
Citation: Saboor, A.; Hassan, M.F.;

Akbar, R.; Shah, S.N.M.; Hassan, F.;

Magsi, S.A.; Siddiqui, M.A.

Containerized Microservices

Orchestration and Provisioning in

Cloud Computing: A Conceptual

Framework and Future Perspectives.

Appl. Sci. 2022, 12, 5793. https://

doi.org/10.3390/app12125793

Academic Editor: Eui-Nam Huh

Received: 31 March 2022

Accepted: 19 April 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Containerized Microservices Orchestration and Provisioning
in Cloud Computing: A Conceptual Framework and
Future Perspectives
Abdul Saboor 1,* , Mohd Fadzil Hassan 2, Rehan Akbar 3, Syed Nasir Mehmood Shah 4, Farrukh Hassan 1 ,
Saeed Ahmed Magsi 5 and Muhammad Aadil Siddiqui 5

1 High-Performance Cloud Computing Centre (HPC3), Department of Computer & Information Sciences,
Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
farrukh_18001246@utp.edu.my

2 Centre for Research in Data Science (CeRDaS), Department of Computer & Information Sciences, Universiti
Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia; mfadzil_hassan@utp.edu.my

3 Positive Computing (+COMP), Department of Computer & Information Sciences, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia; rehan.akbar@utp.edu.my

4 KICSIT, Institute of Space Technology (IST), Islamabad 44000, Pakistan; nasirsyed.utp@gmail.com
5 Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS,

Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia; saeed_19001716@utp.edu.my (S.A.M.);
muhammad_18003606@utp.edu.my (M.A.S.)

* Correspondence: abdul_19001745@utp.edu.my

Abstract: Cloud computing is a rapidly growing paradigm which has evolved from having a mono-
lithic to microservices architecture. The importance of cloud data centers has expanded dramatically
in the previous decade, and they are now regarded as the backbone of the modern economy. Cloud-
based microservices architecture is incorporated by firms such as Netflix, Twitter, eBay, Amazon,
Hailo, Groupon, and Zalando. Such cloud computing arrangements deal with the parallel deploy-
ment of data-intensive workloads in real time. Moreover, commonly utilized cloud services such
as the web and email require continuous operation without interruption. For that purpose, cloud
service providers must optimize resource management, efficient energy usage, and carbon footprint
reduction. This study presents a conceptual framework to manage the high amount of microservice
execution while reducing response time, energy consumption, and execution costs. The proposed
framework suggests four key agent services: (1) intelligent partitioning: responsible for microservice
classification; (2) dynamic allocation: used for pre-execution distribution of microservices among
containers and then makes decisions for dynamic allocation of microservices at runtime; (3) resource
optimization: in charge of shifting workloads and ensuring optimal resource use; (4) mutation ac-
tions: these are based on procedures that will mutate the microservices based on cloud data center
workloads. The suggested framework was partially evaluated using a custom-built simulation envi-
ronment, which demonstrated its efficiency and potential for implementation in a cloud computing
context. The findings show that the engrossment of suggested services can lead to a reduced number
of network calls, lower energy consumption, and relatively reduced carbon dioxide emissions.

Keywords: cloud computing; virtual machine; containers; microservices; multicloud

1. Introduction

In recent years, cloud computing has gained the interest of industries and of re-
searchers. Cloud computing allows ubiquitous computing and delivers the proper on-
demand admittance to the common pool of configurable resources, such as memory storage,
network, compute nodes, and applications [1]. Popular cloud service providers which
provide such services are Microsoft Azure, Amazon Web Services (AWS), Google Cloud

Appl. Sci. 2022, 12, 5793. https://doi.org/10.3390/app12125793 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12125793
https://doi.org/10.3390/app12125793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2334-0844
https://orcid.org/0000-0002-5732-284X
https://orcid.org/0000-0003-3337-5469
https://orcid.org/0000-0002-9809-3967
https://doi.org/10.3390/app12125793
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12125793?type=check_update&version=2

Appl. Sci. 2022, 12, 5793 2 of 21

Platform (GCP), IBM Cloud, and Kamatera. Elasticity, the pay-as-you-go model, and on-
demand provisioning of resources are a few of the major cloud computing advantages [2].
Three major categories of the cloud service models are known as [1,3,4] Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS); refer to
Figure 1.

(1) Software as a Service (SaaS): SaaS provides access to cloud-based software. Through
web or API, the users access the software residing on the remote cloud network.
In SaaS, the vendor manages most of the technical issues including data handling,
storage, servers, etc. Therefore, the users do not have to spend more time installing,
maintaining, and upgrading software. Some of the SaaS examples are Dropbox,
Salesforce, GoToMeeting, Google Apps, etc.

(2) Infrastructure as a Service (IaaS): In IaaS, the cloud computing vendors provide
access to resources such as storage, computing resources, and networking. IaaS lets
businesses purchase resources according to their needs/demands. Therefore, IaaS
provides a flexible cloud computing model where clients have complete control over
the infrastructure. As the whole infrastructure is based on the cloud, there will be no
single point of failure. Some of the IaaS examples are Amazon Web Services (AWS),
Microsoft Azure, Google Compute Engine (GCE), etc.

(3) Platform as a Service (PaaS): PaaS provides a framework for the users (specifically
developers) on which they can develop, manage, and deploy the applications. The
users not only have access to computing and storage resources, but they also have
access to a set of tools for application development, testing, security, backups, etc. PaaS
has several advantages including scalability, high availability, and a cost-effective
development and deployment platform. Some of the PaaS examples are Apache
Stratos, AWS Elastic Beanstalk, Google App Engine, etc.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 21

Cloud Platform (GCP), IBM Cloud, and Kamatera. Elasticity, the pay-as-you-go model,

and on-demand provisioning of resources are a few of the major cloud computing

advantages [2]. Three major categories of the services by the cloud include [1,3,4]

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service

(SaaS); refer to Figure 1.

Figure 1. IaaS-PaaS-SaaS comparison [4].

(1) Software as a Service (SaaS): SaaS provides access to cloud-based software. Through

web or API, the users access the software residing on the remote cloud network. In

SaaS, the vendor manages most of the technical issues including data handling,

storage, servers, etc. Therefore, the users do not have to spend more time installing,

maintaining, and upgrading software. Some of the SaaS examples are Dropbox,

Salesforce, GoToMeeting, Google Apps, etc.

(2) Infrastructure as a Service (IaaS): In IaaS, the cloud computing vendors provide

access to resources such as storage, computing resources, and networking. IaaS lets

businesses purchase resources according to their needs/demands. Therefore, IaaS

provides a flexible cloud computing model where clients have complete control over

the infrastructure. As the whole infrastructure is based on the cloud, there will be no

single point of failure. Some of the IaaS examples are Amazon Web Services (AWS),

Microsoft Azure, Google Compute Engine (GCE), etc.

(3) Platform as a Service (PaaS): PaaS provides a framework for the users (specifically

developers) on which they can develop, manage, and deploy the applications. The

users not only have access to computing and storage resources, but they also have

access to a set of tools for application development, testing, security, backups, etc.

PaaS has several advantages including scalability, high availability, and a cost-

effective development and deployment platform. Some of the PaaS examples are

Apache Stratos, AWS Elastic Beanstalk, Google App Engine, etc.

In the last decade, large-scale, as well as small- to medium-sized, enterprises mostly

shifted to cloud computing. As cloud computing deals with the parallel deployment of

data-intensive workloads in real-time, such deployments bring in various challenges,

such as optimal resource scheduling, power utilization, network latency, task scheduling,

etc. While dealing with these challenges, the cloud computing environment also needs to

make efficient use of energy to minimize the operational cost and introduce eco-friendly

data centers. Studies have shown that cloud resources are being used inefficiently [5,6]

and the continuous shift of technologies for the cloud environment requires efficient task

and resource handling while reducing energy consumption and lowering the carbon

footprint produced by the hardware used in the cloud platform.

Figure 1. IaaS-PaaS-SaaS comparison [4].

In the last decade, large-scale, as well as small- to medium-sized, enterprises mostly
shifted to cloud computing. As cloud computing deals with the parallel deployment of
data-intensive workloads in real-time, such deployments bring in various challenges, such
as optimal resource scheduling, power utilization, network latency, task scheduling, etc.
While dealing with these challenges, the cloud computing environment also needs to make
efficient use of energy to minimize the operational cost and introduce eco-friendly data
centers. Studies have shown that cloud resources are being used inefficiently [5,6] and
the continuous shift of technologies for the cloud environment requires efficient task and

Appl. Sci. 2022, 12, 5793 3 of 21

resource handling while reducing energy consumption and lowering the carbon footprint
produced by the hardware used in the cloud platform.

Due to the complexity of cloud services, it is appropriate to illustrate a concep-
tual framework through a modular and multilevel stratified architecture that enables
the paradigm of containerized microservices orchestration and provisioning in cloud com-
puting. For this study, the formulation of the conceptual framework commences with the
subject of microservices orchestration and provisioning and then moved on to exhaustive
literature research and began identifying the important ideas applied by previous studies.
Once it determines what has been accomplished by previous researchers and what needs
to be accomplished by locating a clear call-to-action described in the literature, this study
begins to extract variables, concepts, theories, and current frameworks outlined in the
appropriate literature. The framework development process is initiated by understanding
how some of the variables, concepts, theories, and features of current frameworks interact.

For the rest of this paper, Section 2 provides an intensive literature review of cloud-
based containerized services and articulates the unique challenges. Section 3 describes the
methodology and elaborates on the proposed framework. To justify the working efficiency
of the proposed framework, it was partially tested in a simulation environment and the
results are discussed in Section 4. Finally, Section 5 concludes the study and advises
future directions.

2. Literature Review

In cloud computing, one of the most critical factors is to provide quality of service (QoS)
within the defined constraints. Few of the constraints include response time, throughput,
minimum service unavailability, low cost, execution, or completion time limits. This section
outlines some of the existing research studies performed to meet the QoS constraints.

Traditionally, heuristic scheduling algorithms have been used to minimize the process-
ing time and schedule tasks efficiently. A study by Juarez et al. [7] used the polynomial-time
algorithm that combines the set of heuristic rules and resource allocation techniques to
execute task-based applications efficiently on distributed computing platforms. Recently,
Qiu et al. [8] addressed the pricing policies of cloud providers to cloud service brokerages
(CSBs) and found a pricing policy for cloud providers which will maximize the CSBs’ profit
by minimizing the cloud providers’ energy costs. Another study [5] proposed a dynamic
energy-aware cloudlet-based mobile cloud computing model, which focused on solving
additional energy consumption during wireless communication.

