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Abstract: Cloud computing is a rapidly growing paradigm which has evolved from having a mono-
lithic to microservices architecture. The importance of cloud data centers has expanded dramatically
in the previous decade, and they are now regarded as the backbone of the modern economy. Cloud-
based microservices architecture is incorporated by firms such as Netflix, Twitter, eBay, Amazon,
Hailo, Groupon, and Zalando. Such cloud computing arrangements deal with the parallel deploy-
ment of data-intensive workloads in real time. Moreover, commonly utilized cloud services such
as the web and email require continuous operation without interruption. For that purpose, cloud
service providers must optimize resource management, efficient energy usage, and carbon footprint
reduction. This study presents a conceptual framework to manage the high amount of microservice
execution while reducing response time, energy consumption, and execution costs. The proposed
framework suggests four key agent services: (1) intelligent partitioning: responsible for microservice
classification; (2) dynamic allocation: used for pre-execution distribution of microservices among
containers and then makes decisions for dynamic allocation of microservices at runtime; (3) resource
optimization: in charge of shifting workloads and ensuring optimal resource use; (4) mutation ac-
tions: these are based on procedures that will mutate the microservices based on cloud data center
workloads. The suggested framework was partially evaluated using a custom-built simulation envi-
ronment, which demonstrated its efficiency and potential for implementation in a cloud computing
context. The findings show that the engrossment of suggested services can lead to a reduced number
of network calls, lower energy consumption, and relatively reduced carbon dioxide emissions.

Keywords: cloud computing; virtual machine; containers; microservices; multicloud

1. Introduction

In recent years, cloud computing has gained the interest of industries and of re-
searchers. Cloud computing allows ubiquitous computing and delivers the proper on-
demand admittance to the common pool of configurable resources, such as memory storage,
network, compute nodes, and applications [1]. Popular cloud service providers which
provide such services are Microsoft Azure, Amazon Web Services (AWS), Google Cloud
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Platform (GCP), IBM Cloud, and Kamatera. Elasticity, the pay-as-you-go model, and on-
demand provisioning of resources are a few of the major cloud computing advantages [2].
Three major categories of the cloud service models are known as [1,3,4] Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS); refer to
Figure 1.

(1) Software as a Service (SaaS): SaaS provides access to cloud-based software. Through
web or API, the users access the software residing on the remote cloud network.
In SaaS, the vendor manages most of the technical issues including data handling,
storage, servers, etc. Therefore, the users do not have to spend more time installing,
maintaining, and upgrading software. Some of the SaaS examples are Dropbox,
Salesforce, GoToMeeting, Google Apps, etc.

(2) Infrastructure as a Service (IaaS): In IaaS, the cloud computing vendors provide
access to resources such as storage, computing resources, and networking. IaaS lets
businesses purchase resources according to their needs/demands. Therefore, IaaS
provides a flexible cloud computing model where clients have complete control over
the infrastructure. As the whole infrastructure is based on the cloud, there will be no
single point of failure. Some of the IaaS examples are Amazon Web Services (AWS),
Microsoft Azure, Google Compute Engine (GCE), etc.

(3) Platform as a Service (PaaS): PaaS provides a framework for the users (specifically
developers) on which they can develop, manage, and deploy the applications. The
users not only have access to computing and storage resources, but they also have
access to a set of tools for application development, testing, security, backups, etc. PaaS
has several advantages including scalability, high availability, and a cost-effective
development and deployment platform. Some of the PaaS examples are Apache
Stratos, AWS Elastic Beanstalk, Google App Engine, etc.
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In the last decade, large-scale, as well as small- to medium-sized, enterprises mostly
shifted to cloud computing. As cloud computing deals with the parallel deployment of
data-intensive workloads in real-time, such deployments bring in various challenges, such
as optimal resource scheduling, power utilization, network latency, task scheduling, etc.
While dealing with these challenges, the cloud computing environment also needs to make
efficient use of energy to minimize the operational cost and introduce eco-friendly data
centers. Studies have shown that cloud resources are being used inefficiently [5,6] and
the continuous shift of technologies for the cloud environment requires efficient task and



Appl. Sci. 2022, 12, 5793 3 of 21

resource handling while reducing energy consumption and lowering the carbon footprint
produced by the hardware used in the cloud platform.

Due to the complexity of cloud services, it is appropriate to illustrate a concep-
tual framework through a modular and multilevel stratified architecture that enables
the paradigm of containerized microservices orchestration and provisioning in cloud com-
puting. For this study, the formulation of the conceptual framework commences with the
subject of microservices orchestration and provisioning and then moved on to exhaustive
literature research and began identifying the important ideas applied by previous studies.
Once it determines what has been accomplished by previous researchers and what needs
to be accomplished by locating a clear call-to-action described in the literature, this study
begins to extract variables, concepts, theories, and current frameworks outlined in the
appropriate literature. The framework development process is initiated by understanding
how some of the variables, concepts, theories, and features of current frameworks interact.

For the rest of this paper, Section 2 provides an intensive literature review of cloud-
based containerized services and articulates the unique challenges. Section 3 describes the
methodology and elaborates on the proposed framework. To justify the working efficiency
of the proposed framework, it was partially tested in a simulation environment and the
results are discussed in Section 4. Finally, Section 5 concludes the study and advises
future directions.

2. Literature Review

In cloud computing, one of the most critical factors is to provide quality of service (QoS)
within the defined constraints. Few of the constraints include response time, throughput,
minimum service unavailability, low cost, execution, or completion time limits. This section
outlines some of the existing research studies performed to meet the QoS constraints.

