
Citation: Vidalie, J.; Batteux, M.;

Mhenni, F.; Choley, J.-Y. Category

Theory Framework for System

Engineering and Safety Assessment

Model Synchronization

Methodologies. Appl. Sci. 2022, 12,

5880. https://doi.org/10.3390/

app12125880

Academic Editor: Agostino

Forestiero

Received: 29 April 2022

Accepted: 6 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Category Theory Framework for System Engineering and Safety
Assessment Model Synchronization Methodologies
Julien Vidalie 1,2,* , Michel Batteux 1 , Faïda Mhenni 2 and Jean-Yves Choley 2

1 IRT SystemX, 8 Avenue de la Vauve, 91120 Palaiseau, France; michel.batteux@irt-systemx.fr
2 Laboratoire Quartz—ISAE Supméca, 3 Rue Fernand Hainaut, 93400 Saint-Ouen, France;

faida.mhenni@isae-supmeca.fr (F.M.); jean-yves.choley@isae-supmeca.fr (J.-Y.C.)
* Correspondence: julien.vidalie@irt-systemx.fr

Abstract: In recent decades, there has been a significant increase in systems’ complexity, leading
to a rise in the need for more and more models. Models created with different intents are written
using different formalisms and give diverse system representations. This work focuses on the system
engineering domain and its models. It is crucial to assert a critical system’s compliance with its
requirements. Thus, multiple models dedicated to these assertions are designed, such as safety
or multi-physics models. As those models are independent of the architecture model, we need
to provide means to assert and maintain consistency between them if we want the analyses to be
relevant. The model synchronization methodologies give means to work on the consistency between
the models through steps of abstraction to a common formalism, comparison, and concretization of
the comparison results in the original models. This paper proposes a mathematical framework that
allows for a formal definition of such a consistency relation and a mathematical description of the
models. We use the context of category theory, as this is a mathematical theory providing great tools
for taking into account different abstraction levels and composition of relations. Finally, we show
how this mathematical framework can be applied to a specific synchronization methodology with a
realistic study case.

Keywords: system engineering; safety assessment; multi-physics; consistency

1. Introduction

During recent decades, systems have become more complex as they evolved towards
having multiple features and due to the rise of mechatronic design. This complexity leads
to a need to create numerous models in system design. We use these models to represent the
product towards diverse modeling intents, thus allowing the analysis of specific properties.

Among these models, we find system engineering models used to apprehend complex-
ity in the system. System engineering encompasses many models, including requirement
and architecture models, safety models, and multi-physics models. These models are
written by different people, using various tools and formalisms. This independence can
lead to problems with consistency between the models. As diverse models represent one
system, we fear that some models may contain errors, making them incompatible with the
designed system. Such inconsistencies can be very concerning in the case of safety-critical
systems and their safety models, and manual review of the models is time expensive. This
is especially true of complex systems that can interact with humans, such as autonomous
vehicles or cobots. Autonomous systems are complex and critical systems with highly
complex control loops [1] that require advanced models when engineers simulate them.
An undetected error in the safety model could lead to not considering some of the system’s
potential failure events. Such errors would then result in the system being dangerous for
the user. When systems have to be certified in order to be accepted into the market, e.g.,
for planes, the safety assessment methodology needs to be accepted by safety authorities.

Appl. Sci. 2022, 12, 5880. https://doi.org/10.3390/app12125880 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12125880
https://doi.org/10.3390/app12125880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9060-5438
https://orcid.org/0000-0001-5269-994X
https://orcid.org/0000-0002-6990-6164
https://orcid.org/0000-0002-9960-6808
https://doi.org/10.3390/app12125880
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12125880?type=check_update&version=2

Appl. Sci. 2022, 12, 5880 2 of 30

This requires great trust in the safety assessment process and, therefore, in the consistency
of the models.

The system engineering community proposes different methodologies such as model
federation [2] or proof theory approach [3] to assert and maintain consistency between these
models to face this challenge. Amongst them, we find synchronization methodologies [4].
In this work, we address the mathematical aspect of the synchronization methodologies.
The synchronization methodologies consist of three steps: first, we translate the models to
a common formalism; then, we compare them in this common formalism; and finally, we
carry the comparison results back to the original models.

Although those methodologies exist and provide means to minimize the number of
contradictions between the models, there is no formal definition of what consistency the
community would widely accept. We primarily understand consistency by the absence of
contradiction between the models, but this is not a criterion that single-handedly allows a
methodology’s efficiency to be demonstrated. Thus, we propose a formal definition of a
binary consistency relation.

In this work, we propose to use category theory to interpret the model synchronization
through a mathematical framework. We aim to provide a tool that helps design and
validate model synchronization methodologies mathematically. To achieve this goal, we
give a mathematical representation of the comparison models that the synchronization
methodologies use, and we propose a definition of a general consistency relation between
models. We apply this mathematical framework to the SmartSync methodology [5] through
the study of model consistency in the design workflow of an autonomous critical system,
a fixed-wing blood delivery drone. In the SmartSync methodology, the comparison models
are mathematically depicted through quintuples that contain their characteristics. The
mathematical framework described in this work proposes an equivalent definition of the
comparison models, representing the models through categories rather than quintuples.
This new definition allows our mathematical framework to give a new mathematical
perspective of the comparison, which allows for mathematical proofs of the properties
compared between the models. In the study case, through the categorical framework,
we detect some limitations of the SmartSync methodology and propose some leads to
overcome them.

The remainder of this paper is structured as follows:
Section 2 establishes the state of the art for the models, synchronization methodologies,

and category theory tools that we use in this work. Section 3 defines the mathematical
framework we propose for synchronization methodologies. Section 4 gives an example of
applying the mathematical framework with the SmartSync methodology over a study case.
Section 5 discusses some points of interest and the results of this study.

2. State of the Art
2.1. Model-Based System Engineering and Safety Assessment

During system design, engineers create representations that they use for different in-
tents. We study the consistency of system engineering and safety assessment representation
in this work, especially model-based ones. System engineering is an interdisciplinary ap-
proach for designing and integrating complex systems throughout their life cycle, from their
design to their end of life. It is achieved by representing the system’s requirements, envi-
ronment, life-cycle, functions, and architecture. Safety assessment aims at asserting that the
system complies with its safety requirements. Whereas traditional approaches have been
document-centered, industrial practices shift towards model-based approaches. Model-
based approaches provide new tools that better consider complexity in system design. This
change in modeling paradigm induces new engineering disciplines.

2.1.1. Model-Based System Engineering (MBSE)

The usual approaches for system engineering have been using documents to describe
the requirements, environment, architecture, and other views of the system. Although

Appl. Sci. 2022, 12, 5880 3 of 30

those documents are sometimes created in tools such as Excel or Doors, they are textual
and rely on natural language.

The model-based approach used in system engineering finds its origin in model-based
software development [6]. Software developers use such approaches to represent software
architecture, with tools such as the UML notation [7]. This language was derived into the
SysML notation [8], which system engineers use to describe complex systems.

The model-based system engineering tools such as SysML or Capella use diagrams
to represent different system views. Structural and behavioral aspects are represented,
with diagrams such as requirement diagrams allowing for representation of the require-
ments, activities diagrams allowing for representation of the functions, and block definition
and internal block diagrams allowing for representation of the architecture. The MBSE
languages present a lack of semantics [9], which causes ambiguities without the use of a
third-party methodology. Therefore architecture grids—such as CESAM [10] or the method-
ology from [11] for SysML or Arcadia for the Capella tool—provide guidelines to create
MBSE models.

Although we often use the name MBSE for such diagrammatic models, system en-
gineering encompasses various disciplines. Therefore, some domain-specific languages
(DSL), such as languages for multi-physics or safety assessment, can be interpreted as part
of MBSE.

2.1.2. Model-Based Safety Assessment (MBSA)

Similarily to MBSE, the field of safety analysis is faced with the challenge of complexity.
The traditional approaches, such as Petri nets, reliability block diagrams, event trees,
and fault trees, are models that are very close to mathematical equations and lack structure
or lack expressivity power. They also are very abstract compared to the system specification.
The model-based safety assessment (MBSA) approaches try to answer these limitations.

The MBSA models have a high expressivity, as they represent systems with a point of
view closer to their architecture. The gain on expressive power is obtained by going from
Boolean formalisms to state or event formalisms. There are three different kinds of model-
based risk and safety assessment formalisms [12], including specialized profiles of MBSE
tools such as [13], approaches that extend fault trees or reliability block diagrams such
as dynamic fault trees [14] and model-based safety and reliability assessment modeling
languages. In this work, we are interested in MBSA modeling languages, such as SAML [15],
Figaro [16], and especially AltaRica 3.0 [17].

AltaRica 3.0 is the third version of the AltaRica language; it is based on the mathemati-
cal framework of guarded transition systems (GTS) [18], which are state automata.

2.1.3. Structural Models

The MBSE and MBSA models are two different kinds of models that represent the
same systems with two different modeling intents. The modeling intent is the primary
constraint on the representation of the system in these models.

In [19], the authors state that models are composed of behavior and structure. This
means that these models are composed of a mathematical framework and a structural
construction. In this work, we are interested in comparing the structure of the models,
as we want to show that the architectures of the systems represented by the models are
the same.

The article also introduces S2ML (System Structure Modeling Language), a language
designed to model systems structure. This language is built around basic elements: blocks,
ports, and connections. These three basic concepts, although very restricted, allow for a
robust conceptualization of systems. Many languages can be interpreted through them,
such as SysML, AltaRica, Modelica, and Lustre.

Appl. Sci. 2022, 12, 5880 4 of 30

2.2. Synchronisation Methodologies

Different approaches exist to assert consistency between heterogeneous models. The
model federation [2] approach uses a database to store all data from a system’s models.
Within that database, the user can assert consistency and traceability between the models.
Proof theory is used by [3] in their inconsistency management approach. This methodology
interprets models as first-order logics, identifying inconsistencies through a computer-
aided proof tool. The lack of expressivity of proof theory limits this approach, making the
interpretation and proofs difficult.