Multiple other studies addressed the technical and nontechnical aspects of cloud com-
puting, but still, many gray areas need to be addressed. Some of the areas include dynamic
allocation of resources and energy, virtualization techniques for balancing the energy-aware
workload between virtual machines, and thermal-aware management techniques. Horri
et al. [9] proposed a novel QoS-aware VM consolidation method based on the resource
utilization history of VM. The results showed improvement in QoS metrics and energy
consumption. Similarly, Esfandiarpoor [10] used the concept of VM consolidation but
extended it to physical machines such that fewer racks and routers were used. This resulted
in turning off the idle routing and cooling equipment and the experimental results showed
a significant reduction in energy consumption.

Since the previous decade, there has been a trend toward containerization technolo-
gies. The principle of containers enables a flexible and lightweight environment that
allows software programs to start sharing the underlying operating system. As a result,
containers are a type of operating system virtualization. A standard container may host
huge application processes via microservices. Containers contrast with virtual machines
where the virtual machines execute the whole guest operating system, but it is not the
case with containers, as shown in Figure 2. Container technology has several industrial
applications. A few of the industries where the containers have been adopted are [11]:
(a) containers in IoT applications; (b) containerization in gaming; (c) containerization in
healthcare; (d) containerization in web applications; (e) containers in financial services

Appl. Sci. 2022, 12, 5793 4 of 21

providers; (f) containerization in microservices architectures; (g) containerization in mar-
keting and advertising; (h) containerization in scientific workflows; (i) containerization in
edge computing.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 21

containerization in healthcare; (d) containerization in web applications; (e) containers in

financial services providers; (f) containerization in microservices architectures; (g)

containerization in marketing and advertising; (h) containerization in scientific

workflows; (i) containerization in edge computing.

Figure 2. Difference between VM and containers.

The performance of virtual machines is stable when compared to containers, but VMs

have bigger memory footprints and VMs also have slower boot-up and shut-down

downtime [11]. Multiple studies addressed containerization in the cloud computing

environment. The container placement strategy in a CaaS as proposed by Zhang et al. [12]

achieved energy savings by optimizing. They did the placement of containers using an

improved genetic algorithm (IGA). The containers were placed on VMs which were

hosted on physical machines (PM). It was considered that VMs could meet the resource

requirement of all new containers, and only two resources were considered, i.e., CPU and

memory. According to the authors, in the conventional genetic algorithm (GA), it is hard

to obtain a better chromosome (consisting of container ID and VM ID) that fits better when

VM resource utilization is high. Therefore, the introduced IGA showed better results in

terms of energy saving when compared to spread and bin-packing strategies and first-fit

and conventional GA. However, the study only considered the energy saving parameter,

and parameters such as high availability and low resource wastage were not studied.

According to the authors, the proposed strategies only apply to the static placement of

containers and were unable to support real-time scheduling and relocation. Thus,

dynamic container consolidation is still an open issue.

Docker containers are used to perform OS-level virtualization. However, according

to Zhang et al. [13], container deployment on VM is a challenge. Because VM placement

and container placement need not be addressed separately, the study thus presented the

Container-VM-PM approach. The method improved the deployment of new containers

while reducing the number of physical machines and resources lost.

To solve the issue of significant communication demands across containers, Lv et al.

[14] developed container distribution schemes. The study presented a worst-fit reducing

method for container deployment and a two-stage sweep and search algorithm was

introduced for container assignment. The evaluation findings demonstrated a decrease in

communication overhead between containers. Xu and Buyya [6] worked for energy-

efficient cloud computing and used brownout schema for software systems to

dynamically activate or deactivate optional microservices. The system used Docker

Swarm for container management, i.e., the activation and deactivation of the container.

The study did not address memory management, resource management (including

cooling system infrastructure), and network congestion issues. The experiment was

Figure 2. Difference between VM and containers.

The performance of virtual machines is stable when compared to containers, but
VMs have bigger memory footprints and VMs also have slower boot-up and shut-down
downtime [11]. Multiple studies addressed containerization in the cloud computing en-
vironment. The container placement strategy in a CaaS as proposed by Zhang et al. [12]
achieved energy savings by optimizing. They did the placement of containers using an
improved genetic algorithm (IGA). The containers were placed on VMs which were hosted
on physical machines (PM). It was considered that VMs could meet the resource require-
ment of all new containers, and only two resources were considered, i.e., CPU and memory.
According to the authors, in the conventional genetic algorithm (GA), it is hard to obtain
a better chromosome (consisting of container ID and VM ID) that fits better when VM
resource utilization is high. Therefore, the introduced IGA showed better results in terms
of energy saving when compared to spread and bin-packing strategies and first-fit and
conventional GA. However, the study only considered the energy saving parameter, and
parameters such as high availability and low resource wastage were not studied. According
to the authors, the proposed strategies only apply to the static placement of containers
and were unable to support real-time scheduling and relocation. Thus, dynamic container
consolidation is still an open issue.

Docker containers are used to perform OS-level virtualization. However, according
to Zhang et al. [13], container deployment on VM is a challenge. Because VM placement
and container placement need not be addressed separately, the study thus presented the
Container-VM-PM approach. The method improved the deployment of new containers
while reducing the number of physical machines and resources lost.

To solve the issue of significant communication demands across containers, Lv et al. [14]
developed container distribution schemes. The study presented a worst-fit reducing
method for container deployment and a two-stage sweep and search algorithm was in-
troduced for container assignment. The evaluation findings demonstrated a decrease
in communication overhead between containers. Xu and Buyya [6] worked for energy-
efficient cloud computing and used brownout schema for software systems to dynamically
activate or deactivate optional microservices. The system used Docker Swarm for container
management, i.e., the activation and deactivation of the container. The study did not
address memory management, resource management (including cooling system infrastruc-
ture), and network congestion issues. The experiment was performed using a custom-built
web application and needs testing for more dynamic and intensive workloads.

Appl. Sci. 2022, 12, 5793 5 of 21

Hussein et al. [15] improved the resource utilization of CPU cores and memory and
minimized the number of newly created VMs and active PMs. The proposed ant colony
optimization based on a best-fit algorithm (called metaheuristic ACO) showed significant
improvement in the resource utilization of PMs and VMs. However, the energy efficiency
parameter was not considered, and the time costs of the heuristic algorithms (which are
computationally lightweight) were lower than that of metaheuristic ACO. Srikantaiah [16]
was among the first researchers to address the problem of consolidation to improve energy
efficiency in the cloud computing environment. Later, Tchana et al. [17] incorporated the
consolidation of virtual machines and support real-time sizing algorithms to eliminate
resource gaps (i.e., unused resources). The studies were carried out in a private cloud
utilizing a VM or PM; however, just the Tomcat servlet was offered to host by the container.

Kaewkasi and Chuenmuneewong [18] used ant colony optimization (ACO) for the
scheduling of Docker containers. The ACO algorithm was used to distribute application
containers over the Dockers’ hosts for efficient resource usage. The experiments showed
that ACO performance was higher by 15% when compared to the greedy scheduler algo-
rithm. However, the study considered monolithic application implementation.

Recently, an experimental study [11] was conducted to compare the performance of
VMs, containers, and unikernels. Multiple performance parameters were analyzed such as
network bandwidth, memory footprints, CPU utilization, etc., and the authors found that
the performance of containers was much better but there were also some issues such as secu-
rity, data management, and networking overhead in a large cluster deployment, nonstable
performance, and a smaller number of tools for container management and orchestration.

Group buying strategies proposed by Yi et al. [19] were used to address cloud inef-
ficiency and improve resource utilization. The proposed mechanism was named Cocao
(COmputing in COntAiners) which was used to group the jobs according to resource
demands and was assigned to the predefined cloud provider’s group buying deals. Each
deal offered the pool of resources for the job belonging to that group. The authors modeled
the initial group organization as a variable-sized vector bin packing problem and used an
online multidimensional knapsack for dynamic group organization to fill the resource holes.

Khan et al. [20] addressed the issue of consolidating virtual machines, containers,
and/or applications to have an energy- and performance-effective schema for heteroge-
neous cloud data centers. According to the authors, there is a trade-off involved between
migrating containers and virtual machines. The experimental results demonstrated that
container migration increases the total number of migrations when compared with VM
migrations (due to the small size of containers). The VM migration is more performance-
efficient, while container migration is energy-efficient. The proposed model evaluation
showed that a large number of container migrations result in high energy utilization and a
decline in performance when compared to VM migration.

The study in [21] presented two types of ECSched scheduling strategies, i.e., ECSched-
dp (based on the dot-product heuristic) and ECSched-ml (based on most loaded heuristic).
Moreover, the authors compared ECSched with Google Kubernetes and Docker Swarm which
acted as the baseline for comparison. The comparison results showed that ECSched provides
more resource utilization and ECScheddp has the highest resource utilization. The resource
utilization increased by 4.1% to 5.3% for ECSched-dp when compared with baselines.

To reduce the service cost, Chung et al. [22] introduced Stratus, which was used to
pack the tasks on the machines using the estimated runtime for the incoming jobs. The
JVuPredict [23] algorithm was used to predict the estimated runtime of the tasks. JVuPredict
determined the candidate group of the incoming job based on the history (i.e., submitted
by the same user, same job name, time of day, etc.), and then the tentative runtime was
evaluated. The Stratus model made the resource allocation of the machines which were
either highly utilized (mostly full) or empty ones (i.e., can be released to save cost). The
simulation results showed that cost can be decreased by 17 to 44%. However, in the
experiment, it was assumed that there are no intertask dependencies and that the task

Appl. Sci. 2022, 12, 5793 6 of 21

co-location has no or minimal impact on task runtime, which is not true for the real-world
cloud computing environment.

A framework named MiCADO was proposed by Visti et al. [24], which provided
application-level dynamic cloud orchestration, thus resulting in predicting the application
capacity demand behavior. The microservices orchestration layer was divided into four
sublayers; refer to Figure 3. The cloud interface layer provided cloud access from the above
layers. The microservices coordination layer monitored the current execution performance
and helped in identifying the bottleneck or under-utilization of infrastructure. The mi-
croservices discovery and execution layer managed the microservice execution and kept
track of services running, i.e., service name, IP address, and port number. The coordination
interface API provided access to application developers for the convenient development of
the dynamically scalable cloud-based application. The framework was presented as the
first proof-of-concept and its applicability was checked using open-source tools such as
Docker1, Consul2, etc.

Figure 3. MiCADO Architecture; Adapted with permission from [24].

In 2019, the MiCADO by Visti et al. [24] was implemented by Kiss et al. [25], which
provided support for the automated scalability of cloud applications. The implementation
for evaluation of MiCADO was based on the CloudSigma public cloud. Moreover, open-
source tools, such as Prometheus (to collect information about various services), Occopus (to
keep track of running services), Consul (to organize Docker containers in the cluster), and
Grafana (to generate graphs), were used. They estimated that the proposed framework can
increase the efficiency of the business process and help in increasing customer satisfaction.