Traditionally, heuristic scheduling algorithms have been used to minimize the process-
ing time and schedule tasks efficiently. A study by Juarez et al. [7] used the polynomial-time
algorithm that combines the set of heuristic rules and resource allocation techniques to
execute task-based applications efficiently on distributed computing platforms. Recently,
Qiu et al. [8] addressed the pricing policies of cloud providers to cloud service brokerages
(CSBs) and found a pricing policy for cloud providers which will maximize the CSBs’ profit
by minimizing the cloud providers’ energy costs. Another study [5] proposed a dynamic
energy-aware cloudlet-based mobile cloud computing model, which focused on solving
additional energy consumption during wireless communication.

Multiple other studies addressed the technical and nontechnical aspects of cloud com-
puting, but still, many gray areas need to be addressed. Some of the areas include dynamic
allocation of resources and energy, virtualization techniques for balancing the energy-aware
workload between virtual machines, and thermal-aware management techniques. Horri
et al. [9] proposed a novel QoS-aware VM consolidation method based on the resource
utilization history of VM. The results showed improvement in QoS metrics and energy
consumption. Similarly, Esfandiarpoor [10] used the concept of VM consolidation but
extended it to physical machines such that fewer racks and routers were used. This resulted
in turning off the idle routing and cooling equipment and the experimental results showed
a significant reduction in energy consumption.

Since the previous decade, there has been a trend toward containerization technolo-
gies. The principle of containers enables a flexible and lightweight environment that
allows software programs to start sharing the underlying operating system. As a result,
containers are a type of operating system virtualization. A standard container may host
huge application processes via microservices. Containers contrast with virtual machines
where the virtual machines execute the whole guest operating system, but it is not the
case with containers, as shown in Figure 2. Container technology has several industrial
applications. A few of the industries where the containers have been adopted are [11]:
(a) containers in IoT applications; (b) containerization in gaming; (c) containerization in
healthcare; (d) containerization in web applications; (e) containers in financial services
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providers; (f) containerization in microservices architectures; (g) containerization in mar-
keting and advertising; (h) containerization in scientific workflows; (i) containerization in
edge computing.
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The performance of virtual machines is stable when compared to containers, but
VMs have bigger memory footprints and VMs also have slower boot-up and shut-down
downtime [11]. Multiple studies addressed containerization in the cloud computing en-
vironment. The container placement strategy in a CaaS as proposed by Zhang et al. [12]
achieved energy savings by optimizing. They did the placement of containers using an
improved genetic algorithm (IGA). The containers were placed on VMs which were hosted
on physical machines (PM). It was considered that VMs could meet the resource require-
ment of all new containers, and only two resources were considered, i.e., CPU and memory.
According to the authors, in the conventional genetic algorithm (GA), it is hard to obtain
a better chromosome (consisting of container ID and VM ID) that fits better when VM
resource utilization is high. Therefore, the introduced IGA showed better results in terms
of energy saving when compared to spread and bin-packing strategies and first-fit and
conventional GA. However, the study only considered the energy saving parameter, and
parameters such as high availability and low resource wastage were not studied. According
to the authors, the proposed strategies only apply to the static placement of containers
and were unable to support real-time scheduling and relocation. Thus, dynamic container
consolidation is still an open issue.

Docker containers are used to perform OS-level virtualization. However, according
to Zhang et al. [13], container deployment on VM is a challenge. Because VM placement
and container placement need not be addressed separately, the study thus presented the
Container-VM-PM approach. The method improved the deployment of new containers
while reducing the number of physical machines and resources lost.

To solve the issue of significant communication demands across containers, Lv et al. [14]
developed container distribution schemes. The study presented a worst-fit reducing
method for container deployment and a two-stage sweep and search algorithm was in-
troduced for container assignment. The evaluation findings demonstrated a decrease
in communication overhead between containers. Xu and Buyya [6] worked for energy-
efficient cloud computing and used brownout schema for software systems to dynamically
activate or deactivate optional microservices. The system used Docker Swarm for container
management, i.e., the activation and deactivation of the container. The study did not
address memory management, resource management (including cooling system infrastruc-
ture), and network congestion issues. The experiment was performed using a custom-built
web application and needs testing for more dynamic and intensive workloads.
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Hussein et al. [15] improved the resource utilization of CPU cores and memory and
minimized the number of newly created VMs and active PMs. The proposed ant colony
optimization based on a best-fit algorithm (called metaheuristic ACO) showed significant
improvement in the resource utilization of PMs and VMs. However, the energy efficiency
parameter was not considered, and the time costs of the heuristic algorithms (which are
computationally lightweight) were lower than that of metaheuristic ACO. Srikantaiah [16]
was among the first researchers to address the problem of consolidation to improve energy
efficiency in the cloud computing environment. Later, Tchana et al. [17] incorporated the
consolidation of virtual machines and support real-time sizing algorithms to eliminate
resource gaps (i.e., unused resources). The studies were carried out in a private cloud
utilizing a VM or PM; however, just the Tomcat servlet was offered to host by the container.

Kaewkasi and Chuenmuneewong [18] used ant colony optimization (ACO) for the
scheduling of Docker containers. The ACO algorithm was used to distribute application
containers over the Dockers’ hosts for efficient resource usage. The experiments showed
that ACO performance was higher by 15% when compared to the greedy scheduler algo-
rithm. However, the study considered monolithic application implementation.

Recently, an experimental study [11] was conducted to compare the performance of
VMs, containers, and unikernels. Multiple performance parameters were analyzed such as
network bandwidth, memory footprints, CPU utilization, etc., and the authors found that
the performance of containers was much better but there were also some issues such as secu-
rity, data management, and networking overhead in a large cluster deployment, nonstable
performance, and a smaller number of tools for container management and orchestration.

