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Abstract: In this paper, we proposed a data-driven spatio-temporal deep learning (SDL) model,
to simulate forward and reflected ultrasonic wave propagation in the 2D geometrical domain, by
implementing the convolutional long short-term memory (ConvLSTM) algorithm. The SDL model
learns underlying wave physics from the spatio-temporal datasets. Two different SDL models
are trained, with the following time-domain finite element (FE) simulation datasets, by applying:
(1) multi-point excitation sources inside the domain and (2) single-point excitation sources on the edge
of the different geometrical domains. The proposed SDL models simulate ultrasonic wave dynamics,
for the forward ultrasonic wave propagation in the different geometrical domains and reflected wave
propagation phenomenon, from the geometrical boundaries such as curved, T-shaped, triangular,
and rectangular domains, with varying frequencies and cycles. The SDL is a reliable model, which
generates simulations faster than the conventional finite element solvers.

Keywords: data-driven modeling; spatio-temporal datasets; ultrasonic wave propagation; deep
learning; RNN; ConvLSTM; finite element

1. Introduction

Ultrasonic wave propagation is used in various applications, including biomedical
imaging [1], nondestructive evaluation [2,3], seismic and geological studies [4], etc. The nu-
merical modeling of the ultrasonic waves is critical, for improving the understanding
of the underlying physics of these applications. The ultrasonic wave propagation phe-
nomenon is widely modeled using Finite Element [5–8], Finite Difference [9], and Finite
Volume [10] techniques. Ultrasonic wave propagation is modeled by the widely used FE
analysis, through solving the partial differential equations on discrete nodes, using iterative
time-steeping schemes. Due to the transient nature of the wave propagation and the three-
dimensional volume in which the ultrasonic wave is modeled, the computational resources
and the time to complete the calculations are often extensive, thus limiting the utilization
of modeling. We can develop a data-driven solver for modelling wave propagation, by
capturing the underlying physics from numerical simulation datasets, as an alternative
approach [11].

In recent years, modern deep-learning techniques, such as long short-term memory
(LSTM) [12,13], have been successful in many domains [14,15]. These techniques are used
in many applications, such as propagating the latent space to the future [16,17], using [18]
the LSTM network to realize gesture recognition, wave propagation [19], automating tumor
segmentation in whole breast [20], and shear wave elastography [21]. Since the ultrasonic
wave propagation prediction is a sequence of spatio-temporal images data, so, typically,
the LSTM approach will not provide and capture the desired results [22]. The convolu-
tional long short-term memory (ConvLSTM) networks, effectively, address the long-range
simulation prediction [23–26]. The ConvLSTM approach uses the convolutional operation
inside the LSTM cell, to pair the temporal state with spatial information. On the other
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hand, the wave propagation simulation solver can be built using a convolutional neural
network (CNN) architecture [27,28]. Another group in the research community is adapting
physics-informed neural networks to solve the partial differential equations [29–31].

In the current work, the authors have developed two separate spatio-temporal deep
learning (SDL) models. In the prior work, [26] shows the modeling forward wave prop-
agation simulation in a 2D domain with different physical settings. The authors, further,
want to generalize the SDL network for modelling forward wave propagation in the dif-
ferent geometrical domains (i.e., other than the trained domains) and reflecting wave
propagation simulation in the different geometrical boundaries. In the first SDL model,
the network algorithm is tuned to incorporate geometrical domain information and trained
using datasets containing numerous ultrasonic wave simulations, with single-point exci-
tation to five-point excitation sources inside the solid medium, without reflection from
the edges. This trained SDL model can be deployed for modelling real-time forward ultra-
sonic wave propagation in the different geometrical shapes. Whereas in the second SDL
model, the learnable hyperparameters are tuned to generate wave propagation, without
changing network architecture. The datasets used for training the second model have three
distinct geometrical domains, with a single-point excitation source applied on the edges.
This trained SDL model can be used to study the reflected wave propagation phenomenon
from different geometrical boundaries, such as curved, T-shaped, triangular, and rectan-
gular domains, with varying frequencies and cycles. Thus, depending on the availability
of the datasets’s structure, we should employ one of these models for generating wave
propagation. These training datasets have spatial and temporal features; hence, algorithms
based on the recurrent neural network (RNN) are treated as the most suitable for modelling
ultrasonic wave propagation simulations [19].

