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Featured Application: This work’s contributions can be applied to the development of automatic
systems for detecting and assessing safety issues in work places and public spaces, given obser-
vations that contain multimedia cues.

Abstract: Modern businesses are obligated to conform to regulations to prevent physical injuries
and ill health for anyone present on a site under their responsibility, such as customers, employees
and visitors. Safety officers (SOs) are engineers, who perform site audits to businesses, record
observations regarding possible safety issues and make appropriate recommendations. In this work,
we develop a multimodal machine-learning architecture for the analysis and categorization of safety
observations, given textual descriptions and images taken from the location sites. For this, we
utilize a new multimodal dataset, Safety4All, which contains 5344 safety-related observations created
by 86 SOs in 486 sites. An observation consists of a short issue description, written by the SOs,
accompanied with images where the issue is shown, relevant metadata and a priority score. Our
proposed architecture is based on the joint fine tuning of large pretrained language and image neural
network models. Specifically, we propose the use of a joint task and contrastive loss, which aligns the
text and vision representations in a joint multimodal space. The contrastive loss ensures that inter-
modality representation distances are maintained, so that vision and language representations for
similar samples are close in the shared multimodal space. We evaluate the proposed model on three
tasks, namely, priority classification of input observations, observation assessment and observation
categorization. Our experiments show that inspection scene images and textual descriptions provide
complementary information, signifying the importance of both modalities. Furthermore, the use of
the joint contrastive loss produces strong multimodal representations and outperforms a baseline
simple model in tasks fusion. In addition, we train and release a large transformer-based language
model for the Greek language based on the Electra architecture.

Keywords: occupational safety and health (OSH); safety reports; multimodal fusion; text–visual;
contrastive learning; text classification

1. Introduction

Occupational safety and health is a critical process for all industries that require
auditing to complement or facilitate the monitoring of events that introduce risk of in-
jury. Information and communication technologies have been at the forefront of business-
intelligence tools and services that support safety analysis and effective decision making.
Recently, their ability to fully utilize portable devices and their innovative features have
provided the means for mitigating technology-oriented design issues and limitations and
moving towards a more human-centered approach [1]. Capitalizing on user requirements
and skill set, modern tools produce audits and safety reports that collect media-enriched
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temporal and spatial information. This essentially translates to safety data that require
more sophisticated maintenance, management, organization and analysis. During the last
decade, long-term data has been processed to produce various legislative, regulatory and
process-oriented safety recommendations that, in turn, also offer a valuable resource for
analysis and classification [2].

Mining incident reports and safety audits is gradually becoming the main paradigm for
extracting insights that optimize risk analysis and assessment strategies. Textual databases
of safety narratives are being increasingly exploited to aid decision-making tasks and
further improve inspection planning, process monitoring and coordination [3]. Being
highly confidential and corporate-sensitive, such information silos and data pools have
not been shared or open for a long time. Regulatory acts and initiatives have managed to
remove a few barriers and achieve public sharing. As a result, research initiatives were
able to gain access and analyze reports across many industries, mapping diverse working
environments and capturing a wide scope of events [4,5]. Specifically, text classification is
emerging as a key enabler of industrial knowledge management, leveraging the aggregated
wealth of corporate and manufacturing information captured in a textual format. Fueled by
the ongoing and rapid digital transformation of industry, text mining techniques have been
extensively studied for the detection and diagnosis of engineering problems, reliability
issues and safety risks. Currently, machine learning is the primary enabler for analytical
processes that address challenges that span from labeling and mining reports for the
classification of causal factors [6], to developing safety leading indicators and driving
predictive policies [7,8].

The world around us is multimodal. We hear sounds, see images, smell odours and use
language to represent high-level concepts. Multimodal processing aims to combine infor-
mation from multiple sources (modalities) and effectively model inter- and intra-modality
interactions. These representations can be used in machine-learning pipelines to solve
real-world tasks. Common examples of multimodal tasks involve image captioning [9],
visual question answering [10,11] and sentiment analysis [12–14]. Furthermore, in multi-
modal formulations of traditionally unimodal tasks, the inclusion of multiple modalities
can significantly improve model performance, e.g., machine translation [15] and speech
recognition [16,17].

In this work, we employ multimodal processing in the field of OSH data analysis.
For this, we create a novel dataset, Safety4All, for the classification of safety-related obser-
vations. Safety4All is a collection of textual and visual observations by expert SOs, with
associated metadata, gathered during on-premise safety inspections in real-world busi-
nesses. We propose a multimodal architecture that takes advantage of the representational
power of modality-specific, large pretrained models for the extraction of unimodal textual
and visual representations. These representations are projected in a shared multimodal
space through contrastive learning. In contrast to previous works, we do not use contrastive
learning for large-scale model pretraining; rather, we formulate a joint task and contrastive
objective during regular model training.

Our key contributions can be summarized as follows:

• We present an overview of the data-driven approaches in the literature geared towards
OSH applications. We summarize the currently studied applications and datasets and
present an overview of the current trends.

• To our knowledge, most of the works on the data-driven analysis of OSH observations
are based on text-based analysis. The multimodal analysis of textual and visual
observations is a novel and not widely explored field. In this paper, we demonstrate
that the inclusion of on-site photographs can provide complementary information to
the observation description that can significantly improve performance of data-driven
OSH applications.

• We construct and curate the Safety4All dataset, comprising of 5344 safety observations,
gathered from 86 safety officers (SO) across 486 sites. The observations consist of pairs
of on-site photographs and issue descriptions, accompanied with relevant metadata.
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We present an extensive analysis on this dataset and define three tasks for the au-
tomatic analysis of OSH observations, i.e., (a) priority classification of observations,
(b) observation assessment and (c) observation categorization.

• We perform extensive ablations regarding the proposed shared-space fusion approach,
using all combinations of two state-of-the-art text and visual encoders, and compare it
to a simple late-fusion baseline. Our analysis shows that shared-space representations
extracted with the use of the joint loss yield a superior performance to the representa-
tions extracted through the baseline fusion approach for all experimental settings.

• We train and publish GR-Electra, a large pretrained language model for the Greek
language based on the ELECTRA architecture [18], created for the analysis of the issue
descriptions. GR-Electra yields comparable performance to GreekBERT [19], given
less training data, due to the aggressive cleaning of the pretraining corpus.

• Code for all trained models will be made open source (https://gitlab.com/ilsp-spmd-
all/public/s4a-models-public, accessed on 31 May 2022).

Paper Organization

The paper is organized as follows: In Section 2, we present an extensive list of re-
lated works for data-driven OSH applications, and multimodal and contrastive machine
learning. In Section 3, we describe the collection and curation of the Safety4All dataset,
used throughout this work. In Section 4, we describe the proposed multimodal fusion
approach and the joint contrastive learning objective. In Section 5, we describe the training
pipeline for GR-ELECTRA. In Section 6, we describe the experimental configuration we use
and provide reproducibility details for the proposed models. In Section 7, we present and
discuss experimental results for three OSH tasks, enabled by the Safety4All dataset, i.e.,
priority classification in Section 7.1, observation assessment in Section 7.2 and observation
categorization in Section 7.3. Finally, in Section 8, we discuss the main findings of this work,
summarize the key conclusions, and recommend avenues for future works and extensions.
An ethical statement about the implications of this work is included in Section 9.