To support the deadline-based application execution policies for MiCADO, a cloud-
agnostic queuing system was introduced by Kiss et al. [26]. This study was based on
MiCADO as already described by Visti et al. [24], which was implemented by Kiss et al. [26].
The study implemented the JQueuer system, which made use of the queuing system to
schedule many jobs among the containers. The JQueuer was based on two components
named: JQueuer Manager and JQueuer AGent. JQueuer agent components were respon-
sible for fetching the jobs from the job queues and sending them to JQueuer Manager.
The study also provided the implementation of JQueuer along with MiCADO to provide
deadline-based execution policies for the MiCADO framework. The paper mainly focused
on the demonstration of JQueuer and MiCADO and did not address the optimization of
deadline-based execution policies.

Another research study [27] defined a general framework to provide a programmable
policy keeper concept that performs the decision about scaling at the VM level and con-

Appl. Sci. 2022, 12, 5793 7 of 21

tainer level by calculating the optimal number of required instances. The framework
was integrated with MiCADO and tested with the deadline-based scaling use case. How-
ever, the future plan is to provide the machine learning algorithm to support the policy
keeper component.

A migration service called Voyager was introduced by Nadgowda et al. [28]. This
service provided just-in-time container migration to minimize downtime. The core idea was
to resume the operations instantly on target machines while doing the disk state transfer in
the background. However, the implementation heavily relied on the open-source Linux
tool CRIU for checkpoint/restore operations. In the Voyager migration, the downtime was
realized between 2 and 3 s, which is relatively high. In addition, the resources optimization
and prioritization were not handled for better results.

A study by [29] presented a three-phase virtual resource management framework for
energy-efficient resource management of cloud data centers. In the first phase, profiling is
performed to generate machine-readable data sets of computing tasks. The task profiling
gave information about the required number of PMs. In the second phase, the tasks are
classified into long-running, normal, and tiny tasks. The classification of task running
length is used to assign the tasks to respective VMs. In phase three, all PMs are sorted
based on energy efficiency. Then the PMs which are more energy-efficient are first loaded
with VMs. The simulation results showed that 8–12% energy savings could be achieved by
using the proposed framework. For this framework to be successful, we need to know the
size of the task beforehand. Moreover, it does not address the holes in PMs, which can be
formed by assigning a few PMs only for large tasks and some PMs only for small tasks.

Zhou et al. [30] proposed the optimal placement schema for containers in the cloud
environment. They introduced a one-shot algorithm that works as a placement schema for
the container cluster and an online algorithm that breaks down the online decision making
into on-the-spot decisions depending on resource price.

The study by Tan et al. [31] provided an extension of the NSGA-II-based approach [32]
for service resource allocation in the cloud. The study aimed at the static approach instead
of the dynamic approach for allocation of the container to the virtual machines and physical
machines. Instead of using a single chromosome [32], the concept of a dual-chromosome
genetic algorithm was introduced for resource allocation in container-based clouds. The
results showed that dual-chromosome GA gives better performance when compared with
single-chromosome GA and the best-fit descending algorithm.

As most of the elasticity policies are based upon the threshold-based heuristics algo-
rithm, the study by [33] explored and designed a more flexible solution using reinforcement
learning (RL) to control the elasticity of container-based applications.

Technically, the conventional service-oriented architecture (SOA) services and mi-
croservices are platform-agnostic and use standardized communication protocols such
as HTTP. The microservice architecture divides the monolith (single-unit) software into
dozens of small service components. The microservice is highly scalable because each
service can be scaled easily when required. The individual nature of microservices means
they are easily usable among the different systems.

The number of microservices may grow to hundreds or even thousands in number.
The death star graphic visualization [34] for a social media platform is shown in Figure 4.
The complexity of many microservice interactions is evident. The increasing number
of microservices brings complexity to the management of services. As the network of
microservices grows, it also brings challenges for interservice communication.

Appl. Sci. 2022, 12, 5793 8 of 21
Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21

Figure 4. A death star graph showing inter-relationships among microservices [34].

A microservices tracing and analytical tool (JCallGraph) to analyze the invocation

relationship of microservices running on containers was designed by Liu [35] for the

Chinese e-commerce company JD.com (having approximately 34,000 microservices

running on a cluster of 500,000 containers, supporting over 250 billion RPC-based

microservices calls per day). The JCallGraph acted as a distributed tracing system to track

the interactions and timing information of microservices.

Dang-Quang and Yoo [36] suggested an effective multivariate autoscaling system for

cloud computing utilizing bidirectional long short-term memory (Bi-LSTM). The

monitor–analyze–plan–execute loop served as the foundation for the system structure. In

terms of prediction accuracy, the assessment results reveal that the proposed multivariate

Bi-LSTM model outperforms not only the univariate Bi-LSTM model but also multivariate

deep learning models such as LSTM and CNN-LSTM.

Malik et al. [37] addressed resource consumption prediction to avoid over-

provisioning and under-provisioning problems. The purpose of this study was to

anticipate multiresource consumption utilizing a functional-link neural network (FLNN)

with a hybrid genetic algorithm (GA) and particle swarm optimization (PSO). The model

trains network weights using a hybrid GA-PSO algorithm and for prediction uses FLNN.

When compared to conventional methodologies, the hybrid model offered higher

accuracy.

Malik et al. [38] addressed the issue of energy consumption and resource usage

efficiency in virtualized cloud data centers. The workflow activities were preprocessed in

the suggested approach to prevent bottlenecks by putting jobs with higher dependencies

and lengthier execution durations in different queues. The tasks are then categorized

based on the intensity of the needed resources. Finally, the optimum schedules are chosen

using particle swarm optimization (PSO). The results of the tests demonstrated efficacy in

terms of energy usage, makespan, and load balancing.

Calderón-Gómez et al. [39] evaluated the service-oriented architecture patterns and

microservice architecture patterns for the deployment of applications in cloud computing,

specifically the eHealth applications. It was determined that the microservice architecture

performs better in terms of response time and performance than the service-oriented

architecture variant; nevertheless, the microservice architecture consumes much more

bandwidth than the service-oriented architecture variant.

Górski and Woźniak [40] conducted a thorough evaluation of the literature on the

optimization of business process execution in services architecture. They classified the

Figure 4. A death star graph showing inter-relationships among microservices [34].

A microservices tracing and analytical tool (JCallGraph) to analyze the invocation
relationship of microservices running on containers was designed by Liu [35] for the
Chinese e-commerce company JD.com (having approximately 34,000 microservices running
on a cluster of 500,000 containers, supporting over 250 billion RPC-based microservices
calls per day). The JCallGraph acted as a distributed tracing system to track the interactions
and timing information of microservices.

Dang-Quang and Yoo [36] suggested an effective multivariate autoscaling system for
cloud computing utilizing bidirectional long short-term memory (Bi-LSTM). The monitor–
analyze–plan–execute loop served as the foundation for the system structure. In terms of
prediction accuracy, the assessment results reveal that the proposed multivariate Bi-LSTM
model outperforms not only the univariate Bi-LSTM model but also multivariate deep
learning models such as LSTM and CNN-LSTM.

Malik et al. [37] addressed resource consumption prediction to avoid over-provisioning
and under-provisioning problems. The purpose of this study was to anticipate multire-
source consumption utilizing a functional-link neural network (FLNN) with a hybrid
genetic algorithm (GA) and particle swarm optimization (PSO). The model trains network
weights using a hybrid GA-PSO algorithm and for prediction uses FLNN. When compared
to conventional methodologies, the hybrid model offered higher accuracy.

Malik et al. [38] addressed the issue of energy consumption and resource usage
efficiency in virtualized cloud data centers. The workflow activities were preprocessed in
the suggested approach to prevent bottlenecks by putting jobs with higher dependencies
and lengthier execution durations in different queues. The tasks are then categorized based
on the intensity of the needed resources. Finally, the optimum schedules are chosen using
particle swarm optimization (PSO). The results of the tests demonstrated efficacy in terms
of energy usage, makespan, and load balancing.

Calderón-Gómez et al. [39] evaluated the service-oriented architecture patterns and
microservice architecture patterns for the deployment of applications in cloud computing,
specifically the eHealth applications. It was determined that the microservice architecture
performs better in terms of response time and performance than the service-oriented
architecture variant; nevertheless, the microservice architecture consumes much more
bandwidth than the service-oriented architecture variant.

Górski and Woźniak [40] conducted a thorough evaluation of the literature on the
optimization of business process execution in services architecture. They classified the
methodologies in the existing literature into three categories, resource allocation, service

Appl. Sci. 2022, 12, 5793 9 of 21

composition, and service scheduling, and discovered that service composition draws the
most researchers. In general, scientists offer heuristic strategies for optimizing business
operations in real time and still there is room for investigation at the resource allocation
and service scheduling levels, which are covered in this article.

Due to the high demand for cloud computing services, the cloud service providers
must work together in a scenario known as an interconnected cloud computing envi-
ronment [41]. Commonly known interconnected cloud environments are hybrid cloud,
intercloud, federated cloud, and multicloud. The cloud service provider and the cloud
service user agree upon a service level agreement (SLA). If the services are not provided
according to the agreement, then the cloud provider has to pay certain plenty. The studies
have been conducted to increase the overall efficiency of cloud services to decrease SLA vio-
lations. Moreover, different approaches have been defined to customize the SLA according
to the present status of data centers.

Hemmat and Hafid [42] addressed the topic of SLA violation prediction in the cloud
computing environment and used the machine learning approach for SLA violation pre-
diction. The study compared the performance of the naive Bayes model and the random
forest model. They found that the random forest model provided the best performance
with an accuracy of 0.99%. The classical way of predefined SLA has certain issues. The
predefined SLAs are not able to change according to the change in QoS parameters. SLA
can be defined as a set of Service Level Objectives (SLO). These SLOs should be ensured by
the cloud service provider according to the changing status of the data centers.

The key findings of the literature are highlighted in Figure 5. The literature showed
that since cloud computing maintains a range of virtualized resources, scheduling is an
essential component. Inefficient scheduling strategies and nonoptimal resource manage-
ment confront the issues of resource overutilization and underutilization, thus resulting in
resource imbalance, which results in either impairment in cloud service performance, i.e.,
overutilization, or waste of cloud resources, i.e., underutilization. In addition, efficient SLA
and computational monitoring infrastructures are still lacking which must be capable of
monitoring and detecting SLA violations. Monitoring, detection, and pre-emption of SLA
should be imposed to provide better resource availability, scalability, competitive price,
and energy efficiency for cloud services.