This paper is organized as follows: Section 2 describes the procedure for generating
training datasets, and Section 3 details the SDL model formulation for the wave propa-
gation phenomenon. Section 4 discusses the SDL model implementation and results, to
generalize for different domains. Section 5 brings the summary of the work, along with
concluding remarks.

2. Training Datasets Generation through Finite Element Simulation

To generate wave propagation in solid media using AI algorithms requires large vol-
umes of training datasets. The following section, comprehensively, discusses the methodol-
ogy adopted for generating the FE training datasets.

2.1. Finite Element Modelling of Ultrasonic Wave Propagation in Solid Media

The datasets to train the AI model are created by modelling numerous time-domain
2D FE simulations, by solving the governing partial differential equation, by employing
the commercial FE Abaqus/Explicit (v. 18.0) solver (see ABAQUS User Manual v. 6.11,
Dassault system, Providence, RI, USA). The two-dimensional FE CAD models are created
using carbon steel isotropic material properties, as shown in Figure 1a,b. The mechanical
properties of carbon steel are a mass density of ρ = 7850 kg/m3, Young’s modulus of
E = 200 GPa, and Poisson’s ratio of ν = 0.29. The 2D part is discretized with a four-noded
quadrilateral mesh size of 3.2 × 10−5 mm, which is about 22 elements per wavelength
λshear, for 5 MHz in carbon steel for mesh convergence. A similar approach is followed
from our prior work for modelling [3]. The two cycles of the Hanning-windowed tone burst
signal of 5 MHz frequency are used to trigger an incident wave. To avoid the undesired
reflection from the boundaries’s [32] absorbing, boundary conditions are applied using
the ALID (absorbing layers using increasing damping) method, as shown in Figure 1a.
After completing the simulation, the spatial and temporal scale is adjusted during the post-
processing, to ensure that the necessary temporal and spatial information is captured
in the displacement plots.
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Figure 1. (a) Type-1 datasets: finite-element models: FE models with single to multi-point sources
excitation are triggered in the Y-direction, and an absorbing boundary condition is applied on all
the domain edges, to avoid undesired reflection. (b) Type-2 datasets: finite-element models: FE
models with single-point source excitation are triggered in the Y-direction on the top edge of the model
and a traction-free boundary condition is applied on all other edges.

2.2. Type-1 Datasets Creation: Forward Wave Propagation Simulation

The type-1 training datasets is created by modelling several 2D FE simulations, by
changing the following parameters: (a) the incident wave is triggered in the X-direction
or in the Y-direction inside the domain in each simulation, (b) the excitation point sources
are distributed randomly throughout the domain using a uniform probability distribution,
and (c) the excitation sources vary from single to five-point excitation sources, as shown
in Figure 1a. A total of 1250 simulations are generated for the training, consisting of
250 CAD models, with 35× 35 mm physical dimensions for each (a) single-point excitation,
(b) two-point excitation, (c) three-point excitation, (d) four-point excitation, and (e) five-
point excitation source, respectively. These displacement plots are saved as frames, with
the time interval of 0.0074 µs, for the total simulation.

2.3. Type-2 Datasets Creation: Reflection Wave Propagation Simulation

For the type-2 training datasets generation, we have created three different geometrical
2D CAD models, as shown in Figure 1b. The overall physical dimension of each model is
40 mm in length and 40 mm in height. A total of 1500 CAD models are created, of which
500 are of the same geometrical shape. The excitation load is applied on the top-edge nodes
of the CAD models, as shown in Figure 1b, and on the remaining edges, a traction-free
boundary condition is applied to allow the sidewall and back wall reflections. After per-
forming each FE simulation, the displacement plots are saved as a sequence of images, with
a time interval of 0.0125 µs.