Group buying strategies proposed by Yi et al. [19] were used to address cloud inef-
ficiency and improve resource utilization. The proposed mechanism was named Cocao
(COmputing in COntAiners) which was used to group the jobs according to resource
demands and was assigned to the predefined cloud provider’s group buying deals. Each
deal offered the pool of resources for the job belonging to that group. The authors modeled
the initial group organization as a variable-sized vector bin packing problem and used an
online multidimensional knapsack for dynamic group organization to fill the resource holes.

Khan et al. [20] addressed the issue of consolidating virtual machines, containers,
and/or applications to have an energy- and performance-effective schema for heteroge-
neous cloud data centers. According to the authors, there is a trade-off involved between
migrating containers and virtual machines. The experimental results demonstrated that
container migration increases the total number of migrations when compared with VM
migrations (due to the small size of containers). The VM migration is more performance-
efficient, while container migration is energy-efficient. The proposed model evaluation
showed that a large number of container migrations result in high energy utilization and a
decline in performance when compared to VM migration.

The study in [21] presented two types of ECSched scheduling strategies, i.e., ECSched-
dp (based on the dot-product heuristic) and ECSched-ml (based on most loaded heuristic).
Moreover, the authors compared ECSched with Google Kubernetes and Docker Swarm which
acted as the baseline for comparison. The comparison results showed that ECSched provides
more resource utilization and ECScheddp has the highest resource utilization. The resource
utilization increased by 4.1% to 5.3% for ECSched-dp when compared with baselines.

To reduce the service cost, Chung et al. [22] introduced Stratus, which was used to
pack the tasks on the machines using the estimated runtime for the incoming jobs. The
JVuPredict [23] algorithm was used to predict the estimated runtime of the tasks. JVuPredict
determined the candidate group of the incoming job based on the history (i.e., submitted
by the same user, same job name, time of day, etc.), and then the tentative runtime was
evaluated. The Stratus model made the resource allocation of the machines which were
either highly utilized (mostly full) or empty ones (i.e., can be released to save cost). The
simulation results showed that cost can be decreased by 17 to 44%. However, in the
experiment, it was assumed that there are no intertask dependencies and that the task
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co-location has no or minimal impact on task runtime, which is not true for the real-world
cloud computing environment.

A framework named MiCADO was proposed by Visti et al. [24], which provided
application-level dynamic cloud orchestration, thus resulting in predicting the application
capacity demand behavior. The microservices orchestration layer was divided into four
sublayers; refer to Figure 3. The cloud interface layer provided cloud access from the above
layers. The microservices coordination layer monitored the current execution performance
and helped in identifying the bottleneck or under-utilization of infrastructure. The mi-
croservices discovery and execution layer managed the microservice execution and kept
track of services running, i.e., service name, IP address, and port number. The coordination
interface API provided access to application developers for the convenient development of
the dynamically scalable cloud-based application. The framework was presented as the
first proof-of-concept and its applicability was checked using open-source tools such as
Docker1, Consul2, etc.

Figure 3. MiCADO Architecture; Adapted with permission from [24].

In 2019, the MiCADO by Visti et al. [24] was implemented by Kiss et al. [25], which
provided support for the automated scalability of cloud applications. The implementation
for evaluation of MiCADO was based on the CloudSigma public cloud. Moreover, open-
source tools, such as Prometheus (to collect information about various services), Occopus (to
keep track of running services), Consul (to organize Docker containers in the cluster), and
Grafana (to generate graphs), were used. They estimated that the proposed framework can
increase the efficiency of the business process and help in increasing customer satisfaction.

To support the deadline-based application execution policies for MiCADO, a cloud-
agnostic queuing system was introduced by Kiss et al. [26]. This study was based on
MiCADO as already described by Visti et al. [24], which was implemented by Kiss et al. [26].
The study implemented the JQueuer system, which made use of the queuing system to
schedule many jobs among the containers. The JQueuer was based on two components
named: JQueuer Manager and JQueuer AGent. JQueuer agent components were respon-
sible for fetching the jobs from the job queues and sending them to JQueuer Manager.
The study also provided the implementation of JQueuer along with MiCADO to provide
deadline-based execution policies for the MiCADO framework. The paper mainly focused
on the demonstration of JQueuer and MiCADO and did not address the optimization of
deadline-based execution policies.

Another research study [27] defined a general framework to provide a programmable
policy keeper concept that performs the decision about scaling at the VM level and con-
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tainer level by calculating the optimal number of required instances. The framework
was integrated with MiCADO and tested with the deadline-based scaling use case. How-
ever, the future plan is to provide the machine learning algorithm to support the policy
keeper component.

A migration service called Voyager was introduced by Nadgowda et al. [28]. This
service provided just-in-time container migration to minimize downtime. The core idea was
to resume the operations instantly on target machines while doing the disk state transfer in
the background. However, the implementation heavily relied on the open-source Linux
tool CRIU for checkpoint/restore operations. In the Voyager migration, the downtime was
realized between 2 and 3 s, which is relatively high. In addition, the resources optimization
and prioritization were not handled for better results.

A study by [29] presented a three-phase virtual resource management framework for
energy-efficient resource management of cloud data centers. In the first phase, profiling is
performed to generate machine-readable data sets of computing tasks. The task profiling
gave information about the required number of PMs. In the second phase, the tasks are
classified into long-running, normal, and tiny tasks. The classification of task running
length is used to assign the tasks to respective VMs. In phase three, all PMs are sorted
based on energy efficiency. Then the PMs which are more energy-efficient are first loaded
with VMs. The simulation results showed that 8–12% energy savings could be achieved by
using the proposed framework. For this framework to be successful, we need to know the
size of the task beforehand. Moreover, it does not address the holes in PMs, which can be
formed by assigning a few PMs only for large tasks and some PMs only for small tasks.