2. Related Work
2.1. Text-Mining of Safety Narratives and Reports

Narrative texts have been, for decades, the recording format of any report that de-
scribes an incident, an accident, an injury or a potential risk. Combining machine learning
with natural language processing can automate their classification and help safety man-
agers in construction projects to quickly understand underlying conditions and factors and
gain insights for proper assessment regarding safety measures [20]. As part of these safety
reports, near misses often provide free-text descriptions for unplanned events that intro-
duce risk but have not resulted in an injury yet. Their place in the causality chain of events
make them extremely useful for interpreting the context of accidents and the function of
every incident mechanism. This, in turn, allows for better reaction times and more efficient
prevention, by installing the appropriate monitoring agents and allocating the needed
resources [21]. Such methods can significantly impact the efficient forecasting of safety
risks in construction, since the frequency of critical events is considerably higher compared
to other industries and working environments, and often the accumulated knowledge is
limited by manual analysis or lack of capacity and means to handle the large number of
reports [22,23]. Evaluating several automatic classification methods has revealed that a
key challenge resides in the overly focused content of many narratives, about aspects that
are not directly relevant to causes or effects. Proper labeling and keyword classification
are also affected by the diverse semantics and phrasing of similar or the same events [24].
No classifier can uniformly offer the best performance, but using text ontologies and lex-
icons can overcome the excessive volume of terms in narratives during pre-processing.
Domain-specific lexicons can be extracted from construction accident reports to refine the
analysis process and help identify safety risk factors. Producing suitable lexical resources
and investing in their semantic relationships (i.e., synonyms) helps improve text segmenta-

https://gitlab.com/ilsp-spmd-all/public/s4a-models-public
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tion. Furthermore, mining performance can benefit from placing experts in the loop and
allowing them to contextualize high-frequency terms [25]. Fusing lexicons into text mining
can help overcome language-specific limitations and provide the semantic tools for ad-
vanced pre-processing. The results can drive established methods, such as an ABC analysis
that calculates the importance of safety-risk-management processes [3]. Finally, metrics
have also been studied to evaluate the strength of classification categories for construction
incidents, allowing their prioritization when considering a standardized set for specific
accidents and risks. While weak categories can still offer meaningful knowledge, their use
will not contribute to the performance of machine-learning applications [26].

Towards using more sophisticated semantic tools, ontologies can offer significant value
when analyzing structured safety reports that feature strictly defined relationships between
established parameters and metrics. They provide formalizations that leverage sharing, in-
tegration and collaboration, while primarily facilitating the use of automated reasoning [27].
While traditional methods of text classification require a properly maintained reference
of a classified corpus for training and ensuring efficient performance, ontology-oriented
classifiers capitalize on aggregated domain knowledge to offer enhanced accuracy [28,29].
This approach can effectively overcome the boundaries introduced when dealing with
reports in different languages. Building a multilingual domain ontology can facilitate the
identification of meaningful semantic patterns in incident descriptions, regardless of their
language [30].

Automating the classification of unstructured text from hazard reports can also create
the appropriate input for specific safety-management systems and visualization tools such
as bow-tie diagrams. Such integration prospects can directly benefit the adoption of best
practices, in terms of safety process pipelines. Strengthening the management of safety
knowledge can also aid incident investigation and facilitate the collection of provenance
data [31]. Dealing with hazards and, specifically, a HAZOP analysis, safety experts can now
conduct text mining with active and deep-learning techniques, to re-evaluate previously
recorded knowledge and validate or expand it accordingly. Gathering hints and insights
from this versioning process empowers them to detect hidden dangers and actively enrich
a reference resource that supports and guides every professional in the field [32].

The aviation domain is another demanding field and an early adopter of modern data-
driven frameworks. The use of NLP methods and metadata analysis for incident reports
can reveal how causal factors and external parameters are shared across many incidents,
and help understand how the experience of each collaborator connects and aligns, despite
their subjective nature [33]. Classification of safety narratives in this context can help in
assessing the probability of the event reaching a higher severity level, and studying the
controllability and intervention capacity of the people involved. Familiarity and awareness
can also be studied to determine the baseline cognition state required for the successful
mitigation of the problem and confrontation of unexpected obstacles [34]. Since aviation is
considered as a domain where safety reporting systems have reached higher maturity and
sophistication, providing advanced and interactive environments for experts to view, filter
and identify emerging dangers and risks is a necessity [35].

In Table 1, we present an overview and categorization of the applications of data-
analytics and text-mining techniques in the OSH domain across industries. The studied
research indicates that construction is a prominent industry, currently leading the advances
of both research and development on risk analysis and safety solutions. Text classification is
a challenging task and modern approaches show that its accuracy can greatly benefit from
utilizing modern lexical and semantic resources, such as domain-oriented lexicons, thesauri
and ontologies. We also note that several research initiatives employ the evaluation of key
risk parameters such as severity, priority and preparedness, to rate and rank safety reports,
or even assess inspection performance. In terms of datasets, most research facilitates the
volume of reports that populate the OSHA repositories.

While rich in size and often extensive as a timespan, publicly available datasets
primarily offer text-only reports with no additional formats such as photos or videos. This
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is commonly expected, since such media types take up significantly more storage resources
and contain sensitive data that require sophisticated anonymization techniques. In recent
years, both major industries and OHS services have invested in devices (smartphones) and
software services (clouds) that leverage media production during inspection and make it
a necessity, to maximize the value of insights from the multimodal analysis of enriched
safety reports. This paper follows this trend and reports the results from the analysis of a
dataset from a major Greek OHS service contractor.

Table 1. Overview of related data-driven applications in the OSH domain.

Reference Number OSH Industry Task Modality Data Availability Dataset Size

[2] Mining
Recommendations

analysis/
similarities and themes

Text
(incident reports)

Public
(Literature) 10

[3] Construction

Analysis of
importance degree

and safety risk
factors

Text
(accident reports)

Public
(China’s State

Administration
of Work Safety)

156

[4] Construction
State-based

classification
of accidents

Text
(injury reports)

Public
(OSHA Arizona office) 513

[5] Multiple

Classify according
to industry

Identify
sectoral-patterns

Text
(accident reports)

Public
(OSHA US Office) 2842

[6] Aviation

Classify the
primary problem
and contributing

factors

Text
(self-reported

safety narratives)

Public
(Aviation Safety

Reporting System
database)

4497

[7] Construction

Classify sites
in accordance to
their safety risk
in construction

projects

Text
(accident cases)

Private
(Large contractor

in Singapore)
1203

[8] Mining
Predict days
away from

work

Text
(tabular data

and narratives)

Public
(Mine Safety
and Health

Administration)

–

[20] Construction
Classification of
accidents’ cause

Text
(accident reports)

Public
(OSHA) 1000

[21] Construction
Classify near-miss

incidents in
safety reports

Text
(near-miss reports)

Private
(Wuhan Metro Group

Co., Ltd.)
3280

[22] Construction

Classify injury
reports

(precursor, code,
severity,

bodypart,
energy source)

Text
(injury reports)

Public
(Published research

and OSHA)
2201

[23] Construction
Classification of

incidents into
cause categories

Text
(accident reports)

Public
(OSHA) 4470
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Table 1. Cont.

Reference Number OSH Industry Task Modality Data Availability Dataset Size

[24] Construction

Classification of
narratives based

on Workplace Safety
and Health Institute

report

Text
(accident reports)

Public
(OSHA) 4470

[25] Construction
Identify/extract

critical safety
risk factors

Text
(accident reports)

Upon request
(Construction companies) 221

[26] Construction

Evaluate the
strength of

candidate TC
categories

Text
(inspection records)

Private
(Partner general

contractor)
262

[28] Construction

Identify potential
hazards and
suggests safe
approaches

Text
(incident reports)

Public
(CPWR-FACE-OSHA) 1167

[29] Oil and gas

Recognition and
classification of

failed occupational
health control

Text
(unstructured reports)

Private
(–) 500

[30] Multiple
Classification of
incidents with

multilingual ontology

Text
(multilingual reports)

Public
(Swiss Federal Office

of Transport)
5065

[31] Railway

Classification of
close call reports

with threat pathways
on bow-tie diagrams

Text
(close-call reports)

Private
(Great Britain
railway’s close
call database)

219,231

[32] Chemicals
Recognition of
chemical safety

entities

Text
(HAZOP reports)

Public
(China’s State

Administration
of Work Safety)

–

[33] Aviation
Clustering flight
safety narrative

Text + Metadata
(in-flight events

narratives)

Public
(Aviation Safety

Reporting System)
13,336

[34] Aviation
Classification and

escalation of
safety events

Text
(investigation reports)

Public
(Five national
agencies and
authorities)

317

[35] Aviation
Classification of
safety narratives

Text
(safety reports)

Public
(French DGAC

database)
136,861

2.2. Pretrained Language Encoders and Image Encoders

The adoption of large pretrained language models has resulted in impressive results
in multiple natural language benchmarks and tasks [36]. ELMO [37] is one of the first
large models that learns contextualized word representations, i.e., embeddings, via Bidi-
rectional LSTMs [38] and autoregressive lagnuage model losses. BERT [39] utilizes the
transformer architecture [40] as well as masked language modeling (MLM) loss function,
and learns contextual representations of (tokenized) words. RoBERTa [41], ALBERT [42],
and ELECTRA [18] all heavily rely on BERT and propose improvements on the initial train-
ing strategy and/or architecture. The GPT family [43–46] propose a generative pretraining
language model loss function coupled with a decoder-based transformer architecture and
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its successors are larger models trained on massive datasets with additional pretraining
heuristics to improve scalability.