One FE simulation generation executed using Dual Intel Xeon Platinum 8168 processor
with 48 cores machine (Figure 1b) took 3600 s, using time-domain FE analysis, which is
a time-consuming process. We have introduced the SDL model to overcome this limitation,
which generates wave propagation simulations in minimal time once trained.

3. The Formulation of Spatio-Temporal Deep Learning Model for Ultrasonic
Wave Propagation

The LSTM is a unique RNN structure modeled for addressing vanishing gradients and
learning long-range dependencies in the deep machine learning framework. The LSTM
shown in Figure 2 consists of the following elements: a memory cell Ct, which can accumu-
late, and the forgetthe state being tackled, time step to time step. it, ft, and ot are the input,
forget, and output gate, respectively. The it monitors the flow of new input into the Ct,
the responsibility of ft is to remove irrelevant information from Ct, and the work of ot is
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to send information from Ct to hidden state Ht. The Ht could retain the memory of past
information from the sequence data. Since the nature of the training datasets is in the form
of spatio-temporal sequence images, the LSTM approach suffers from capturing the spatial
features from the 2D images. The ConvLSTM network, effectively, learns the spatial and
temporal features from the sequential images because it uses the convolutional operation
inside the LSTM cell to pair the temporal state with spatial information. The formulation of
the ConvLSTM model is followed from [23].

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (1)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ) (2)

Ct = ft ◦ Ct−1 + it ◦ Tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (4)

Ht = ot ◦ Tanh(Ct) (5)

here, ‘W’ denotes the weights, and ‘b’ represents the network’s biases. The convolutional
operation is marked with ‘∗’ and ‘◦’, representing the Hadamard product.

Figure 2. Typical spatio-temporal deep learning (SDL) model encoder–decoder architecture, for
modelling wave propagation phenomena.

We have used the proposed SDL network for our spatial-temporal sequence generation
problem, as shown in Figure 2, for two types of different training datasets. First, for type-
1 datasets, we have modified the existing ConvLSTM algorithm to fuse the geometrical
information with each hidden dimension output, which is similar to our previous study [26].
So, for the type-2 datasets, we have modified the suitable network parameters, such as
hidden dimensions and kernel size, instead of modifying the network architecture.

These models consist of an encoder and a decoder network, containing a series of
convolutional LSTM cells stacked together, since a single ConvLSTM layer will not capture
the forward and reflected wave dynamics from training datasets, due to the spatial-temporal
nature. Each input data sequence is fed into each encoder ConvLSTM cell, to learn the wave
propagation physics from the datasets. The ConvLSTM layer takes the batch of the 3D
input tensor (length × width × time step) and outputs the hidden state (Ht). Then, the
following input tensor, similarly with Ht, is given input to the next layer of the ConvLSTM
cell. Due to the convolutional operation, the model captures the required features from
the datasets, during the processing into layers of ConvLSTM cells. The encoder, iteratively,
processes input sequences through various ConvLSTM cells and outputs the embedding
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tensor, representing wave propagation. The output of the encoder-embedded tensor is fed
to the decoder network, to produce predicted wave propagation simulations. The outcome
of the decoder cell’s sequence is passed to the 3D CNN layers, with a sigmoid activation
function, to transform into an actual wave propagation prediction.

4. Results and Discussion

The implementation of the SDL model, using type-1 and type-2 training datasets, as
well as testing results, are described in detail in this section.

