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Abstract: Multivariate time series forecasting has long been a subject of great concern. For example,
there are many valuable applications in forecasting electricity consumption, solar power generation,
traffic congestion, finance, and so on. Accurately forecasting periodic data such as electricity can
greatly improve the reliability of forecasting tasks in engineering applications. Time series forecasting
problems are often modeled using deep learning methods. However, the deep information of
sequences and dependencies among multiple variables are not fully utilized in existing methods.
Therefore, a multivariate time series deep spatiotemporal forecasting model with a graph neural
network (MDST-GNN) is proposed to solve the existing shortcomings and improve the accuracy
of periodic data prediction in this paper. This model integrates a graph neural network and deep
spatiotemporal information. It comprises four modules: graph learning, temporal convolution, graph
convolution, and down-sampling convolution. The graph learning module extracts dependencies
between variables. The temporal convolution module abstracts the time information of each variable
sequence. The graph convolution is used for the fusion of the graph structure and the information of
the temporal convolution module. An attention mechanism is presented to filter information in the
graph convolution module. The down-sampling convolution module extracts deep spatiotemporal
information with different sparsities. To verify the effectiveness of the model, experiments are
carried out on four datasets. Experimental results show that the proposed model outperforms the
current state-of-the-art baseline methods. The effectiveness of the module for solving the problem of
dependencies and deep information is verified by ablation experiments.

Keywords: multivariate time series; deep spatiotemporal information; down-sampling convolution;
attention; graph neural network

1. Introduction

With the development of the Internet, various sensors and data-storage devices have
appeared in modern society. As a result, a large amount of time series data is generated by
recording temperature, traffic, power consumption, and financial data. Multivariate time
series data consists of time series data generated by multiple sensors or data storage devices,
and there are dependencies among multiple time series. For example, a household’s daily
electricity usage and hourly electricity production from solar panels can be considered
time series data. In most cases, the data usually come from the electricity consumed
by multiple households or solar data generated at different locations. A multivariate
time series is constructed from these data. There may be complex dynamic dependencies
between multivariate time series data. Therefore, each time series in a multivariate time
series is helpful for forecasting tasks. At the same time, multivariate time series data
such as electricity and transportation have periodic characteristics. Multivariate time
series forecasting has been studied for a long time in capturing the periodic characteristics
and dynamic dependencies of variables [1–4]. For example, studies using the Harmonic
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regression method enhanced the prediction performance of PM2.5 by capturing periodic
information [5].

In recent years, some researchers have made efforts in time series analysis and fore-
casting. For example, traditional forecasting methods represented by statistical methods.
Most rely on mathematical equations to describe the evolution of time series, such as the
Autoregressive Integrated Moving Average Model (ARIMA) [6]. Therefore, various vari-
ants based on the ARIMA model have emerged. Models based on traditional methods are
more computationally efficient. However, these models are mostly limited to linear models
and univariate predictions. It is difficult to extend to multivariate time series problems.

In the era of big data, with the development of sensor technology and computing
power, most of the time series data comes from data collected by various devices. However,
the information of large-scale data is difficult to extract by traditional methods. Deep
learning is the current popular information extraction method. Features of large-scale
data can be obtained through deep learning techniques. In time series forecasting, deep
learning techniques are employed to achieve better forecasting accuracy than traditional
methods. At the same time, deep learning technology has made great progress in the
research and application of image processing, audio processing and natural language
processing [7–9]. Although traditional machine learning and statistical methods are often
employed in time series forecasting tasks, deep learning techniques are gaining attention
from researchers. With further development, there have been studies on applying graph
neural networks and attention methods in time series forecasting [10–12]. Capturing spatial
information by building a graph structure of multivariate time series. These methods have
achieved certain results. A graph neural network allows each node in the graph to acquire
information about the surrounding nodes. Multivariate time series can be considered from
the perspective of graph nodes. Spatial information can be obtained between multivariate
time series by constructing graphs. For periodic data, the information of adjacent nodes is
more informative. Compared with vanilla neural networks, graph neural networks can
capture the dependency information between different sequences, which is more suitable
for the prediction of multivariate time series. Therefore, graph neural networks can achieve
more accurate prediction results than vanilla neural networks by aggregating information
from multiple sequences.

In this paper, a multivariate time series deep spatiotemporal forecasting model with
a graph neural network (MDST-GNN) is proposed. The model consists of four core com-
ponents: graph learning, temporal convolution, graph convolution, and down-sampling
convolution. The local information and deep spatiotemporal information of multivari-
ate time series data can be learned by the model. Dependencies between sequences can
be captured by a graph learning module. The temporal information is captured by the
1D convolution of the temporal convolution module. In the graph convolution module,
the spatial dependencies between variables are extracted through relational graphs. The
spatiotemporal information in sequences with different sparsity is captured by down-
sampling convolution modules. The experiments in this paper show that the model has
good prediction performance and generalization ability.

The main contributions of this paper are as follows:

1. A more general time series forecasting model based on graph convolutional networks
and deep spatiotemporal features is proposed in this paper.

2. The attention mechanism is added to the graph convolution module to realize the
filtering of spatiotemporal information.

3. A down-sampling convolution module is proposed to extract deep spatiotemporal
information of time series to improve the performance of the model.

The remainder of this paper is organized as follows: Section 2 presents the related work
and research status. Section 3 introduces the definition of the problem and presents the
overall framework and algorithmic flow of the model. Section 4 describes the experimental
part and gives the experimental results of different methods in the dataset, analysis of
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experimental results, and ablation experiments. Finally, Section 5 is the conclusion of
this paper.

2. Related Works
2.1. Time Series Forecasting with Traditional Methods

Time series forecasting has been studied for a long time. Most of the existing
work can be divided into statistical methods and machine learning and deep learning
methods. Such as Autoregressive Integrated Moving Average Model (ARIMA) [6] and
a hybrid ARIMA and multilayer perception model (VARMLP) [13]. ARIMA obtained
future forecast values by constructing polynomials of historical information and adding
noise. VARMLP modeled linear and nonlinear data combining ARIMA with an artificial
neural network model (ANN) [14]. Neural networks are often used to capture nonlinear
relationships in time series forecasting [15,16]. However, the main limitations of ARIMA
models are the pre-assumed linear patterns and the requirement for high stationarity of
the data. Therefore, ARIMA is not suitable for modeling problems of multivariate time
series. Furthermore, Linear Support Vector Regression (SVR) [17] treats the prediction
problem as a typical regression problem with parameters changing over time. The vector
autoregressive model (VAR) [18] extends the AR model and was a commonly used
econometric model. However, these models are difficult to extend to multivariate time
series forecasting problems.