A third approach to heterogeneous models consistency is model synchronisation [4].
The synchronization consists of a three-step process, which is illustrated in Figure 1:

• Abstraction: The models are translated to a common formalism.
• Comparison: The comparison is operated in the abstracted models. Writing the

compared models in a common formalism makes the comparison easier than with
heterogeneous models.

• Concretization: The comparison results are carried back to the original models. Con-
cretization can be achieved by correcting the models, annotations, or other means.

Figure 1. Model synchronisation approach.

The model synchronization approach is the base for different methodologies. In this
work, we intend to interpret them in a mathematical framework.

Regarding the SmartSync synchronization framework [20], the authors of the method-
ology provide a methodology and tools for the synchronization of the MBSE and MBSA
models [21]. The comparison is operated on abstracted models written with the S2ML
language [22]. The S2ML comparison models used in SmartSync are described with a
set-theoretical point of view as a quintuple < P, C, B, α, r [5], where:

• P and B are sets of symbols called ports and blocks, respectively;
• C is a multiset of subsets of P called connections;
• α is a subset of B× (P ∪ C ∪ B) such as any element of (P ∪ C ∪ B) that is associated

with, at most, a unique element of B called its parent, and there exists a unique block
r ∈ B with no parent.

SmartSync relies on the user to manually align model elements, as described in
Section 4.2.1.

The directed graph methodology from [23] is also a synchronization methodology.
It does rely on the abstraction of the models towards graphs. In the graphs, vertices
represent parts and ports from SysML and blocks and classes from AltaRica; edges represent
connectors from SysML and assertions from AltaRica. This framework allows for the use
of graph search algorithms to traverse the graphs, and the use of concepts such as graph
and sub-graph isomorphisms to compare the models.

Appl. Sci. 2022, 12, 5880 5 of 30

The consistency links methodology [24] is another synchronization approach that
creates links between MBSE and MBSA models. This methodology mainly focuses on the
functional aspect of the system.

The three latest methodologies provide a structural comparison between system
engineering and safety models. They rely on comparison models that follow the block,
ports, and connection structure described in Section 2.1.3, with different ways to represent
them. Category theory offers a point of view that allows us to use both the strengths of
the graph and set theories, along with other topological tools, which is why we use it to
provide a mathematical framework for synchronization methodologies. We do not find
a clear formalisation of the consistency notion that seems to be widely accepted by the
community. We provide a mathematical framework within which we define an axiomatic
for the representation of models and propose a formal definition of a consistency relation.

2.3. Category Theory

Category theory is a branch of mathematics that finds its origins in the work of
Samuel Eilenberg and Saunders Mac Lane in the early 1940s. This theory aims at unifying
mathematics, especially by creating a bridge between topology and algebra. After category
theory was used for many years to redefine existing concepts, Alexander Grothendieck
did build completely new mathematical objects using it [25]. In this work, we use category
theory to allow us to describe objects through their interactions. We detail in this section
some basic knowledge of category theory that is required to understand this paper. A more
complete yet well-written and easily understandable introduction to category theory can
be found in [26].

2.3.1. Category

Category theory studies categories, which are mathematical entities that contain
objects and relations between objects.

In this context, mathematicians use relations to study the properties of objects rather
than looking at the objects themselves. It is also possible to define relations between
categories called functors; this leads to defining more extensive categories within which
the objects are the categories and the relations are the functors. Although this can sound
complicated when first encountered, it provides a way to represent abstraction levels; this
concept also leads to the definition of some fundamental concepts for logic that we do not
use here.

We choose to use category theory in this work because of its properties that encompass
both set theory and graphs. At the same time, category theory also has essential composi-
tion properties that allow propagating relations in the models we study and abstraction
properties that are interesting in model comparisons.

Definition 1. Category
A category C is composed of:

• A class Ob(C) of objects;
• For x, y ∈ Ob(C), the set HomC(x, y) of morphisms from x to y;

Morphisms are often called arrows;
This set is called the Homset of x and y.

A category respects the following rules:

• Composition: If f ∈ HomC(x, y) and g ∈ HomC(y, z), then g ◦ f ∈ HomC(x, z).
• Associativity: If f,g,h are morphisms such that g ◦ f and h ◦ g exist, then (h ◦ g) ◦ f =

h ◦ (g ◦ f).
• Identity: for each x ∈ Ob(C), there exists an identity morphism Idx : x. −→ x

We can give a graphic representation of a category through an oriented graph. This
representation is called a diagram over the category. Vertices represent the objects of the
category, and edges represent the morphisms. A diagram does not have to be exhaustive

Appl. Sci. 2022, 12, 5880 6 of 30

over the category. Thus, we can draw a finite diagram over a category with an infinity
of objects (such as the S2ML + Cat category that we define in Section 3). We often do
not show identities and morphisms resulting from diagrams’ composition, which allows
better readability.

Just like other mathematical objects, we can link categories through applications.
The right concept of application between categories is functors, a categorical pendant
of morphisms.

Definition 2. Functor
For two categories C, D, a functor F is an application F : C −→ D composed of:

• A function FOb : Ob(C) −→ Ob(D);
• For each x, y ∈ Ob(C), a function Fx,y : HomC(x, y) −→ HomD(FOb(x), FOb(y)).

We can note F(x) or F(f) if x is an object and f a morphism.
A functor F : C −→ D satisfies the following requirements:

• Identities are preserved by F, i.e., for x ∈ Ob(C), F(Idx) = IdF(x);
• Composition is preserved by F, i.e., for x, y, z ∈ Ob(C) and f ∈ HomC(x, y), g ∈ HomC(y, z),

we have F(g ◦ f) = F(g) ◦ F(f).

There exist applications between functors called natural transformations. Natural
transformations are mappings for each object and morphism of a category between the
images of their images by two functors. In this aspect, they allow transforming a functor
into another functor. They are essential in defining the equivalences of categories.

Definition 3. Natural transformation
Let C and D be two categories.
Let F : C −→ D and G : C −→ D be two functors.
A natural transformation α : F −→ G is composed for each x ∈ Ob(C) a morphism αx : F(x) −→
G(x) such that for each y ∈ Ob(C), for each f ∈ HomC(x, y), we have:
G(f) ◦ αx = αy ◦ F(f)
This corresponds to saying that the diagram found in Figure 2 commutes.

Figure 2. Illustration of a natural transformation.

2.3.2. Some Interesting Concepts

We have defined the basic concepts of category theory; we will now focus on some
properties of interest to this work.

In the same way as functions can be injective, surjective, or both (bijective), there are
similar concepts for functors between categories.

Definition 4. Full and Faithful functors
Let F : C −→ D be a functor.
We say that F is Full if for any x, y ∈ Ob(C), Fx,y : HomC(x, y) −→ HomD(F(x), F(y))
is a surjection. We say that F is Faithful if for any x, y ∈ Ob(C), Fx,y : HomC(x, y) −→
HomD(F(x), F(y)) is an injection.

We can also define the concept of equivalence between two categories.

Appl. Sci. 2022, 12, 5880 7 of 30

Definition 5. Equivalence of categories
Let C and D be categories.
An equivalence of categories is a functor F : C −→ D such that there exists:

• A functor G : D −→ C;
• Natural transformations α : IdC −→ G ◦ F and α′ : IdD −→ F ◦ G.

The notion of pullback allows defining an object that is the biggest object that respects
a constraint towards two objects. Prerequisites for this notion are cones and limits, so we
shall define them first.

Definition 6. Cone
Let C be a category. Let there be a diagram over C. A cone over this diagram is an object Z with
morphisms from Z to every object of the diagram, such that any newly formed triangle commutes.

A limit is a universal cone, i.e., a cone such that, for any other cone, a unique path
exists from the limit to the other objects in the diagram through the cone.

Definition 7. Limit
Let C be a category. Consider a diagram over C. A limit on this diagram is a cone Q such that
for any other cone Z we have a unique morphism ψ : Z −→ Q such that all triangles including
ψ commute.

Cones and limits are illustrated in Figure 3. The diagram considered is constituted
of the A, B, C, and D objects and morphisms between them. Z and Q, assuming that
compositions of morphisms of the diagram with the dotted arrows commute, are cones.
Furthermore, Q is a limit of the diagram if for any cone Z, there is a unique morphism
Ψ : Q −→ Z that makes everything commute. We say that a limit is a universal cone
because whichever cone we choose, there is a unique way to obtain this cone from the limit,
and this way is the ψ morphism.

Figure 3. Illustration of the cone and limit.

Definition 8. Pullback
Let A, B, and C be three objects of a category. Let f and g be two morphisms from A and B to C. A
pullback in a category is the limit AxCB of the diagram from Figure 4.

Appl. Sci. 2022, 12, 5880 8 of 30

Figure 4. Structure of the pullback.

The pullback is an object with morphisms towards two objects that respects constraints
with a third object. This can be interpreted as the biggest object that respects the constraint.

2.3.3. Use of Category Theory in System Engineering

Because category theory is a tool that encompasses abstraction levels and interactions
between objects, some approaches have given representation of complex systems through
this mathematical frame.

Fundamental mathematical approaches give highly theoretical representations of
these systems. Dynamic systems can be represented using the concept of sheaves [27],
which are functors from a category to the category of sets with compelling topological
properties. This allows for the representation of interactions between multiple dynamic
systems. Category theory can also be used to represent systems in a way that allows for
straightforward representation of hierarchy levels with evolutive memory systems [28],
through the evolution of the system, and interactions between multiple systems.

Some approaches are closer to the system engineering point of view. Ontologies
and category theory are used to represent MBSE models in the MB2SE framework [29].
A category-based meta-model of system engineering and safety assessment was also
designed [30].

3. Mathematical Framework for Consistency
3.1. Mathematical Representation of a Structural Model

In this section, we assume that a model that carries structural information can be
described with the following elements:

• Blocks;
• Ports;
• Connections.