4.1. SDL Model Implementation on Type-1 Datasets: Forward Wave Propagation Simulation

The proposed SDL network is implemented in PyTorch Lightning, an open-source
Python library (see https://www.pytorchlightning.ai (accessed on 28 March 2022)), by inte-
grating multi-GPU, and trained using simulation-assisted FE datasets of type-1 (Section 2.2).
These training datasets from the FE analysis form a sequence of images in each simulation.
Each simulation contains 675 images, and a mini-batch of 15 images is randomly selected.
A sequence of 5 images is used for input to the network from the mini-batch, and the next
successive 10 images are used to compare the network-predicted output. These images are
in grayscale, with a size of 128 × 128 pixels. The SDL architecture contains the four layers
of an encoder structure, and the four layers of the decoder structure are stacked together.
Each layer contains 256 hidden states, and the convolutional operation is performed on
each input image, with a kernel size of 5 × 5 with the same padding. The geometrical
information from the CAD model is captured in the binary matrix, by assigning ‘1’ for
the inside and ‘0’ for an outside domain, as shown in Figure 2. The binary matrix and
the sequence of frames are used as input to the network. This binary matrix is multiplied
with an output of a hidden state, before updating the next hidden state. In total, 80% of the
simulations are used for training and the remaining for testing the model.

To predict the more accurate simulations from the SDL model, the suitable learnable
parameters and hyperparameters are selected. The hyperparameters are selected before
the training process and cannot be altered, and the weights and basis are learnable parame-
ters that must be updated during training. First, the input datasets are fed and propagated
to compute the output through the network. This predicted output is compared with
the ground truth, to determine the error and, then, calculate the derivative of the error
function, with respect to the network learnable parameters. Now, network weights and
basis are updated to minimize the error; this process is well known as the back-propagation
algorithm. The back-propagation algorithm is suitable for fixed-size input-output pairs
in feed-forward neural networks [33]. However, in the current work, the training datasets
are spatiotemporal, so the back-propagation through time (BPTT) algorithm is employed,
instead of the back-propagation algorithm. The mean square error (MSE) loss function is
minimized during the training process, using the back-propagation through time (BPTT)
algorithm. The MSE loss function used in this network is as follows:

MSE =
1
n

n

∑
t=1

(ŷi − yi)
2 (6)

here, ŷ is the predicted output sequence, y is the ground truth sequence, and n = the number
of instances. While training, the ConvLSTM network, as shown in Figure 2, predicts
the output for one input in each time step. So, the BPTT works by unrolling all input time
steps. Furthermore, each time step has one input time step, one output time step, and a
copy of the network. Then, the error is calculated for every time step and accumulated
for each time step. The network is unrolled back, and learnable parameters are updated.
The network learning rate is set to a constant value of 1.0 × 10−4 in the Adam optimizer
and trained for 150 epochs. The network took a total of 36 h to train, using two NVIDIA
GeForce RTX 3090 GPU processors. The average loss value computed by comparing
network-predicted output with ground truth is used to determine the model learning
efficiency. Figure 3a shows the average loss values over the number of epochs, and training

https://www.pytorchlightning.ai
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loss is determined to be 6.0 × 10−4, whereas testing loss is 2.0 × 10−4. The performance of
the train SDL model is validated, by feeding the remaining 20% of testing datasets of single
to multi-point excitation sources simulations, and the effectiveness of the proposed model
on testing datasets can be referred from our prior work [26].

Figure 3. (a) Spatio-temporal deep learning (SDL) model, for forward wave propagation: training
and testing average loss values over the number of epochs for the type-1 datasets. (b) Spatio-temporal
deep learning (SDL) model, for reflected wave propagation: training and testing average loss values
over the number of epochs for the type-2 datasets.

4.1.1. Evaluation Metric

To assess the efficiency of the SDL model prediction on wave propagation simulation,
we have employed the Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and Mean Absolute Percentage Error (MAPE), to compute using the equations below:

MAE =
1
n

n

∑
i=1
|Yi − Ȳi| (7)

RMSE =

√
(

1
n
)

n

∑
i=1

(Yi − Ȳi)2 (8)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣Yi − Ȳi
Yi

∣∣∣∣ (9)

here, Yi is the ground truth from FE wave propagation simulation, Ȳi is the predicted from
SDL model generated wave propagation simulation, and n = number of instances.