2.2. Time Series Forecasting with Deep Learning

In recent years, with the improvement of data availability and computing power,
deep learning techniques have been adopted to obtain better prediction accuracy than
traditional methods. Nonlinear patterns of data can be captured by deep learning
models and outperform traditional methods. The time series forecasting models LST-
Net [19] and TPA-LSTM [20] excelled in capturing nonlinear information. LSTNet used
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to ex-
tract short-term local dependence patterns and long-term patterns of time series. The
former encoded the short-term local information of multivariate sequences into low-
dimensional vectors. The latter decoded the vectors to capture long-term dependency
information. Long Short-Term Memory (LSTM) [21] is a variant of RNN that is of-
ten used for time series forecasting tasks. LSTM also shows excellent performance in
natural language processing tasks. TPA-LSTM extracted temporal patterns through
the LSTM network, and a convolutional network and attention mechanism were used
to calculate the attention score. However, LSTNet and TPA-LSTM cannot model the
dependencies of multiple variables. RNN and LSTM cannot memorize the dependen-
cies of multiple variables for a long time. Sample Convolution and Interaction Net-
works (SCINet) [22] use sequence sampling and convolutional neural network meth-
ods to capture temporal information. However, SCINet does not consider the de-
pendencies among multiple variables, and the stacking of multiple layer structures
results in huge time and space costs. Recently, Temporal Convolutional Networks
(TCN) [23] have been applied to time series forecasting problems. In the TCN archi-
tecture, dilated convolutions can be used to flexibly adjust the receptive field, and its
space complexity is lower than that of RNN. However, the causal convolution of TCN is
not suitable for sliding window inputs. With the development of attention methods, the
Transformer [24] model has replaced the RNN model in many sequence modeling
tasks. Therefore, various time series forecast methods based on Transformers have
emerged [25], which are quite effective in predicting long series. However, although time
series models for reducing the spatial cost of Transformer have been proposed, the space
cost is still large.

With further research, graph neural networks have shown great advantages in pro-
cessing graph data [26–28]. In the structure of graph neural networks, each node is in-
terconnected with its neighbors, and information is transmitted between nodes. The
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variables of a multivariate time series can be transformed into a graph-like structure. A
variable represents a node in the graph. Nodes are interrelated through their hidden
dependencies. Therefore, graphs in multivariate time series data modeling can better
represent the interdependencies between time series. Currently, many people have used
graph neural networks to deal with time series problems [29,30]. Multivariate Time Series
Forecasting with Graph Neural Networks (MTGNN) [31] built a graph with variables as
nodes. The spatiotemporal information of the data is captured by dilated convolutional
networks [32] and relational graphs. However, the dilated convolutional structure of MT-
GNN causes the loss of locally continuous and deep-level information. Although the above
methods have been successfully applied to many forecasting problems, most of them have
corresponding shortcomings.

By comparing traditional methods and classical deep learning models, a multivariate
time series deep spatiotemporal forecasting model with graph neural network (MDST-
GNN) is proposed in this paper. The model is able to learn relational graphs from multi-
variate time series data. Deep spatiotemporal information is extracted and filtered through
down-sampling convolutional networks and attention methods. Our model can capture
the deep nonlinear spatiotemporal features in the sequence and solve the problem of local
and global information loss.

3. Methods

Firstly, this section presents the definition of the prediction problem. The MDST-GNN
model consists of a graph-learning module, a temporal convolution module, a graph
convolution module and a down-sampling convolution module. In this paper, an atten-
tion mechanism is introduced into the graph convolution module to filter spatiotemporal
information. A down-sampling convolution module is proposed to extract deep spatiotem-
poral information to improve model performance. Finally, the overall frame diagram and
algorithm steps of the MDST-GNN model are given.

3.1. Problem Definition

Definition 1. There is a multivariate time series with sequence length m, given as a set
X = {sm,1, sm,2, sm,3, . . . , sm,n} ,where sm,1 = {t1,1, t2,1, t3,1, . . . , tm,1} is the set of the first vari-
able sequence and tn,[i] ∈ R is the value of the ith variable at time step n.

Definition 2. A graph can be defined as G = {V, E}. V represents the set of nodes. E represents
the set of edges formed by the dependencies between variables. An adjacency matrix is a mathematical
form that facilitates graph computation. It is A ∈ RN×N , assuming {vi, vj} ∈ V. If (vi, vj) ∈ E,
then Ai j = C > 0, if (vi, vj) /∈ E, then Ai j = 0.

Definition 3. The goal is to learn a model F(·) and build the mapping of F from X to Y by
minimizing the L2 regularization loss function. Given a prediction step size h, it is possible to
predict the future value Y = {sm+h,n} of X after h steps.

3.2. Graph Learning Module

During the training of the model, the spatial information representation of the input
data and the implicit relationships among multiple sequences are obtained by the graph
learning module. In existing research, graphs are mostly constructed by the method of
node similarity and distance, and these graphs are usually bidirectional or symmetric. For
the prediction task in this paper, other nodes may be affected by the change in one node.
For example, if the traffic roads in a certain area are congested, other roads in the area will
also change. When solar power generation in a region rises, other sites in the region will
also have certain changes. Therefore, a one-way relational graph structure is more suitable
to be constructed:

A1 = tanh(α× E1 ×W1) (1)
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A2 = tanh(α× E2 ×W2) (2)

B = A1 × A2
T (3)

A = Relu(tanh(α× (B− BT))) (4)

According to the above formula, the initial adjacency matrix A can be obtained. E1 and
E2 are learnable nodes encoding information. W1 and W2 are model-learnable parameters.
The hyperparameter α is used to prevent the vanishing gradient problem caused by the
saturation of the activation function. The adjacency matrix is converted to a one-way matrix
by matrix subtraction and activation function Relu. When Ai j is a positive number, Ai j = 0:

A[i, not argtopk(A[i, :], k)] = 0 (5)

Argtopk() extracts the indices of the top k maxima of the vector. In order to simplify
the calculation amount, the k nodes with the largest value among the nodes are selected as
the nodes with high relevant information during graph convolution. Unselected nodes are
assigned the value 0. This method is more flexible in constructing graphs, and the internal
information of the graph can be adjusted according to the data during the training process.