Notably, scientific research highlights two sorts of rating strategies, namely, profiling
and ranking, for effective content distribution of interconnected services using the repair-
ing genetic algorithm (RGA) [43], bubble-up and bubble-flux [44], the power-conscious
model [45], service request routing optimization [46], resource balance ranking schema [47],
ge-kube using Kubernetes for geographical distributions [48], energy usage in relation to
processing intensive communication workloads [49], StressCloud to monitor cloud energy
consumption [50], the positioning of microservice instances and resource distribution op-
timization [46], and CloudCost which used a UML profile to allow the modeling of user
behavior and cloud architecture [51].

According to the literature investigation, most cloud services have certain limits, such
as a maximum cost, task complexity, maximum completion time, less profit, and make span.
Based on a review of the current literature, it is also discovered that numerous container
orchestration solutions and provisioning techniques do not consider the unique properties
of microservices such as high cohesion, independence, autonomy, and loose coupling.
Open key research areas can be listed as:

• Distribution techniques in container orchestration platforms are mostly focused on
available and allocated resources and do not take into account the complexity of the
microservices’ architecture, microservices’ properties, and workload management
accordingly, which need to be addressed.

• The ability to effectively forecast compute demand and application performance under
varying resource allocations is one of the research issues related to elastic services.

• Dynamic container orchestration according to microservices interactivity patterns and
concerning entities is an active research topic that has room for additional investigation.

Appl. Sci. 2022, 12, 5793 10 of 21

• Containers have less isolation and security than virtual machines (VMs) due to kernel
sharing, which is an open issue but not addressed in the article due to the study’s
focus and limitation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 21

Figure 5. Key findings from the literature review of concepts, theories, and existing frameworks

[6–15,18–20,23,29,33,43–51].

Notably, scientific research highlights two sorts of rating strategies, namely, profiling

and ranking, for effective content distribution of interconnected services using the

repairing genetic algorithm (RGA) [43], bubble-up and bubble-flux [44], the power-

conscious model [45], service request routing optimization [46], resource balance ranking

schema [47], ge-kube using Kubernetes for geographical distributions [48], energy usage

in relation to processing intensive communication workloads [49], StressCloud to monitor

cloud energy consumption [50], the positioning of microservice instances and resource

distribution optimization [46], and CloudCost which used a UML profile to allow the

modeling of user behavior and cloud architecture [51].

According to the literature investigation, the majority of the cloud services have

certain limits, such as a maximum cost, task complexity, maximum completion time, less

profit, and makespan. Based on a review of the current literature, it is also discovered that

numerous container orchestration solutions and provisioning techniques do not take into

account the unique properties of microservices such as high cohesion, independence,

autonomy, and loose coupling. Open key research areas can be listed as:

• Distribution techniques in container orchestration platforms are mostly focused on

available and allocated resources and do not take into account the complexity of the

microservices’ architecture, microservices’ properties, and workload management

accordingly, which need to be addressed.

• The ability to effectively forecast compute demand and application performance

under varying resource allocations is one of the research issues related to elastic

services.

Figure 5. Key findings from the literature review of concepts, theories, and existing frameworks
[6–15,18–20,23,29,33,43–51].

To overcome the aforementioned limits while maintaining the microservices’ char-
acteristics, a new generation of the framework must be developed. As a result, futuristic
research on task scheduling and resource management in cloud computing must focus on
developing better scheduling algorithms and frameworks based on multiobjective functions
and adding additional factors such as mutation action policies to increase the performance
and lower the energy consumption of the cloud-based applications. Therefore, this study
specifically contributes to the following:

1. Intelligent partitioning: responsible for microservice classification and the categoriza-
tion of microservices based on their usage and dependency on other microservices.

2. Dynamic allocation: used for the pre-execution distribution of microservices among
containers and making decisions for the dynamic allocation of microservices at runtime.

3. Resource optimization: in charge of shifting workloads and ensuring optimal resource use.
4. Mutation actions: these are based on procedures that will mutate the microservices

based on cloud data center workloads.

The next section (Section 3) discusses the mechanics and details of the above-mentioned
contribution highlights.

3. Methodology

The research methodology is based on a number of necessary steps including literature
review, feature selection, data collection, agent definition, and evaluation; refer to Figure 6.

Appl. Sci. 2022, 12, 5793 11 of 21

The research process performed an orderly and critical review of existing studies. The study
of past research papers about the latest trends of cloud computing acted as a data collection
tool to gain knowledge about the existing frameworks and results achieved. Based on the
literature review understanding, the system features were identified and later classified into
different sets of classes. The core feature selection greatly helped in meaningful decision-
making. The newly conceptualized techniques were formed/extended to address the
untouched issues of cloud computing. The eco-friendly dynamic resource discovery and
resource allocation models were identified to meet the computational demands of the cloud
jobs.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 21

• Dynamic container orchestration according to microservices interactivity patterns

and concerning entities is an active research topic that has room for additional

investigation.

• Containers have less isolation and security than virtual machines (VMs) due to kernel

sharing, which is an open issue but not addressed in the article due to the study’s

focus and limitation.

To overcome the aforementioned limits while maintaining the microservices’

characteristics, a new generation of the framework must be developed. As a result,

futuristic research on task scheduling and resource management in cloud computing must

focus on developing better scheduling algorithms and frameworks based on

multiobjective functions and adding additional factors such as mutation action policies to

increase the performance and lower the energy consumption of the cloud-based

applications. Therefore, this study specifically contributes to the following:

1. Intelligent partitioning: responsible for microservice classification and the

categorization of microservices based on their usage and dependency on other

microservices.

2. Dynamic allocation: used for the pre-execution distribution of microservices among

containers and making decisions for the dynamic allocation of microservices at

runtime.

3. Resource optimization: in charge of shifting workloads and ensuring optimal

resource use.

4. Mutation actions: these are based on procedures that will mutate the microservices

based on cloud data center workloads.

The next section (Section 3) discusses the mechanics and details of the above-

mentioned contribution highlights.

3. Methodology

The research methodology is based on a number of necessary steps including

literature review, feature selection, data collection, agent definition, and evaluation; refer

to Figure 6. The research process performed an orderly and critical review of existing

studies. The study of past research papers about the latest trends of cloud computing

acted as a data collection tool to gain knowledge about the existing frameworks and

results achieved. Based on the literature review understanding, the system features were

identified and later on classified into different sets of classes. The core feature selection

greatly helped in meaningful decision making. The newly conceptualized techniques

were formed/extended to address the untouched issues of cloud computing. The eco-

friendly dynamic resource discovery and resource allocation models were identified to

meet the computational demands of the cloud jobs.

Figure 6. Research methodology flow.

It became evident from the selected feature that existing techniques to achieve better

resource allocation and reduce the power consumption of the computing nodes in a cloud

environment have some serious deficiencies. Most of these techniques monitor the

Figure 6. Research methodology flow.

It became evident from the selected feature that existing techniques to achieve better
resource allocation and reduce the power consumption of the computing nodes in a cloud
environment have some serious deficiencies. Most of these techniques monitor the resource
load over a period of time and decide to turn off the computing node to reduce the power
consumption. Moreover, the main scheduler and resource handler run on the master
node, which defines the critical bottleneck entry and a single point of failure (SPF) in the
computing environment. Mostly the defined systems only consider the CPU allocation
while ignoring the other parameters. The latency due to changes in the state of machines
(on/off) is also not considered.

Our research model is based on the microservice architecture in which a cloud applica-
tion is divided into several small services that will be capable enough to perform the signal
functionality. A prototype of a microservices-based system is shown in Figure 7, where
multiple actors access the database server and web server through API gateway, frontend
interfaces, and storage gateways. In between, multiple independently running microser-
vices provide the required service while being able to handle millions of access requests
and ensuring low latency, high availability, scalability, and resilience to network failures.
To handle a large number of microservices in the system, we proposed an agent-based
service (see Figure 8) which will be responsible for providing four core services including
intelligent partitioning, dynamic allocation, resource optimization, and mutation actions.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21

resource load over a period of time and decide to turn off the computing node to reduce

the power consumption. Moreover, the main scheduler and resource handler run on the

master node, which defines the critical bottleneck entry and a single point of failure (SPF)

in the computing environment. Mostly the defined systems only consider the CPU

allocation while ignoring the other parameters. The latency due to changes in the state of

machines (on/off) is also not taken into account.

Our research model is based on microservice architecture in which a cloud

application is divided into several small services that will be capable enough to perform

the signal functionality. A fictitious microservices-based system is shown in Figure 7,

where multiple actors access the database server and web server through API gateway,

frontend interfaces, and storage gateways. In between, multiple independently running

microservices provide the required service while being able to handle millions of access

requests and ensuring low latency, high availability, scalability, and resilience to network

failures. To handle a large number of microservices in the system, we proposed an agent-

based service (see Figure 8) which will be responsible for providing four core services

including intelligent partitioning, dynamic allocation, resource optimization, and

mutation actions.

Figure 7. A fictitious microservice system.

Figure 8. Layered representation of the proposed framework.

3.1. Intelligent Partitioning

Figure 7. A microservice system prototype.

Appl. Sci. 2022, 12, 5793 12 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21

resource load over a period of time and decide to turn off the computing node to reduce

the power consumption. Moreover, the main scheduler and resource handler run on the

master node, which defines the critical bottleneck entry and a single point of failure (SPF)

in the computing environment. Mostly the defined systems only consider the CPU

allocation while ignoring the other parameters. The latency due to changes in the state of

machines (on/off) is also not taken into account.

Our research model is based on microservice architecture in which a cloud

application is divided into several small services that will be capable enough to perform

the signal functionality. A fictitious microservices-based system is shown in Figure 7,

where multiple actors access the database server and web server through API gateway,

frontend interfaces, and storage gateways. In between, multiple independently running

microservices provide the required service while being able to handle millions of access

requests and ensuring low latency, high availability, scalability, and resilience to network

failures. To handle a large number of microservices in the system, we proposed an agent-

based service (see Figure 8) which will be responsible for providing four core services

including intelligent partitioning, dynamic allocation, resource optimization, and

mutation actions.

Figure 7. A fictitious microservice system.

Figure 8. Layered representation of the proposed framework.

3.1. Intelligent Partitioning

Figure 8. Layered representation of the proposed framework.

3.1. Intelligent Partitioning

The intelligent partitioning module is responsible for the categorization of microser-
vices based on their usage and dependency on other microservices, while making use of
microservices’ autonomy, loose coupling, and scalable nature to locate the microservices
closer to the data source to reduce latency and network utilization.

Each job in a microservice is allocated a thread as a resource. Local databases in
microservices offer cross-thread connections, which implies that many threads in microser-
vices can utilize the same database connection [52]. In such a case, the computing resources
available will limit the number of CPUs and other resources required for the operation.
The intelligent partitioning agent has autonomous decision-making capacity based on the
reliance and consumption of the microservices to assess and group the microservices based
on the present condition of the cloud application. The aggregated microservices are then
assigned to available data centers. As a result, it minimizes latency and network use, im-
proves resource utilization, and addresses service discovery and load balancing difficulties.