Zhou et al. [30] proposed the optimal placement schema for containers in the cloud
environment. They introduced a one-shot algorithm that works as a placement schema for
the container cluster and an online algorithm that breaks down the online decision making
into on-the-spot decisions depending on resource price.

The study by Tan et al. [31] provided an extension of the NSGA-II-based approach [32]
for service resource allocation in the cloud. The study aimed at the static approach instead
of the dynamic approach for allocation of the container to the virtual machines and physical
machines. Instead of using a single chromosome [32], the concept of a dual-chromosome
genetic algorithm was introduced for resource allocation in container-based clouds. The
results showed that dual-chromosome GA gives better performance when compared with
single-chromosome GA and the best-fit descending algorithm.

As most of the elasticity policies are based upon the threshold-based heuristics algo-
rithm, the study by [33] explored and designed a more flexible solution using reinforcement
learning (RL) to control the elasticity of container-based applications.

Technically, the conventional service-oriented architecture (SOA) services and mi-
croservices are platform-agnostic and use standardized communication protocols such
as HTTP. The microservice architecture divides the monolith (single-unit) software into
dozens of small service components. The microservice is highly scalable because each
service can be scaled easily when required. The individual nature of microservices means
they are easily usable among the different systems.

The number of microservices may grow to hundreds or even thousands in number.
The death star graphic visualization [34] for a social media platform is shown in Figure 4.
The complexity of many microservice interactions is evident. The increasing number
of microservices brings complexity to the management of services. As the network of
microservices grows, it also brings challenges for interservice communication.



Appl. Sci. 2022, 12, 5793 8 of 21
Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21 
 

 

Figure 4. A death star graph showing inter-relationships among microservices [34]. 

A microservices tracing and analytical tool (JCallGraph) to analyze the invocation 

relationship of microservices running on containers was designed by Liu [35] for the 

Chinese e-commerce company JD.com (having approximately 34,000 microservices 

running on a cluster of 500,000 containers, supporting over 250 billion RPC-based 

microservices calls per day). The JCallGraph acted as a distributed tracing system to track 

the interactions and timing information of microservices. 

Dang-Quang and Yoo [36] suggested an effective multivariate autoscaling system for 

cloud computing utilizing bidirectional long short-term memory (Bi-LSTM). The 

monitor–analyze–plan–execute loop served as the foundation for the system structure. In 

terms of prediction accuracy, the assessment results reveal that the proposed multivariate 

Bi-LSTM model outperforms not only the univariate Bi-LSTM model but also multivariate 

deep learning models such as LSTM and CNN-LSTM. 

Malik et al. [37] addressed resource consumption prediction to avoid over-

provisioning and under-provisioning problems. The purpose of this study was to 

anticipate multiresource consumption utilizing a functional-link neural network (FLNN) 

with a hybrid genetic algorithm (GA) and particle swarm optimization (PSO). The model 

trains network weights using a hybrid GA-PSO algorithm and for prediction uses FLNN. 

When compared to conventional methodologies, the hybrid model offered higher 

accuracy. 

Malik et al. [38] addressed the issue of energy consumption and resource usage 

efficiency in virtualized cloud data centers. The workflow activities were preprocessed in 

the suggested approach to prevent bottlenecks by putting jobs with higher dependencies 

and lengthier execution durations in different queues. The tasks are then categorized 

based on the intensity of the needed resources. Finally, the optimum schedules are chosen 

using particle swarm optimization (PSO). The results of the tests demonstrated efficacy in 

terms of energy usage, makespan, and load balancing. 

Calderón-Gómez et al. [39] evaluated the service-oriented architecture patterns and 

microservice architecture patterns for the deployment of applications in cloud computing, 

specifically the eHealth applications. It was determined that the microservice architecture 

performs better in terms of response time and performance than the service-oriented 

architecture variant; nevertheless, the microservice architecture consumes much more 

bandwidth than the service-oriented architecture variant. 

Górski and Woźniak [40] conducted a thorough evaluation of the literature on the 

optimization of business process execution in services architecture. They classified the 

Figure 4. A death star graph showing inter-relationships among microservices [34].

A microservices tracing and analytical tool (JCallGraph) to analyze the invocation
relationship of microservices running on containers was designed by Liu [35] for the
Chinese e-commerce company JD.com (having approximately 34,000 microservices running
on a cluster of 500,000 containers, supporting over 250 billion RPC-based microservices
calls per day). The JCallGraph acted as a distributed tracing system to track the interactions
and timing information of microservices.

Dang-Quang and Yoo [36] suggested an effective multivariate autoscaling system for
cloud computing utilizing bidirectional long short-term memory (Bi-LSTM). The monitor–
analyze–plan–execute loop served as the foundation for the system structure. In terms of
prediction accuracy, the assessment results reveal that the proposed multivariate Bi-LSTM
model outperforms not only the univariate Bi-LSTM model but also multivariate deep
learning models such as LSTM and CNN-LSTM.

Malik et al. [37] addressed resource consumption prediction to avoid over-provisioning
and under-provisioning problems. The purpose of this study was to anticipate multire-
source consumption utilizing a functional-link neural network (FLNN) with a hybrid
genetic algorithm (GA) and particle swarm optimization (PSO). The model trains network
weights using a hybrid GA-PSO algorithm and for prediction uses FLNN. When compared
to conventional methodologies, the hybrid model offered higher accuracy.

Malik et al. [38] addressed the issue of energy consumption and resource usage
efficiency in virtualized cloud data centers. The workflow activities were preprocessed in
the suggested approach to prevent bottlenecks by putting jobs with higher dependencies
and lengthier execution durations in different queues. The tasks are then categorized based
on the intensity of the needed resources. Finally, the optimum schedules are chosen using
particle swarm optimization (PSO). The results of the tests demonstrated efficacy in terms
of energy usage, makespan, and load balancing.