3.3. Temporal Convolution Module

The temporal convolution module consists of two Dilated Inception layers. Tanh
and Sigmoid activation functions are used after the Dilated Inception layer. One dilated
inception layer is followed by an activation function, and Tanh is used as a filter. The
sigmoid function of the other layer is used as the gate unit. The gate unit controls the
amount of information that the filter propagates to the next module.

The advantages of the Inception network and Dilated convolution are incorporated
into the Dilated Inception layer. Information at different scales can be captured by the In-
ception network, while the dilated convolutional network ensures that long-term sequences
can be processed. First, the receptive field of traditional convolutional networks is limited
by the depth of the network and the size of the convolution kernels. Processing long-term
sequences requires increasing convolution kernel size and network depth, which increases
the cost of computational resources for the problem. For example, for a network with L
one-dimensional convolutions and K convolution kernels, the size of the receptive field is:

R = (K− 1)× L + 1 (6)

In WaveNet [33], stacked dilated convolutions were used to make the network have a
very large receptive field. Computational efficiency and input data integrity are guaranteed
with only a few layers. In this paper, the dilated convolution method is used to reduce the
cost of model computing resources. The dilation factor is doubled for each layer. With the
increase in depth, the dilation factor can make the receptive field grow exponentially. For
long time series, the advantage of dilated convolution is that the internal data structure can
be preserved without reducing the length of the data input. However, models designed
based on dilated convolutions also have some problems. Due to the discontinuity of
the convolution kernel, all elements cannot be covered in the dilated convolution, so the
continuity of information will be lost. Therefore, the Inception network is introduced into
the model. Multiple convolution kernels of different sizes are used to cover the receptive
field to retain more information.

In the Inception network, features of multiple scales are obtained by convolution ker-
nels of different sizes. The sparse matrices output by multiple convolutional networks are
aggregated into denser submatrices. For the Inception network, the size of the convolution
kernel needs to be selected according to the characteristics of the data. According to the
periodicity of the time series (2, 3, 6, 7), four convolution kernels are used by the Inception
network in this paper. These convolution kernels can be combined to cover multiple time
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periods of different lengths. The input data X is processed using four convolution kernels
of different scales. The outputs of different scale convolutions are fused to obtain complete
temporal information.

X = concat(X× I1×2, X× I1×3, X× I1×6, X× I1×7) (7)

Finally, the convolution results of different lengths are cropped to the same length. In
Formula (7), the convolution results are concatenated by the channel dimension. Features
of different scales are learned by each layer in the network. The adaptability of the network
to different scales of information is increased by the concatenation of channel dimensions.

3.4. Graph Convolution Module

In the graph convolution module, dependency information is extracted from the
input data through the adjacency matrix of the graph learning module. Each node of
the adjacency matrix is fused with highly dependent node information to obtain the
dependency information of each node and its related nodes.

The graph convolution module consists of two Attention Mixed Propagation layers
for processing the inflow and outflow information of each node. The structure of the graph
convolution module is shown on the left of Figure 1, and A is the adjacency matrix of the
node relationship obtained by the graph learning layer. The inflow information of each
node is processed by the Attention Mixed propagation layer. AT is used to process the
outflow information of the node. After the Attention Mixed propagation layer, the final
node feature information is obtained by summing the inflow and outflow information of
the nodes. The structure of the Attention Mixed Propagation layer is shown on the right in
Figure 1, and A is the dependency matrix between nodes, Din is the output information of
the temporal convolutional layer, and D(k) represents the information that Din propagates
K times in the nodes of A. After the Concat connection, C is the channel dimension of the
feature information, N is the number of variables in the feature information, and T is the
sequence length of the feature information. The node information is weighted and filtered
for different dimensions of the feature information, and the weighted sum is used as the
output of the Attention Mixed propagation layer. The graph obtained by the graph learning
layer is utilized to process the information flow of the relevant nodes in the Attention
Mixed propagation layer. The Attention Mixed propagation layer consists of two parts:
information propagation and information selection.

Input

Attention Mixed 

Propagation 

Layer 

Output

D
(0)

D
(1)

D
(k)

Attention Mixed 

Propagation 

Layer 

A A
T

DinA

 

Concat

Dout

DinA DinA

C

N

T

N

T

C

+ 

+ 

Figure 1. Graph Convolution Module and Attention Mixed Propagation.

The information propagation steps are as follows:

D(k) = βDin + (1− β)
(A + I)

n
∑

j=0
Aij

D(k−1) (8)
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D = Concat(D(0), D(1), ..., D(k))×W(k) (9)

Among them, β in the Formula (8) is a hyperparameter used to control the retention
rate of initial information. A is the graph adjacency matrix. K is the depth of information
propagation. Din is the output of the previous module. It can be seen from Formula (9)
that D(k) is concatenated through the channel dimension after the information propagation
process. Afterwards, the channel dimension is compressed to the dimension before con-
catenation by a convolutional network. D contains the features of spatial dependence after
each node information is propagated.

However, initial information and new information are continuously fused in graph
convolution. The initial information of the node will be continuously lost when reaching a
certain depth, which will lead to unreliable data. Therefore, the β parameter is introduced to
preserve part of the initial information. Make sure that local and deep-level information of
nodes is preserved. At the same time, the cases where the spatial dependence is not obvious
or there is no spatial dependence also need to be considered between the data. In this
case, the important information of each node will be disturbed by the graph convolution
operation instead.

Therefore, Spatial and Channel Squeeze and Excitation (scSE) [34] is used as an
information-selection method to filter out some unnecessary information in this paper.
The scSE attention method consists of two parts, namely, Channel Squeeze and Excita-
tion (cSE) and Spatial Squeeze and Excitation (sSE). The attention mechanism is used to
adjust the weights of features in the network. By weighting important feature maps or
feature channels, the influence of unimportant features was reduced, thereby improving
prediction results. The core idea of Squeeze and Excitation (SE) was to dynamically learn
feature weights through network training. The effective feature weight was amplified and
the invalid or small effect feature weights were reduced so that the model can achieve
better results.