4.1.2. Ultrasonic Wave Propagation on Different Geometrical Domain Modelling

This section presents the comparative study between the SDL model and FE, to
simulate the forward wave propagation simulations for the different geometrical domains,
shown in Figure 4. So, we have considered two scenarios of different geometrical domains
(i.e., other than the trained domains) with point source excitation to evaluate the trained
SDL model, which is not used during training or testing. The SDL model is, initially, trained
with a single-step short-term prediction during the training process. Then, the model takes
a 5-input image sequence from the training set and predicts the next following consecutive
10-output image sequence. These model-predicted images are fed back to the model’s input,
iteratively, to predict the complete long-term simulation. Then, the SDL model generated
simulation is compared with the actual FE ultrasonic wave propagation simulation.

Figure 4 shows the FE and SDL model simulations over the total simulation time for
geometry-1 and geometry-2. In particular, the top row in Figure 4a shows the FE datasets,
and the bottom row shows the SDL model output datasets at identical time intervals
at t = (0.9 µs, 1.5 µs, 2.2 µs, 2.2 µs, 3.6 µs), for the long-term simulation of geometry-1.
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Similarly, Figure 4b depicts the wave propagation of geometry-2. The proposed SDL model
could capture the constructive and destructive interference at the wavefront interaction
and match the FE simulation. We can conclude that the SDL model-generated simulations
are in good agreement with FE.

(a) FE/SDL simulation comparison for geometry-1

(b) FE/SDL simulation comparison for geometry-2

Figure 4. Forward wave propagation of different geometrical domain: The FE and SDL are modeled
using 5 MHz central frequency and two cycles with a single-point excitation source on different
geometrical domains. The SDL model predicted simulations are qualitatively compared with FE sim-
ulation. (a) Forward wave propagation simulation for geometry-1 and (b) forward wave propagation
simulation for geometry-2, at exact time steps for different time instances.

For quantitative assessment, we have extracted the displacement values at x = 17.5 mm
and y = 0 to 35 mm, in all the frames from Figure 4 (as shown by the vertically dotted
yellow line). Figure 5a,b show the wavefront line scans for both geometry-1 and geometry-2.
The line scans from the SDL model follow the same trend as the FE simulation line scans for
all the frames, but some differences exist in amplitude and TOF. To find out the difference
in amplitude and time of flight between the SDL and FE simulations, from the line scans
in Figure 5 for each modelling scenario, we have used three methods (refer to Section 4.2)
(1) the Mean Absolute Error (MAE), (2) Root Mean Square Error (RMSE), and (3) Mean
Absolute Percentage Error (MAPE), to estimate the error in each frame. Table 1 shows
the summary of the MAE, RMSE, and MAPE on amplitude and TOF error. The maximum
MAE is in order of 10−2, the maximum RMSE is in order of 10−1, and MAPE is 115.9%
on amplitude error, over all the time frames. The maximum MAE is in order of 10−1,
the maximum RMSE is 3.15, and MAPE is 3.34% on TOF error, over all the time frames.
The evaluation finding shows that the proposed SDL model could, efficiently, simulate
ultrasound wave propagation on the different geometrical domains, other than the trained
domain, with good accuracy.
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(a) Line scans between FE/SDL simulation, for geometry-1 at identical time steps

(b) Line scans between FE/SDL simulation, for geometry-2 at identical time steps

Figure 5. Line scans of different geometrical domains: the displacement values are extracted at
x = 15 mm and y = 0 to 30 mm in each frame from the FE, and SDL-generated simulation of
the different geometrical domains for different time instances in Figure 4. (a) The line scans were
extracted from Figure 4a for geometry-1, and (b) the line scans were extracted from Figure 4b
for geometry-2.