This is at least the case with the comparison formalisms used in the synchronization
methodologies from Section 2.2, although they are named differently in the consistency
links methodology. In [5], the S2ML models are formalized with a quintuple composed of
sets of ports and blocks, a multiset of connections, a composition relation, and a unique
block with no parents regarding the relation.

Although this description is rigorous, we propose another definition inspired by
category theory which allows for the definition of functors between the models. To give a
categorical definition of S2ML models, we need to define four concepts: ports, connections,
blocks, and then S2ML models.

Definition 9. Port
A port is a singleton containing a symbol p.

The ports are atomic elements of the model. They can be used to express variables in
the model, states of a component, or other properties. We use symbols to represent this
property; the symbol could be interpreted as the port’s name.

Appl. Sci. 2022, 12, 5880 9 of 30

Definition 10. Connection
A connection is a non-empty, finite set of ports.

This definition means that a connection is a category that contains the ports that
it connects.

We can now define the blocks with ports and connections, which are containers in the
model. A block is a container that holds other blocks, ports, and connections. Therefore the
definition of a block is recursive.

Definition 11. Block
A block is a category B such that:

• Ob(B) is a finite set of blocks, ports and connections;
• For each connection C, if a port P ∈ Ob(B) is such that P ∈ Ob(C), then there exists two

functors rP,C : P −→ C and r′P,C : C −→ P in B such that rP,C maps p ∈ P to P ∈ Ob(C)
and r′P,C maps every element of C to p ∈ Ob(P) and every morphism to Idp.

• For each block B1 ∈ Ob(B):
- For each connection C ∈ Ob(B1), we have C ∈ Ob(B) and there is a morphism

αC,B1 : C −→ B1 in B that maps each element of C to C ∈ Ob(B1);
- For each port P ∈ Ob(B1), we have P ∈ Ob(B) and there is a morphism αP,B1 : P −→

B1 in B that maps p ∈ P to P ∈ Ob(B1);
- For each block B2 ∈ Ob(B1), we have B2 ∈ Ob(B) and there is a morphism αB2,B1 :

B2 −→ B1 that maps every object of B2 to itself in B1 and does the same with morphisms;
For each X in Ob(B1), there exist a unique block B′ ∈ B (possibly B1), such that there is

no block B′′ ∈ B′ such that X ∈ B′′; we also have either B′ = B1 or B′ ∈ Ob(B1);
• There are no other morphisms in the block than those described here and the morphisms that

derive from category theory axioms, i.e., identities and compositions.

Although this definition can look very complicated, it simply carries the prop-
erties of a block to the world of categories. Thus, each point of the definition can be
explained straightforwardly.

We define two morphisms between a connection and the ports that are in the block
and the connection. These morphisms represent the relation between the ports and the
connection. The ports are both parts of the connection, and the connection refers to them.
The typical structure of a connection in a block is depicted in Figure 5; it corresponds
to the connection from Figure 6. We do not assume that all ports of the connection are
contained in the block. In a model, we will eventually find an ancestor block containing all
the connection’s ports. However, connections usually go from one block to another. Thus,
there is no reason for all ports to be contained in any block that contains the connection.

Figure 5. Structure of a connection with two ports in a block/model.

Figure 6. Example of a system model.

In Figure 5, the plain arrows represent the rP1,C, r′P1,C, rP2,C and r′P2,C morphisms,
and the dotted arrows represent their compositions. We have morphisms both from the

Appl. Sci. 2022, 12, 5880 10 of 30

ports to the connection and from the connection to the ports. Therefore, we also have
morphisms between ports that participate in the same connection because of composition.
In the same way, assume we have three ports, P1, P2, and P3, and two connections, C1
between P1 and P2 and C2 between P2 and P3. We will have morphisms between P1 and
P3 because of composition, indicating an indirect connection between these ports.

The third point of the definition does translate the belonging relation in S2ML models.
We define a morphism between a block, port, or connection and a block that contains it. In
the case of blocks, this morphism resembles the identity; it maps every object of the port
to its parent or ancestor. This means that everything in the block is also contained in its
ancestors. For connections, this relation will absorb the content of the connection to itself
since the connection conceptually only refers to the ports rather than being a container that
they are a part of. This also helps to disambiguate the difference between a port being in a
connection that belongs to a different block and a direct belonging morphism from a port to
a block. The last property of that point expresses that a model element has a unique parent,
either the block itself or a block within it. All other blocks that contain it are its ancestors
and will contain this parent.

An example of the category depicting the system block from Figure 6 is depicted in
Figure 7. This category indeed contains everything that is contained in the system block. In
this case, this includes the A and B blocks, the P1 and P2 ports, and the C connection.

Figure 7. Diagram of the system block from Figure 6.

We have defined all elements of the models: blocks, ports, and connections; we can
now use these concepts to define the model itself. The model contains the blocks, ports,
and connections and is structured as its root (main) block, with the difference that it
also contains the root block and morphisms between elements of the root block and the
root block.

Definition 12. S2ML Model
An S2ML model is a category M such that:

• Ob(M) is a finite set of blocks, ports, and connections;
• There exists a block R called the root of M such that Ob(R) = Ob(M) \ R, and for each

x, y ∈ Ob(R), HomM(x, y) = HomR(x, y);
• The morphisms described between each object and a block in the definition of a block also hold

between the objects of M and the block R;
• There are no other morphisms in the model than those described here and the morphisms derived

from category theory axioms, i.e., identities and compositions.

The root object in the model does contain all other objects; there will always be a
belonging morphism from an object to the root object.

We can draw diagrams over S2ML models like diagrams are drawn over any other
categories. In order to make these diagrams easy to read and faithful to the system, we
only show the direct belonging morphisms and morphisms between ports and connections.
Any morphism that is a composition or identity still exists in the category, but we do not
show them in the diagrams.

We have defined morphisms between the objects of the models. Although these
morphisms can always be composed, they, in a way, are typed, as their properties can be

Appl. Sci. 2022, 12, 5880 11 of 30

used to explain the relationship they express between the objects. The belonging morphisms
express that an object is contained in a block.

Definition 13. Belonging Morphism, Direct Belonging Morphism, Ancestor, Parent
Let M be a model, let A, B ∈ Ob(M), and let f : A −→ B a morphism in M.

We call f a belonging morphism if and only if B is a block, and:

• A is a block, and f is the identity over this block;
• A is a port, and f maps p ∈ A to A ∈ Ob(B);
• A is a connection, and f maps any x ∈ A to A ∈ Ob(B).

If f is a belonging morphism, we say that B is an ancestor of A.
We call f a direct belonging morphism if it is a belonging morphism and there is no block

B′ ∈ Ob(B) such that A ∈ Ob(B′).
If f is a direct belonging morphism, we say that B is the parent of A.

We call a morphism a belonging morphism if its target is a block, and it either is similar
to the identity when its source is a block or a port, or it maps everything to the connection
itself if the source is a connection. Examples of direct belonging morphisms in the diagram
for a model can be found in Figure 8; the plain black arrows are the direct belongings. Paths
in the model formed by the composition of one or more direct belonging morphisms are
the belonging morphisms; they correspond to the relations between a model element and
its ancestors.

Figure 8. Diagram of the system model from Figure 6.

The other significant kind of morphism is reference morphisms. The reference mor-
phisms show the relation between a port and a connection that the port participates in.

Definition 14. Reference morphism
Let M be a model, let P, C ∈ Ob(M) such that P is a port and C a connection, and let f : A −→ B
a morphism in M.
We call f a reference morphism if and only if f maps p ∈ P to P ∈ Ob(C).

Examples of reference morphisms can be found in Figure 8; they are the dotted arrows
from P1 and P2 to C. The reference morphisms represent the encapsulation of the ports in
the connections, as they are elements of the connection.

We call injections a certain kind of functors between models. These functors represent
the fact that a model is part of another model.

Definition 15. Injection
Let A, B be two S2ML models, and let F : A −→ B be a functor. We call F an injection if
and only if F is injective on objects and faithful, and F lets an object’s and morphism’s properties
remain unchanged, i.e., ports, blocks, and connections are, respectively, mapped to ports, blocks,
and connections, and reference and belonging morphisms are, respectively, mapped to reference and
belonging morphisms.

Appl. Sci. 2022, 12, 5880 12 of 30

A graphical illustration of injection between two models can be found in Figure 9.
Injections are functors that associate each object and morphism of its source with a unique
object or morphism of the target. The existence of an injection between two models means
that the structure of the first model is a part of the structure of the second one.

Interesting properties of the objects can also be defined, which we use in the demon-
strations of theorems.

The order of an object is the number of depth levels in the system breakdown separat-
ing this object from the root object of the model. We also call the order of the model the
number of depth levels of system breakdown of the model.

Definition 16. Order of a model object, order of a model
Let M be a model, and let X ∈ Ob(M).
We call the order of X its distance to the root object, i.e., the number of direct belonging morphisms
that have to be composed to obtain a morphism, f : X −→ R.
We call the order of M the upper bound of the orders of its objects.

Figure 9. An injection between two models.

The root of the model is an object of order zero, and objects with a direct belonging
towards the root are of the first order. As an example, in Figure 8, the object of order zero
is the block System, objects of the first order are the blocks A and B and the connection C,
and objects of the second order are the ports P1 and P2. The model itself is of the second
order since the ports have the maximal order.

We also define elementary blocks, which are blocks that do not contain other blocks.
They are useful in inductive proofs, as they are the smaller blocks in the models, in the
sense that they may be contained in other blocks that are subsequently “bigger” than them.

Definition 17. Elementary block
We call an elementary block any block that contains no other block.

The S2ML models with the injections are a category that we call S2ML + Cat. S2ML +
Cat is the frame within which we will study the characteristics of the models.

Definition 18. S2ML + Cat
We define S2ML + Cat as being the category composed of:

• Ob(S2ML + Cat), the set of all S2ML models. We call them the objects of S2ML + Cat;
• For each X, Y ∈ Ob(S2ML + Cat), Hom(X, Y) is the set of the injections from X to Y.

Proposition 1. S2ML+Cat is a category.