Vision models and, in particular, image classification have been one of the early suc-
cesses in deep learning. In particular, transfer learning from CNN architectures, pretrained
as image classifiers on large datasets (e.g., ImageNet [47]) have boosted performance or
enabled a large variety of downstream tasks. These architectures include VGG [48], the
ResNet model family [49–51], and, lately, EfficientNet [52]. Transformer and (multi-Layer
perceptron) MLP-based architectures have also been proposed, enabling efficient pretrain-
ing of deeper models on larger datasets. ViT [53] is a transformer-based image encoder,
pretrained on a 300M labeled image dataset and then fine tuned on downstream tasks.
MLP-Mixer [54] follows a similar approach to ViT, but is purely based on MLPs which
have been shown to match CNN and transformer-based architectures when pretrained on
massive labeled data. In [55], Chen et al. propose a training procedure for ViT that smooths
the loss landscape and does not require large-scale pretraining for good performance.
Self-supervised learning in vision models has also been explored for computer vision
models. In [56], the self-supervision signal is generated through context-prediction loss,
while in [57], Zhang et al. propose the image colorization task for model self-supervision.
In addition, iGPT (image GPT) [58] reduces image resolution and applies an unsupervised
generative pretraining on a transformer-based architecture.

The above is a succinct overview of the available encoders for image and language
inputs. For a more detailed study, we direct the reader to this survey [36], which summa-
rizes the history, trends and open questions in the field of pretrained models, as well as the
following surveys that take a deep dive into the individual models [59–61].

2.3. Contrastive Learning

Contrastive learning is a subfield of metric learning that aims to explicitly shape the
latent feature space learned by a neural network. This is usually performed by formulating
training losses that enforce that latent features of samples belonging to the same class are
close to each other, while other samples lie far away in the latent space. One early attempt
at supervised contrastive learning is proposed in [62], where a loss function is formulated,
which, given a pair of input samples, minimizes their latent feature distance if they belong
to the same class and maximizes it otherwise. Other lines of work in contrastive learning
rely on “negative sampling”, i.e., the sampling of “counter-examples”. In general, given
an anchor sample, a positive and a negative sample are chosen and the embedding of the
anchor is forced to have high similarity with the positive sample and low similarity with the
negative. This approach was popularized by the triplet loss [63], which compares triplets
within a batch and is generalized, in [64], to compare all elements within the batch. In [65],
Sohn et al. propose another extension to the triplet loss which compares a positive sample
with multiple negative samples. A probabilistic formulation of this is the noise contrastive
estimation (NCE) loss [66], and its softmax version [67], which aims to distinguish an
input sample from noise. In [68], the authors propose InfoNCE, an extension of NCE that
compares an input sample to multiple independent noise samples.

In the multimodal setting, contrastive learning has been applied for the alignment of
multimodal representations in a shared multimodal space. In [69], the authors propose
MACD, which uses a cross-modal version of the NCE loss for pretraining a multimodal
model to solve downstream natural language inference tasks. A multi-layer version of
NCE was also used for pretraining, in [70], for action recognition and video retrieval.
In [71], a large text corpus was augmented with multimodal data, which were used to align
textual representations using a variant of the SimCSE loss [72], in order to create better
sentence embeddings. In [73], a variant of the InfoNCE loss was used for the pretraining
of a multimodal model to produce transferable representations for multiple downstream
tasks. In [74], an n-pair auxiliary loss was used in a bi-modal architecture for fake-news
detection and fine-grained sentiment analysis. In [75,76], the authors proposed contrastive-
learning pretraining objectives that model both inter- and intra-modality representations
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with applications in video captioning and retrieval ([75]), and cross-modal retrieval and
image tagging ([76]). In [77], MIL-NCE was proposed, an extension of softmax NCE [67]
for multimodal pretraining. A pretraining objective based on NCE loss was also proposed
in [78], which aimed to build shared and independent multimodal spaces for three modali-
ties using the visual modality as an anchor. Finally, in [79], the authors proposed the CLIP
model, which utilizes an n-pair loss for large-scale pretraining of a visual-text multimodal
architecture with applications in zero-shot learning. In Table 2, we summarize the use of
contrastive objectives for multimodal representation learning in the literature. In particular,
we summarize the downstream tasks they tackle, the types of contrastive objectives and the
datasets used for self-supervised pretraining (if any). We observe that most of these works
use the contrastive-learning paradigm to construct self-supervised objectives for model
pretraining on large-scale datasets, with numbers of samples in the order of millions. In
our case, we want to leverage contrastive learning to align the text–visual representations
in the multimodal space for a smaller-scale setting. Therefore, we opted to use contrastive
loss as an auxiliary objective during model training.

Table 2. Summary of related works that utilize contrastive objectives for multimodal representa-
tion learning.

Reference Number Downstream Tasks Contrastive Objective Pretraining Datasets

[69] Unsupervised natural language
Inference InfoNCE [68] COCO [80], Flickr30k [81]

[70] Action recognition
Video retrieval InfoNCE [68] HowTo100M [82]

[74] Fake-news detection
Sentiment analysis N-pair [65] –

[75] Video retrieval
Video captioning Cross-CLR [75] –

[76] Object detection
Cross-modal retrieval InfoNCE [68] COCO [80], Stock [83]

[77]
Action recognition
Action localization

Video retrieval
MIL-NCE [77] HowTo100M [82]

[78]
Image/sound/action

classification
Zero-shot retrieval

InfoNCE [68], MIL-NCE [77] HowTo100M [82], Audioset [84]

[79] Few-shot/zero-shot
image classification N-pair [65] YFCC100M [85], internal image–text dataset [79]

3. The Safety4All Dataset

In the present analysis, the data used were gathered during the health and safety
visits of 86 Safety Officers (SO) on 486 sites. The approximately 5344 issues were collected
from multiple locations across Greece, between hundreds of companies. These issues
were identified on four broad location types: (i) offices, (ii) retail, (iii) warehouses and (iv)
construction Sites. Since this dataset is linked with hundreds of distinct working places,
each location type may span across a wide diversity of sites and conditions. As an example,
while a small warehouse (of less than 300 square meters) is essentially a quite different site
from a large logistics center, they both share similar hazards and, thus, inspection is based
on the same criteria.

3.1. Locations and Checklists

A checklist is a taxonomy of possible health and safety hazards that can be encountered
in a location and is used to guide the SOs to produce structured observations. Each location
type has a corresponding checklist (i.e., offices checklist). This checklist offers an extensive
set of probable events and issues, organized in groups and sub-groups, to be referenced
by the SO during inspection. Every probable issue is placed under a specific sub-group
of the checklist taxonomy. For example, regarding an office, an SO may detect and report
an issue that falls in the group ‘Fire Safety’ and the sub-group ‘Fire Extinguishers’. The
checklists’ taxonomy is not exhaustive and SOs are not expected to make a binary (i.e.,
yes/no) decision for every possible issue. The software that captures the SO reports allows
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them to browse these checklists as a reference guide for what needs to be inspected and
audited in every location type and situation, in general.

Every distinct location type presents a very specific set of relevant and probable
hazards. To effectively assist the SO in identifying them, a specific checklist has been
studied, defined, and developed. The checklist is curated according to the scope and
specifications of the sites that it serves, updating its internal structure of groups and sub-
groups. Despite the differences between locations and the safety parameters that profile
them, there can be checklist overlap of common issues and shared hazards. For example,
hazards associated with hot works (welding, disc cutting etc.) will be covered only in the
construction-site checklist, whereas subjects relevant to fire safety will be the same in all
four checklists (i.e., the presence of minimum required units for fire extinguishers). Table 3
shows the number of groups and sub-groups in the checklists of the four location types.