The overall schema for intelligent partitioning is represented in Figure 9. The total
number of microservices of a specific application will be grouped on one of two factors,
i.e., (1) based upon connections/dependencies among microservices, (2) the usage of the
history of the microservices invoked by the actors involved (actors can be end-users, web
services, REST API, RPC call, etc.). The grouping functionality is provided by the running
agent. The agent may make use of developer documents or the service usage history logs
of invoked microservices.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 21

The intelligent partitioning module is responsible for the categorization of

microservices based on their usage and dependency on other microservices, while making

use of microservices’ autonomy, loose coupling, and scalable nature to locate the

microservices closer to the data source to reduce latency and network utilization.

Each job in a microservice is allocated a thread as a resource. Local databases in

microservices offer cross-thread connections, which implies that many threads in

microservices can utilize the same database connection [52]. In such a case, the computing

resources available will limit the number of CPUs and other resources required for the

operation. The intelligent partitioning agent has autonomous decision-making capacity

based on the reliance and consumption of the microservices to assess and group the

microservices based on the present condition of the cloud application. The aggregated

microservices are then assigned to available data centers. As a result, it minimizes latency

and network use, improves resource utilization, and addresses service discovery and load

balancing difficulties.

The overall schema for intelligent partitioning is represented in Figure 9. The total

number of microservices of a specific application will be grouped on one of two factors,

i.e., (1) based upon connections/dependencies among microservices, (2) the usage of the

history of the microservices invoked by the actors involved (actors can be end-users, web

services, REST API, RPC call, etc.). The grouping functionality is provided by the running

agent. The agent may make use of developer documents or the service usage history logs

of invoked microservices.

Figure 9. Schema for intelligent partitioning.

3.2. Dynamic Allocation

This module is responsible for the allocation of containers and the respective

microservices. At run time, the decisions about allocations are made according to the

changing behavior of the cloud services utilization. Within containerized cloud

environments, the service instances have been assigned to network locations dynamically.

The autoscaling and upgrades result in continuous change in service instances’ network

locations. Thus, a service registry mechanism is used to enable the service to discover [53].

The service registry stores the network locations (IP address and port numbers) of service

instances. The service registry, therefore, records the network location when a service

instance starts up and removes the network address entry when the service instance

terminates. The dynamic allocation makes use of the service registry to obtain knowledge

about existing allocations and to upgrade the service registry entries according to the

newly developed allocation table.

Moreover, in software development, the updates for programming codes are

automatically built, tested, and deployed, thus resulting in the continuous delivery and

Figure 9. Schema for intelligent partitioning.

Appl. Sci. 2022, 12, 5793 13 of 21

3.2. Dynamic Allocation

This module is responsible for the allocation of containers and the respective microser-
vices. At run time, the decisions about allocations are made according to the changing
behavior of the cloud services utilization. Within containerized cloud environments, the
service instances have been assigned to network locations dynamically. The autoscaling
and upgrades result in continuous change in service instances’ network locations. Thus,
a service registry mechanism is used to enable the service to discover [53]. The service
registry stores the network locations (IP address and port numbers) of service instances.
The service registry, therefore, records the network location when a service instance starts
up and removes the network address entry when the service instance terminates. The
dynamic allocation makes use of the service registry to obtain knowledge about existing
allocations and to upgrade the service registry entries according to the newly developed
allocation table.

Moreover, in software development, the updates for programming codes are automati-
cally built, tested, and deployed, thus resulting in the continuous delivery and deployments
of the software updates. Thus, it can use the Git logs for changing the allocations according
to software updates. In some cases, the dynamic approach tends to produce worse results
when compared to the static approach [31,54]. This is due to frequent container shifts
by the dynamic approaches, which leads to extra network overhead. Thus, the dynamic
approaches in our proposed framework shift the containers intelligently to reduce the
network traffic among the containers.

3.3. Resource Optimization

Fulfilling the demands of containers for resources can be challenging. The cluster
of containers has multiple resource needs (such as CPU and memory) which need to be
allocated efficiently. In addition, poor/good container placement on the physical machines
(PM) can affect the network latency of container communication. In large container clusters,
performance parameters such as scaling out and recovery from failure require real-time
analytics [30,55]. The queue-based tasks and resource scheduler are commonly used in
well-known cloud orchestration platforms such as Docker Swarm and Kubernetes. In
such schedulers, the task placement request on the cloud enters a queue. From the queue,
the scheduler fetches the request and processes one container at a time. Most commonly,
the variants of heuristic packing algorithms, such as first-fit decreasing (FFD) and best-fit
decreasing (BFD), are used for queue-based schedulers.

In the proposed framework for resource optimization, the migration service is in-
troduced, which will be responsible for shifting the workload between containers and
providing optimal resource utilization of computational resources; refer to Figure 10. There
could be many reasons to migrate the containers from one host to another host. A few of
these possibilities include:

- The overall work needs to be distributed across multiple hosts to comply with the
service level agreement.

- Consolidating the number of hosts; thus, a smaller number of hosts will result in lower
consumption of energy.

- A specific host performs better than the currently running host.

Appl. Sci. 2022, 12, 5793 14 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 21

deployments of the software updates. Thus, it can use the Git logs for changing the

allocations according to software updates. In some cases, the dynamic approach tends to

produce worse results when compared to the static approach [31,54]. This is due to

frequent container shifts by the dynamic approaches, which leads to extra network

overhead. Thus, the dynamic approaches in our proposed framework shift the containers

intelligently to reduce the network traffic among the containers.

3.3. Resource Optimization

Fulfilling the demands of containers for resources can be challenging. The cluster of

containers has multiple resource needs (such as CPU and memory) which need to be

allocated efficiently. In addition, poor/good container placement on the physical machines

(PM) can affect the network latency of container communication. In large container

clusters, performance parameters such as scaling out and recovery from failure require

real-time analytics [30,55]. The queue-based tasks and resource scheduler are commonly

used in well-known cloud orchestration platforms such as Docker Swarm and

Kubernetes. In such schedulers, the task placement request on the cloud enters into a

queue. From the queue, the scheduler fetches the request and processes one container at

a time. Most commonly, the variants of heuristic packing algorithms, such as first-fit

decreasing (FFD) and best-fit decreasing (BFD), are used for queue-based schedulers.

In the proposed framework for resource optimization, the migration service is

introduced, which will be responsible for shifting the workload between containers and

providing optimal resource utilization of computational resources; refer to Figure 10.

There could be many reasons to migrate the containers from one host to another host. A

few of these possibilities include:

- The overall work needs to be distributed across multiple hosts to comply with the

service level agreement.

- Consolidating the number of hosts; thus, a smaller number of hosts will result in

lower consumption of energy.

- A specific host performs better than the currently running host.

Figure 10. Resource optimization schema.

3.4. Mutation Actions

These actions are based upon mutation processes. The mutation is defined as: “A

mutation is a change in the DNA sequence. Mutations can develop as a result of multiple

environmental influences”. Thus, the mutation operator involves transferring procedures

from one microservice contender towards another [56]. In our proposed model, the

Figure 10. Resource optimization schema.

3.4. Mutation Actions

These actions are based upon mutation processes. The mutation is defined as: “A
mutation is a change in the DNA sequence. Mutations can develop because of multiple
environmental influences”. Thus, the mutation operator involves transferring procedures
from one microservice contender towards another [56]. In our proposed model, the change
in container orchestration occurs according to the defined system QOS parameters. Ei-
ther the microservices will be turned off or on, replicated due to workload, aggregated,
or distributed according to geographical carbon footprints, thus giving an impression
of mutation.

To identify the mutable microservices, an identifier system will work in coordination
with other modules, which will highlight the candidate microservices. The mutation action
schema is shown in Figure 11. The microservices running on containers will generate a
microservices invocation log. The data mining module will find the patterns and correla-
tions within the log data sets to predict/identify the candidate microservices for mutation
actions. The outcome of the data mining module will be used by the event handler. When
an event is generated (due to factors such as overloaded resources), it will be received by
the event handler. The event handler will mutate (in this case, shut down the microservices,
shown in black color in Figure 11) the microservices.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 21

change in container orchestration occurs according to the defined system QOS

parameters. Either the microservices will be turned off or on, replicated due to workload,

aggregated, or distributed according to geographical carbon footprints, thus giving an

impression of mutation.

To identify the mutable microservices, an identifier system will work in coordination

with other modules, which will highlight the candidate microservices. The mutation

action schema is shown in Figure 11. The microservices running on containers will

generate a microservices invocation log. The data mining module will find the patterns

and correlations within the log data sets to predict/identify the candidate microservices

for mutation actions. The outcome of the data mining module will be used by the event

handler. When an event is generated (due to factors such as overloaded resources), it will

be received by the event handler. The event handler will mutate (in this case, shut down

the microservices, shown in black color in Figure 11) the microservices.

Figure 11. Mutation actions schema.

In the classical cloud computing approach, the task is assigned within one data

center. However, in our approach, the task distribution strategies are applied in

interconnected cloud computing environments including multicloud, hybrid cloud, and

federated cloud environments. Thus, an agent-based cloud broker service layer is

responsible for managing the incoming request from cloud users and providing the

delivery of cloud services. It will be responsible for the performance and will also act as a

negotiator between the cloud service providers and cloud service consumers. The

negotiation terms involve SLA, cost, energy, and other details. In a more effective

approach, the scheduling strategies are applied across multiple data centers of one vendor

and across multiple data centers of different vendors.

Moreover, event-based architecture is introduced, in which a service sends an event

to the event observer and one or more event observer containers that were watching for

that event to respond to the specific event. The response time for cold versus warm service

requests has a major impact on the performance of cloud providers. The response time

implication is evaluated for three situations, i.e., (1) a provider cold request, the very first

call to the microservice made to the cloud provider; (2) a container cold request, the very

first call made to the container hosting the microservice; and (3) a warm request, the

repeated request to the already invoked container hosting the microservice.

3.5. Metrics for Framework Performance Assessment

Maintaining business operations and long-term sustainability significantly depends

on cloud performance. Cloud performance metrics enable effective monitoring of cloud

resources, operational efficiency, and service delivery. There are a variety of metrics that

can assist in monitoring and assessing the performance of cloud computing services.

Typically, cloud performance indicators include VM capacity (refer to Equation (1)),

multiple VM instances’ capacities (refer Equation (2)), task execution time (refer to

Equation (4)), energy consumption (refer Equation (5)), resource utilization (refer to

Equation (6)), and power consumption (refer Equation (7)). Details of some of the

notations from the literature are listed below:

Figure 11. Mutation actions schema.