Among them, cSE refers to the compressed spatial dimension information and the
adjusted channel dimension weights. After the data passed through the fully connected
layer, the weight of each channel was multiplied with the original input in the channel
dimension. Finally, the adjusted feature map was obtained.

Channel attention is defined as follows:

zk =
1

H ×W

H

∑
i

W

∑
j

dk(i, j) (10)

ẑ = sigmoid(w1z), w1 ∈ Rc×c (11)

D̂cSE = [σ(ẑ1)d1, · · · , σ(ẑc)dc] (12)

The input feature map is D = [d1, d2, . . . , dc], where each channel is di ∈ RH×W . D is
converted to z ∈ R1×1×C after going through a global pooling layer (GAP). In Formula (10),
zk is the global spatial information in each channel obtained through the global pooling
layer. In Formula (11), global spatial information is transformed into channel weight values
ẑ (between 0 and 1) by sigmoid and fully connected layers. As the network continues to
train, the input feature map is adaptively adjusted to emphasize important channels.

The sSE in the method referred to the compression of channel information and the
adjustment of the weight of the spatial dimension. After the data passed through the fully
connected layer, the weight of each point in the spatial dimension was multiplied with the
original input in the spatial dimension. Finally, the adjusted feature map was obtained.

Spatial attention is defined as follows:

q = sigmoid(D× w1), q ∈ RH×W (13)

D̂sSE = [σ(q1,1)d1,1, · · · , σ(qh,w)dh,w] (14)

Dout = D̂cSE + D̂sSE (15)
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The input feature maps are D = [d1,1, d1,2, . . . , dh,w], where each di,j ∈ R1×1×C. In
Formula (13), D is converted into a spatial weight value q (between 0 and 1) after passing
through the convolutional network and the activation function Sigmoid. Finally, the
channel attention feature map and the spatial attention feature map are added to obtain the
weighted feature map Dout. In addition, Dout is the output after information filtering.

3.5. Down-Sampling Convolution Module

The down-sampling convolution module in this paper is a multilayer module. Multi-
ple resolution temporal features are captured by down-sampling convolutions to improve
model performance. The down-sampling convolution module consists of basic down-
sampling blocks, each D-s Block contains a structure on the right of the figure. The last
layer is connected via Concat. FC is a fully connected layer, which maps the output to
the specified dimension, as shown on the left of Figure 2. The output of the previous
module is used as the input of the binary tree structure, and multiple spatiotemporal
short-sequence information is obtained after passing through L layers. The short-sequence
information is rearranged into new deep spatiotemporal sequence information. Through
residual connection, the original input is added to the newly extracted deep spatiotemporal
information sequence to ensure the integrity of the information. A basic down-sampling
block of a binary tree structure consists of sequence segmentation, convolution filtering,
and information crossing. The output data of the previous module is divided into two
subsequences in the down-sampling component as shown in Figure 2 right. The output
Dout of the graph convolution module is used as input, and then each layer takes the
output of the upper layer as input. Deven and Dodd represent sequences with odd and
even subscripts, respectively. Conv1, Conv2, Conv3, and Conv4 are four identical 1D
convolutional networks, respectively. The exp function is used to highlight peaks of in-
formation. Hadamard product is represented by �, which is the multiplication between
the elements. Finally, the output of the current layer is obtained by subtracting the two se-
quences. Different convolutional filters are used to extract new sequence information from
each sequence. In order to avoid the loss of information caused by dividing the sequence
multiple times, the important information of multiple subsequences is preserved through
information crossing.

Dout

Split

Deven

·

Deven

Conv2 exp

Dodd

Dodd

·

exp Conv1

 

Conv4 Conv3

 

''''

' '

Deven Dodd

D-s Block

Input

  

 

FC

Output

Concat

D-s Block D-s Block

D-s Block D-s Block D-s Block

Figure 2. Down-sampling Convolution Module and Down-sampling block (D-s Block).

The input sequence is decomposed into odd and even sequences by the sequence
decomposition operation in the down-sampling block of Figure 2. The odd sequences
take data at positions 1, 3, 5, etc., in the input sequence. The even sequences take data at
positions 0, 2, 4, etc., in the input sequence. The original sequence Dout is decomposed into
two subsequences Deven and Dodd. Odd and even sequences reduce the amount of data
while retaining most of the information of the original sequence. After that, different con-
volutional networks are employed to extract the feature information of the input sequence
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from the two sequences. The feature information obtained by different convolutional
networks has stronger representation ability after fusion:

Deven, Dodd = split(Dout) (16)

D
′
even = Deven � exp(conv1(Dodd)), D

′
odd = Dodd � exp(conv2(Deven)) (17)

D
′′
even = D

′
even − conv3(D

′
odd), D

′′
odd = D

′
odd − conv4(D

′
even) (18)

In Formula (16), Dout is split into Deven and Dodd. In Formula (17), Deven and Dodd are
mapped to the hidden state through two convolutional networks and converted to exp
format. In Formula (18), two other convolutional networks map D

′
even and D

′
odd to new

hidden states, which are subtracted to obtain the final result. The mapping process of
the hidden state can be viewed as a scaling transformation of the two subsequences. The
scaling factor is learned during network training.

The down-sampling convolution module enlarges the receptive field compared to the
dilated convolution used in the WaveNet architecture. More importantly, after the input is
divided into two subsequences, the temporal information in Deven and Dodd are fused by
different one-dimensional convolutions. In this process, the integrity of time information
is ensured, and the ability to represent information is enhanced. The down-sampling
convolution module consists of several basic modules. Among them, the basic module
as a whole presents a tree structure. The information in the basic module is accumulated
layer by layer. The deep feature information contains the small-scale temporal information
transmitted by the shallow layer. In this way, both short-term and long-term dependencies
of time series can be captured. In the last layer of the module, all the subsequences are
recombined by inverse odd sequence and even sequence segmentation to obtain a new
sequence representation. The new sequence information is fused with the original sequence
through residual connection to ensure the integrity of the sequence information. Map to
the specified output dimension using a fully connected layer.