Table 3. Checklist statistics for different locations.

Location Number of Main Groups Total Number of Internal Sub-Groups

Office spaces 3 14
Warehouses 4 20
Retail stores 4 18

Construction site 19 166

Office spaces: This location type covers all office spaces, regardless of their size and
complexity. The respective checklist focuses on three main groups: (i) issues about the
site itself, (ii) issues relevant to the workstations, and (iii) other special matters. The first
category includes sub-categories such as emergency exits, fire safety, electro-mechanical in-
stallations, lighting, etc. The second category includes ergonomic hazards for workstations,
while working on computers, cleaning, storing of materials, drivers etc. The last category
addresses the employer’s compliance with very specific aspects, such as documentation,
training, etc. While large office-buildings may feature more hazards than small ones, in
terms of actual cases and similar issues, their main groups and types remain the same.

Warehouses: Warehouses are a distinctly different site as they have some unique
hazards related to manual work, the operation of lifting equipment, and warehousing
structures. The main groups are the same as in the office’s checklist, while the sub-groups
differ and include warehouse-specific checklist items such as the required certification of
lifting equipment.

Retail stores: There are two important factors that make the retail checklist quite
different from the rest of the location types. Retail stores constitute the only type that needs
to address and manage hazards associated with large numbers of visitors and the general
public. In addition, retail stores are often part of larger shopping malls and department
stores; thus, hazards linked to the activities of neighboring stores also need to be accounted
for. Main groups are once more the same as other location types, with different checklist
items inside them.

Construction sites: The construction-site checklist is the most extensive of the all the
location types. The comparatively large number of checklist items (166 vs. <20) is due to
the extensive list of activities and associated hazards that the checklist needs to cover. In
addition, all the activities carried out on a construction site, such as working at height, hot
works, use of heavy machinery and equipment, etc., introduce significantly more legal
obligations and accompanying paperwork.

3.2. Observation Attributes

The information included in each report of our dataset is the same across all checklists
and location types. Using a mobile application, SOs submit their reports by entering their
input in a form that contains the following fields:

• Audit/inspection details (company, location, duration, type of checklist previously used)
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• Safety officer carrying out the audit/inspection
• Issue group and sub-group

The SO selects the location type of a site during the first audit. From that point on, the
contribution is mapped upon the issues of the specific checklist. When reporting an issue,
the SO can provide:

• A short description of the issue (i.e., what is the deviation)
• A short description of the proposed corrective action
• The priority of the issue (from a scale of low, medium, and high)
• Photographs displaying the issue (up to four stills). An example is shown in Figure 1.

Figure 1. Example of an accompanying photograph for an observation.

In our multimodal analysis, we only considered issues accompanied by photographs.
For each issue, we selected one of the accompanying photographs and created pairs of
images and textual descriptions. Table 4 summarizes all the attributes present in an
observation, along with example values.
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Table 4. Example observation with accompanying metadata.

Issue Attribute Example Value

Observation ID 4C1B1763-A909-9F4D-BBAB-27177F62C337
Safety officer Anonymized SO ID (e.g., 5123)
Location Warehouse
Checklist group Water and Gutters
Issue description There is an inflow of water from the roof to the distributor space
Corrective action Carry out waterproofing works
Priority High
Photograph Figure 1
Issue source Spaces
Category General Issues
SO expertise Expert

3.3. Observation Priority

In the domain of risk management and health and safety, it is important to define the
concepts of “Hazard”, “Risk”, “Severity” and “Probability”.

Hazard: Source with a potential to cause injury and ill health; the potential to cause
harm. Harm includes ill health and injury; damage to property, plant, products or the
environment; production losses or increased liabilities.

Risk (R): the likelihood that a specified undesired event will occur due to the realiza-
tion of a hazard by, or during, work activities or by the products and services created by
work activities.

Severity (S): the amount of damage or harm a hazard could create.
Probability (P): the likelihood of the hazard occurring.
The above concepts are associated in Equation (1):

S× P = R (1)

These terms are used mainly in risk assessment studies. The reason we decided to use
the term priority instead of the above risk rating was to simplify the process of resolving
the raised issues. For example, in an office, most of the issues would be low to medium risk,
whereas in construction works, the majority would be medium to high. This bias offers
little information on which issues the site owners should tackle first.

In Figure 2, we can see the distribution of observation priorities in different locations.
We can see that the distribution is skewed towards high-priority issues in construction
sites, due to the dangerous and heavily regulated work. Specifically, construction sites
are constantly changing; thus, new hazards are constantly created. Stores also have a
large proportion of high priority issues, because retail shops also host the general public;
thus, even a hazard which may be considered negligible in an office environment may
become significant in a retail shop. Finally, offices are the least changing environments,
both in terms of infrastructure and people, and are generally considered more safe working
environments; thus, they have the least amount of high-priority issues.
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Figure 2. Distribution of observation priorities across the different location types (construction, store,
warehouse, office). Green: high, orange: medium, blue: low.

3.4. SO Expertise

The semantics of the dataset’s priority rating incorporates the concept of risk by
evaluating both severity and probability within the context of the specific site and while
considering all its new and pending issues. Investing in the SOs expertise and skill to
dynamically assess and calibrate the baseline of this rating, the dataset features a certain
degree of subjectivity. To filter this bias and measure the effectiveness of the human in the
loop, a three-point scale ranking (inexperienced, experienced, expert) of SO’s expertise
was produced by Ergonomia based on objective parameters, such as years of experience,
frequency of inspections, average length of issues descriptions and diversity of audited sites.
Figure 3 shows the number of observations of SOs per their experience level. Each point
in the scatter plot corresponds to one SO. We can see that, on average, more experienced
users have reported more observations, but observation volume is not the sole attribute for
assessing SO experience. In Figure 4, we see the average priority ratings across observations
reported by each SO. The SOs are split by their expertise level. We can see that experienced
SOs and expert SOs exhibit a smaller deviation across their ratings. Furthermore, we can
see that experienced SOs and expert SOs generally concern themselves with higher priority
issues, while inexperienced SOs report lower priority issues on average.
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3.5. Observation Categorization

For further analysis, we clustered the checklist groups into two high-level ontologies,
i.e., “Category” and “Issue Source”.

Observation Category: This ontology aims to split observations into semantic cate-
gories that describe the domain of an issue. For example, we clustered together the checklist
groups for “Fire extinguishers” and “Transportation, Use and Storage of Gas Cylinders”
into the high-level category “Fire safety”. Similarly, we grouped together checklist groups
about “Electrical Panel Grounding” and “Worn out Cables” into a high-level category
named “Electrical Safety”. This allows for the organization of observation in a high-level
ontology, which can be used for assigning the reviewing of observations to people with the
correct expertise. Table 5 summarizes the high-level categories with examples of checklist
groups that belong to each category. In Figure 5, we can see a histogram of the distribution
of the different categories split by the observation priorities. We see that a large number
of observations fall under the “General Issues” category. This denotes the need for the
continuous curating of an expanding OSH ontology. The nature and dynamics of hazards
are evolving into multifaceted and complex problems or even failures, especially when
they are left untreated, underestimated and not properly addressed. Additionally, we see
that, as would be expected, the “Work Injuries” category has a shifted distribution towards
high-priority issues.

Table 5. High-level observation categories with examples of checklist groups that belong to each
category.

Category Example Checklist Groups

Fire safety “Fire Extinguishers”, “Transportation, Use and Storage of Gas Cylinders” . . .
Electrical safety “Electrical Panel Grounding”, “Worn out Cables” . . .

Health safety “Space cleaning”, “First Aid”, “Leakage of Hazardous Materials” . . .
Preventive measures “Site Guard”, “Warning Labels”, “Evacuation Exercises”, “Safety Training” . . .

Work injuries “Worn out Ladders”, “Safety Goggles”, “Hearing Protection” . . .
Regulation compliance “Safety reports”, “Certifications”, “Maintenance Books” . . .