Proof.

• Identity:
Let X ∈ S2ML + Cat.

Appl. Sci. 2022, 12, 5880 13 of 30

The morphisms of S2ML+Cat are the injections between S2ML models.
Due to the identity being trivially injective on objects and morphisms, it is an injection.
Therefore, IdX ∈ HomS2ML+Cat(X, X).

• Composition:
Let X, Y, Z ∈ S2ML+Cat, let F ∈ HomS2ML+Cat(X, Y) and let G ∈ HomS2ML+Cat(Y, Z).
G ◦ F is an injection, because each of its components (over objects and homsets) is a
composition of injective applications and thus an injective application.
Therefore H = G ◦ F ∈ HomS2ML+Cat(X, Z).

• Associativity: Injections are functors between categories; therefore, they are associative.

S2ML+Cat presents identity morphisms. Its morphisms can be composed, and their
composition is associative. Therefore, S2ML + Cat is a category.

We have defined a category that allows for the mathematical representation of S2ML
models. Under the hypothesis that any structural model can be represented with blocks,
ports, and connections, this mathematical representation is readily applicable to any such
model. This is the basis for our mathematical framework.

The definition we have given here allows a unique categorical representation of any
S2ML that was defined as a quintuplet.

Theorem 1. Ob(S2ML + Cat) is isomorphic to the set of the quintuples from [5], up to the choice
of symbols for blocks.

Proof. Let S2ML be the set of all quintuplets from [5].

Let
{

F : S2ML −→ Ob(S2ML + Cat)
X =< P, C, B, α, r >→ Xcat

where Xcat is such that:

• Ob(X) contains:
- For each p ∈ P, the port P′ = {p};
- For each c = {P1, . . . , Pn} ∈ C, the connection c′ such as c′ = {P′1, . . . , P′n} with

P′k = {Pk};
- For each block b ∈ B, the block b′ that contains all blocks, ports, and connections

that are under b for the α relation;
• The morphisms in X are trivially obtained from Definition 12.

The block b′ that we define is unique because it can be built by induction by building
first the blocks that contain no blocks (the connection and ports being trivially unique,
these blocks also are), then blocks of the next level of abstraction for the α relation, until we
have built all blocks that are contained in b′.

F allows us to convert any model from S2ML to a model in Ob(S2ML + Cat).

Let
{

G : Ob(S2ML + Cat) −→ S2ML
X → Xquint

where Xquint is the set of models < P, C, B, α, r > from S2ML, such that:

• P = { p ∈ PCat | PCat ∈ Ob(X) is a port };
• B = { b’ | b’ is a symbol associated to b ∈ Ob(X), which is a block };
• C = { c’ = {p ∈ Pcat for Pcat ∈ c | c ∈ Ob(X) is a connection};
• α = { (x, y) ∈ Ob(X)2 | HomX(x, y) contains a direct belonging morphism };
• r is the root of X.

The image of Xquint by F is X, by construction. Therefore, we have a way to map each
element of S2ML to an element of Ob(S2ML + Cat). We also have a way to map each
element of Ob(S2ML + Cat) to a set of elements of S2ML. Finally, both these mappings are
each-other inverse up to the choice of symbols for the blocks.

A pleasing property is that when two models can be injected into one another, they
have the same structure; this can be expressed as follows.

Appl. Sci. 2022, 12, 5880 14 of 30

Theorem 2. Let A, B ∈ Ob(S2ML + Cat), such that there exists injections F : A −→ B and
G : B −→ A.

Then there exists an injection G′ : B −→ A such that G ◦ F = IdA and F ◦ G = IdB.

Remark 1. Theorem 2 is a generalisation of the Cantor-–Schröder-–Bernstein theorem to S2ML models.

Proof. Let M1, M2 ∈ Ob(S2ML+Cat) and F : M1 −→ M2, G : M2 −→ M1 be two injections.
F and G are injective on objects; therefore, we know that card(Ob(M1)) = card(Ob(M2)).

Let R be the root object of M1 and R′ the root object of M2.
The belonging morphism between the object and its parent will also be mapped to a

belonging morphism. Therefore, as F is injective, any object of M1 which has a parent is
mapped to an object of M2, which also has a parent.

Therefore all objects of M2 that have a parent are the images of objects of M1 that have
a parent, since card(Ob(M1)) = card(Ob(M2)).

Thus, since F is injective on objects, R′ = F(R).
Let X ∈ Ob(M1) be of order k.
By definition, there exists X1, . . . , Xk−1 ∈ Ob(M1) and r1 : X −→ X1, . . . , rk : Xk−1 −→

R such that the ri are direct belonging morphisms.
Therefore, there exists X′, . . . , X′k−1 = F(X), . . . , F(Xk−1) and r′1 : X′ −→ X′1, . . . ,

r′k−1 : X′k−1 −→ R′, where the r′i are belonging morphisms, which are the images by F of
the ri.

This means that Order(X′) ≥ Order(X).
If we take the objects of maximum order in M1 and M2, we obtain Order(M1) ≥

Order(M2) inversely.
Therefore, Order(M1) = Order(M2).
Let k = Order(M1) = Order(M2). Let n be the number of objects of order k in M1;

then, M2 has at least n objects of order k, since Order(F(X)) ≥ Order(X).
Since the same holds for G, we have that M2 also has exactly n objects of order k.
Assume this property (M1 and M2 have the same number of objects of a specific order

and objects are mapped to objects of the same order) to be proven for any order above
i ∈ [|0; k|].

Let X ∈ Ob(M1) be an object of order i; then, Order(F(X)) ≥ Order(X).
Any object of M2 of an order superior to i is already the image of an object of M1 of an

order superior to i.
Therefore, Order(F(X)) = Order(X) = i.
We know that the property holds for objects of order k. For i ∈ [|0; k|], if it holds for

any order of [|i + 1,k|], it holds for order i; thus, by complete induction, it holds for any
i ∈ [|0; k|].

Let C be a connection of M1.
Then card(F(C)) ≥ card(C); indeed, if C = {P1, . . . , Pn} and F(C) = {P′1, . . . , P′m},

then we have, for each i ∈ [|1, n|] a l such that F(Pi) = P′l , because F preserves the reference
morphisms, thus m ≥ n.

This means that M2 has more connections than M1 for a certain order.
In the same way as for objects’ order, we obtain that the image of a connection by F

and G is a connection with the same number of ports.
We can now prove the theorem. Let us show by complete induction that we can build

an inverse of F.
Let n be the order of M1 and M2.
For n = 0, M1 and M2 only contain their root objects, which are elementary blocks that

have no port or connection.
Therefore, F and G are entirely defined by F(R) = R′ and G(R′) = R; they are trivially

inverse of eachother.
Let n > 0, and assume that the property holds for any k < n.
Then:

Appl. Sci. 2022, 12, 5880 15 of 30

• F maps R to R′ and vice versa.
• F maps each block B ∈ Ob(M1) of order 1 to a block B′ ∈ Ob(M2) of order 1. The

component of F on B and its descendants corresponds to an injection FB between the
models (of order < n) that have B and B’ as their root objects. Thus, we can associate
an inverse G′B to this injection.

• M1 and M2 have the same numbers of ports of order 1 and connections of order 1.

- Let C ∈ Ob(M1) be a connection of order 1. We know that F(C) has the same
number of ports as C and that the images of the ports of C are the ports of F(C).
Therefore, we can define an inverse to the component of F on C, and its ports,
and this inverse is compatible with the ones defined for blocks of order 1.

- We can associate two by two the remaining ports. When we add the compositions
to these components, we obtain a functor G′ : M2 −→ M1, which is the inverse
of F.

Therefore, we have shown Theorem 2 by strong induction.

A direct corollary of Theorem 2 is the following one.

Corollary 1. Let A, B ∈ Ob(S2ML + Cat), such that there exists injections F : A −→ B and
G : B −→ A.

Then, F is an equivalence of categories.

We can therefore give a simple definition of the equivalence of S2ML models.

Definition 19. Equivalence of S2ML models
Let A, B ∈ S2ML + Cat.
We say that A and B are equivalent if there exists for F : A −→ B and G : B −→ A two

injections.

Theorem 3. The equivalence of S2ML models is an equivalence relation over Ob(S2ML+Cat).

Proof. We need to show that this relation is reflexive, symmetric, and transitive.

• Reflexivity:
Let A be a S2ML model.
A is equivalent to A because the identity over A is an injection. Therefore, F = G = IdA
and α composed of for each x, and αx : F(x) −→ G(x) with α = idx suits.

• Symmetry:
A is equivalent to B, so the injections F : A −→ B and G : B −→ A exist. Therefore,
we have two injections between B and A, and as such, B is equivalent to A.
The relation is symmetric.

• Transitivity:
Let A, B, C be three S2ML, with A equivalent to B and B equivalent to C.
Let FA,B and GB,A, be the equivalence injections for A,B and FB,C, GC,B be the equiva-
lence injections for B,C.
Then F : A −→ C = FB,C ◦ FA,B and G : C −→ A = GB,A ◦ GC,B are two injections
between A and C. Therefore, A and C are equivalent.

Another property of injection is that it, in a way, represents the fact that one model is
bigger than another since it is a part of it.

Theorem 4. The injection defines a partial order relation over the set of S2ML models, given
equivalences between models.

Appl. Sci. 2022, 12, 5880 16 of 30

Proof.

• Reflexivity :
Let X be a S2ML model, and let Idx be the identity over X, i.e., the image of x ∈ Ob(X)
is x and for g ∈ HomX(x, y) with x, y ∈ Ob(X) the image of g is g. Then IdX is trivially
an injection. Therefore, X is injected into X.

• Antisymmetry:
Assume X and Y are two S2ML models such that X is injected in Y and Y is injected in
X, with F : X −→ Y and G : Y −→ X such injections.
Then, we have two injections between X and Y, and therefore, X and Y are equivalent.