The output part consists of skip connections and two 1 × 1 convolutional networks
in this paper. Skip connections normalize the output of the down-sampling convolution
module to have the desired predicted sequence length. A 1 × 1 standard convolutional
network is used to convert the channel dimension to the desired dimension.

3.6. Experiment Model

The model structure of MDST-GNN is shown in Figure 3. It consists of four parts: a
graph learning module, K temporal convolution modules, K graph convolution modules,
and a down-sampling convolution module. The graph learning module is used to construct
the spatial dependency graph of the data. The temporal convolution module captures the
temporal information of the data. The spatiotemporal information is obtained by fusing the
dependency graph and temporal information in the graph convolution module. The down-
sampling convolution module extracts deep spatiotemporal information. Add residual
connections to the model to avoid vanishing gradients during training. A skip connection
is added after each temporal convolution module. To obtain the final output, the hidden
features are projected onto the desired output dimension by convolution. Algorithm 1
shows the algorithm steps of the model.



Appl. Sci. 2022, 12, 5731 10 of 21

Algorithm 1: Algorithm steps of the model.
Input: Dataset X, initialize model parameters, batch size B, the dimension of the

variable N, time series length T, channel dimension C.
Output: Ŷ. Predicted result of train/test data X after h steps.
// Preprocessing of data:

1 (a) Normalize each sequence of a multivariate time series X.
2 (b) Divide X into training set (60%),validation set (20%) and test set (20%).
// Fitting of Model along with estimation:

3 while not at end of epoch do
4 constructure learning graph A;
5 for x ∈ RB×C×N×T in X ∈ (train, valid) do
6 Get high-dimensional features of Xtrain from channel dimension;
7 for L in Layers do
8 add skip connection;
9 The temporal features of x are extracted by temporal convolution;

10 The spatiotemporal features are obtained by fusing the temporal
features with A through graph convolution;

11 Layer Norm normalized spatiotemporal features;
12 end
13 A downsampling convolution operation is performed to extract deep

spatiotemporal information;
14 Concatenate deep spatiotemporal information and skip connections

information;
15 Forecast the future time series ŷ;
16 Reverse normalize ŷ;
17 Compute loss and gradient;
18 Update model parameters by back propagation;
19 end
20 end

// Prediction:
21 Ŷ = predict(x sample a batch from X), X ∈(test dataset)

• Input: The raw data X of the multivariate time series.
• Output: The prediction result of data X after h (Horizon) steps. The value of h can

take 3, 6, 12, and 24.
• Line 1–2: Preprocess the input raw data X. Normalize each sequence of a multivariate

time series X. Divide X into training set (60%), validation set (20%), and test set (20%).
The Xtrain and Ytrain are obtained by splitting the sequence X with a fixed-length
sliding window. Xtrain represents the input data for training, and Ytrain represents
the labels of the training data.

• Line 4: Construct the graph structure A of the multivariate time series. A represents
the dependencies between different sequences in a multivariate time series by an
adjacency matrix.

• Line 6: A 1 × 1 convolutional network is used to obtain high-dimensional data in the
channel dimension of Xtrain.

• Line 8: Add skip connection method to preserve part of the original information of
each layer.

• Line 9: Perform a temporal convolution operation on the input data to obtain the
temporal information of the data.

• Line 10: In the graph convolution, spatially weighted spatiotemporal information is
obtained by multiplying the temporal information with an adjacency matrix A.

• Line 11: The output data are normalized using Layer Norm. Repeat Line 8 to Step 11
for L times. L represents the number of layers of the module.
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• Line 13: Perform down-sampling convolution operation on the obtained spatiotempo-
ral information to extract deep spatiotemporal information.

• Line 14–15: Concatenate deep spatiotemporal information and skip connections infor-
mation. The final output result is obtained through 1× 1 convolutional dimensionality
reduction information.

• Line 16–18: Reverse normalize the output of the model. The mean value (MAE) of
the difference between the output and the true value is used as the loss function. The
model parameters are updated according to the gradient, and the steps from Step 3 to
Step 10 are repeated until the model finally converges to the minimum error.

• Line 21: Finally, input the test set into the trained model to obtain the prediction result.

The above process can be divided into 4 parts. Line 1 to 2 is the data preprocessing
part. Lines 4 to 15 are the MDST-GNN model training and fitting process. Line 16 to 18 is
the loss function calculation part. Line 21 gives the final prediction result. The source code
of the algorithm is available at https://github.com/yiminghzc/MDST-GNN (accessed on
28 May 2022).

Figure 3. Model structure diagram of MDST-GNN.

4. Experiment Analysis
4.1. Experiment Dataset Analysis

In order to evaluate the effectiveness and generalization ability of the model, a classical
multivariate time series dataset is adopted in this paper. The dataset comes from the
experimental dataset given by LSTNet [19]. It contains multivariate time series datasets in
four different domains:

https://github.com/yiminghzc/MDST-GNN
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• Solar Energy: Solar power generation data from Alabama State PV plants in 2006,
sampled every 10 min from 137 PV plants;

• Traffic: Hourly road occupancy (between 0 and 1) on San Francisco Bay Area highways
for 48 months (2015–2016) recorded by the California Department of Transportation,
including data from 862 sensor measurements;

• Electricity: The hourly electricity consumption (kWh) of 321 users from 2012 to 2014;
• Exchange Rate: Daily exchange rate records for 8 countries (Australia, British, Canada,

China, Japan, New Zealand, Singapore, and Switzerland) from 1990 to 2016.

Table 1 presents the statistical information of the experimental dataset in this paper.
It includes four data sets. Time length represents the time length of a sequence. Variable
represents the number of sequences in a multivariate sequence, and Sample rate represents
the time interval of data recording. For example, there are 862 sequences with a length of
17,544 in the Traffic dataset, and the sequence data are recorded at an hourly interval.

Table 1. Dataset Statistics.