In the classical cloud computing approach, the task is assigned within one data center.
However, in our approach, the task distribution strategies are applied in interconnected
cloud computing environments including multicloud, hybrid cloud, and federated cloud
environments. Thus, an agent-based cloud broker service layer is responsible for managing
the incoming request from cloud users and providing the delivery of cloud services. It
will be responsible for the performance and will also act as a negotiator between the cloud

Appl. Sci. 2022, 12, 5793 15 of 21

service providers and cloud service consumers. The negotiation terms involve SLA, cost,
energy, and other details. In a more effective approach, the scheduling strategies are
applied across multiple data centers of one vendor and across multiple data centers of
different vendors.

Moreover, event-based architecture is introduced, in which a service sends an event
to the event observer and one or more event observer containers that were watching for
that event to respond to the specific event. The response time for cold versus warm service
requests has a major impact on the performance of cloud providers. The response time
implication is evaluated for three situations, i.e., (1) a provider cold request, the very
first call to the microservice made to the cloud provider; (2) a container cold request, the
very first call made to the container hosting the microservice; and (3) a warm request, the
repeated request to the already invoked container hosting the microservice.

3.5. Metrics for Framework Performance Assessment

Maintaining business operations and long-term sustainability significantly depends
on cloud performance. Cloud performance metrics enable effective monitoring of cloud
resources, operational efficiency, and service delivery. There are a variety of metrics that can
assist in monitoring and assessing the performance of cloud computing services. Typically,
cloud performance indicators include VM capacity (refer to Equation (1)), multiple VM
instances’ capacities (refer Equation (2)), task execution time (refer to Equation (4)), energy
consumption (refer Equation (5)), resource utilization (refer to Equation (6)), and power
consumption (refer Equation (7)). Details of some of the notations from the literature are
listed below:

Capacity of a Virtual Machine (VM): A virtual machine’s capacity is the product of the
number of cores allotted to every virtual machine as well as the size of each core. Let V be
the set of VM instances represented as V1, V2, V3, . . . , Vn. Then the capacity of a virtual
machine CPV is defined as:

CPV = Cnum(VMV) ∗ Cunits (1)

Capacity of Multiple VM Instances: The VM instances’ capacity is defined as the total
of the active VM instances on the server S:

CPsum = ∑n
i=1 CPi (2)

Note: The overall volume of active virtual machine instances should also not exceed
the server’s (Sp) capacities and therefore can be represented in Equation (3):

CPsum ≤ Sp; 1 ≤ p ≤ n (3)

Execution Time: The task (Tk) execution time (ET) by the virtual machine instance
VMi is defined as:

ETki =
SZk
CPi

(4)

where the size of the task k is denoted as SZk.
Energy Consumption: Energy consumption can be defined as:

EC = ECp + ECt + ECm + ECe (5)

where CPU energy consumption is ECp, switching equipment energy consumption is ECt,
storage devices’ energy consumption is ECm, other units’ energy consumption, including
current conversion losses, are represented as ECe.

Appl. Sci. 2022, 12, 5793 16 of 21

Resource Utilization: It is represented as the ratio of the execution time of a workload
executed by a particular resource and the total uptime of the resource:

RU = ∑n
i=1

execution time of a workload executed on resource i
total uptime of resource i

(6)

Power Consumption: Power utilization can be defined as:

P(u) = k · Pmax + (1 − k) · Pmax · u (7)

where Pmax is the maximum power consumed when the server is fully utilized; k is the
fraction of power consumed by the idle server, and u is the CPU utilization.

4. Results and Discussion

The goal of the study is to conceive a conceptual framework that assists in the con-
tainerized microservices orchestration and provisioning in cloud computing environments.
To associate the concepts of resilience and applicability, a part of the framework in a custom-
built simulation environment has been simulated and the preliminary results of the limited
framework evaluation have been presented.

As previously stated, the proposed framework is comprised of four levels. To narrow
the test, the evaluation of an intelligent partitioning module that uses the dependency
agent has been made. The microservice architectural style organizes an integrated suite of
tiny independent services that are designed for a business domain. To simulate the intelli-
gent portioning, the microservices were grouped according to their design patterns [57].
The major categories of the design patterns for microservices are decomposition patterns,
observability patterns, database patterns, integration patterns, and cross-cutting concern
patterns. For implementation, the integration of domain-driven design (DDD) subdomain
aggregates was intended. A domain (e.g., e-commerce business) is made up of many
subdomains (inventory, orders, delivery, customers, etc.). Each subdomain represents a
distinct aspect of the business. The aggregated items of the subdomain can be viewed
as a single entity. This results in eliminating the possibility of object references exceed-
ing service borders and satisfies the limits of the microservices transaction model since a
transaction may only add or edit a single aggregate. In such a configuration, clustering
and assigning individual containers to microservices is used when a service relies on the
delivery of another service. These assemblies of containers are subsequently assigned to
the appropriate cloud data centers. The performance efficiency of design-pattern-based in-
telligent portioning and distribution of microservices has been compared with the arbitrary
distribution of microservices where the containers along with microservices were randomly
assigned to available cloud data centers. As a result, for the distribution of microservices
on cloud data centers, pattern-based clustering of microservices was not conducted in the
arbitrary distribution design.

A custom-built simulation program created microservice data sets of microservice con-
sumption to verify the efficiency of intelligent partitioning. The simulation setup generated
a data collection of microservices calls spread across 750 min, utilizing 150 microservices
distributed across three data centers in three distinct geographical regions. Figure 12
depicts the average response time of a collection of microservices that are arbitrarily dis-
tributed. The average response time for microservice execution was 623.83 milliseconds; the
minimum and highest response times were 237.28 and 1228.16 milliseconds, respectively.

The intelligent partitioning employing a design-pattern-based distribution approach has
been analyzed using the same simulation environment. The findings, as shown in Figure 13,
indicate that response time is significantly reduced when compared to the arbitrary distribu-
tion method. The average response time for microservice requests is 457.45 milliseconds. The
minimum response times for simulated service calls are 197.55 ms and the maximum value of
response time is 1228.71 ms.

Appl. Sci. 2022, 12, 5793 17 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 21

a single entity. This results in eliminating the possibility of object references exceeding

service borders and satisfies the limits of the microservices transaction model since a

transaction may only add or edit a single aggregate. In such a configuration, clustering

and assigning individual containers to microservices is used when a service relies on the

delivery of another service. These assemblies of containers are subsequently assigned to

the appropriate cloud data centers. The performance efficiency of design-pattern-based

intelligent portioning and distribution of microservices was compared with the arbitrary

distribution of microservices where the containers along with microservices were

randomly assigned to available cloud data centers. As a result, for the distribution of

microservices on cloud data centers, pattern-based clustering of microservices was not

conducted in the arbitrary distribution design.

A custom-built simulation program created microservice data sets of microservice

consumption to verify the efficiency of intelligent partitioning. The simulation setup

generated a data collection of microservices calls spread across 750 min, utilizing 150

microservices distributed across three data centers in three distinct geographical regions.

Figure 12 depicts the average response time of a collection of microservices that are

arbitrarily distributed. The average response time for microservice execution was 623.83

milliseconds; the minimum and highest response times were 237.28 and 1228.16

milliseconds, respectively.

Figure 12. Response time over a period of 12.5 h when microservices were deployed using the

arbitrary distribution model.

The intelligent partitioning employing a design-pattern-based distribution approach

was analyzed using the same simulation environment, and the findings, as shown in

Figure 13, indicated that response time is significantly reduced when compared to the

arbitrary distribution method. The average response time for microservice requests was

457.45 milliseconds. The minimum response times for simulated service calls were 197.55

ms and the maximum value of response time was 1228.71 s.

Figure 13. Response time over a period of 12.5 h when microservices were deployed using the

design-pattern distribution.

Figure 12. Response time over a period of 12.5 h when microservices are deployed using the arbitrary
distribution model.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 21

a single entity. This results in eliminating the possibility of object references exceeding

service borders and satisfies the limits of the microservices transaction model since a

transaction may only add or edit a single aggregate. In such a configuration, clustering

and assigning individual containers to microservices is used when a service relies on the

delivery of another service. These assemblies of containers are subsequently assigned to

the appropriate cloud data centers. The performance efficiency of design-pattern-based

intelligent portioning and distribution of microservices was compared with the arbitrary

distribution of microservices where the containers along with microservices were

randomly assigned to available cloud data centers. As a result, for the distribution of

microservices on cloud data centers, pattern-based clustering of microservices was not

conducted in the arbitrary distribution design.

A custom-built simulation program created microservice data sets of microservice

consumption to verify the efficiency of intelligent partitioning. The simulation setup

generated a data collection of microservices calls spread across 750 min, utilizing 150

microservices distributed across three data centers in three distinct geographical regions.

Figure 12 depicts the average response time of a collection of microservices that are

arbitrarily distributed. The average response time for microservice execution was 623.83

milliseconds; the minimum and highest response times were 237.28 and 1228.16

milliseconds, respectively.

Figure 12. Response time over a period of 12.5 h when microservices were deployed using the

arbitrary distribution model.

The intelligent partitioning employing a design-pattern-based distribution approach

was analyzed using the same simulation environment, and the findings, as shown in

Figure 13, indicated that response time is significantly reduced when compared to the

arbitrary distribution method. The average response time for microservice requests was

457.45 milliseconds. The minimum response times for simulated service calls were 197.55

ms and the maximum value of response time was 1228.71 s.

Figure 13. Response time over a period of 12.5 h when microservices were deployed using the

design-pattern distribution.
Figure 13. Response time over a period of 12.5 h when microservices are deployed using the design-
pattern distribution.

The resource optimization part of the proposed framework was tested and evaluated in
a separate study using custom-built simulation which is used for modeling and simulation
of microservices in cloud computing environments. The details of which are out of scope for
this study, as this study mainly defined the conceptual framework for cloud orchestration
and provisioning based on container-level microservices.

Briefly, we can state that dynamic provisioning of containers and respective microser-
vices were tested and evaluated using a computing cloud where the user-defined number
of data centers was established for a real evaluation of the part of the framework schema.
The simulation findings showed that the predistribution of microservices depending on
their levels of engagement activities greatly decreases carbon dioxide emissions while
increasing green energy use [58]. The usage of cutting-edge container microservice archi-
tecture required the use of several containers scattered across various data centers in the
cloud environment. The suggested microservice ranking technique [58] allowed services to
be separated from one another, resulting in groups of microservices that may be hosted in
geographically scattered data centers. It infers that a rank-based distribution lowers the
communication latency considerably.

It however, requirs performing intensive modeling and simulation of container-
ized computing environments using a software package named ContainerCloudSim [59],
which is an extension of CloudSim. Moreover, to test in the real-world environment, it
needs to use DeathStarBench [60] which is an open-source benchmark suite for cloud
microservices. DeathStarBench provides end-to-end services including social network,
hotel reservation service, and media service. The proposed conceptual framework will be
tested on well-known input parameters and variables and deployment scenarios (hybrid
cloud/multicloud/federated cloud). The key evaluation parameters will include power

Appl. Sci. 2022, 12, 5793 18 of 21

usage efficiency (PUE), server utilization rate, server refresh rate, virtualization ratio, and
carbon footprint.