Calderón-Gómez et al. [39] evaluated the service-oriented architecture patterns and
microservice architecture patterns for the deployment of applications in cloud computing,
specifically the eHealth applications. It was determined that the microservice architecture
performs better in terms of response time and performance than the service-oriented
architecture variant; nevertheless, the microservice architecture consumes much more
bandwidth than the service-oriented architecture variant.

Górski and Woźniak [40] conducted a thorough evaluation of the literature on the
optimization of business process execution in services architecture. They classified the
methodologies in the existing literature into three categories, resource allocation, service
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composition, and service scheduling, and discovered that service composition draws the
most researchers. In general, scientists offer heuristic strategies for optimizing business
operations in real time and still there is room for investigation at the resource allocation
and service scheduling levels, which are covered in this article.

Due to the high demand for cloud computing services, the cloud service providers
must work together in a scenario known as an interconnected cloud computing envi-
ronment [41]. Commonly known interconnected cloud environments are hybrid cloud,
intercloud, federated cloud, and multicloud. The cloud service provider and the cloud
service user agree upon a service level agreement (SLA). If the services are not provided
according to the agreement, then the cloud provider has to pay certain plenty. The studies
have been conducted to increase the overall efficiency of cloud services to decrease SLA vio-
lations. Moreover, different approaches have been defined to customize the SLA according
to the present status of data centers.

Hemmat and Hafid [42] addressed the topic of SLA violation prediction in the cloud
computing environment and used the machine learning approach for SLA violation pre-
diction. The study compared the performance of the naive Bayes model and the random
forest model. They found that the random forest model provided the best performance
with an accuracy of 0.99%. The classical way of predefined SLA has certain issues. The
predefined SLAs are not able to change according to the change in QoS parameters. SLA
can be defined as a set of Service Level Objectives (SLO). These SLOs should be ensured by
the cloud service provider according to the changing status of the data centers.

The key findings of the literature are highlighted in Figure 5. The literature showed
that since cloud computing maintains a range of virtualized resources, scheduling is an
essential component. Inefficient scheduling strategies and nonoptimal resource manage-
ment confront the issues of resource overutilization and underutilization, thus resulting in
resource imbalance, which results in either impairment in cloud service performance, i.e.,
overutilization, or waste of cloud resources, i.e., underutilization. In addition, efficient SLA
and computational monitoring infrastructures are still lacking which must be capable of
monitoring and detecting SLA violations. Monitoring, detection, and pre-emption of SLA
should be imposed to provide better resource availability, scalability, competitive price,
and energy efficiency for cloud services.

Notably, scientific research highlights two sorts of rating strategies, namely, profiling
and ranking, for effective content distribution of interconnected services using the repair-
ing genetic algorithm (RGA) [43], bubble-up and bubble-flux [44], the power-conscious
model [45], service request routing optimization [46], resource balance ranking schema [47],
ge-kube using Kubernetes for geographical distributions [48], energy usage in relation to
processing intensive communication workloads [49], StressCloud to monitor cloud energy
consumption [50], the positioning of microservice instances and resource distribution op-
timization [46], and CloudCost which used a UML profile to allow the modeling of user
behavior and cloud architecture [51].

According to the literature investigation, most cloud services have certain limits, such
as a maximum cost, task complexity, maximum completion time, less profit, and make span.
Based on a review of the current literature, it is also discovered that numerous container
orchestration solutions and provisioning techniques do not consider the unique properties
of microservices such as high cohesion, independence, autonomy, and loose coupling.
Open key research areas can be listed as:

• Distribution techniques in container orchestration platforms are mostly focused on
available and allocated resources and do not take into account the complexity of the
microservices’ architecture, microservices’ properties, and workload management
accordingly, which need to be addressed.

• The ability to effectively forecast compute demand and application performance under
varying resource allocations is one of the research issues related to elastic services.

• Dynamic container orchestration according to microservices interactivity patterns and
concerning entities is an active research topic that has room for additional investigation.
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• Containers have less isolation and security than virtual machines (VMs) due to kernel
sharing, which is an open issue but not addressed in the article due to the study’s
focus and limitation.
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To overcome the aforementioned limits while maintaining the microservices’ char-
acteristics, a new generation of the framework must be developed. As a result, futuristic
research on task scheduling and resource management in cloud computing must focus on
developing better scheduling algorithms and frameworks based on multiobjective functions
and adding additional factors such as mutation action policies to increase the performance
and lower the energy consumption of the cloud-based applications. Therefore, this study
specifically contributes to the following:

1. Intelligent partitioning: responsible for microservice classification and the categoriza-
tion of microservices based on their usage and dependency on other microservices.

2. Dynamic allocation: used for the pre-execution distribution of microservices among
containers and making decisions for the dynamic allocation of microservices at runtime.

3. Resource optimization: in charge of shifting workloads and ensuring optimal resource use.
4. Mutation actions: these are based on procedures that will mutate the microservices

based on cloud data center workloads.

The next section (Section 3) discusses the mechanics and details of the above-mentioned
contribution highlights.

3. Methodology

The research methodology is based on a number of necessary steps including literature
review, feature selection, data collection, agent definition, and evaluation; refer to Figure 6.
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The research process performed an orderly and critical review of existing studies. The study
of past research papers about the latest trends of cloud computing acted as a data collection
tool to gain knowledge about the existing frameworks and results achieved. Based on the
literature review understanding, the system features were identified and later classified into
different sets of classes. The core feature selection greatly helped in meaningful decision-
making. The newly conceptualized techniques were formed/extended to address the
untouched issues of cloud computing. The eco-friendly dynamic resource discovery and
resource allocation models were identified to meet the computational demands of the cloud
jobs.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 21 
 

• Dynamic container orchestration according to microservices interactivity patterns 

and concerning entities is an active research topic that has room for additional 

investigation. 