Table 1. Forward wave propagation on different geometrical domains datasets: the line scan am-
plitude and time of flight (TOF) differences between SDL and FE are computed using MAE, RMSE,
and MAPE methods on the sequence of images at different time instances in Figure 5.

Line Scan

Datasets of Testing MAE RMSE MAPE (%)

and Different Sequence of Images at Sequence of Images at Sequence of Images at

Geometrical Domain T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5

Amplitude Geometry-1 0.00 0.02 0.05 0.04 0.04 0.05 0.12 0.14 0.20 0.24 9.50 25.2 30.6 75.6 92.7
Geometry-2 0.00 0.01 0.06 0.07 0.06 0.07 0.14 0.20 0.21 0.19 115.9 16.4 22.5 34.8 39.6

Time of Flight Geometry-1 0.00 0.17 0.17 0.83 1.42 0.00 0.41 0.41 1.63 3.15 0.00 0.28 0.24 1.62 3.34
Geometry-2 0.29 0.21 0.21 0.21 0.21 0.53 0.46 0.46 0.46 0.46 0.46 0.39 0.46 0.48 0.67
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4.2. SDL Model Implementation on Datasets Type-2: Reflection Wave Propagation Simulation

A similar approach is followed from Section 4.1 to train the SDL model using the type-2
datasets of reflection wave propagation simulation (from Section 2.3). The SDL architecture
consists of six layers of an encoder structure and six layers of a decoder structure; these structures
are stacked together. Each encoder or decoder structure contains 256 hidden dimensions,
and during convolutional operation, a 5 × 5 kernel size and the same padding are used.
The average loss value over the number of epochs is shown in Figure 3b. The average training
loss is determined to be 1.0× 10−5, the testing loss is 4.0× 10−5, and the loss value becomes
stabilized with an increase in the number of epochs.

4.2.1. Generalization to Different Geometrical Boundary Modelling: Reflected Wave
Propagation from Boundaries

To generalize the SDL model, we have modeled the ultrasonic wave propagation
in four different geometrical domains: curved, T-shaped, and triangular. The SDL model
predicted simulation is compared with the FE. Figure 6a–c shows the reflected ultrasonic
wave propagation simulation for curved, T-shaped, and triangular domains, respectively.
In each figure, the top row simulations are from the FE, and the bottom row shows the pre-
dicted simulation from the SDL model. During the training process, the proposed SDL
model is trained with straight edge boundaries, but it could generate the simulation for
curved boundaries (Figure 6a) and diagonal boundaries (Figure 6c). The SDL model has
learned the wave interactions at the domain sharp edge and could generate the reflection
wave propagation from the sharp edges (Figure 6b). So, the SDL model accurately predicts
reflection wave propagation from the side and back walls as well as matches with the FE.

(a) FE/SDL simulation comparison for the curved boundary.

(b) FE/SDL simulation comparison for the T-shaped boundary.

Figure 6. Cont.
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(c) FE/SDL simulation comparison for the triangular boundary.

Figure 6. Reflected wave propagation with different geometrical boundaries: FE and SDL models are
used to simulate reflected wave propagation in different geometrical boundaries. The simulations
generated using FE and SDL are compared to each other at identical time steps for different time
instances. These simulations are modeled with an incident wave of 5 MHz frequency with two cycles,
using a single-point excitation source on the top edge. (a) Represents the FE/SDL simulation for
the curved domain, (b) illustrates the FE/SDL wave propagation simulation for the T-shaped domain,
and (c) shows the wave propagation simulation for the triangular domain. For the illustration,
a yellow dashed vertical line is created, manually, in all the frames, to extract the displacement values.