General issues “Other observations”

Work injuries
General issues

Preventive measures
Electrical Safety

Regulation Compliance
Health Safety Fire Safety

Category
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Figure 5. Distribution of the observation categories, split by the observation priorities.
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Issue Source: This high-level grouping of checklist groups is aimed to identify the
possible cause of a hazard. For example, the “Activities” issue source groups hazards
that can be caused by human activity (e.g., employees not wearing safety gear). The
“Spaces” issue source is a collection of groups that describe hazards inherent to the work
spaces (e.g., cleanliness or missing fire extinguishers). This ontology can help to provide
high-level feedback to customers. For example, if a work site has repeated “Activities”-
related observations, the recommendation is to focus on preventive measures and safety
training, whereas if it has repeated “Equipment”-related observations, resources should
be invested in upgrading the equipment used by workers. Table 6 summarizes the issue
source ontology. In Figure 6, we can see the distributions of the different issue sources, split
by the observation priorities.

Table 6. High-level issue sources with examples of checklist groups that belong to each issue source.

Issue Source Example Checklist Groups

Activities “On-site smoking”, “Work on ladders”, “Worker training” . . .
Spaces “Rest Areas”, “Electrical panel labeling”, “Pollution” . . .

Equipment “Protective Provisions”, “Worn out Cables”, “First-aid kit” . . .
Regulations–Certifications “Safety reports”, “Certifications”, “Maintenance Books” . . .

Other “Other observations”

Other Activities Spaces

Regulations/Certifications
Equipment
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Figure 6. Distribution of the issue sources, split by the observation priorities.

4. Common Space Fusion through Similarity Learning
4.1. High-Level Overview

As we described in Section 3, the Safety4All observations contain a textual description
of the issue, paired with pictures taken from the observation site. Both of these information
sources contain valuable information about the observation and the scene it refers to;
therefore, we used a multimodal approach for building our classification pipeline. We
opted to employ a fusion approach, where features extracted from the text and visual
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modality are projected in a shared space. The benefit of this approach is that features
extracted from different modalities live in a shared latent space S ⊆ Rd, where it is easy to
compare features extracted from different modalities and extract multimodal embeddings.
For this, we employed a multitask learning criterion that consists of a contrastive and a task
loss. The task loss was used to learn the task at hand (cross-entropy loss for classification,
minimum squared error for regression, etc.). The contrastive loss aims to bring the visual
and text embeddings that correspond to the same observation close to each other in the
multimodal space.

4.2. Notation

Let us define a dataset of observations O consisting of N image-text-label tuples
(vk, tk, lk), k ∈ [1, N]. The input to the model is a batch B ⊂ O of |B| < N elements,
containing M randomly selected samples from the dataset O, so that:

B = {(vk, tk, lk)|(vk, tk, lk) ∈ O ∧ k ∼ U (1, N) ∧ card(B) = |B|}, (2)

where U (1, N) the uniform distribution of (discrete) indices k ∈ {1, 2, . . . N} and card(B) =
|B| defines that the cardinality of B is equal to the batch size |B|, indicating that the sampling
of |B| elements in the batch B is performed without replacement.

The cross-entropy loss, used for classification tasks, is defined as

LCE(l, ŷ) = − 1
|B|

|B|

∑
i=1

C

∑
j=1

[
yijlog(ŷij))

]
(3)

where C is the number of classes, |B| the batch size, and yij the one-hot ground truth label,
which is 1 if sample i is classified as class j and 0 otherwise:

yij =

{
1 li = j
0 otherwise

(4)

The logits ŷij are the predicted probability that sample i belongs to class j.
A feedforward (or projection) layer is denoted as a function fθ :

fθ(x) = W · x + b (5)

where x ∈ RD is an input vector and θ = (W, b) the set of trainable parameters that
correspond to fθ . The output of the feedforward layer is fθ(x) ∈ Rd, W ∈ RD×d and
b ∈ Rd.

The cosine distance operation between two vectors x1, x2 ∈ RD is defined as

c(x1, x2) =
x1 · x2

‖x1‖‖x2‖
(6)

where ‖·‖ defines the L2 norm of a vector and x1 · x2 defines the dot-product operation
between x1 and x2.

The concatenation operation, ⊕, is defined for two vectors x = (x1, x2, . . . , xn) ∈
Rn and y = (y1, y2, . . . , ym) ∈ Rm by merging the elements xi, yi of both vectors, as in
Equation (7):

x⊕ y = (x1, x2, . . . , xn, y1, y2, . . . , ym) ∈ Rn+m (7)

4.3. Detailed Method Description

In Figure 7, we can see an overview of the proposed multimodal fusion pipeline.
Given an input batch containing the text and visual modality features, we extracted the
text and visual representations using two unimodal encoders. For training, we used a
joint contrastive loss and classification loss. The contrastive loss brings the corresponding
text and image features in the batch close in the multimodal space, while the classification
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loss is used to solve the task. The model was jointly trained using both losses through
multitask learning.

Visual Encoder Text Encoder

Objects obstructing access
to the emergency exit next

to the pick-up door.

Objects obstructing access
to the emergency exit next

to the pick-up door.

Objects obstructing access
to the emergency exit next

to the pick-up door.

Objects obstructing access
to the emergency exit next

to the pick-up door.

Objects obstructing access
to the emergency exit next

to the pick-up door.

Pairwise Similarities

	 	

Concatenate

Classifier

Contrastive Loss Task Loss

Loss

Projection Projection
vk tk

Vk Tk
A

LCO LT

L

mk

yk
^

Figure 7. The multimodal architecture used in our experiments.

In detail, given an input batch B, we first passed each image vk in the batch through
the visual encoder gv and each textual description tk through the text encoder gt, to obtain
intermediate representations Vk and Tk:

Vk = gv(vk), Tk = gt(tk) (8)

We created the shared projection space using a contrastive loss LCO. Our contrastive
loss is inspired by the one used in CLIP [79]. To obtain LCO, we first created the cross-modal
cosine distance matrix A
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A =

st
1 st

2 st
i · · · st

|B|



c(T1, V1) c(T2, V1) · · · · · · c(T|B|, V1) sv
1

...
. . .

...
...

c(T1, Vi) · · · c(Ti, Vi) · · · c(T|B|, Vi) sv
i

...
. . .

...
...

c(T1, V|B|) · · · · · · c(T|B|, V|B|) sv
|B|

(9)

of all the encoded pairs Ti, Vj in the batch, where i, j ∈ [1, |B|]. Each row sv
i is a vector of the

pairwise cosine similarities of the visual features Vi with every textual feature vector in the
batch Tj, j ∈ [1, |B|]. Similarly, each column st

i is a vector of pairwise cosine similarities of
the textual features Ti with every visual feature vector in the batch Vj, j ∈ [1, |B|]. For the
first part of the contrastive loss, we constructed the n-pair loss [64,65] over the columns of
A, using the identity matrix I|B| as labels, as in Equation (10)

L1 = − 1
|B|

|B|

∑
i=1

|B|

∑
j=1

[
(I|B|)ijlog(st

i)j

]
. (10)

Similarly, the second part of the contrastive loss is taken over the rows of A:

L2 = − 1
|B|

|B|

∑
i=1

|B|

∑
j=1

[
(I|B|)ijlog(sv

i )j

]
(11)

The contrastive loss LCO is given by Equation (12):

LCO =
1
2
(L1 + L2). (12)

The goal of the contrastive loss is that the diagonal elements of A take values close to
1, while all other elements take values close to 0. This creates a shared multimodal space
S , where image representations Vi ∈ S and text representations Ti ∈ S that correspond
to the same sample are close, while text and image representations Vi, Tj ∈ S , i 6= j that
correspond to different samples are further away from each other.