• Containers have less isolation and security than virtual machines (VMs) due to kernel 

sharing, which is an open issue but not addressed in the article due to the study’s 

focus and limitation. 

To overcome the aforementioned limits while maintaining the microservices’ 

characteristics, a new generation of the framework must be developed. As a result, 

futuristic research on task scheduling and resource management in cloud computing must 

focus on developing better scheduling algorithms and frameworks based on 

multiobjective functions and adding additional factors such as mutation action policies to 

increase the performance and lower the energy consumption of the cloud-based 

applications. Therefore, this study specifically contributes to the following: 

1. Intelligent partitioning: responsible for microservice classification and the 

categorization of microservices based on their usage and dependency on other 

microservices.  

2. Dynamic allocation: used for the pre-execution distribution of microservices among 

containers and making decisions for the dynamic allocation of microservices at 

runtime.  

3. Resource optimization: in charge of shifting workloads and ensuring optimal 

resource use. 

4. Mutation actions: these are based on procedures that will mutate the microservices 

based on cloud data center workloads. 

The next section (Section 3) discusses the mechanics and details of the above-

mentioned contribution highlights. 

3. Methodology 

The research methodology is based on a number of necessary steps including 

literature review, feature selection, data collection, agent definition, and evaluation; refer 

to Figure 6. The research process performed an orderly and critical review of existing 

studies. The study of past research papers about the latest trends of cloud computing 

acted as a data collection tool to gain knowledge about the existing frameworks and 

results achieved. Based on the literature review understanding, the system features were 

identified and later on classified into different sets of classes. The core feature selection 

greatly helped in meaningful decision making. The newly conceptualized techniques 

were formed/extended to address the untouched issues of cloud computing. The eco-

friendly dynamic resource discovery and resource allocation models were identified to 

meet the computational demands of the cloud jobs. 

 

Figure 6. Research methodology flow. 

It became evident from the selected feature that existing techniques to achieve better 

resource allocation and reduce the power consumption of the computing nodes in a cloud 

environment have some serious deficiencies. Most of these techniques monitor the 

Figure 6. Research methodology flow.

It became evident from the selected feature that existing techniques to achieve better
resource allocation and reduce the power consumption of the computing nodes in a cloud
environment have some serious deficiencies. Most of these techniques monitor the resource
load over a period of time and decide to turn off the computing node to reduce the power
consumption. Moreover, the main scheduler and resource handler run on the master
node, which defines the critical bottleneck entry and a single point of failure (SPF) in the
computing environment. Mostly the defined systems only consider the CPU allocation
while ignoring the other parameters. The latency due to changes in the state of machines
(on/off) is also not considered.

Our research model is based on the microservice architecture in which a cloud applica-
tion is divided into several small services that will be capable enough to perform the signal
functionality. A prototype of a microservices-based system is shown in Figure 7, where
multiple actors access the database server and web server through API gateway, frontend
interfaces, and storage gateways. In between, multiple independently running microser-
vices provide the required service while being able to handle millions of access requests
and ensuring low latency, high availability, scalability, and resilience to network failures.
To handle a large number of microservices in the system, we proposed an agent-based
service (see Figure 8) which will be responsible for providing four core services including
intelligent partitioning, dynamic allocation, resource optimization, and mutation actions.
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3.1. Intelligent Partitioning

The intelligent partitioning module is responsible for the categorization of microser-
vices based on their usage and dependency on other microservices, while making use of
microservices’ autonomy, loose coupling, and scalable nature to locate the microservices
closer to the data source to reduce latency and network utilization.

Each job in a microservice is allocated a thread as a resource. Local databases in
microservices offer cross-thread connections, which implies that many threads in microser-
vices can utilize the same database connection [52]. In such a case, the computing resources
available will limit the number of CPUs and other resources required for the operation.
The intelligent partitioning agent has autonomous decision-making capacity based on the
reliance and consumption of the microservices to assess and group the microservices based
on the present condition of the cloud application. The aggregated microservices are then
assigned to available data centers. As a result, it minimizes latency and network use, im-
proves resource utilization, and addresses service discovery and load balancing difficulties.

The overall schema for intelligent partitioning is represented in Figure 9. The total
number of microservices of a specific application will be grouped on one of two factors,
i.e., (1) based upon connections/dependencies among microservices, (2) the usage of the
history of the microservices invoked by the actors involved (actors can be end-users, web
services, REST API, RPC call, etc.). The grouping functionality is provided by the running
agent. The agent may make use of developer documents or the service usage history logs
of invoked microservices.
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3.2. Dynamic Allocation

This module is responsible for the allocation of containers and the respective microser-
vices. At run time, the decisions about allocations are made according to the changing
behavior of the cloud services utilization. Within containerized cloud environments, the
service instances have been assigned to network locations dynamically. The autoscaling
and upgrades result in continuous change in service instances’ network locations. Thus,
a service registry mechanism is used to enable the service to discover [53]. The service
registry stores the network locations (IP address and port numbers) of service instances.
The service registry, therefore, records the network location when a service instance starts
up and removes the network address entry when the service instance terminates. The
dynamic allocation makes use of the service registry to obtain knowledge about existing
allocations and to upgrade the service registry entries according to the newly developed
allocation table.

Moreover, in software development, the updates for programming codes are automati-
cally built, tested, and deployed, thus resulting in the continuous delivery and deployments
of the software updates. Thus, it can use the Git logs for changing the allocations according
to software updates. In some cases, the dynamic approach tends to produce worse results
when compared to the static approach [31,54]. This is due to frequent container shifts
by the dynamic approaches, which leads to extra network overhead. Thus, the dynamic
approaches in our proposed framework shift the containers intelligently to reduce the
network traffic among the containers.