• Transitivity
Let X, Y, and Z be S2ML models.
Let F : X −→ Y and G : Y −→ Z be injections.
Let H : X −→ Z be the composition of F and G on objects and morphisms, i.e., com-
posed of:{

HOb : Ob(X) −→ Ob(Z)
x → G ◦ F(x)

and for each x, y ∈ Ob(X),{
Hx,y : HomX(x, y) −→ HomZ(HOb(x), HOb(y))

f → GFOb(x),FOb(y) ◦ Fx,y(x)
Because each of the applications defined here are compositions of injective applications,
they are injections. Therefore, H is an injection, and thus, X is injected in Y.

Therefore, the existence of these injections between S2ML models defines a partial order
relation.

3.2. Consistency Relation

Now that we have explained the category in which we are working, we can define a
consistency relation between two S2ML models.

Definition 20. Binary consistency relation
Let ∼ be a binary relation over Ob(S2ML + Cat). For A, B ∈ Ob(S2ML + Cat), we note

A ∼ B if (A, B) ∈∼, i.e., if A is in relation with B.
∼ is a Binary consistency relation if and only if for A, B ∈ Ob(S2ML + Cat), there exist A’,

B’ such that these injections exist:

• fA : A′ −→ A;
• fB : B′ −→ B;
• F : A′ −→ B′;
• G : B′ −→ A′.

F and G respect the following properties:

• F ◦ G = IdB′ ;
• G ◦ F = IdA′ .

This definition means that the two models are in a consistency relation if the structure
shown in Figure 10 exists with fa, fb, F, and G being injections. All the morphisms are
injections and the compositions of F and G are the identities of A′ and B′. Note that
Theorem 2 implies that if this structure exists without the compositions of F and G being
the identities, then we can find G′ such that F and G′ compose into the identities.

Figure 10. The structure of a binary consistency relation.

Appl. Sci. 2022, 12, 5880 17 of 30

Such a relation is too general to describe a relevant interpretation of consistency
between two models. To illustrate this idea, we can create a binary consistency relation
such that any couple of models would be in the relation:

Proposition 2. Let ∼all be the binary relation over Ob(S2ML + Cat) with no other restriction
than being a binary consistency relation.

Let A, B ∈ Ob(S2ML + Cat).
Then A ∼all B.

Proof. Let A, B ∈ S2ML + Cat.
We have A ∼all B if there exists A’, B’ in Ob(S2ML + Cat) such that there exist

injections fA : A′ −→ A, fB : B′ −→ B, F : A′ −→ B′, and G : B′ −→ A′ such that
F ◦ G = IdB′ and G ◦ F = IdA′ .

Because A and B are S2ML models, there exists unique blocks rA ∈ Ob(A) and rB ∈ B
such as there are no morphisms in A (resp B) with domain rA (resp rB).

Let A′ be the S2ML model with only one object rA and no morphisms and B′ be the
S2ML model with only one object rB and no morphisms.{

fA : A′ −→ A
rA → rA

is trivially an injection (we only present the injections through

their mappings over Ob(X) here since the models have no morphisms).
We define fB using the same construction.

Let
{

F : A′ −→ B′

rA → rB
and

{
G : B′ −→ A′

rB → rA
.

F and G are injections, and F ◦ G =

{
B′ −→ B′

rB → rB
= IdB′ and similarly G ◦ F = IdA′ .

Therefore A ∼all B.

Our definition of a binary consistency relation describes the existence of a similarity
between A and B. This similarity is the shared structure of A′ and B′.

Because the definition is general, the fact that A and B are models induces a similarity:
the existence of the main element of the model, namely rA and rB, unique elements of the
models with no parents. This results in any couple of models being in relation.

This means that not all binary consistency relations are interesting for model comparison.
The main idea behind this definition is that we can complete it with restrictions to

assert consistency over specific properties of the models. As an example, we define the
dictionary consistency relation between two models:

Definition 21. Dictionary consistency relation
We call adDictionary consistency relation a binary consistency relation ∼dic such that for

A, B ∈ Ob(S2ML + Cat), A ∼dic B implies:
A’ and B’ are two models injected in Acomp and Bcomp, where Acomp and Bcomp are two models

with the same sets of objects as A and B but no morphisms.

Such a relation consists of matching objects from one model to corresponding objects
on the other model, except for some elements that are kept unmatched. Therefore, this
method can be used to detect elements from one model that have no equivalent in the other
model; they are the objects of Acomp that are not in A′ (idem on the B side).

As before, it could be argued that any couple of models is in relation using this
definition, as we could also take the models with only the main elements. For example,
this could be solved by having a unique “name” attribute in our objects and considering
that objects linked by the dictionary should carry the same name. However, that would be
hiding the real problem since there is no guarantee that elements are named the same way
in the original models. The reality is that such a dictionary would have to be created by
the engineers, as the model elements carry a meaning that the computer cannot interpret.
In general, the way to express a “good” consistency relation is to have a condition of

Appl. Sci. 2022, 12, 5880 18 of 30

maximality on the A′ and B′ models. One way to achieve this maximality is through the
use of a pullback. We discuss these ideas in Section 5.1.

While defining the dictionary relation, we used the Acomp and Bcomp models as an
intermediary step between A/B and A′/B′. We use these models to eliminate the elements
that we do not intend to compare in our binary consistency relation between A and B. In
this way, the objects from Acomp and Bcomp that are not in A′ and B′ will be the differences
detected by the binary consistency relation.

Therefore, one possible structure to build a binary consistency relation over an existing
synchronization methodology is the one found in Figure 11. S2ML + Cat could also be
replaced by an equivalent construction over another common formalism.

Figure 11. Structure for binary consistency relations.

4. Application Example with SmartSync
4.1. Study Case

The study uses a fixed-wing drone as its applicative example. This drone is inspired by
the Zipline company blood delivery drone [31]. The specific use of this drone is the delivery
of blood packages to different hospitals and clinics across a large area from a blood storage
center. This drone is a fixed-wing drone, meaning a drone similar to a plane. Its powertrain
has two coaxial motors, each linked to a propeller. The drone also presents redundancy in
its ailerons, used to control direction. A control processing unit is placed in the removable
battery of the drone and is given the flight plan before each flight. A QR code allows for
identifying the blood package once installed in the drone cargo compartment until it is
parachuted down to the delivery site. The drone takes off by being catapulted; then, it flies
to the drop area. Cargo can be parachuted up to an 80 km radius, with a maximum time to
objective of 45 min. The drone then comes back to the storage site. It lands by being caught
by a recovery system, a sling between two 10-m high towers that attaches to a hook on the
drone. An illustration of the drone’s external architecture and flight scenario can be found
in Figure 12.

We consider a SysML architecture model as the specification of the system. From this
architecture, we derived three models for different intents:

• Safety assessment: An AltaRica 3.0 model represents the model for safety assessment.
• Scenario: A SCOLA (SCenario Oriented LAnguage) model represents the functional

scenarios.
• Multi-physics: A Modelica model represents the multi-physics behavior of the drone’s

power electronics and aerodynamics.

We asserted consistency over this design using SmartSync to synchronize these three
models with the architecture model.

Appl. Sci. 2022, 12, 5880 19 of 30

Figure 12. Illustration of the Zipline Flyer drone.

4.2. Applying SmartSync to the Study Case

This section applies the mathematical framework to a study case through the Smart-
Sync approach. We show compatibility potential between SmartSync and our framework,
but the mathematical definition of SmartSync within our framework is yet to come. This
will be discussed in Section 5.

4.2.1. The Use of SmartSync

The SmartSync approach was operated through the following steps:

• We translated the models to S2ML.
• The SmartSync tool associated the main elements of both models and asked the user

to align the children elements of the mains.
• When given the associated children of the main, the SmartSync tool iterated the

previous steps for these elements, asking the user to align their children.
• Such iterations were done until the tool had entirely explored the models.

If an element has no equivalent in the other model, the user can give it the attribute
forget if he can justify why it is not an inconsistency.

The SmartSync tool takes two S2ML compiled models (in the XML format) as an input
and outputs a CSV comparison file. The user aligns the elements from both models in the
CSV file, then re-iterates the SmartSync comparison with the two S2ML compiled models
and the CSV file as an additional input. The SmartSync tool is then able to identify the
children elements and provides a new CSV comparison file to the user for the next iteration.

Translation to S2ML

Before conducting each comparison, we first had to abstract the SysML model. The ab-
straction was made towards the S2ML language, which is used in the SmartSync methodology.

We translated the information from both the BDD and the IBD to conduce the ab-
straction. The S2ML model followed the hierarchy from the BDD and the structure of
the IBD. We represented SysML “partProperties”, i.e., components of the system in the
S2ML model, with blocks. We also used S2ML ports to represent SysML ports and S2ML
connections to represent SysML connections.

An example of the transformation over part of the SysML model (namely the battery
and drivetrain) is shown in Figure 13.

Appl. Sci. 2022, 12, 5880 20 of 30

block DRONE
block Battery
port Elec_energy;
port Energy;
end
block PowerTrain
block Rear_E
port Action;
port control;
end
block Rear_p
port Action;
end
block Front_E
port Action;
port control;
end
block Front_p
port Action;
end
port propulsive_effort;
port Energy;
connection [Front_motor.Action,

Front_propeller.Action];
connection [Rear_motor.Action,

Rear_propeller.Action];
end

(a) (b)
Figure 13. A part of the SysML model (b) and its translation in the S2ML model (a).

Once we translated the SysML model, we operated the comparison with the AltaRica
model and the Modelica model. This was done by translating those models, then operating
the SmartSync comparison.

