

4.1. Neurons Number Impact

Determining the neurons number in the hidden layers also remains integral in the
inclusive neural network architecture. An inadequate neurons number in the hidden layers
can lead to an underfitting problem. Underfitting arises once there is insufficient neuron
number in the hidden layers to satisfactorily learn or detect the signals, especially in a multi-
faceted dataset. On the other hand, making use of too many neurons can lead to overfitting
problems. Overfitting takes place once the neural network contains too much information
processing. It can also result in excessive time increase during neural network training.
The amount of training time can increase to the point that it is impossible to adequately
train the neural network. It is very clear at this point that some give and take must be
grasped between too few and too many neurons number in the hidden layers. Accordingly,
by starting with the fastest training algorithm, which is Levenberg–Marquardt (lm), the
network was trained and tested with 2, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 neurons. This
is to ascertain their incremental impact on its performance. Table 3, Figures 5 and 6 display
the detailed overall predictive performance of each neurons number using different error
statistics. As seen in Table 3, it was expected that a continuing increase in neurons number
per layer would result in an upturn in the resolution of the neural network prediction
fitting pattern to the measured loss data. At 30 neurons per layer, the neural network model
had a good enough fit to the measured loss data with an MAE value of 2, RMSE value of
2.71, STD value of 1.82, R-value of 95 (%) and COE value of 90 (%). Increasing the neuron
number to 50 showed no performance improvement, as seen in Figure 6.

Table 3. Neurons Number impact on MLP Network Predictive Modelling with LM.

Training Testing Overall Performance

No of
Neurons MSE R MSE R MAE STD RMSE R COE (%)

2 12.91 0.8874 23.22 0.7913 2.96 2.41 3.81 0.8637 75
5 12.22 0.8643 11.93 0.9205 2.92 2.40 3.78 0.8637 75

10 7.32 0.9320 8.01 0.8900 2.96 2.38 3.80 0.9251 86
15 7.95 0.9229 15.72 0.8339 2.41 1.92 3.08 0.9117 83
20 8.59 0.9247 13.79 0.9186 2.34 1.95 3.05 0.9148 84
25 7.83 0.9296 53.08 0.4865 2.47 2.96 3.85 0.8635 75
30 5.08 0.9591 17.06 0.8558 2.00 1.82 2.71 0.9499 90
35 4.88 0.9531 22.45 0.8482 1.95 2.06 2.84 0.9255 86
40 7.29 0.9360 14.31 0.7973 2.16 2.36 3.20 0.9132 84
45 7.95 0.9315 11.06 0.8257 2.23 2.07 3.04 0.9143 84
50 3.62 0.9673 21.07 0.7624 2.13 3.66 4.24 0.8498 72
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Figure 5. Overall Performance Error Statistics with MAE, STD and RMSE.

Figure 6. Overall Performance Error Statistics with R (%) and COE (%).

4.2. Transfer Function Impact

The transfer function is a singular monotonically increasing and differentiable function
used for translating the input data signals to produce the final output signals of a neuron.
The transfer function is fundamental to the concrete concept of neural networks mainly
for three key reasons. Firstly, without activation functions, the entire organization of the
neural network will be similar to an ordinary linear function that cannot learn non-linear
relationships. Secondly, transfer function styles grace the main computation accomplished
by neural networks. Thirdly, transfer functions possess the proclivity to boost the learning
rate and formation patterns in datasets. Thus, the choice of the right transfer (activation)
function also positively influences the performance of the NN training algorithm. Table 4
presents the list of sigmoid transfer functions employed in this study to ascertain the
stability of the proposed neural network model. The performance of sigmoid transfer
functions in terms of MAE, MSE, RMSE, R and STD are also displayed in Table 4. The
standard deviation (STD) statistics with one, two and three layers of training are given in
Figure 7, and the Root Mean Error performance statistics with one, two and three layers of
training are shown in Figure 8.
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Table 4. Transfer Functions used for network training/testing and their performance.