3.3. Resource Optimization

Fulfilling the demands of containers for resources can be challenging. The cluster
of containers has multiple resource needs (such as CPU and memory) which need to be
allocated efficiently. In addition, poor/good container placement on the physical machines
(PM) can affect the network latency of container communication. In large container clusters,
performance parameters such as scaling out and recovery from failure require real-time
analytics [30,55]. The queue-based tasks and resource scheduler are commonly used in
well-known cloud orchestration platforms such as Docker Swarm and Kubernetes. In
such schedulers, the task placement request on the cloud enters a queue. From the queue,
the scheduler fetches the request and processes one container at a time. Most commonly,
the variants of heuristic packing algorithms, such as first-fit decreasing (FFD) and best-fit
decreasing (BFD), are used for queue-based schedulers.

In the proposed framework for resource optimization, the migration service is in-
troduced, which will be responsible for shifting the workload between containers and
providing optimal resource utilization of computational resources; refer to Figure 10. There
could be many reasons to migrate the containers from one host to another host. A few of
these possibilities include:

- The overall work needs to be distributed across multiple hosts to comply with the
service level agreement.

- Consolidating the number of hosts; thus, a smaller number of hosts will result in lower
consumption of energy.

- A specific host performs better than the currently running host.
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3.4. Mutation Actions

These actions are based upon mutation processes. The mutation is defined as: “A
mutation is a change in the DNA sequence. Mutations can develop because of multiple
environmental influences”. Thus, the mutation operator involves transferring procedures
from one microservice contender towards another [56]. In our proposed model, the change
in container orchestration occurs according to the defined system QOS parameters. Ei-
ther the microservices will be turned off or on, replicated due to workload, aggregated,
or distributed according to geographical carbon footprints, thus giving an impression
of mutation.

To identify the mutable microservices, an identifier system will work in coordination
with other modules, which will highlight the candidate microservices. The mutation action
schema is shown in Figure 11. The microservices running on containers will generate a
microservices invocation log. The data mining module will find the patterns and correla-
tions within the log data sets to predict/identify the candidate microservices for mutation
actions. The outcome of the data mining module will be used by the event handler. When
an event is generated (due to factors such as overloaded resources), it will be received by
the event handler. The event handler will mutate (in this case, shut down the microservices,
shown in black color in Figure 11) the microservices.
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In the classical cloud computing approach, the task is assigned within one data center.
However, in our approach, the task distribution strategies are applied in interconnected
cloud computing environments including multicloud, hybrid cloud, and federated cloud
environments. Thus, an agent-based cloud broker service layer is responsible for managing
the incoming request from cloud users and providing the delivery of cloud services. It
will be responsible for the performance and will also act as a negotiator between the cloud
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service providers and cloud service consumers. The negotiation terms involve SLA, cost,
energy, and other details. In a more effective approach, the scheduling strategies are
applied across multiple data centers of one vendor and across multiple data centers of
different vendors.

Moreover, event-based architecture is introduced, in which a service sends an event
to the event observer and one or more event observer containers that were watching for
that event to respond to the specific event. The response time for cold versus warm service
requests has a major impact on the performance of cloud providers. The response time
implication is evaluated for three situations, i.e., (1) a provider cold request, the very
first call to the microservice made to the cloud provider; (2) a container cold request, the
very first call made to the container hosting the microservice; and (3) a warm request, the
repeated request to the already invoked container hosting the microservice.

3.5. Metrics for Framework Performance Assessment

Maintaining business operations and long-term sustainability significantly depends
on cloud performance. Cloud performance metrics enable effective monitoring of cloud
resources, operational efficiency, and service delivery. There are a variety of metrics that can
assist in monitoring and assessing the performance of cloud computing services. Typically,
cloud performance indicators include VM capacity (refer to Equation (1)), multiple VM
instances’ capacities (refer Equation (2)), task execution time (refer to Equation (4)), energy
consumption (refer Equation (5)), resource utilization (refer to Equation (6)), and power
consumption (refer Equation (7)). Details of some of the notations from the literature are
listed below:

Capacity of a Virtual Machine (VM): A virtual machine’s capacity is the product of the
number of cores allotted to every virtual machine as well as the size of each core. Let V be
the set of VM instances represented as V1, V2, V3, . . . , Vn. Then the capacity of a virtual
machine CPV is defined as:

CPV = Cnum(VMV) ∗ Cunits (1)

Capacity of Multiple VM Instances: The VM instances’ capacity is defined as the total
of the active VM instances on the server S:

CPsum = ∑n
i=1 CPi (2)

Note: The overall volume of active virtual machine instances should also not exceed
the server’s (Sp) capacities and therefore can be represented in Equation (3):

CPsum ≤ Sp; 1 ≤ p ≤ n (3)

Execution Time: The task (Tk) execution time (ET) by the virtual machine instance
VMi is defined as:

ETki =
SZk
CPi

(4)

where the size of the task k is denoted as SZk.
Energy Consumption: Energy consumption can be defined as:

EC = ECp + ECt + ECm + ECe (5)

where CPU energy consumption is ECp, switching equipment energy consumption is ECt,
storage devices’ energy consumption is ECm, other units’ energy consumption, including
current conversion losses, are represented as ECe.



Appl. Sci. 2022, 12, 5793 16 of 21

Resource Utilization: It is represented as the ratio of the execution time of a workload
executed by a particular resource and the total uptime of the resource:

RU = ∑n
i=1

execution time of a workload executed on resource i
total uptime of resource i

(6)

Power Consumption: Power utilization can be defined as:

P(u) = k · Pmax + (1 − k) · Pmax · u (7)

where Pmax is the maximum power consumed when the server is fully utilized; k is the
fraction of power consumed by the idle server, and u is the CPU utilization.