Dataset Time Length Variable Sample Rate

Solar Energy 52,560 137 10 min
Traffic 17,544 862 1 h

Electricity 26,304 321 1 h
Exchange Rate 7588 8 1 day

The dataset contains linear and nonlinear interdependencies. The characteristics of the
datasets are shown by selecting two variables from each dataset. The power consumption
values of the two users at different times is shown in Figure 4. The traffic road occupancy
values of the two roads at different times are shown in Figure 5. The horizontal axis
represents the different time periods of each day. The vertical axis represents electricity
consumption and road occupancy during this period.

Figure 4. Consumer electricity consumption per hour.

Figure 5. Road occupancy rate per hour.
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The power generation values recorded every 10 min at both power stations are shown
in Figure 6. Daily exchange rate values for the two countries are shown in Figure 7. The
horizontal axis represents the time span in different units. The vertical axis represents
power generation and exchange rate values during this period.

Figure 6. Solar power generation per 10 min.

Figure 7. Daily exchange rates for two countries.

From the above data analysis, the data characteristics of the four data sets can be found.
As can be seen from the figure, the Traffic, Electricity, and Solar Energy datasets have strong
periodic patterns. The time series periods of multiple variables are not exactly the same,
but the values of multiple variables at different periods are very similar. The above data
analysis results are instructive to this paper. A multivariate time series forecasting model
MDST-GNN is proposed in this paper, which can fully utilize the similarity information in
the data. Information filtering is enhanced by incorporating attention methods, and the
down-sampling convolution module is added to improve the deep information extraction
ability. The relationship between multiple variables is modeled through a graph neural
network to capture the dependency information between variables. The dependency
information obtained by the graph neural network can enhance the forecasting ability of
periodic time series.

4.2. Methods for Comparison

In order to effectively evaluate the experimental model and show the performance
difference between different methods, the current state-of-the-art methods are compared
with the model in this paper. The performance of the model on different dataset is shown
by the diversity comparison of different methods.

The methods in our comparative evaluation are the follows:

• VAR-MLP: Hybrid model of multilayer perceptron (MLP) and autoregressive model
(VAR) [13];

• GRU: Variant GRU model based on long short-term memory network;
• LSTNet: A hybrid model of deep neural network composed of convolutional neural

network and recurrent neural network [19];
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• TPA-LSTM: Recurrent Neural Network Model Based on Attention Mechanism [20];
• MTGNN: Hybrid model based on graph neural network and convolutional neural

network [31];
• SCINet: Convolutional neural network model based on parity sequence segmentation

and intersection [22].

4.3. Metrics

To evaluate the performance of our proposed MDST-GNN model, the same evaluation
metrics are used for the comparison methods in this paper. The pros and cons of different
methods can be clearly displayed by the same evaluation metrics. The evaluation metrics
are the relative root mean square error (RRMSE) and the empirical correlation coefficient
(CORR):

RRMSE =

√
∑
t

1
n

n
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i=0

(
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)2

√
∑
t

1
n−1

n
∑

i=0

(
Yti − (Y)

)2
, t ∈ ΩTest (19)

CORR =
1
n

n

∑
i=1

∑
t

(
Yti −

(
Yi
))(

Ŷti −
(

Ŷi
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Ŷti −
(
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, t ∈ ΩTest (20)

In Formulae (19) and (20), Y and Ŷ are the truth value and the predicted value,
respectively. Y and Ŷ represent the mean of the truth and predicted values. ΩTest represents
numerical computation using the test set. For RRMSE, lower values are better, and for
CORR, higher values are better.

4.4. Experimental Setup

This section describes the hardware and software environment of the experiment and
the configuration of related parameters. Our models are built with the Pytorch open source
deep learning library. The device configuration used in the experiment is Intel core i5
10400F 2.9 GHz, the GPU is NVIDIA GeForce RTX 3060 12 G, and the memory is 16 GB.

The four datasets are divided by time into training set (60%), validation set (20%),
and test set (20%) in this paper. According to the performance difference of the model
among different hyperparameters, the optimal hyperparameters are selected to validate
the performance of the model on the test set.

The key hyperparameter settings of MDST-GNN are shown in Table 2. In this paper, the
model adopts four graph convolution modules, four temporal convolution modules, and
one down-sampling convolution module. Adam is used as the optimizer, and the gradient
clipping is 5. The network model is converged to the optimal solution by the learning rate
decay technique. The input sequence window length is 168, and the output sequence length
is 1. Train the model to predict future target intervals (Horizon) 3, 6, 12, and 24. The starting
1 × 1 convolution has 1 input channel and 16 output channels. The activation function
saturation rate of the graph learning module is 3, and the node-embedding dimension is 40.
In the dataset Electricity, Traffic, and Solar Energy, the Number of neighbors (K of Formula (5))
of each node is set to 20. Neighboring node information is not considered for the Exchange
Rate. The dilation factor of the convolutional network in the temporal convolution module
is 2. A dropout of 0.3 is employed after each temporal convolution module. Layer Norm is
used after each graph convolution module. The propagation depth of the Attention Mixed
propagation layer is 2. The information retention rate of the propagation layer is 0.05. Both the
graph convolution module and the temporal convolution module have 16 output channels.
The number of layers (Num layers) of the down-sampling convolution module is shown in
Table 2. The input channel of the down-sampling convolution module is 16, and the dropout
is 0.3. Two skip connection layers have 32 output channels. In the output part of the model,
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two standard 1 × 1 convolutional networks with 64 output channels and 1 output channel
are used. The training Epoch is 30. More detailed hyperparameters can be found in Table 2.

Table 2. Hyperparameter Settings.

Model Setting Solar Energy Traffic Electricity Exchange Rate

Horizon 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

Batch size 8 16 32 4

Learning rate 1× 10−4 1× 10−4 1× 10−3 5× 10−4

Window length 168 168 168 168

Layers 4 4 4 4

Num nodes 137 862 321 8

Weight decay 1× 10−4 1× 10−5 1× 10−4 1× 10−4

Num layer 4 3 3 3

Hyperparameters are obtained by changing the research parameters and fixing other
parameters to obtain the optimal hyperparameters in this paper. Each experiment was
repeated 5 times with 30 Epochs per run, and the hyperparameter that minimized the
RRMSE among the 5 experiments was chosen. We investigate the hyperparameters that
affect the results of the MDST-GNN model. The number of neighbors and layers were
selected from the parameters. The parameters are analyzed by the results obtained from
5 experiments on the dataset Exchange Rate. Figure 8 shows the experimental results of
the parameters. It can be seen from Figure 8a that fewer related nodes have better results,
which indicates that the spatial dependence among multiple exchange rates is weak, and
increasing the information of adjacent nodes will only increase the noise. Figure 8b shows
that increasing the number of layers can achieve good results, but the change in the RRMSE
tends to be flat when the number of layers is greater than 4, which is because the overfitting
phenomenon occurs when the number of layers is too large.