Training Testing Overall Performance

Transfer Function MSE R MSE R MAE STD RMSE R

purelin 19.74 0.8614 18.29 0.8692 3.36 2.65 4.28 0.8636
tansig 6.82 0.9366 26.07 0.7865 2.19 2.45 3.29 0.9073
logsig 4.62 0.9594 23.09 0.7812 2.15 2.30 3.15 0.9106

purelin-purelin 20.33 0.8715 13.09 0.8964 3.59 2.75 4.52 0.8637
purelin-tagsig 7.83 0.9325 12.20 0.8539 2.38 1.80 2.99 0.9173
purelin-logsig 9.18 0.9173 20.24 0.8755 2.52 2.02 3.24 0.9026
tansig-tansig 3.18 0.9697 20.17 0.8643 1.82 1.89 2.63 0.9365
tansig-logsig 3.23 0.9697 23.65 0.8094 1.82 2.18 2.84 0.9266

tansig-purelin 6.39 0.7622 10.28 0.6907 2.04 1.82 2.73 0.9315
logsig-logsig 4.82 0.9511 10.31 0.9382 1.76 1.63 2.40 0.9290
logsig-tansig 3.97 0.9669 12.96 0.8467 1.60 1.70 2.34 0.9499

logsig-pureline 6.01 0.9430 16.45 0.8471 2.18 1.91 2.90 0.9222
purelin-purelin-

purelin 13.07 0.8804 18.34 0.8413 2.93 2.39 3.78 0.8637

tansig-tangsig-tansig 5.87 0.9487 8.89 0.9181 1.88 1.78 2.59 0.9283
tansig-tansig-purelin 6.38 0.9337 17.89 0.8607 2.17 2.06 2.76 0.9200
tangsig-tansig-logsig 5.11 0.9568 8.98 0.8907 1.92 1.93 2.72 0.9318
logsig-logsig-logsig 7.18 0.9358 13.86 0.9187 2.15 1.85 2.83 0.9285

logsig-logsig-purelin 9.12 0.9238 98.48 0.6384 2.91 4.03 4.97 0.8049
logsig-tansig-tansig 5.34 0.9489 7.52 0.9429 2.18 1.92 2.90 0.9245
logsig-tansig-logsig 6.90 0.9428 3.97 0.9467 1.98 1.75 2.67 0.9340
tansig-logsig-tansig 6.53 0.9433 3.68 0.9468 1.97 1.56 2.47 0.9445
logsic-tansig-purelin 6.92 0.9392 11.34 0.9093 2.09 2.02 2.90 0.9222
purelin-logsig-tansig 25.57 0.8583 25.94 0.8707 3.28 3.58 4.86 0.8597

Figure 7. Standard deviation (STD) statistics with one, two and three layers of training.
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Figure 8. Root Mean Error performance statistics with one, two and three layers of training.

4.3. Training Algorithm and Hidden Layers Number Impact

The learning algorithm and hidden layers number also significantly impact the success
of the neural network in coming up with a healthy predictive model. Therefore, deciding
on the number of the hidden layer is one of the most important issues that come up
while investigating the neural network architecture for predictive modelling and data
mining. Using too many hidden layers can result in poor generalization and complex
neural network training. According to the work [31], two hidden layers, combined with m
output neurons, are adequate for a neural network to learn N data samples and produce
negligibly small errors.

Here, the impact of many learning algorithms has been studied with one, two and
three hidden layers numbers. Interestingly, results reveal that the two-layered network is
superior to one-layered and three-layered layer network for all the 12 learning algorithms in-
vestigated. Interestingly, results show that the neural network architecture trained using lm
(i.e., the Levenberg–Marquardt training algorithm) with two hidden-layer sizes and logsig-
transit transfer function gave the best performance. Table 5 displays detailed network train-
ing/testing error statistics results and hidden layer numbers for each learning algorithm.