For the task loss, we created the multimodal representation in Equation (13) for each
sample k in the batch:

mk = vk ⊕ tk ⊕
(

1
2
(Vk + Tk)

)
(13)

where
⊕

denotes the vector concatenation. The representation m is based on both the
shared space representations Vk and Tk and the individual modality representations vk and
tk, to capture both unimodal and bimodal interactions. The vector m was then fed through
a classification network, described in Equation (14)

ok = fθ(mk)

o′k = a(ok)

ŷk = fθ′(o
′
k)

(14)

where fθ denotes a feedforward layer and a is the GELU activation [86]. The classification
network produces the logits ŷ used in the task loss, in conjunction with the ground truth
labels l:

LT = LCE(l, ŷ) (15)
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The network was trained end to end with the joint task and contrastive losses:

L = LT + LCO (16)

5. Pretraining a Transformer-Based Language Model for Greek

Large pretrained language models (PLMs) based on the transformer architecture [40]
have been repeatedly shown to outperform other approaches in a variety of tasks [36].
These models are trained on huge corpora using self-supervised learning, i.e., the models
are used to directly learn the structure of the language in the corpus through some form
of language modelling rather than being trained to solve a supervised task. Regarding
the Greek language, publicly available resources are more limited than in English. Efforts
have been made in the literature to develop a Greek version of BERT [19], which is a
widely used and useful resource. One problem is that, due to the limited number of
public resources, Greek BERT training is by and large based on the OSCAR dataset [87],
which is a filtered and deduplicated, but still noisy, version of the Common Crawl corpus
(https://commoncrawl.org/, accessed on 31 May 2022). For this reason, we aim to construct
a better pretraining corpus for training large Greek PLMs.

Our model is based on the ELECTRA architecture [18]. Specifically, we trained a
similarly sized variant, with 12 layers and 768 hidden size (electra-base). ELECTRA is
trained as a discriminator that tries to detect token replacements produced by a small MLM
generator. We base the training corpus on the C4 dataset [88] instead of OSCAR. C4 is also
based on the Common Crawl corpus, but includes additional filtering and cleaning steps:

• The filtering of lines that do not end in punctuation, contain fewer than 3 words
and/or contain obscene words.

• The removal of all pages that contain fewer than 5 sentences.
• The removal of Javascript and pages that contain code or placeholder tokens (e.g.,

“lorem ipsum”).
• The deduplication of any three consecutive sentence spans that appear multiple times.

In addition, we implemented a set of more aggressive cleaning steps to create the final
version of the corpus, which we name GfC4 (Greek filtered C4):

• The removal of lines that contain URLs.
• The removal of lines that do not contain Greek characters.
• The removal of lines that contain UTF-8 characters that do not belong in one of the

following sets: (a) Greek, (b) Latin, (c) numeric, (d) punctuation, (e) accents.
• The removal of Ancient or purist Greek text, by removing lines that contain diacritics

that are only used in Ancient or purist Greek (polytonic).
• We observed that, in many sentences in the corpus, some words were merged due to

the crawling of the web pages (e.g., “somewordsaremerged”). We believe this should
not be a large issue, since words are going to be split into subwords using a wordpiece
algorithm [89]. Nevertheless, in order to produce the cleanest possible version of the
corpus, we found words that were longer than 20 characters and split them using a
bigram language model.

To create the complete training corpus, we merged the GfC4 corpus with the Greek
version of Wikipedia and the Hellenic National Corpus (HNC) [90]. We also removed
accents and converted all words to lower-case. The model was trained using AdamW
optimizer [91] with a learning rate of 10−4 and warmup of 8000 training steps, and batch
size of 16. Due to limitations in computational resources, we used a 20 GB subset of the
training corpus and trained the model on four NVIDIA RTX 3090 GPUs for 18 days.

6. Experimental Settings
6.1. Text Encoders

We used two large pretrained transformer-based text encoders in our experiments:

https://commoncrawl.org/
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Greek BERT Greek BERT (https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1,
accessed on May 31 2022) was proposed in [19]. The Greek BERT architecture is based
on the 12-layer, 768 hidden size version of BERT [39], i.e., bert-base-uncased. For
model training, the authors used 29GB of text from the Greek versions of Wikipedia,
European Parliament Proceedings Parallel Corpus (Europarl) [92] and OSCAR, which
is a filtered, deduplicated version of Common Crawl. Since OSCAR contributed the
vast majority of the training data and is based on the very noisy Common Crawl
corpus, we find it useful to review the preprocessing steps. The first step of OSCAR
preprocessing involves the splitting of pages across languages using a fastText linear
classifier [93,94]. The second step of preprocessing involves rejecting lines shorter
than 100 UTF-8 encoded characters and deduplicating the text lines. Additionally, the
authors of [19] removed accents and diacritics and converted all lines to lower-case.
The model was trained using the masked language model (MLM) and next sentence
prediction (NSP) losses with learning rate of 10−4. Training took 5 days on a Google
Cloud TPU v3-8.

GR-Electra The model is described in Section 5.

6.2. Visual Encoders

To obtain the image representations, we experimented with one transformer-based
model and one CNN-based architecture.

ViT The visual transformer (ViT) [53] is a transformer encoder that is adapted for image
classification. Since transformers are geared primarily towards sequence processing,
the authors proposed to convert the input images into sequences by splitting them into
a sequence patches of 16× 16 pixels. The authors note that the use of transformers, a
model with fewer “inductive biases” than CNNs (e.g., no assumptions about locality),
yields models that scale better with larger pretraining datasets. We used the vit-base
variant (12 layers, 768 hidden size) (https://huggingface.co/google/vit-base-patch1
6-224, accessed on 31 May 2022). ViT was pretrained in a supervised fashion, for
image classification on Imagenet-21k dataset [95], which consists of 14M images with
labels across 21,841 classes. The model was trained on Google Cloud TPUv3 hardware
for 90 epochs, on 3-channel images of 224× 224 pixels, using 4096 batch size, Adam
optimizer and linear learning-rate decay. Training took 230 TPUv3 core days (i.e., the
number of TPUv3 cores used for training times the training time in days).

ResNet The residual network (ResNet) architecture was proposed in [49]. ResNets com-
prise of multiple layers of 2D convolutions, with residual (i.e., shortcut) connections
jumping every 2 layers. The authors demonstrated that residual connections facilitate
the training of very deep networks, combating the degradation problem of deep
architectures. We used the ResNet18 variant (https://pytorch.org/vision/stable/
generated/torchvision.models.resnet18.html, accessed on 31 May 2022), which is a
18-layer convolutional architecture. ResNet18 was pretrained for supervised image
classification on Imagenet-1k [47] dataset, which is a subset of Imagenet-21k that con-
tains 1.2M images labeled across 1000 classes. ResNet18 was pretrained on 3-channel
224× 224 patches, using random crop, image flip and scale data augmentations using
stochastic gradient descent with batch size 256 for a maximum of 60× 104. Learning
rate started at 0.1 and was divided by 10 every time an error plateau was reached.
Batch normalization [96] was employed after each convolutional layer. Training
needed 1.8× 109 floating point operations (FLOPs).

6.3. Fusion Methods

We compared the following two fusion methods:

Concatenation (cat) : we concatenated the outputs of the visual and text encoders and fed
the resulting feature vector directly into the classifier.

https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224
https://pytorch.org/vision/stable/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/stable/generated/torchvision.models.resnet18.html
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Contrastive Loss Shared Space (CLSS) : we followed the procedure described in Section 4.3
and fine tuned the model using the joint loss.

6.4. Dataset Splits and Preprocessing

To create the dataset splits, we removed all incomplete observations (e.g., missing
photographs or descriptions) and performed a stratified split of the samples according
to the observation priority. The distribution of the samples across splits was 70% in the
training set, 10% in the validation set and 20% in the test set. All experiments were run
on this split. For text preprocessing of the issue descriptions, we removed all accents,
converted the text to lower-case and used Wordpiece for tokenization (according to BERT
or Electra pipelines). For image preprocessing, we performed a random crop that yields
images of 224× 224 pixels, and normalized the resulting images using the Imagenet default
mean and standard deviation. The random crop was used for data augmentation, as the
model receives a different patch of the image every time it processes a sample. During
inference, the random cropping operation was swapped with an image resizing, followed
by center cropping, using the assumption that most salient information will lie close to the
center of a photograph.