MBSE/MBSA

To compare the SysML model and the AltaRica 3.0 model, we first translated the
AltaRica 3.0 model to S2ML. This process was not complicated because the structural part
of the AltaRica 3.0 languages is S2ML. Blocks were translated to blocks, variables to ports,
and assertions to connections. An example of this translation can be found in Figure 14. In
this example, it can be seen that some attributes giving more information on the AltaRica
model were included in the S2ML model (e.g., “type = “Boolean””); these attributes are
not currently used in the SmartSync comparison.

block Avionics
block Comms_module
port is_working (type = ‘‘Boolean’’, kind =

‘‘init’’, value = ‘‘true’’);
port lambda (type = ‘‘Real’’, value = 10e-6);
port failure (type = ‘‘event’’, delay =

‘‘exponential(lambda)’’);
connection [failure, is_working, is_working]

(type = ‘‘connection’’, expr = ‘‘true ->
false’’);

port in4G (type = ‘‘Boolean’’, kind =
‘‘reset’’, value = true);

port inCalculator (type = ‘‘Boolean’’, kind =
‘‘reset’’, value = ‘‘false’’);

port outData (type = ‘‘Boolean’’, kind =
‘‘reset’’, value = true);

port outCalculator (type = ‘‘Boolean’’, kind =
‘‘reset’’, value = true);

connection [outData, is_working, in4G](type =
‘‘assertion’’);

connection [outCalculateur, is_working,
in4G](type = ‘‘assertion’’);

end

(a)

block Avionics
block Comms_module
extends NRComponent;
Boolean in4G (reset = true);
Boolean inCalculator (reset = false);
Boolean outData (reset = false);
Boolean outCalculator (reset = true);
assertion
outData := if is_working then in4G and

inCalculator else false;
outCalculator := if is_working then in4G else

false;
end

(b)
Figure 14. A part of the AltaRica 3.0 model (b) and its translation in the S2ML model (a).

Once the translation was done, the models were given to the SmartSync tool as inputs.
The tool then took an element of each model that it knew to correspond to one another.
This was the main element of the models for the first step, i.e., the blocks representing the
whole system. The tool then asked the user to align children of these two elements from
both models. The user can align elements or give them the forget attribute—meaning the
element is not supposed to have a counterpart in the other model—or do neither. The tool

Appl. Sci. 2022, 12, 5880 21 of 30

then iterated on each couple of aligned elements until all elements were either aligned or
forgotten. When no element could be aligned anymore, the remaining elements with no
counterpart were considered inconsistent.

In this case, the comparison between the architecture and AltaRica 3.0 models was
done through 4 comparison steps. It shows that the MBSA model lacks some elements of
the system. The missing elements are the redundant ailerons and the rudder airfoil. This is
due to a communication issue when the safety model was designed based on an outdated
version of the architecture model. Correction of these inconsistencies was conducted by
adding the missing elements to the AltaRica 3.0 model.

Note that all safety artifacts were ignored in this comparison, such as state variables,
events, etc. The comparison of the models also has shown that interactions with the
environment such as gravity, 4G network, etc. have not been taken into consideration
in the MBSA model. We deemed this normal in this work, but it could be argued that it
should be added; therefore, consistency assessment would have resulted in adding these
interactions to the MBSA model. Such decisions are non-trivial and should be undertaken
by the system engineer and safety analyst; this is why the consistency assessment cannot
be fully automatized. Of course, after modification of the model, a new comparison should
be operated to assert that the correction did not introduce new inconsistencies.

MBSE/Multi-Physics

We needed to make a second comparison to assert the global consistency of our design
with the Modelica/SysML comparison. The translation from Modelica to S2ML was done
following the process described in [21], with the difference that we considered Modelica’s
variables. Part of this translation can be found in Figure 15 with the translation of the
motor class. Modelica classes were abstracted to S2ML classes, with model instances being
translated to blocks. Modelica variables were translated to S2ML ports, and connect clauses
were translated to connections.

class motor
port pin, pin_n, flange_b;
block resistor
port _in, _out;
port r (value=‘‘0.299’’);
end
block inductor
port _in, _out;
port l (value=‘‘8e-5’’);
end
block emf
port _in, _out, flange;
port const (value=‘‘0.0302’’);
end
block inertia
port _in, _out;
port J (value=‘‘1.42e-5’’);
end
connection [pin, resistor._in];
connection [resistor._out, inductor._in];
connection [inductor._out, emf._in];
connection [emf._out, pin_n];
connection [emf.flange, inertia._in];
connection [inertia._out, flange_b];
end

(a) (b)
Figure 15. A part of the Modelica model (b) and its translation in the S2ML model (a).

Once this translation was conducted, we compared the models with the SmartSync
tool. A first iteration showed that the structure of the models is very different. For ease of
comparison, we added drivetrain and cell blocks to the models, respectively containing
the motors and propellers and the fuselage and wings. We then translated again and
compared the models.

After four comparison steps, we had three conclusions:

• Most components of the drone are missing in the Modelica model. This can be ex-
plained by the fact that we are here only interested in the propulsion and aerodynamics
of the drone; therefore, components related to other functions are not represented.

Appl. Sci. 2022, 12, 5880 22 of 30

• In some specific cases, the Modelica representation is more detailed than the architec-
ture model. This is the case of the motors since the SysML model only considers them
through a black box view, whereas the Modelica view shows the inner parts of the
motor for calculations.

• There is an inconsistency between the models. This inconsistency is the presence of
the fuselage within the Modelica model, which is modeled for aerodynamics purposes,
but unrepresented in the architecture model. This inconsistency is corrected by adding
the fuselage to the architecture model.

4.2.2. Categorical Point of View

In this subsection, we analyze the comparisons made in Section 4.2.1 in the context of
the mathematical framework we defined in Section 3.

Visualisation of S2ML + Cat Models with NetworkX

In order to achieve this goal, we used oriented graphs that give a visual representation
of the categorical S2ML models.

We created this representation at each step during the comparison to visualize which
parts of the model the comparison traversed. Because SmartSync makes the comparison in
a way that resembles a breadth-first search, this corresponds to taking the model with only
its first level of abstraction (the main and its children) and then adding a level of abstraction
for each iteration.

To obtain the graph representations, we wrote a python script that converts the CSV
files created by the SmartSync tool to directed graphs over the underlying S2ML + Cat
models. This script used the NetworkX package [32] as its basis for graph classes and
visualization methods. This package is a library for the study of graphs and networks.
It features classes for the representation of graphs and digraphs, and methods for graph
analysis and visualisation.

The graphs we show here over the S2ML + Cat models only show direct belonging
relations, blocks, and ports. The absence of composed morphisms is because we wanted to
minimize the number of edges to allow for good readability. The absence of connections is
related to the comparison made by SmartSync, which does not consider them yet.

For each iteration, the script also computed a correspondence matrix between objects
of both models, which corresponds to giving the F and G functors from Figure 11. This
matrix is represented as a table. Its element An+1,m+1 will contain −1 if the nth element
of the first model or the mth element of the second has the attribute forget, 1 if they are
aligned and 0 otherwise. The first column and line of the table, respectively, contain the
first and second model elements’ names, meaning An+1,0 contains the name of the nth
element of the first model, and A0,m+1 the name of the mth element of the second one, with
the elements being arbitrarily numbered.

In this aspect, we can say that for each iteration, we have constructed the AComp and
BComp S2ML + Cat models for the elements that were already aligned and the F and G
functors. The A’ and B’ S2ML + Cat models are obtained by removing the objects with the
attribute forget and the morphisms with these objects as the source or target.

Comparison with the S2ML + Cat Models

Figure 16 shows said graphs for the comparison of the SysML and AltaRica 3.0 models
of the fixed-wing drone. Blocks are represented with green vertices and ports with blue
ones, and diverse abstraction levels in the models are shown by different concentric ellipses
of vertices.

Appl. Sci. 2022, 12, 5880 23 of 30

Figure 16. Diagrams for the S2ML models of the fixed-wing drone during iterations of SmartSync
over the architecture and safety models.

Table 1 provides the correspondence matrix for the fixed-wing drone between the
SysML and AltaRica 3.0 S2ML models. It can be observed that many ports are present in
the SysML representation, whereas they are not in the AltaRica 3.0 model. This corresponds
to the interfaces with the outside of the system that were discussed in Section 4.2.1.

Table 1. Correspondence table for the first iteration of the comparison between the SysML and
AltaRica 3.0 models.

Z
ip

py
Fl

ye
r

A
vi

on
ic

s

B
at

te
ry

C
al

cu
la

to
r

C
el

l

In
er

ti
al

_m
ea

su
re

m
en

t_
un

it

Po
w

er
_u

ni
t

R
ad

ar

Alternative_1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AirAction −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.1

Battery 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Data_in −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.1

Data_out −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.1

Ener_elec −1.0 −1.0 −1.0 0.0 −1.0 −1.0 −1.0 −1.1

Gravity −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

Obstacle_image −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

Orientation −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

Blood_bag −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

4G_network −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

Geolocation_signak −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

Avionics 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Calculator 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Cell 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

Inertia_measurement_unit 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Power_unit 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

radar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

From the final step of the comparison between the SysML and AltaRica 3.0 models,
we can obtain the A′ and B′ S2ML + Cat models from Figure 11. These models are

Appl. Sci. 2022, 12, 5880 24 of 30

shown in Figure 17. We observe that although these graphs have different names for their
vertices, they are the same graphs, meaning we indeed found a common skeleton between
both models. This property characterizes the way we mathematically define a binary
consistency relation.

Figure 17. Diagrams for the A′ and B′ S2ML models of the fixed wing drone at the final compari-
son step.

5. Discussion

Although this mathematical framework does not provide a new synchronization
methodology, it shows existing and future methodologies from a new point of view. In light
of this new perspective, we have a new comprehension of some of the characteristics of these
methodologies. We also show some current limitations and give ideas for improvement.
This framework also allows us to formally show which exact characteristics of the models
are compared through the synchronization methodology. In the case of SmartSync, we can
tackle the topics of pragmatics, composition, and connections.

5.1. Pragmatics

In SmartSync, and more generally in the methodologies we presented in Section 2.2,
the user is required to align the model elements manually. Although this seems like a both-
ersome and time-expensive step, we believe that it is almost impossible to do otherwise in

Appl. Sci. 2022, 12, 5880 25 of 30

general. Even though models have syntax and semantics that allow them to be interpreted
by a computer, they also carry a meaning that only makes sense to humans. This meaning
is called pragmatics. Pragmatic models, such as the MBSE models, carry a meaning that
is lost if model elements are replaced with abstract names, such as described in [33]. The
interested reader may find more information on pragmatics in the book [34].