4.4. Performance of Grid Search Algorithm and Bayesian Optimisation Search Algorithm for
Hyperparameter Tuning

The hyperparameter tuning process has a weighty influence on neural network learn-
ing performance. Given the computational resources requisite, the hyperparameters of
high relevance receive superior usage in the hyperparameter tuning process. Hyperparam-
eters with a more robust influence on weights are more effective during neural network
training. Thus, the appropriate choice of hyperparameters selected for neural network
model training influences the network training and performance.

As displayed in Table 6, the proposed MLP neural network model results with grid
search algorithm-based hyperparameter tuning (optimization) are compared with those
obtained using the traditional Bayesian optimization search-based hyperparameter tuning
approach for path loss data predictive analysis using location one as a case study. We
have reported the results attained for lm and br learning for brevity. While the grid search-
based hyperparameter tuning performs an in-depth and comprehensive search on the
hyperparameters in a stepwise manner as set specified by users with limited search space,
the Bayesian search-based hyperparameter tuning performs a sequential-based search on
the hyperparameters via several trials, without the user having preliminary information of
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the hyper-parameters distribution. From the results in Table 6, it is clear that the proposed
MLP neural network model with grid search algorithm-based hyperparameter tuning
outperforms the ones obtained using Bayesian Optimization search-based hyperparameter
tuning. Next, Section 4.5 is to apply the proposed MLP neural network model with grid
search algorithm-based hyperparameter tuning for detailed predictive path loss analysis
across the three study locations.

Table 5. Learning Algorithm and Hidden Layers Number impact on MLP Network.

Training Testing Overall Performance

Training
Algorithm

No of Hidden
Layers MSE R MSE R MAE STD MSE R

lm
1 7.65 0.9359 11.55 0.9033 2.20 1.82 2.86 0.9248
2 3.97 0.9669 12.96 0.8467 1.60 1.70 2.34 0.9499
3 3.94 0.9632 9.31 0.9311 1.71 1.70 2.41 0.9473

Br
1 3.72 0.9660 26.59 0.7560 1.79 1.99 2.68 0.9340
2 0.57 0.9953 47.07 0.7562 1.05 2.55 2.76 0.9408
3 0.92 0.9919 25.68 0.3075 1.73 6.09 6.33 0.7557

Bfg
1 7.88 0.9252 14.88 0.9070 2.56 1.87 3.17 0.9076
2 9.12 0.9092 12.92 0.8869 2.42 1.81 3.03 0.9149
3 10.04 0.9159 10.93 0.8425 2.45 2.04 3.20 0.9045

Rp
1 7.68 0.9316 5.03 0.9601 2.09 1.75 2.73 0.9323
2 4.38 0.9339 17.02 0.9123 1.90 1.09 2.60 0.9456
3 5.03 0.9052 28.59 0.8816 2.69 2.43 3.63 0.8755

Scg
1 7.85 0.9282 11.08 0.8608 2.26 1.91 2.97 0.9185
2 6.69 0.9373 13.52 0.7531 2.26 1.86 2.92 0.9209
3 11.16 0.8951 9.65 0.8951 2.66 1.94 3.29 0.9005

Cgb
1 9.01 0.9168 14.75 0.8882 2.49 1.94 3.31 0.9089
2 8.30 0.9293 8.89 0.9233 2.36 1.74 1.95 0.9202
3 16.36 0.8460 29.72 0.8814 3.26 2.75 4.27 0.8510

Cgf
1 8.44 0.9186 12.65 0.9079 2.42 1.78 3.00 0.9165
2 9.15 0.9152 8.93 0.9204 2.33 1.88 2.99 0.9168
3 17.84 0.8274 21.14 0.8596 3.39 2.72 4.35 0.8449

Cgp
1 18.22 0.8496 23.49 0.7818 3.57 2.36 4.28 0.8426
2 17.19 0.8472 11.26 0.9039 3.05 2.61 4.01 0.8482
3 38.02 0.7463 36.79 0.7099 3.06 2.61 4.00 0.7486