6.5. Reproducibility Details

In this section we describe the hyperparameters and experimental settings. This
configuration was used across all experiments, unless explicitly stated otherwise. We
used dropout probability 0.2. We trained all models using Adam optimizer [97] with
learning rate 10−4. For classification tasks, we used a randomly initialized classification
head, as described in Equation (14), on top of the fused representations. The models
were fine tuned on the Safety4All training set for 10 epochs. We employed early stopping
with patience 3 on the validation loss, i.e., we stopped the training if the validation loss
did not improve for three consecutive epochs. We kept checkpoints every epoch, and
used the checkpoint that corresponded to the epoch with the smallest validation loss.
Batch size was set to 16, while we accumulated gradients over 2 training steps for an
effective batch size of 32. Models were implemented using PyTorch [98] and PyTorch
Lightning (https://www.pytorchlightning.ai/, accessed on 31 May 2022) and we used a
single NVIDIA RTX 2080 Ti for training. All results presented are averaged over 3 runs.

7. Experiments and Results
7.1. Task 1: Priority Classification

The first challenge we want to address is the classification of observations across
different levels of priority. This is a 3-class classification problem with issue severities
ranging from high to medium to low. The “priority” represents a general assessment score for
the end users, which can encode multiple aspects of a safety issue. The criteria for marking
an observation priority as high include the danger level of the observation, the probability
of an accident occurring, possible legal or economic ramifications to the business or this
safety issue persisting for large periods of time, across different safety inspections.

Our goal was to use multimodal cues for automatic priority assessment of observa-
tions. Table 7 summarizes the priority classification results on the Safety4All test set. We
evaluated the unimodal and bimodal classification accuracy of all combinations for the
fusion methods, the visual and text encoders described in Section 6, as well as the score
for the random baseline. The random baseline was calculated as the majority class score,
i.e., the accuracy score that we would receive, if we had a system that always predicted
the majority class. We can see the scores for the unimodal models in the first four rows
and the scores for the multimodal models in the eight rows that follow. The random
baseline score is shown in the last row of Table 7. First, we observe that the majority
class score is 49.17%, which indicates some class imbalance in the 3-class classification
problem. All models surpass the random baseline by a large margin (≈10%). Second,
for the unimodal configurations, we observe that the text and visual modalities contain

https://www.pytorchlightning.ai/
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balanced information for the task of priority classification. The weakest unimodal models
are Greek BERT and Resnet18, while the strongest are GR-Electra and ViT. Third, we see
that all multimodal configurations surpass the unimodal model performance, regardless of
the fusion approach. This indicates that both the text and visual modalities contain valuable
information regarding the observation’s priority. Regarding the fusion method, we observe
that the CLSS approach outperforms the naive concatenation consistently, resulting in a
0.5–1.5% absolute improvement in the accuracy scores. One interesting observation is
that, while the text-only GR-Electra model surpasses the Greek BERT by 1.3%, the best
results are achieved using the combination of Greek BERT, ViT and CLSS. The “∆ ↑ uni-
modal” column indicates the improvement in the multimodal configuration over the best
encoder involved in that configuration. For example, for a “Resnet18+GR-Electra” multi-
modal configuration we report the improvement over the unimodal “GR-Electra” model,
while for a “ViT+Greek-BERT” multimodal configuration, we report the improvement over
“Greek-BERT”. Possible negative values in this column indicate that the unimodal encoder
outperforms that multimodal configuration.

Table 7. Multimodal priority classification accuracy on the Safety4All test set. T : Textual, V : Visual.

Modality Text Encoder Visual Encoder Fusion Method Accuracy (%) ∆ ↑ Unimodal

V - Resnet18 - 57.5 -
V - ViT - 60.78 -
T Greek BERT - - 59.85 -
T GR-Electra - - 61.18 -

T + V Greek BERT Resnet18 cat 62.33 2.48
T + V Greek BERT Resnet18 CLSS 62.85 3.00
T + V Greek BERT ViT cat 62.56 2.71
T + V Greek BERT ViT CLSS 64.63 4.78
T + V GR-Electra Resnet18 cat 61.33 0.15
T + V GR-Electra Resnet18 CLSS 62.9 1.72
T + V GR-Electra ViT cat 63.14 1.96
T + V GR-Electra ViT CLSS 63.61 2.43

Random Baseline 49.17

In Table 8, we present an ablation study for priority classification in different locations.
For this experiment, we fine tuned the models on the training set and split the test-set
observations in four location-specific test sets, namely, “Construction”, “Office”, “Store”
and “Warehouse”. We evaluated the model on each of the location-specific test sets. We used
ViT as the visual encoder, GR-Electra or Greek BERT as the text encoder and, for multimodal
configurations, we used CLSS for fusion. We report the unimodal model accuracy, the
multimodal model accuracy, as well as the random baseline. The first observation is that
the “Construction”, “Office” and “Warehouse” sets are more imbalanced than the overall
test set, with the random baseline accuracy being 59.95, 57.62 and 56.12, respectively. The
“Construction” set statistics differ though, as the most frequent priority class is “high”,
while in the other sets the most frequent class is “medium” priority. The reason for this
is that construction sites are more dangerous places than office spaces, warehouses or
stores, and, therefore, construction workers face more serious and frequent dangers during
their jobs. We can see that, again, all models surpass the random baseline, except for the
text-only Greek BERT on the “Construction” set. Furthermore, we observe that multimodal
architectures surpass their unimodal counterparts by a margin of 3–4%. The best overall
performance is achieved by the combination of Greek BERT, ViT with CLSS fusion.
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Table 8. Ablation regarding the priority classification accuracy for different issue locations. T : Text,
V : Visual.

Location Modality Text Encoder Visual Encoder Fusion Method Accuracy (%)

Construction

V - ViT - 60.59
T Greek BERT - - 59.81
T GR-Electra - - 60.07
T + V Greek BERT ViT CLSS 64.13
T + V GR-Electra ViT CLSS 62.59

Random Baseline 59.95

Office

V - ViT - 60.21
T Greek BERT - - 59.6
T GR-Electra - - 59.96
T + V Greek BERT ViT CLSS 63.46
T + V GR-Electra ViT CLSS 62.16

Random Baseline 57.62

Store

V - ViT - 60.59
T Greek BERT - - 60.52
T GR-Electra - - 61.04
T + V Greek BERT ViT CLSS 64.13
T + V GR-Electra ViT CLSS 63.35

Random Baseline 45.54

Warehouse

V - ViT - 60.23
T Greek BERT - - 60.43
T GR-Electra - - 60.81
T + V Greek BERT ViT CLSS 64.14
T + V GR-Electra ViT CLSS 63.23

Random Baseline 56.12

7.2. Task 2: Observation Assessment

Each observation is accompanied by metadata for the SO who created it and their
experience level. In this section, we investigate the development of a system that can assign
an effective SO experience score to incoming observations. Specifically, the system is tasked
by being given an observation to guess the experience level of the SO who registered it. This
system could be applied to the continuous training of SOs, where incoming observations
can be quickly assessed with respect to their effective experience score. The training could be
based on case studies with “good” and “bad” examples of existing observations, selected
using the outputs of this system (it should be stressed for ethical concerns that the goal
of this system is to perform observation assessment and not SO assessment. The desired
application is to be used in the creation of case studies for SO training.). The underlying
assumption is that more experienced SOs will register higher quality observations about
more serious safety or compliance issues. The task was formulated as a 3-class classification
problem for four different experience levels.

Table 9 summarizes the results for the “effective experience level” classification task.
We evaluate all model configurations. We observe that, for this task, the visual and text
modalities contain complementary information, as the improvement between the best
unimodal model (Greek BERT) and the best multimodal model (Greek BERT, Resnet18,
CLSS) is larger than 5% in terms of accuracy. Moreover, we observe that the fusion approach
is important. Most models that use simple concatenation for fusion show marginal, if any,
improvement over their unimodal counterparts. In contrast, when we used CLSS fusion,
we obtain a strong and consistent improvement for all configurations.
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Table 9. Classification accuracy for the effective SO experience level of observations on the Safety4All
test set. T : Text, V : Visual.