The SmartSync tool deals with the semantic aspect of models by creating a form
of a dictionary—the CSV file. In the general definition of consistency that we have
given in this paper, we do not force the consistency relation to consider pragmatics.
Yet, SmartSync still deals with pragmatics, so we should explain how that makes sense
in the S2ML + Cat Framework.

One way to include pragmatics in the S2ML + Cat framework is the idea that we should
build the biggest common skeleton to both models that respects the user’s dictionary. This
can be achieved by constructing a model that represents the dictionary. Injections towards
this model from both Acomp and Bcomp and then building the pullback of Acomp and Bcomp
will allow representing the alignment of objects by the user. Therefore, as depicted in
Figure 18, the A’ and B’ categories would be the pullback of Acomp and Bcomp.

Figure 18. The pullback of Acomp and Bcomp with regards to the dictionary.

We need to precisely define the dictionary if we want to operate the computation of
the pullback or even prove that it does always exist. An idea for that would be to build it
from Acomp and Bcomp with these constraints:

• Ob(Dictionary) is a set of blocks, ports and connections, such that we have p : Ob(Acomp)
−→ Ob(Dictionary), q : Ob(Bcomp) −→ Ob(Dictionary) such that for each x ∈
Ob(Acomp) and y ∈ Ob(Bcomp), we have p(x) = q(x) if and only if the elements have
been aligned by the user;

• p and q are injective functions;
• We give the dictionary the form of a model by building the morphisms needed to have

images of the morphisms of Acomp and Bcomp when we enrich p and q to make them
functors.

We can make it so that this category is unique by choosing the symbols for the ports
judiciously, but it is not important, as any such category would suffice to represent that we
aligned the objects of Acomp and Bcomp.

Although we do not care for the category structure in the dictionary, we can build
it. The components over the objects of the p and q functors carry important information,
i.e., the alignment of model elements.

5.2. Composition

The aspect of composition in category theory is of high interest in the concepts that
we define.

The morphisms in the categories of S2ML + Cat define relations between the model
elements to allow us both to apprehend the direct and composed relations. In [5], the def-
inition of S2ML does provide a composition relation that only links an element and its

Appl. Sci. 2022, 12, 5880 26 of 30

parent. In S2ML + Cat, however, the belonging morphisms define the Cartesian closure of
this relation. This allows us to identify all the ancestors of an object very quickly.

Even though this is not yet taken into account in the methodology that we have tested
with the study case, this means that the binary consistency relation that we define is able to
encompass cases where a model element is at a certain level of abstraction in one model and
another level of abstraction in the second model. A simple example of such a difference is
if we represent a gear motor in the system. We can, in one model, have a gear motor block
that contains a motor block and a gear block, and, in the other model, directly represent the
motor and gear blocks without the gear motor level.

This would result in the categories shown in Figure 19. In these diagrams, we identify
the direct belongings to the black arrows and their composition to the dotted arrows. We
can easily understand that the dotted arrows in the first case correspond to the black ones
in the second; therefore, these models can be deemed consistent with one another.

Figure 19. The categories for both possible levels of abstraction of the gear motor.

The second kind of relations that we have in the models are those between the ports
and the connections they participate in. Because of the way we defined the morphisms
between ports and connections, and thanks to composition, we obtain morphisms between
ports that participate in the same connection, as shown in Figure 5.

We also obtain morphisms between ports that are indirectly connected, i.e., in the case
where we have three ports, with two connections between two of them. Such a structure
will lead to the existence of morphisms between the two ports that are not part of the same
connections. This allows us to apprehend indirect connections between ports. Thus, we
could consider the case in which one connection on one side corresponds to multiple ones
on the other side.

An example of such a case is given in Figure 20. Some system engineers consider the
representation on the left to be best practice: a connection should not cross the frontier of a
block; therefore, there should be intermediary ports when crossing to a different abstraction
level. In a model dedicated to computation, such as the MBSA models, doing this is a
problem because it increases the amount of computation needed to execute the system.
Thus, the representation on the left also makes sense to represent the system.

Figure 20. An example of block diagrams for a system with composed connections (left) that could
be consistent with one connection (right).

Appl. Sci. 2022, 12, 5880 27 of 30

The categories for the two blocks diagrams from Figure 20 can be found in Figure 21.
Thanks to the composition detailed above, we obtain the dotted arrows that can be aligned
in the model comparison from the categorical point of view.

Figure 21. Diagrams of the categories for the block diagrams from Figure 20.

5.3. Connections

We discussed in Section 5.2 the fact that composition allows for better consideration of
the connection. As SmartSync does not yet consider connections, we have not demonstrated
this in the study case.

It is interesting to note that it should theoretically not be difficult to add support of
connections. The ports are already aligned in SmartSync. We could consider the ports of a
connection in model A and verify if their counterparts in model B are also connected.

5.4. Connections and Tuples

In Section 3.1, we defined the connections as sets of ports. Although this definition
is consistent with the quintuplet definition of S2ML models from [5], the reader could
argue that the order of ports in a connection can be significant, for an example, if there is a
direction to the connection. This could be considered in the quintuplet definition by using
tuples rather than sets to define the connections.

In the case of the categorical definition of S2ML models, we could consider this
property by defining connections as categories, with ports being the objects of the category
and morphisms from a port A to a port B if port A precedes port B in the connection.

5.5. Version Control

We believe this framework can help consider version control in the consistency assess-
ment of the models. Indeed, when the models evolve, the vast majority of their architecture
is generally left unchanged. Detecting which parts are unchanged and, thus, do not need to
be reassessed for consistency could be a considerable gain in engineering time. The review
process would only need to consider small sections of the models.

Consider the structure denoting a consistency relation as in the S2ML + Cat part of
Figure 11 for each version number of the models. Say we compare MBSE model n with
MBSA model n, and after modifications, we want to consider the consistency of MBSE
model n + 1 with MBSA model n + 1. We can consider these structures as categories and
then construct a functor from one to another that would provide correspondence between
the unchanged elements. We hope to explore this idea in future work.

5.6. Perspective about Comparison of This Framework with Other Formal Definitions of
Consistency Outside the Scope of MBSE/MBSA

We have not encountered a similar formalization of the concept of consistency between
structural models. However, we believe that this work would significantly benefit from
being compared with other theoretical frameworks intended to achieve similar goals. We
intend in further work to define comparison criteria and operate a comparison through

Appl. Sci. 2022, 12, 5880 28 of 30

one or more examples. These criteria could include, but may not be limited to, the capacity
to encompass:

• Different kinds of inconsistencies;
• Internal (i.e., consistency of a model within itself) and/or external consistency (i.e.,

consistency between different models);
• Traceability between successive versions of the models;
• Diagnostics of the inconsistencies;
• Resolution of the inconsistencies.

6. Conclusions

This paper establishes a mathematical framework for consistency between structural
models, especially system engineering and safety assessment models. In the context of
synchronization methodologies, where heterogeneous models are translated to a common
formalism for comparison, we give a categorical representation of the translated models.
These categories are linked through injections, which are functors that specify that a
category is conceptually contained in another. Using the models as objects and injections
as morphisms, we define S2ML + Cat as the category of S2ML models.

In S2ML + Cat, we give a definition of what we call a consistency relation. This
definition allows us to consider synchronization methodologies from a mathematical point
of view.

We applied this framework to a study case through a fixed-wing drone. We show that
we can mathematically interpret a synchronization methodology.

We argue that the use of category theory in this framework allows for the consideration
of composition and abstraction levels in the models, and the study case results give clues
for improvement in the synchronization methodology. These improvements would include
considering the connections and the differences in abstraction level between the models.

Overall, this mathematical framework is not a new synchronization methodology but
rather a new point of view on synchronization that allows for a better understanding of the
methodologies. It also allows for mathematical proofs of the methodology’s effectiveness
and better apprehend leads for improvements. In future work, we expect to demonstrate
that SmartSync and its encompassing of pragmatics can be modeled through a pullback in
S2ML + Cat. We also hope to propose improvements to the current methodology, using
the leads we presented to deal with connections and system levels. Finally, we believe that
we can improve this framework to consider successive versions of the models and transfer
comparison results to unchanged parts of the models.

Author Contributions: Conceptualization, J.V.; methodology, J.V.; software, J.V.; validation, J.V., M.B.,
F.M. and J.-Y.C.; formal analysis, J.V.; investigation, J.V.; writing—original draft preparation, J.V.;
writing—review and editing, M.B., F.M. and J.-Y.C.; visualization, J.V.; supervision, M.B., F.M. and
J.-Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the S2C project at IRT SystemX and its partners.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available on request.