5. Conclusions

This study presents a conceptual framework to manage the high number of microser-
vice execution while reducing the response time, energy consumption, and execution costs.
The framework’s four core services have been described as:

• Intelligent partitioning, which is in charge of microservice classification.
• Dynamic allocation, which is used to distribute microservices to containers at the start

of the service and then make dynamic microservice allocation decisions at runtime.
• Resource optimization, which will be in charge of redistributing workloads and maxi-

mizing resource use.
• Mutation action, which is built on procedures that will change microservices in re-

sponse to cloud data center workloads.

We used a custom-built simulation environment for the evaluation of an intelligent
partitioning module that leveraged design patterns, i.e., when a microservice relies on other
microservices for service delivery, they are clustered together and allocated to separate
containers. The performance of the integration of domain-driven design (DDD) based
intelligent portioning indicates that response time is significantly reduced when compared
to the arbitrary distribution method.

In future work, the proposed framework will be evaluated and tested (as described in
the previous section) using a simulation environment that includes CloudSim, for the mod-
eling and simulation of cloud computing, and ContainerCloudSim, for the modeling and
simulation of containerized cloud computing. Furthermore, expert scheduling techniques
and learning systems for containers and microservices would be integrated and tested on a
real cloud container cluster to lower the temporal complexity.

Author Contributions: Conceptualization, A.S. and M.F.H.; methodology, A.S.; software, A.S.; vali-
dation, M.F.H., R.A., S.A.M. and S.N.M.S.; formal analysis, A.S., S.A.M. and F.H.; investigation, A.S.,
M.F.H., R.A. and M.A.S.; resources, M.F.H.; data curation, A.S.; writing—original draft preparation,
A.S.; writing—review and editing, A.S., R.A., S.N.M.S., M.A.S., S.A.M. and F.H.; visualization, A.S.,
F.H., M.A.S. and S.N.M.S.; supervision, M.F.H.; funding acquisition, M.F.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Fundamental Research Grant Scheme (FRGS), reference
number: FRGS/1/2020/SS02/UTP/03/1, under the Malaysia Ministry of Higher Education, grant
cost centre number “015MA0-057”, and the Center for Graduate Studies (CGS), Universiti Teknologi
PETRONAS (UTP), Perak, Malaysia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge the support, resources, and computing environment provided
by the High-Performance Cloud Computing Center (HPC3), Universiti Teknologi PETRONAS (UTP),
32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mell, P.M.; Grance, T. The NIST Definition of Cloud Computing; National Institute of Standards and Technology: Gaithersburg, MD,

USA, 2011. [CrossRef]
2. Buyya, R.; Yeo, C.S.; Venugopal, S. Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services

as Computing Utilities. In Proceedings of the 2008 10th IEEE International Conference on High Performance Computing and
Communications, Dalian, China, 25–27 September 2008; pp. 5–13.

3. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A View
of Cloud Computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

http://doi.org/10.6028/NIST.SP.800-145
http://doi.org/10.1145/1721654.1721672

Appl. Sci. 2022, 12, 5793 19 of 21

4. SaaS vs. PaaS vs. IaaS: What’s The Difference & How To Choose—BMC Software|Blogs. Available online: https://www.bmc.
com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/ (accessed on 11 February 2022).

5. Gai, K.; Qiu, M.; Zhao, H.; Tao, L.; Zong, Z. Dynamic Energy-Aware Cloudlet-Based Mobile Cloud Computing Model for Green
Computing. J. Netw. Comput. Appl. 2016, 59, 46–54. [CrossRef]

6. Xu, M.; Buyya, R. BrownoutCon: A Software System Based on Brownout and Containers for Energy-Efficient Cloud Computing.
J. Syst. Softw. 2019, 155, 91–103. [CrossRef]

7. Juarez, F.; Ejarque, J.; Badia, R.M. Dynamic Energy-Aware Scheduling for Parallel Task-Based Application in Cloud Computing.
Future Gener. Comput. Syst. 2018, 78, 257–271. [CrossRef]

8. Qiu, C.; Shen, H.; Chen, L. Towards Green Cloud Computing: Demand Allocation and Pricing Policies for Cloud Service
Brokerage. IEEE Trans. Big Data 2018, 5, 238–251. [CrossRef]

9. Horri, A.; Mozafari, M.S.; Dastghaibyfard, G. Novel Resource Allocation Algorithms to Performance and Energy Efficiency in
Cloud Computing. J. Supercomput. 2014, 69, 1445–1461. [CrossRef]

10. Esfandiarpoor, S.; Pahlavan, A.; Goudarzi, M. Structure-Aware Online Virtual Machine Consolidation for Datacenter Energy
Improvement in Cloud Computing. Comput. Electr. Eng. 2015, 42, 74–89. [CrossRef]

11. Watada, J.; Roy, A.; Kadikar, R.; Pham, H.; Xu, B. Emerging Trends, Techniques and Open Issues of Containerization: A Review.
IEEE Access 2019, 7, 152443–152472. [CrossRef]

12. Zhang, R.; Chen, Y.; Dong, B.; Tian, F.; Zheng, Q. A Genetic Algorithm-Based Energy-Efficient Container Placement Strategy in
CaaS. IEEE Access 2019, 7, 121360–121373. [CrossRef]

13. Zhang, R.; Zhong, A.; Dong, B.; Tian, F.; Li, R. Container-VM-PM Architecture: A Novel Architecture for Docker Container
Placement. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Cham, Switzerland, 2018; Volume 10967, pp. 128–140, ISBN 9783319942940.

14. Lv, L.; Zhang, Y.; Li, Y.; Xu, K.; Wang, D.; Wang, W.; Li, M.; Cao, X.; Liang, Q. Communication-Aware Container Placement and
Reassignment in Large-Scale Internet Data Centers. IEEE J. Sel. Areas Commun. 2019, 37, 540–555. [CrossRef]

15. Hussein, M.K.; Mousa, M.H.; Alqarni, M.A. A Placement Architecture for a Container as a Service (CaaS) in a Cloud Environment.
J. Cloud Comput. 2019, 8, 7. [CrossRef]

16. Srikantaiah, S.; Kansal, A.; Zhao, F. Energy Aware Consolidation for Cloud Computing. In Proceedings of the Conference on
Power Aware Computing and Systems, Berkeley, CA, USA, 7 December 2008.

17. Tchana, A.; Son Tran, G.; Broto, L.; DePalma, N.; Hagimont, D. Two Levels Autonomic Resource Management in Virtualized IaaS.
Future Gener. Comput. Syst. 2013, 29, 1319–1332. [CrossRef]

18. Kaewkasi, C.; Chuenmuneewong, K. Improvement of Container Scheduling for Docker Using Ant Colony Optimization. In
Proceedings of the 2017 9th International Conference on Knowledge and Smart Technology: Crunching Information of Everything, KST 2017,
Chonburi, Thailand, 1–4 February 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 254–259.

19. Yi, X.; Liu, F.; Niu, D.; Jin, H.; Lui, J.C.S. Cocoa: Dynamic Container-Based Group Buying Strategies for Cloud Computing. ACM
Trans. Model. Perform. Eval. Comput. Syst. 2017, 2, 1–31. [CrossRef]

20. Khan, A.A.; Zakarya, M.; Khan, R.; Rahman, I.U.; Khan, M.; Khan, A.; Ur Rahman, I. An Energy, Performance Efficient Resource
Consolidation Scheme for Heterogeneous Cloud Datacenters. J. Netw. Comput. Appl. 2020, 150, 102497. [CrossRef]

21. Hu, Y.; Zhou, H.; de Laat, C.; Zhao, Z. Concurrent Container Scheduling on Heterogeneous Clusters with Multi-Resource
Constraints. Future Gener. Comput. Syst. 2020, 102, 562–573. [CrossRef]

22. Chung, A.; Park, J.W.; Ganger, G.R. Stratus: Cost-Aware Container Scheduling in the Public Cloud. In Proceedings of the 2018
ACM Symposium on Cloud Computing, Carlsbad, CA, USA, 11–13 October 2018; pp. 121–134.

23. Tumanov, A.; Jiang, A.; Woo Park, J.; Kozuch, M.A.; Ganger, G.R. JamaisVu: Robust Scheduling with Auto-Estimated Job Runtimes;
Technical Report CMU-PDL-16-104; Carnegie Mellon University: Pittsburgh, PA, USA, 2016; pp. 1–24.

24. Visti, H.; Kiss, T.; Terstyanszky, G.; Gesmier, G.; Winter, S. MiCADO-Towards a Microservice-Based Cloud Application-Level
Dynamic Orchestrator. In Proceedings of the 8th International Workshop on Science Gateways, IWSG 2016, CEUR Workshop
Proceedings, Rome, Italy, 8–19 June 2017; pp. 1–7.

25. Kiss, T.; Kacsuk, P.; Kovacs, J.; Rakoczi, B.; Hajnal, A.; Farkas, A.; Gesmier, G.; Terstyanszky, G. MiCADO—Microservice-Based
Cloud Application-Level Dynamic Orchestrator. Future Gener. Comput. Syst. 2019, 94, 937–946. [CrossRef]

26. Kiss, T.; DesLauriers, J.; Gesmier, G.; Terstyanszky, G.; Pierantoni, G.; Oun, O.A.; Taylor, S.J.E.; Anagnostou, A.; Kovacs, J. A
Cloud-Agnostic Queuing System to Support the Implementation of Deadline-Based Application Execution Policies. Future Gener.
Comput. Syst. 2019, 101, 99–111. [CrossRef]

27. Kovács, J. Supporting Programmable Autoscaling Rules for Containers and Virtual Machines on Clouds. J. Grid Comput. 2019, 17,
813–829. [CrossRef]

28. Nadgowda, S.; Suneja, S.; Bila, N.; Isci, C. Voyager: Complete Container State Migration. In Proceedings of the 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 2137–2142.