(a) (b)

Figure 8. Number of neighbors and Layers parameter analysis in Exchange Rate. Left (a) is the
RRMSE result of the parameter Number of neighbors taking 0, 2, 4, and 8 respectively, and right (b)
is the RRMSE result of the parameter Layers from 0 to 6.

4.5. Results

The experiments are carried based on four test sets for the validation of the MDST-
GNN model. And the evaluation results of all methods are summarized in Table 3. The
horizon is set to 3, 6, 12, and 24 to predict the value after a specified time period in the future.
For example, it represents forecasting 3 to 24 h into the future for electricity and traffic
values in the Traffic and Electricity datasets. In Solar Energy, it means forecasting solar
energy values 30 to 240 min into the future. In Exchange Rate, it represents the forecasted
exchange rate value for the next 3 to 24 days. When the value of Horizon is larger, the
prediction task is more difficult. The optimal results for forecast are highlighted in the table
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in bold black, and the suboptimal results are shown in red. Finally, the comparison results
between the MDST-GNN model and other related models are shown in Table 3.

Table 3. Comparison of forecasting methods for multivariate time series methods.

Solar Energy Traffic Electricity Exchange Rate
Dataset Horizon Horizon Horizon Horizon

Methods Metrics 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

RRMSE 0.1922 0.2679 0.4244 0.6841 0.5582 0.6579 0.6023 0.6146 0.1393 0.162 0.1557 0.1274 0.0265 0.0394 0.0407 0.0578VARMLP CORR 0.9829 0.9655 0.9058 0.7149 0.8245 0.7695 0.7929 0.7891 0.8708 0.8389 0.8192 0.8679 0.8609 0.8725 0.828 0.7675

RRMSE 0.2058 0.2832 0.3726 0.464 0.4928 0.499 0.5037 0.5045 0.0776 0.0903 0.0971 0.102 0.0195 0.0258 0.0347 0.0447GRU CORR 0.98 0.9601 0.9289 0.8857 0.851 0.8465 0.8431 0.8428 0.9412 0.9222 0.9088 0.9079 0.9768 0.9686 0.9534 0.9355

RRMSE 0.1843 0.2559 0.3254 0.4643 0.4777 0.4893 0.495 0.4973 0.0864 0.0931 0.1007 0.1007 0.0226 0.028 0.0356 0.0449LSTNet-skip CORR 0.9843 0.969 0.9467 0.887 0.8721 0.869 0.8614 0.8588 0.9283 0.9135 0.9077 0.9119 0.9735 0.9658 0.9511 0.9354

RRMSE 0.1803 0.2347 0.3234 0.4389 0.4487 0.4658 0.4641 0.4765 0.0823 0.0916 0.0964 0.1006 0.0174 0.0241 0.0341 0.0444TPA-LSTM CORR 0.985 0.9742 0.9487 0.9081 0.8812 0.8717 0.8717 0.8629 0.9439 0.9337 0.925 0.9133 0.979 0.9709 0.9564 0.9381

RRMSE 0.1778 0.2348 0.3109 0.427 0.4162 0.4754 0.4461 0.4535 0.0745 0.0878 0.0916 0.0953 0.0194 0.0259 0.0349 0.0456MTGNN CORR 0.9852 0.9726 0.9509 0.9031 0.8963 0.8667 0.8794 0.881 0.9474 0.9316 0.9278 0.9234 0.9786 0.9708 0.9551 0.9372

RRMSE 0.1775 0.2301 0.2997 0.4081 0.4216 0.4414 0.4495 0.4453 0.0748 0.0845 0.0926 0.0976 0.018 0.0247 0.034 0.0442SCINet CORR 0.9853 0.9739 0.955 0.9112 0.892 0.8809 0.8772 0.8825 0.9492 0.9386 0.9304 0.9274 0.9739 0.9662 0.9487 0.9255

RRMSE 0.1764 0.2321 0.3082 0.4119 0.4162 0.4461 0.4377 0.4452 0.0738 0.0833 0.0884 0.0922 0.0172 0.0245 0.0337 0.0431MDST-GNN CORR 0.9855 0.9735 0.9519 0.9103 0.8958 0.8803 0.8841 0.8792 0.9454 0.9346 0.9264 0.9222 0.9811 0.9727 0.9578 0.9392

Note: The predicted optimal results are in bold black, and the suboptimal results are shown in red.

We plot the RRMSE results for all methods of Electricity and Traffic, as shown in
Figure 9. From the figure, it can be found that the method using neural network signifi-
cantly outperforms the VARMLP model in the dataset. Obviously, neural networks have
more advantages in time series forecasting. Subsequent models using neural networks
have improved their prediction accuracy. Among them, MTGNN combined with spatial
information outperforms LSTNet and TAP-LSTM models in results. The SCINet model also
has good results in some datasets. Figure 9a shows that the RRMSE of multiple models is
relatively stable, and the prediction accuracy of each model is improved. At the same time,
Figure 9b can see that the MTGNN model fluctuates when the horizon is 6, which indicates
that the spatial dependence of the dataset is weak when the horizon is 6, which interferes
with the model. Compared with MTGNN, the MDST-GNN model has smaller fluctuations
in this part, which shows that the attention method plays a role in filtering information and
reduces the interference of irrelevant information. When the horizon is other values, the
RRMSE tends to be stable.

(a) (b)

Figure 9. RRMSE comparison of all methods in Electricity and Traffic. Left (a) is the RRMSE result of
all methods in Electricity, right (b) is the RRMSE result of all methods in Traffic, and horizon takes 3,
6, 12, and 24 respectively.