Oss
1 9.53 0.9167 12.55 0.8703 2.70 1.88 3.28 0.9015
2 9.06 0.9161 9.77 0.9116 2.49 1.98 2.49 0.9055
3 10.16 0.9101 16.90 0.8084 2.59 20.05 3.30 0.8984

Gdx
1 11.82 0.8805 15.02 0.8584 2.91 2.11 3.59 0.8794
2 9.59 0.9060 18.15 0.8430 2.54 2.09 3.29 0.8982
3 18.60 0.8286 12.07 0.8252 3.50 3.09 4.66 0.8113

Gdm
1 1.42 × 103 0.8008 1.26 × 103 0.7041 30.26 21.02 36.84 0.7870
2 447.60 0.7801 571.30 0.5385 16.97 12.37 21.01 0.8034
3 1.22 × 103 0.4340 1.5 × 103 1.5 × 103 26.67 23.61 36.38 0.4504

Gd
1 2.94 × 103 0.7238 3.08 × 103 0.5882 53.81 16.04 56.15 0.6286
2 655.14 0.8583 724.47 0.8268 25.67 7.14 26.35 0.8124
3 468.86 0.7885 433.89 0.7589 53.72 43.11 68.88 0.7890
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Table 6. Comparison of Hyperparameter Tuning algorithm performance with Grid Search and
Bayesian Optimisation search.

Training Testing Overall Performance

Hyperparmeter
Tuning Algorithm

MLP
Algorithm MSE R MSE R MAE STD MSE R

Grid Search
lm 3.97 0.9669 12.96 0.8467 1.60 1.70 2.34 0.9499
br 0.57 0.9953 47.07 0.7562 1.05 2.55 2.76 0.9408

Bayessian
Optimisation search

lm 5.20 0.9565 16.73 0.8355 2.29 4.90
br 3.52 0.9669 18.84 0.8567 3.40 4.24

4.5. Evaluation of Proposed Neural Network Model at Different Locations

The evaluation results of the proposed neural network model at different study lo-
cations are presented as follows. Figures 9–11 show the proposed neural network model
prediction with measured path loss data configured with the Levenberg–Marquardt train-
ing algorithm, two hidden-layer sizes and logsig-transig transfer function—the prediction
performance of the developed neural network model in terms of R and MSE values. The
R-value measures the prediction correlation between outputs (predicted loss data) and
targets (actual loss data). The closeness of the R-value to 1 corresponds to a high positive
correction. Otherwise, it is poorly correlated. Figures 12–14 are plotted R values between
the predicted loss data and the actual loss values for sites 1 to 3 during training, validation
and testing with neural networks. The R-values obtained from the plots are 0.97, 0.93 and
0.94 for site 1, 0.92, 0.93 and 0.94 for site 2 and 0.91, 0.93, 0.96, 0.94 for site 3. The per-
formance plots in Figures 15–17 indicate that the MSE becomes smaller with the epoch
number (one complete training/testing/validation cycle). The word ‘epoch’ is used here to
mean a special hyperparameter term that defines the number of times (in terms of iteration)
that the NN algorithms undergo during the entire data training duration. The error of test
and validation display similar characteristics while predicting the measured loss across
sites 1 to 3. Specifically, the validation MSE error shows that the proposed neural network
model would not generalize well or fit the measured loss data well if trained further than 4,
8 and 8 epochs. The mean prediction error along measurement data points in sites 1, 2 and
3 are presented in Figures 18–20.

Figure 9. Comparison between measured loss and the prediction ANN model in site 1.
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Figure 10. Comparison between measured loss and the prediction ANN model in site 2.

Figure 11. Comparison between measured loss and the prediction ANN model in site 3.

Figure 12. Prediction performance with correlation coefficient in site 1.
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Figure 13. Prediction performance with correlation coefficient in site 2.

Figure 14. Prediction performance with correlation coefficient in site 3.
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Figure 15. Network training cycles in site 1.

Figure 16. Network training cycles in site 2.