Quantitatively exploring the SDL model prediction on reflected wave propagation,
we have extracted the displacement values along the line at x = 20 mm and y = 0 to
40 mm, from all the geometrical domain frames. Figure 7 shows the wavefront line scans
between the SDL and FE model, for all the geometrical boundaries datasets. The SDL
model-based line scans follow a similar trend to FE simulation-based line scans. To find
out the amplitude and TOF difference between the two methods, we have employed MAE,
RMSE, and MAPE, to calculate the error on each frame. A similar approach is adopted
from Section 4.2. The comparison summary is shown in Table 2 for each frame for each
domain. The maximum MAE is in order of 10−2, the maximum RMSE is in order of 10−1,
and MAPE is 78.7% on amplitude error, over all the time frames. The maximum MAE
is 1.86, the maximum RMSE is 2.56, and MAPE is 5.37% on an error in TOF, between all
the geometrical domains. The SDL model could simulate curved domains (Figure 6a), sharp
corner reflection (Figure 6b), and diagonal boundaries (Figure 6c), even though we have not
used these geometries based datasets while the training process. The SDL model-generated
simulations are reasonably in good agreement with FE simulation.

(a) Line scans between FE/SDL simulation for the curved boundary at identical time steps.

Figure 7. Cont.
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(b) Line scans between FE/SDL simulation for the T-shaped boundary at identical time steps.

(c) Line scans between FE/SDL simulation for the triangular boundary at identical time steps.

Figure 7. Line scans of reflected wave propagation with different geometrical domains: the FE and
SDL modeled simulations are compared, quantitatively, by extracting the displacement values in each
frame at x = 15 mm and y = 0 to 40 mm for different time instances, shown in Figure 6. (a) The line
scans are extracted from Figure 6a for the curved domain, (b) shows the line scans are extracted from
Figure 6b for the T-shaped domain, and (c) represents the line scans extracted from Figure 6c for
the triangular domain.

Table 2. Reflected wave propagation with different geometrical boundaries: the SDL model predicted
simulation is compared with FE simulations. The MAE, RMSE, and MAPE methods are used
for calculating the line-scan amplitude and time of flight (TOF) difference between SDL and FE,
on the sequence of images at different time instances, shown in Figure 7.

Line Scan

Datasets of MAE RMSE MAPE (%)

Different Geometrical Sequence of Images at Sequence of Images at Sequence of Images at

Domain T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5

Amplitude
Curved 0.00 0.00 0.00 0.01 0.01 0.00 0.10 0.13 0.06 0.06 0.00 55.9 48.3 36.6 26.6

T-shaped 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.06 0.08 0.18 0.00 0.00 78.7 73.0 74.0
Triangular 0.00 0.01 0.01 0.01 0.00 0.00 0.06 0.07 0.07 0.19 0.00 57.8 67.4 131 71.4

Time of Flight
Curved 0.00 0.50 0.86 0.07 0.29 0.00 1.16 1.51 0.27 0.85 0.00 1.05 1.36 0.20 0.90

T-shaped 0.00 0.00 0.43 0.79 1.86 0.00 0.00 0.76 1.16 2.54 0.00 0.00 1.16 2.10 4.32
Triangular 0.00 1.14 0.23 1.64 0.64 0.00 1.75 0.48 2.56 1.04 0.00 5.37 1.19 5.34 1.98
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Once trained, the SDL model takes approximately 180 s to generate the 1040 frames
in one simulation sequence, for 13 µs total simulation time, with the time interval of
0.0125 µs. The conventional FE solver takes 3600 s, using the same computer proces-
sor. Hence, we can infer that the proposed SDL model could simulate reflected wave
propagation simulation for different geometrical boundaries with reduced computational
requirements than FE simulation.