Acknowledgments: Part of the models for the study case were developed in collaboration with
Imane Bouhali during her master thesis internship at ISAE Supmeca.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Appl. Sci. 2022, 12, 5880 29 of 30

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
MBSE Model-Based System Engineering
MBSA Model-Based Safety Assessment
UML Unified Modeling Language
SysML System Modeling Language
DSL Domain-Specific Language
SAML Security Assertion Markup Language
GTS Guarded Transition System
S2ML System Structure Modeling Language
SCOLA SCenario Oriented LAnguage
CSV Comma-Separated Values file format
BDD Block Definition Diagram
IBD Internal Block Diagram

References
1. Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques:

Technical Perspectives and Future Directions. Electronics 2021, 10, 2250. [CrossRef]
2. Guychard, C.; Guerin, S.; Koudri, A.; Beugnard, A.; Dagnat, F. Conceptual interoperability through Models Federation. In

Proceedings of the Semantic Information Federation Community Workshop, Miami, FL, USA, October 2013.
3. Finkelstein, A.; Gabbay, D.; Hunter, A.; Kramer, J.; Nuseibeh, B. Inconsistency handling in multi-perspective specifications. IEEE

Trans. Softw. Eng. 1994, 20, 569–578._7. [CrossRef]
4. Legendre, A. Ingénierie Système et Sûreté de Fonctionnement: Méthodologie de Synchronisation des Modèles d’Architecture et

d’Analyse de Risques. Ph.D. Thesis, Université Paris Saclay (COmUE), Gif-sur-Yvette, France, 2017.
5. Batteux, M.; Prosvirnova, T.; Rauzy, A. Model synchronization: A formal framework for the management of heterogeneous

models. In Proceedings of the International Symposium on Model Based Safety Assessment, IMBSA 2019, Thessaloniki, Greece,
16–18 October 2019. [CrossRef]

6. Estefan, J. (NASA Jet Propulsion Laboratory, Pasadena, CA, USA). Personal communication, 2008.
7. OMG. OMG Unified Modeling Language; Version 2.5.1; OMG: Needham, MA, USA, 2017.
8. OMG. OMG Systems Modeling Language (OMG SysMLTM); OMG: Needham, MA, USA, 2018.
9. Wach, P.; Salado, A. The need for semantic extension of SysML to model the problem space. In Proceedings of the Systems

Engineering Research (CSER), Redondo Beach, CA, USA, 20–22 March 2020._24. [CrossRef]
10. Krob, D. CESAM: CESAMES Systems Architecting Method—A Pocket Guide; ESAMES Association: Paris, France, 2017.
11. Mhenni, F.; Choley, J.-Y.; Penas, O.; Plateaux, R.; Hammadi, M. A SysML-based methodology for mechatronic systems architectural

design. Adv. Eng. Inform. 2014, 28, 218–231. [CrossRef]
12. Batteux, M.; Prosvirnova, T.; Rauzy, A. AltaRica 3.0 in 10 Modeling Patterns. Int. J. Crit. Comput. Based Syst. (IJCCBS) 2017, 9,

133–165. [CrossRef]
13. Mhenni, F.; Choley, J.-Y.; Nguyen, N.; Frazza, C. Flight Control System Modeling with SysML to Support Validation, Qualification

and Certification. IFAC-PapersOnLine 2016, 49, 453–458. [CrossRef]
14. Dugan, J.B.; Bavuso, S.J.; Boyd, M.A. Dynamic Fault-Tree Models for Fault-Tolerant Computer Systems. IEEE Trans. Reliab. 1992,

41, 363–377. [CrossRef]
15. Gudemann, M.; Ortmeier, F. A framework for qualitative and quantitative model-based safety analysis. In Proceedings of the

IEEE 12th High Assurance System Engineering Symposium (HASE 2010), San Jose, CA, USA, 3–4 November 2010; pp. 132–141.
[CrossRef]

16. Bouissou, M.; Bouhadana, H.; Bannelier, M.; Villatte, N. Knowledge modelling and reliability processing: Presentation of the
FIGARO language and of associated tools. In Proceedings of the SAFECOMP’91—IFAC International Conference on Safety of
Computer Control Systems, Trondheim, Norway, 30 October–1 November 1991; pp. 69–75. [CrossRef]

17. Batteux, M.; Prosvirnova, T.; Rauzy, A. AltaRica 3.0 Language Specification. 126p. Available online: https://www.openaltarica.
fr/docs/AltaRica3.0LanguageSpecification-v1.1.pdf (accessed on 27 April 2021).

18. Rauzy, A. Guarded transition systems: A new states/events formalism for reliability studies. Proc. Inst. Mech. Eng. Part J. Risk
Reliab. 2008, 222, 495–505. [CrossRef]

19. Batteux, M.; Prosvirnova, T.; Rauzy, A. From Models of Structures to Structures of Models. In Proceedings of the 4th IEEE
International Symposium on Systems Engineering, ISSE 2018, Rome, Italy, 1–3 October 2018. [CrossRef]

20. Batteux, M.; Choley, J.-Y.; Mhenni, F.; Prosvirnova, T.; Rauzy, A. Synchronization of System Architecture and Safety Models: A
Proof of Concept. In Proceedings of the International Symposium on Systems Engineering (ISSE), Edinburgh, UK, 1–3 October
2019; pp. 1–8. [CrossRef]

http://doi.org/10.3390/electronics10182250
http://dx.doi.org/10.1109/32.310667
http://dx.doi.org/10.1007/978-3-030-32872-6_11
http://dx.doi.org/10.1007/978-3-030-82083-1_24
http://dx.doi.org/10.1016/j.aei.2014.03.006
http://dx.doi.org/10.1504/IJCCBS.2019.098809
http://dx.doi.org/10.1016/j.ifacol.2016.07.076
http://dx.doi.org/10.1109/24.159800
http://dx.doi.org/10.1109/HASE.2010.24
http://dx.doi.org/10.1016/S1474-6670(17)51368-3Get
https://www.openaltarica.fr/docs/AltaRica 3.0 Language Specification - v1.1.pdf
https://www.openaltarica.fr/docs/AltaRica 3.0 Language Specification - v1.1.pdf
http://dx.doi.org/10.1243/1748006XJRR177
http://dx.doi.org/10.1109/SysEng.2018.8544424
http://dx.doi.org/10.1109/ISSE46696.2019.8984515

Appl. Sci. 2022, 12, 5880 30 of 30

21. Batteux, M.; Choley, J.-Y.; Mhenni, F.; Palladino, L.; Prosvirnova, T.; Rauzy, A.; Theobald, M. Synchronization of system
architecture, multi-physics and safety models. In Proceedings of the Tenth International Conference on Complex Systems Design
and Management, CSDM 2019, Paris, France, 12–13 December 2019. [CrossRef]

22. Batteux, M.; Prosvirnova, T.; Rauzy, A. System Structure Modeling Language (S2ML); 2015. Available online: https://hal.archives-
ouvertes.fr/hal-01234903/document (accessed on 29 April 2021).

23. Berriche, A.; Mhenni, F.; Mlika, A.; Choley, J.-Y. Towards Model Synchronization for Consistency Management of Mechatronic
Systems. Appl. Sci. 2020, 10, 3577. [CrossRef]

24. Demachy, R.; Guilmeau, S. Structural consistency of MBSE and MBSA models using Consistency Links. In Proceedings of the
Embedded Real Time Systems, ERTS 2022, Toulouse, France, 1–2 June 2022.

25. Grothendieck, A. Sur quelques points d’algèbre homologique, I. Tohoku Math. J. 1957, 2, 119–221. [CrossRef]
26. Spivak, D.I. Category Theory for the Sciences; Massachusetts Institute of Technology, Ed.; The MIT Press: Cambridge, MA, USA, 2014.
27. Schultz, P.; Spivak, D.I.; Vasilakopoulou, C. Dynamical Systems and Sheaves. Appl. Categ. Struct. 2020, 28, 1–57. [CrossRef]
28. Ehresmann, A.C. MENS, an info-computational model for (Neuro-)Cognitive systems capable of creativity. Entropy 2012, 14,

1703–1716. [CrossRef]
29. Ernadote, D. MB 2 SE: A Theoretical Foundation for Systems Engineering—Une Fondation Theorique Pour l’Ingenierie Systeme.

HDR Thesis, Université Paris-Saclay, Gif-sur-Yvette, France, 2020. [CrossRef]
30. Abdeljabbar, N.; Mhenni, F.; Choley, J.-Y. A Categorical Framework for Collaborative Design of Safety Critical Mechatronic Sys-

tems. In Proceedings of the 7th IEEE International Symposium on Systems Engineering, ISSE 2021, Vienna, Austria, 13 September–
13 October 2021. [CrossRef]

31. Ackerman, E.; Michael, K. Zipline’s Medical Delivery Drones are changing the game in Rwanda, The blood is here. IEEE Spectr.
2019, 56, 24–31. [CrossRef]

32. Hagberg, A.; Schult, D.; Swart, P. NetworkX Reference (Release 2.7.1). 2011. Available online: https://networkx.org/ (accessed on
29 April 2021).

33. Rauzy, A.; Haskins, C. Foundations for model-based systems engineering and model-based safety assessment. Syst. Eng. 2019, 22,
146–155. [CrossRef]

34. Rauzy, A.B. Model-Based Reliability Engineering. Available online: http://www.altarica-association.org/members/arauzy/
Publications/pdf/Rauzy2022-MBREBook.pdf (accessed on 29 April 2021).

http://dx.doi.org/10.1007/978-3-030-34843-4_4
https://hal.archives-ouvertes.fr/hal-01234903/document
https://hal.archives-ouvertes.fr/hal-01234903/document
http://dx.doi.org/10.3390/app10103577
http://dx.doi.org/10.2748/tmj/1178244839
http://dx.doi.org/10.1007/s10485-019-09565-x
http://dx.doi.org/10.3390/e14091703
http://dx.doi.org/10.13140/RG.2.2.12357.06886
http://dx.doi.org/10.1109/ISSE51541.2021.9582486
http://dx.doi.org/10.1109/MSPEC.2019.8701196
https://networkx.org/
http://dx.doi.org/10.1002/sys.21469
http://www.altarica-association.org/members/arauzy/Publications/pdf/Rauzy2022-MBREBook.pdf
http://www.altarica-association.org/members/arauzy/Publications/pdf/Rauzy2022-MBREBook.pdf

	Introduction
	State of the Art
	Model-Based System Engineering and Safety Assessment
	Model-Based System Engineering (MBSE)
	Model-Based Safety Assessment (MBSA)
	Structural Models

	Synchronisation Methodologies
	Category Theory
	Category
	Some Interesting Concepts
	Use of Category Theory in System Engineering

	Mathematical Framework for Consistency
	Mathematical Representation of a Structural Model
	Consistency Relation

	Application Example with SmartSync
	Study Case
	Applying SmartSync to the Study Case
	The Use of SmartSync
	Categorical Point of View

	Discussion
	Pragmatics
	Composition
	Connections
	Connections and Tuples
	Version Control
	Perspective about Comparison of This Framework with Other Formal Definitions of Consistency Outside the Scope of MBSE/MBSA

	Conclusions
	References