4. Results and Discussion

The goal of the study is to conceive a conceptual framework that assists in the con-
tainerized microservices orchestration and provisioning in cloud computing environments.
To associate the concepts of resilience and applicability, a part of the framework in a custom-
built simulation environment has been simulated and the preliminary results of the limited
framework evaluation have been presented.

As previously stated, the proposed framework is comprised of four levels. To narrow
the test, the evaluation of an intelligent partitioning module that uses the dependency
agent has been made. The microservice architectural style organizes an integrated suite of
tiny independent services that are designed for a business domain. To simulate the intelli-
gent portioning, the microservices were grouped according to their design patterns [57].
The major categories of the design patterns for microservices are decomposition patterns,
observability patterns, database patterns, integration patterns, and cross-cutting concern
patterns. For implementation, the integration of domain-driven design (DDD) subdomain
aggregates was intended. A domain (e.g., e-commerce business) is made up of many
subdomains (inventory, orders, delivery, customers, etc.). Each subdomain represents a
distinct aspect of the business. The aggregated items of the subdomain can be viewed
as a single entity. This results in eliminating the possibility of object references exceed-
ing service borders and satisfies the limits of the microservices transaction model since a
transaction may only add or edit a single aggregate. In such a configuration, clustering
and assigning individual containers to microservices is used when a service relies on the
delivery of another service. These assemblies of containers are subsequently assigned to
the appropriate cloud data centers. The performance efficiency of design-pattern-based in-
telligent portioning and distribution of microservices has been compared with the arbitrary
distribution of microservices where the containers along with microservices were randomly
assigned to available cloud data centers. As a result, for the distribution of microservices
on cloud data centers, pattern-based clustering of microservices was not conducted in the
arbitrary distribution design.

A custom-built simulation program created microservice data sets of microservice con-
sumption to verify the efficiency of intelligent partitioning. The simulation setup generated
a data collection of microservices calls spread across 750 min, utilizing 150 microservices
distributed across three data centers in three distinct geographical regions. Figure 12
depicts the average response time of a collection of microservices that are arbitrarily dis-
tributed. The average response time for microservice execution was 623.83 milliseconds; the
minimum and highest response times were 237.28 and 1228.16 milliseconds, respectively.

The intelligent partitioning employing a design-pattern-based distribution approach has
been analyzed using the same simulation environment. The findings, as shown in Figure 13,
indicate that response time is significantly reduced when compared to the arbitrary distribu-
tion method. The average response time for microservice requests is 457.45 milliseconds. The
minimum response times for simulated service calls are 197.55 ms and the maximum value of
response time is 1228.71 ms.
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The resource optimization part of the proposed framework was tested and evaluated in
a separate study using custom-built simulation which is used for modeling and simulation
of microservices in cloud computing environments. The details of which are out of scope for
this study, as this study mainly defined the conceptual framework for cloud orchestration
and provisioning based on container-level microservices.

Briefly, we can state that dynamic provisioning of containers and respective microser-
vices were tested and evaluated using a computing cloud where the user-defined number
of data centers was established for a real evaluation of the part of the framework schema.
The simulation findings showed that the predistribution of microservices depending on
their levels of engagement activities greatly decreases carbon dioxide emissions while
increasing green energy use [58]. The usage of cutting-edge container microservice archi-
tecture required the use of several containers scattered across various data centers in the
cloud environment. The suggested microservice ranking technique [58] allowed services to
be separated from one another, resulting in groups of microservices that may be hosted in
geographically scattered data centers. It infers that a rank-based distribution lowers the
communication latency considerably.

It however, requirs performing intensive modeling and simulation of container-
ized computing environments using a software package named ContainerCloudSim [59],
which is an extension of CloudSim. Moreover, to test in the real-world environment, it
needs to use DeathStarBench [60] which is an open-source benchmark suite for cloud
microservices. DeathStarBench provides end-to-end services including social network,
hotel reservation service, and media service. The proposed conceptual framework will be
tested on well-known input parameters and variables and deployment scenarios (hybrid
cloud/multicloud/federated cloud). The key evaluation parameters will include power
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usage efficiency (PUE), server utilization rate, server refresh rate, virtualization ratio, and
carbon footprint.

5. Conclusions

This study presents a conceptual framework to manage the high number of microser-
vice execution while reducing the response time, energy consumption, and execution costs.
The framework’s four core services have been described as:

• Intelligent partitioning, which is in charge of microservice classification.
• Dynamic allocation, which is used to distribute microservices to containers at the start

of the service and then make dynamic microservice allocation decisions at runtime.
• Resource optimization, which will be in charge of redistributing workloads and maxi-

mizing resource use.
• Mutation action, which is built on procedures that will change microservices in re-

sponse to cloud data center workloads.

We used a custom-built simulation environment for the evaluation of an intelligent
partitioning module that leveraged design patterns, i.e., when a microservice relies on other
microservices for service delivery, they are clustered together and allocated to separate
containers. The performance of the integration of domain-driven design (DDD) based
intelligent portioning indicates that response time is significantly reduced when compared
to the arbitrary distribution method.

In future work, the proposed framework will be evaluated and tested (as described in
the previous section) using a simulation environment that includes CloudSim, for the mod-
eling and simulation of cloud computing, and ContainerCloudSim, for the modeling and
simulation of containerized cloud computing. Furthermore, expert scheduling techniques
and learning systems for containers and microservices would be integrated and tested on a
real cloud container cluster to lower the temporal complexity.
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