29. Ding, Z.; Tian, Y.C.; Tang, M.; Li, Y.; Wang, Y.G.; Zhou, C. Profile-Guided Three-Phase Virtual Resource Management for Energy
Efficiency of Data Centers. IEEE Trans. Ind. Electron. 2020, 67, 2460–2468. [CrossRef]

30. Zhou, R.; Li, Z.; Wu, C. An Efficient Online Placement Scheme for Cloud Container Clusters. IEEE J. Sel. Areas Commun. 2019, 37,
1046–1058. [CrossRef]

https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
http://doi.org/10.1016/j.jnca.2015.05.016
http://doi.org/10.1016/j.jss.2019.05.031
http://doi.org/10.1016/j.future.2016.06.029
http://doi.org/10.1109/TBDATA.2018.2823330
http://doi.org/10.1007/s11227-014-1224-8
http://doi.org/10.1016/j.compeleceng.2014.09.005
http://doi.org/10.1109/ACCESS.2019.2945930
http://doi.org/10.1109/ACCESS.2019.2937553
http://doi.org/10.1109/JSAC.2019.2895473
http://doi.org/10.1186/s13677-019-0131-1
http://doi.org/10.1016/j.future.2013.02.002
http://doi.org/10.1145/3022876
http://doi.org/10.1016/j.jnca.2019.102497
http://doi.org/10.1016/j.future.2019.08.025
http://doi.org/10.1016/j.future.2017.09.050
http://doi.org/10.1016/j.future.2019.05.062
http://doi.org/10.1007/s10723-019-09488-w
http://doi.org/10.1109/TIE.2019.2902786
http://doi.org/10.1109/JSAC.2019.2906745

Appl. Sci. 2022, 12, 5793 20 of 21

31. Tan, B.; Ma, H.; Mei, Y. Novel Genetic Algorithm with Dual Chromosome Representation for Resource Allocation in Container-
Based Clouds. In Proceedings of the IEEE International Conference on Cloud Computing, CLOUD, Milan, Italy, 8–13 July 2019;
Volume 2019, pp. 452–456.

32. Boxiong, T.; Hui, M.; Yi, M. A NSGA-II-Based Approach for Service Resource Allocation in Cloud. In Proceedings of the 2017
IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017; pp. 2574–2581.

33. Rossi, F.; Nardelli, M.; Cardellini, V. Horizontal and Vertical Scaling of Container-Based Applications Using Reinforcement
Learning. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13 June
2019; Volume 2019, pp. 329–338.

34. With Help from AI, Microservices Divvy up Tasks to Improve Cloud Apps | Cornell Chronicle. Available online: https:
//news.cornell.edu/stories/2019/03/help-ai-microservices-divvy-tasks-improve-cloud-apps (accessed on 14 March 2022).

35. Liu, H.; Zhang, J.; Shan, H.; Li, M.; Chen, Y.; He, X.; Li, X. JCallGraph: Tracing Microservices in Very Large Scale Container
Cloud Platforms. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Cham, Switzerland, 2019; Volume 11513, pp. 287–302.

36. Dang-Quang, N.-M.; Yoo, M. An Efficient Multivariate Autoscaling Framework Using Bi-LSTM for Cloud Computing. Appl. Sci.
2022, 12, 3523. [CrossRef]

37. Malik, S.; Tahir, M.; Sardaraz, M.; Alourani, A. A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary
Algorithms and Machine Learning Techniques. Appl. Sci. 2022, 12, 2160. [CrossRef]

38. Malik, N.; Sardaraz, M.; Tahir, M.; Shah, B.; Ali, G.; Moreira, F. Energy-Efficient Load Balancing Algorithm for Workflow
Scheduling in Cloud Data Centers Using Queuing and Thresholds. Appl. Sci. 2021, 11, 5849. [CrossRef]

39. Calderón-Gómez, H.; Mendoza-Pittí, L.; Vargas-Lombardo, M.; Gómez-Pulido, J.M.; Rodríguez-Puyol, D.; Sención, G.; Polo-
Luque, M.-L. Evaluating Service-Oriented and Microservice Architecture Patterns to Deploy EHealth Applications in Cloud
Computing Environment. Appl. Sci. 2021, 11, 4350. [CrossRef]

40. Górski, T.; Woźniak, A.P. Optimization of Business Process Execution in Services Architecture: A Systematic Literature Review.
IEEE Access 2021, 9, 111833–111852. [CrossRef]

41. Toosi, A.N.; Calheiros, R.N.; Buyya, R. Interconnected Cloud Computing Environments: Challenges, Taxonomy, and Survey.
ACM Comput. Surv. 2014, 47, 1–47. [CrossRef]

42. Hemmat, R.A.; Hafid, A. SLA Violation Prediction in Cloud Computing: A Machine Learning Perspective. arXiv 2016,
arXiv:1611.10338. [CrossRef]

43. Vasudevan, M.; Tian, Y.-C.; Tang, M.; Kozan, E.; Zhang, X. Energy-Efficient Application Assignment in Profile-Based Data Center
Management through a Repairing Genetic Algorithm. Appl. Soft Comput. 2018, 67, 399–408. [CrossRef]

44. Yang, H.; Breslow, A.; Mars, J.; Tang, L. Bubble-Flux: Precise Online QoS Management for Increased Utilization in Warehouse
Scale Computers. ACM SIGARCH Comput. Archit. News 2013, 41, 607–618. [CrossRef]

45. Qureshi, B. Profile-Based Power-Aware Workflow Scheduling Framework for Energy-Efficient Data Centers. Future Gener. Comput.
Syst. 2019, 94, 453–467. [CrossRef]

46. Yu, Y.; Yang, J.; Guo, C.; Zheng, H.; He, J. Joint Optimization of Service Request Routing and Instance Placement in the
Microservice System. J. Netw. Comput. Appl. 2019, 147, 102441. [CrossRef]

47. Mekala, M.S.; Viswanathan, P. Energy-Efficient Virtual Machine Selection Based on Resource Ranking and Utilization Factor
Approach in Cloud Computing for IoT. Comput. Electr. Eng. 2019, 73, 227–244. [CrossRef]

48. Rossi, F.; Cardellini, V.; Lo Presti, F.; Nardelli, M. Geo-Distributed Efficient Deployment of Containers with Kubernetes. Comput.
Commun. 2020, 159, 161–174. [CrossRef]

49. Chen, F.; Grundy, J.; Yang, Y.; Schneider, J.-G.; He, Q. Experimental Analysis of Task-Based Energy Consumption in Cloud
Computing Systems. In Proceedings of the ACM/SPEC International Conference on International Conference on Performance
Engineering—ICPE ’13, Prague, Czech Republic, 21–24 April 2013; ACM Press: New York, NY, USA, 2013; pp. 295–306.

50. Chen, F.; Grundy, J.; Schneider, J.-G.; Yang, Y.; He, Q. Automated Analysis of Performance and Energy Consumption for Cloud
Applications. In Proceedings of the 5th ACM/SPEC International Conference on Performance Engineering, Dublin, Ireland,
22–26 March 2014; ACM: New York, NY, USA, 2014; pp. 39–50.

51. Cambronero, M.E.; Bernal, A.; Valero, V.; Cañizares, P.C.; Núñez, A. Profiling SLAs for Cloud System Infrastructures and User
Interactions. PeerJ Comput. Sci. 2021, 7, e513. [CrossRef] [PubMed]

52. Liu, Z.; Yu, H.; Fan, G.; Chen, L. Reliability Modelling and Optimization for Microservice-based Cloud Application Using
Multi-agent System. IET Commun. 2022, 1–18. [CrossRef]

53. Khan, A. Key Characteristics of a Container Orchestration Platform to Enable a Modern Application. IEEE Cloud Comput. 2017, 4,
42–48. [CrossRef]

54. Wolke, A.; Bichler, M.; Setzer, T. Planning vs. Dynamic Control: Resource Allocation in Corporate Clouds. IEEE Trans. Cloud
Comput. 2016, 4, 322–335. [CrossRef]

https://news.cornell.edu/stories/2019/03/help-ai-microservices-divvy-tasks-improve-cloud-apps
https://news.cornell.edu/stories/2019/03/help-ai-microservices-divvy-tasks-improve-cloud-apps
http://doi.org/10.3390/app12073523
http://doi.org/10.3390/app12042160
http://doi.org/10.3390/app11135849
http://doi.org/10.3390/app11104350
http://doi.org/10.1109/ACCESS.2021.3102668
http://doi.org/10.1145/2593512
http://doi.org/10.48550/arXiv.1611.10338
http://doi.org/10.1016/j.asoc.2018.03.016
http://doi.org/10.1145/2508148.2485974
http://doi.org/10.1016/j.future.2018.11.010
http://doi.org/10.1016/j.jnca.2019.102441
http://doi.org/10.1016/j.compeleceng.2018.11.021
http://doi.org/10.1016/j.comcom.2020.04.061
http://doi.org/10.7717/peerj-cs.513
http://www.ncbi.nlm.nih.gov/pubmed/34084925
http://doi.org/10.1049/cmu2.12371
http://doi.org/10.1109/MCC.2017.4250933
http://doi.org/10.1109/TCC.2014.2360399

Appl. Sci. 2022, 12, 5793 21 of 21

55. Morikawa, T.; Kourai, K. Low-Cost and Fast Failure Recovery Using In-VM Containers in Clouds. In Proceedings of the 2019 IEEE
Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on
Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),
Fukuoka, Japan, 5–8 August 2019; pp. 572–579.

56. Assuncao, W.K.G.; Colanzi, T.E.; Carvalho, L.; Pereira, J.A.; Garcia, A.; de Lima, M.J.; Lucena, C. A Multi-Criteria Strategy
for Redesigning Legacy Features as Microservices: An Industrial Case Study. In Proceedings of the 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 9–12 March 2021; pp. 377–387.

57. Saboor, A.; Mahmood, A.K.; Hassan, M.F.; Shah, S.N.M.; Hassan, F.; Siddiqui, M.A. Design Pattern Based Distribution of
Microservices in Cloud Computing Environment. In Proceedings of the International Conference on Computer & Information
Sciences (ICCOINS), Kuching, Malaysia, 13–15 July 2021; pp. 396–400.

58. Saboor, A.; Mahmood, A.K.; Omar, A.H.; Hassan, M.F.; Shah, S.N.M.; Ahmadian, A. Enabling Rank-Based Distribution of
Microservices among Containers for Green Cloud Computing Environment. Peer-to-Peer Netw. Appl. 2022, 15, 77–91. [CrossRef]

59. Piraghaj, S.F.; Dastjerdi, A.V.; Calheiros, R.N.; Buyya, R. ContainerCloudSim: An Environment for Modeling and Simulation of
Containers in Cloud Data Centers. Softw. Pract. Exp. 2017, 47, 505–521. [CrossRef]

60. Gan, Y.; Zhang, Y.; Cheng, D.; Shetty, A.; Rathi, P.; Katarki, N.; Bruno, A.; Hu, J.; Ritchken, B.; Jackson, B.; et al. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems,
Providence, RI, USA, 13–17 April 2019; ACM: New York, NY, USA, 2019; pp. 3–18.

http://doi.org/10.1007/s12083-021-01218-y
http://doi.org/10.1002/spe.2422

	Introduction
	Literature Review
	Methodology
	Intelligent Partitioning
	Dynamic Allocation
	Resource Optimization
	Mutation Actions
	Metrics for Framework Performance Assessment

	Results and Discussion
	Conclusions
	References