Figure 17. Network training cycles in site 3.

Figure 18. Mean prediction error statistics along with Data points in site 1.
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Figure 19. Mean prediction error statistics along with Data points in site 2.

Figure 20. Mean prediction error statistics along with Data points in site 3.

4.6. Comparison of Prediction Accuracy of Proposed Neural Network Model with Log-Distance Models

Detailed prediction capabilities of all the log-distance models and the proposed model
on measured path loss data are provided in the plotted graphs of Figures 21–23 in terms
of MAE, RMSE and STD. The graphs show that the neural network model achieved the
best predictions with marginal errors. The COST 213 (W/I) made the closest prediction
to measured loss, but in terms of accuracy, the proposed neural network model achieved
the best performance by 20%, 15% and 25%, respectively, across study sites. For example,
while COST 213 (W/I) reached 3.34, 2.35 and 4.23 dB in terms of RMSE, the proposed
neural network model attained 1.73, 2.11 and 1.45 dB across study sites. Generally, models
which predict the path loss in the tested areas with RMSEs higher than the acceptable
range of up to 6 dB are not selected as most suitable. However, such models could be
further optimized for improved performance. The lower the RMSE value towards zero,
the better the model. Regarding standard deviation error, COST 213 (W/I) achieved 1.73,
2.11 and 1.45 dB, while the proposed neural network model achieved 1.73, 2.11 and 1.45 dB,
respectively. The poor predictions made by the log-distance-based models can be ascribed
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to due to dissimilarities and variations in environmental formations (hilly, mountainous or
quasi-plain), weather conditions, soil electrical properties and terrain types that exist in
different radio propagation environments.

Figure 21. A comparison of mean absolute error statistics between the proposed ANN model and
log-distance models on measured path loss in site locations 1, 2 and 3.

Figure 22. A comparison of root mean absolute error statistics between the proposed ANN model
and log-distance models on measured path loss in site locations 1, 2 and 3.

Figure 23. A comparison of standard deviation error statistics between the proposed ANN and
log-distance models on measured path loss in site locations 1, 2 and 3.
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5. Conclusions

The growing demand for mobile and fixed cellular telecommunication services have
given substantial weight to the limited available radio frequency spectrum. Proper mod-
elling and precise signal coverage predictions are crucial to utilizing this scarce resource
effectively. Reliable predictive modeling of signal path loss aids in controlling the load on
base station transmitters and assists in designing efficient radio network channels with less
interference and coverage hole problems. The conventional log-distance-based statistical
models for path loss prediction comprising the clustering factor, COST 234 Hata, free
space, Hata, Lee models, etc., are generally limited for predicting signal attenuation losses,
especially when employed in different environments other than the environment for which
they have been designed.

The main objective of this paper was to develop a distinctive MLP-based path loss
model with well-structured implementation network architecture, empowered with the
grid search-based hyperparameter tuning method for optimal path loss approximation
between mobile-station and base-station path lengths. The degree of prediction accuracy
with the developed MLP network model over eight conventional log-distance-based path
loss models is also clearly provided using first-order statistics. In summary, this research
paper has revealed that:

• MLPANN-based path loss model with well-structured implementation network archi-
tecture, empowered with the right hyperparameter tuning algorithm is better than the
standard long-distance path loss models

• the choice of both MLP-ANN modelling structure and selection of training algorithms
do have a clear impact on the quality of its prediction proficiency. Specifically, in
terms of MAE, RMSE and STD statistical values, the proposed model yielded up to
50% performance prediction accuracies improvement over the standard models on the
acquired LTE path loss datasets.

• The selection of adaptive learning tuning hyperparameters of MLP-ANN and the
tuning algorithm both have an impact on its overall predictive modelling capacity.

Future work would consider more hyperparameter selection techniques to optimize
MLP model prediction accuracy during NN training. We also intend to explore more super
layered training capacity of deep neural networks such as the long-short memory (LSTM)
network model for predictive modelling of path loss data in our work.
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