Modality Text Encoder Visual Encoder Fusion Method Accuracy (%) ∆ ↑ Unimodal

V - ResNet18 - 63.37 -
V - ViT - 68.2 -
T Greek BERT - - 69.15 -
T GR-Electra - - 65.94 -

T + V Greek BERT ResNet18 cat 64.48 −4.67
T + V Greek BERT ResNet18 CLSS 74.73 5.58
T + V Greek BERT ViT cat 68.8 −0.35
T + V Greek BERT ViT CLSS 72.9 3.75
T + V GR-Electra ResNet18 cat 64.14 −1.79
T + V GR-Electra ResNet18 CLSS 72.23 6.29
T + V GR-Electra ViT cat 73.24 5.04
T + V GR-Electra ViT CLSS 73.48 5.28

Random Baseline 46.34

7.3. Task 3: Observation Categorization

The third task we include involved the categorization of observations. This is split
into two subtasks, i.e., “Issue Source” and “Categories”.The possible application of this
task is the automatic organization of past observations into meaningful classes, for analysis
by specialized experts and the devising of meaningful feedback for the involved businesses.
Regarding the “Issue source” subtask, the goal of this task is to predict the actor or situation
that caused a particular safety issue. For this task, observations were labeled under the
“Activities”, “Spaces”, “Equipment”, “Regulations” and “Other” categories. For example,
if an observation is classified under the “Activities” label, the cause of the issue is the
actions of people during the observation time (e.g., employees not wearing protective gear);
whereas, if it is classified under the “Spaces” category, the cause of the issue is related to the
space where it was observed (e.g., missing fire extinguishers). For the “Category” subtask,
we employed a semantic labeling of the observations under high-level categories, e.g.,
“Electrical safety”, “Fire safety”, etc. The goal was to organize observations into semantic
clusters to make the post-processing easier. For example, one observation may concern
compliance to safety regulations and should be reviewed by an SO that specializes in the
law and regulations of the country or city, while another observation may regard electrical
safety and should be processed by an SO with an electrical engineering background.

In Table 10, we can see the results for the issue categorization tasks. We can see that,
for these tasks, in contrast to the observation assessment and priority classification, the
dominant modality is the textual description of the issue, while the visual modality does
not convey much information. This is evident, as most of the multimodal configurations
fail to surpass their unimodal counterparts. Furthermore, we can observe that the only
configurations that manage to gain a positive “∆ ↑ unimodal” involve the use of the
CLSS fusion approach, while the feature concatenation approach fails to extract good
multimodal representations.
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Table 10. Classification accuracy for the issue source and the category of observations on the
Safety4All test set. T : Text, V : Visual.

Target Modality Text Encoder Visual Encoder Fusion Method Accuracy (%) ∆ ↑ Unimodal

Issue Source

V - ResNet18 - 60.41 -
V - ViT - 63.84 -
T Greek BERT - - 73.74 -
T GR-Electra - - 72 -

T + V Greek BERT ResNet18 cat 69.47 −4.27
T + V Greek BERT ResNet18 CLSS 73.88 0.14
T + V Greek BERT ViT cat 71.17 −2.57
T + V Greek BERT ViT CLSS 74.15 0.41
T + V GR-Electra ResNet18 cat 67.95 −4.05
T + V GR-Electra ResNet18 CLSS 68.28 −3.72
T + V GR-Electra ViT cat 67.43 −4.57
T + V GR-Electra ViT CLSS 73.88 1.88

Random Baseline 59.03

Category

V - ResNet18 - 50.46 -
V - ViT - 55.67 -
T Greek BERT - - 69.53 -
T GR-Electra - - 66.8 -

T + V Greek BERT ResNet18 cat 57.43 −12.1
T + V Greek BERT ResNet18 CLSS 70.2 0.67
T + V Greek BERT ViT cat 62.41 −7.12
T + V Greek BERT ViT CLSS 70.59 1.06
T + V GR-Electra ResNet18 cat 64.23 −2.57
T + V GR-Electra ResNet18 CLSS 66.42 −0.38
T + V GR-Electra ViT cat 65.69 −1.11
T + V GR-Electra ViT CLSS 65.15 −1.65

Random Baseline 43.46

8. Conclusions and Future Work

Training AI models capable of providing accurate and timely evaluations for the prior-
ity of emerging issues can offer significant value in the health and safety industry. Focusing
on OSH domain knowledge, the presented research described a pipeline of tasks that mod-
els, refines and analyzes unstructured text from safety reports. A multimodal approach was
explained and tested for producing valid risk ratings for reports and effectively serving two
different classification themes for organising them. Such models can drive the appropriate
tools for the decision support and improved performance of inexperienced safety engineers,
while also streamlining the assessment process for experienced ones. Offering insights
and recommendations for the classification of safety reports can directly impact inspection
performance in any workplace or shop-floor, where hundreds or thousand of issues require
immediate attention and handling.

Allowing non-experts such as clients, employees or the general public to contribute tp
a feedback loop that validates and enriches the above knowledge is a major step towards
building confidence and certainty for the underlying models. The discussed models will
support the applications and services of the Safety4ALL platform, delivering a collective
awareness platform for OSH reports. Investing in croudsourcing and mobile technologies,
the platform will drive the collection, review, enrichment and classification of reports,
ensuring the required volume of data that can consistently update and retrain the models.
Statistics from each category will support tasks that plan appropriate training for employees
and users of the site, record the performance of different types of equipment and identify
major sources of hazards in each site.
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The scope of health and safety shares common goals, tools and applications with
the wider domain of risk management. This paper provides evidence that collective
knowledge from safety experts can be easily captured and modeled to serve an SO-in-
the-loop paradigm, a paradigm where safety reports can be formalized and processed
to build the datasets required for multimodal analysis and produce actionable results.
This involvement loop of experts for refined feedback and accurate classification can be
easily imported and mapped on every other industry where risk management is a key
consideration, such as finance and healthcare. Every industry where risk assessment
is traditionally carried out manually will find significant value in receiving AI-assisted
decisions for the balanced and correct classification of critical issues and reports.

Regarding our approach, we propose a sample efficient shared-space fusion technique
based on contrastive learning. Contrary to prior work, we do not rely on pretraining
the fusion pipeline on large multimodal datasets; rather, we use the contrastive objective
as an online auxiliary loss during model training. This is shown to outperform vanilla
concatenation across experiments, tasks and for different encoders. This indicates that
the proposed joint loss helps to extract more informative common representations of
the two modalities involved. We evaluated our system on three proposed tasks, i.e.,
“priority estimation”, “observation assessment” and “observation categorization”. For
the first two, both visual and text modalities have balanced information, and the use of
multimodality yields significant improvements in terms of absolute model performance
(accuracy), namely, 4.78 for priority classification and 6.29 for observation assessment.
For the “observation categorization” task, we see that the text modality contains most of
the information needed to solve the task, and the use of multimodality either hurts or
marginally improves model performance.

In the future, we want to explore more intricate fusion approaches by collecting a
larger dataset that would allow for model pretraining based on the contrastive objective [78].
Furthermore, we want to apply architectural improvements [13] for cross-modal fusion,
which would enable both efficient utilization of information present across modalities
and model interpretability. Another line of work can explore the issue of the dominant
modalities, especially for the task of observation categorization, and propose techniques
from the multi-modal learning literature to alleviate this issue [14]. Unsupervised domain
adaptation of existing models to new locations and site conditions can also be explored [99].
Finally, in this work we have not explored the “corrective actions” that are proposed by the
SOs for each observation. In the future, we want to explore sequence-to-sequence models
that could generate proposed corrective actions, given an observation description and,
optionally, an accompanying image. For this, ideas and methods can be borrowed from the
image-captioning literature, e.g., [9].

9. Ethical Statement

Potential concerns that the need for safety engineers will decrease as their expertise is
substituted by a constantly more capable AI application, although understandable, are not
well-founded. No matter how good an AI might be in assessing a risk, a safety engineer will
always be needed to identify the risks arising from human behaviors and activities, risks
that an AI may not be able to detect, at least in the foreseeable future. In addition, such an
AI application protects and enhances, rather than threatens, the work of the safety engineer,
as it exponentially increases their monitoring ability of a given site. In most countries, there
is a strict legal framework where the safety engineer is liable for any accidents and incidents
that may occur on a site under their responsibility. An application assisting in preventing
such accidents and incidents, not only protects those on site, but the SOs themselves.
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