The RRMSE metric of our model is improved by 1%, 1.4%, 3.5%, and 3.3% on the
Electricity dataset compared to the state-of-the-art method. Furthermore, on the Traffic
dataset, when the horizon is 12, the RRMSE metric is 1.9% higher than the best baseline
method, which proves the effectiveness of the model. More importantly, forecasts have



Appl. Sci. 2022, 12, 5731 17 of 21

also improved for noncyclical exchange rate data. This is because the change trend of the
exchange rate is relatively stable. In this paper, the temporal information of the exchange
rate is well captured by the model’s deep information extraction. It is demonstrated
that the framework can capture deep spatiotemporal information well, even in data with
weak periodicity.

To illustrate the effectiveness of MDST-GNN in modeling spatiotemporal features in
time series data, Figures 10–12 show the performance of the MDST-GNN on a specific time
series (one of the output variables). Our model obtains results that are consistent with the
truth value in the periodic pattern of the data. The comparative prediction results and truth
values on the test set Electricity are shown in Figure 10. The comparison of the prediction
results on the test set Traffic is shown in Figure 11. The comparison of the prediction
results on the test set Solar Energy is shown in Figure 12. Our model achieves excellent
performance on prediction tasks. The error is small between the predicted result and the
truth value.

Figure 10. Electricity (Horizon = 24) forecast results.

Figure 11. Traffic (Horizon = 24) forecast results.
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Figure 12. Solar Energy (Horizon = 24) forecast results.

However, the model performed slightly worse on the prediction task of Solar Energy
data. As can be seen from Figure 12, the periodic pattern is captured by the model well,
but there is an error between the results and the truth value within the periodic time. This
is because the fluctuation in the data at a certain moment causes the periodic information
to be disturbed. In Figure 6, it can be seen that the data remain periodic, but the data
fluctuate greatly in a certain period of time. At the same time, the power generation of
solar power plants is also affected by many other factors. For example, the local weather
and temperature.

Overall, the model is more dominant on most tasks, achieving excellent performance
on the exchange rate, traffic, and electricity datasets.

4.6. Ablation Study

A model combining an attention mechanism and time series segmentation is proposed
in this paper. In this section, an ablation experiment is performed on this model, and the
effectiveness of the above method will be verified. Among them, the models containing
different modules are named as follows:

• w/o A: The attention mechanism part is removed from the information selection
process of the graph convolution module. The output of the information selection step
is passed directly to the next section.

• w/o S: Remove the down-sampling convolution module from the model and replace
that part with a fully connected layer.

The effectiveness of the module is verified by removing the attention method and the
down-sampling convolution module. The results of the ablation experiments on the test
set are shown in Table 4. Ablation experiments verify the effectiveness of the modules in
four datasets. The best results are shown in bold black. The overall model outperforms
the ablation model by comparison. In Table 4, the attention method has advantages on
Electricity and Traffic, and the down-sampling convolution method is more effective on
Exchange Rate and Solar Energy. The effectiveness of integrating these two parts into the
model is verified in Table 4. Among them, the data are filtered by the attention method,
so that the data retain more important information and enhance the robustness. Down-
sampling convolution captures the deep spatiotemporal information of the sequence and
enhances the predictive power of the data on cyclical trends. Overall, the accuracy of
model predictions is improved. To verify the effectiveness of the module, we plot the
one-dimensional time series (one variable) of the Electricity test set in Figure 13, where the
green curve is the real data and the yellow dashed line is the predicted value. We can see
that the full model captures the spikes in the data better, and the w/o S model does not
capture this change.
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Table 4. Ablation study (Horizon = 24).

Dataset Metrics w/o A w/o S MDST-GNN

Solar Energy RRMSE 0.4279 0.429 0.4119
CORR 0.903 0.9042 0.9103

Traffic RRMSE 0.4584 0.4577 0.4452
CORR 0.8732 0.87 0.8792

Electricity RRMSE 0.0952 0.095 0.0922
CORR 0.9212 0.9213 0.9222

Exchange Rate RRMSE 0.0444 0.0459 0.0431
CORR 0.939 0.9344 0.9392

Note: The optimal results are in bold black.

(a) (b)

Figure 13. Time series (one variable) predicted and true values for the Electricity test set (Horizon = 24).
Left (a) is the w/o S model result, right (b) is the result of the full model.

In summary, time series forecasting involves temporal, spatial, and periodic infor-
mation. Of course, introducing the modules proposed in this paper will incur additional
computational costs. However, it is very helpful to consider the above information. The
improvement of this information on the prediction task is demonstrated by the results of
the ablation experiments.

5. Conclusions

Multivariate time series have complex spatiotemporal information, and there are
dependencies among multiple series. In addition, the time series has a periodic pattern.
According to the characteristics of multivariate time series, a multivariate time series deep
spatiotemporal forecasting model with a graph neural network (MDST-GNN) is proposed
in this paper. It comprises four modules: graph learning, temporal convolution, graph
convolution, and down-sampling convolution. In order to deal with complex information
better, the model adopts a graph neural network to transform complex information into
processable graph information. Furthermore, the model utilizes a temporal convolutional
network to extract temporal information in the predicted sequence. Graph convolutional
networks are used to extract spatiotemporal information of predicted sequences. The
attention method is added to improve the information filtering ability. Down-sampling
convolutional networks are used to extract deep spatiotemporal information. The MDST-
GNN model can filter out irrelevant dependency information between graph nodes and
is more suitable for multivariate time series forecasting. The prediction accuracy of data
peaks can be enhanced by capturing deep spatiotemporal information. In experiments, the
proposed model predicts future values at different intervals for four datasets. Based on
the above discussion and experimental results, the advantages of MDST-GNN are verified
in the experimental results on four sets of public datasets, and the attention method and
down-sampling convolutional network proposed in this paper improve the prediction
accuracy of the model.

The MDST-GNN model has achieved significant improvements on multiple datasets,
but there are still certain problems in predicting data with large short-term fluctuations
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such as Solar Energy. This is mainly caused by the insensitivity of convolutional networks
to local fluctuations and the lack of long-term memory information. At the same time, the
model has many parameters, and how to reduce the model parameters while maintaining
good prediction performance is a problem worth pondering. Our next research will revolve
around the problem of model lightweight and insensitivity to local fluctuations.
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