4.2.2. SDL Model Simulation for Reflected Wave Propagation with Varying Frequencies
and Cycles

To determine the effectiveness of the proposed SDL model, we have modeled the dif-
ferent scenarios of varying excitation frequencies and the varying number of cycles on
rectangular domains with a single-point excitation source on the top edge, to simulate
reflected wave propagation. These datasets are not used during the training or testing of
the network. We have modeled two sets of FE simulations on the rectangular domain, first,
by varying the excitation frequencies of 4 MHz, 5 MHz, and 7 MHz with two cycles of the in-
cident wave, and, second, by modelling with three cycles using 5 MHz frequency. The FE
simulations are performed using a similar approach to Section 2.3. Here, we compare the
SDL modeled simulation with the FE simulation, for different scenarios. Figure 8 shows the
comparison of reflected wave propagation simulation for different excitation frequencies
with two-cycle signal width, and the corresponding displacement values extracted along
the yellow dashed line from Figure 8 for all the frames are shown in Figure 9a,b. Similarly,
Figure 10 shows the comparison of the reflection wave propagation simulation modeled
using a varying number of cycles with a 5 MHz central frequency. The corresponding
displacement values extracted along the yellow dashed line from Figure 10 for all the time
frames are shown in Figure 11a,b. We can observe that the proposed SDL model could
generate reflection wave propagation for varying frequencies and cycles. The SDL simula-
tions are in good agreement with FE simulations. The SDL-model-based line scans follow
a similar trend as the FE simulation; however, amplitude and TOF differences are present
in the line scans as the future time step prediction increases. We have utilized the same met-
rics that we used to evaluate different geometrical boundaries predictions, and the results
are illustrated in Table 3. In this case, we are comparing the MAE, RMSE, and MAPE values
for two different scenarios as follows: (1) the simulation between the frequencies of 4 MHz,
5 MHz, and 7 MHz with two cycles and (2) simulation, with the number of cycles being
two and three, with 5 MHz frequency. We can notice the following conclusion from Table 3:
(1) with an increase in the excitation frequencies other than the training frequency, the MAE,
RMSE, and MAPE values increase, but the overall magnitude is in the order of 10−2 for
MAE and 10−1 for RMSE, while the maximum MAPE is 221% on amplitude. (2) Increasing
the number of cycles, the MAE, RMSE, and MAPE values are increased, but, overall, are
in order of 10−2, for MAE and 10−1 for RMSE, while the maximum MAPE is 447 % on
amplitude. (3) When increasing the number of cycles, the MAE, RMSE, and MAPE values
are increased in amplitude and TOF.

The trend in MAE, RMSE, and MAPE values of amplitude as well as TOF is, closely,
following the increasing function with respect to increasing in future time step prediction.
The apparent trend from Table 3 is that the performance of the SDL model prediction on
reflected wave propagation simulation deteriorates, as the number of future time steps
to be predicted increases. Even if we can observe that from Figures 6, 8, and 10, we can
infer that the results obtained from the SDL model are in reasonably good agreement
with the FE simulation until the t = 4.0 µs frame, for all the domains. Still, there is some
compounding errors that started accumulating time instances afterward. The generation of
accurate waveform amplitude from back-wall reflection depends on the various parameters
in the network architecture, such as the number of hidden layers, kernel size, input–
output frames, etc. However, the best suitable learnable hyperparameters and network
parameters need to be selected, which may require additional computational resources
and time to train the model. The SDL models developed in this work are applicable for
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solving the forward- and reflected-wave propagation in different 2D geometrical domains.
The same approach can be extended for modelling the 3D domain simulation and the wave
phenomenon of scattering effect with defects.

(a) FE/SDL simulation comparison for the 4 MHz central frequency, with two cycles.

(b) FE/SDL simulation comparison for the 7 MHz central frequency, with two cycles.

Figure 8. Reflected wave propagation with varying frequency: the SDL model is used for modelling
reflected wave propagation in a rectangular domain for varying frequencies and two cycles with
a single-point excitation source on the top edge, compared with FE simulation. (a) Shows the wave
propagation simulation for 4 MHz central frequency, and (b) represents the wave propagation
simulation for 7 MHz.

(a) Line scans between FE/SDL simulation with the 4 MHz central frequency, at identical time steps.

Figure 9. Cont.



Appl. Sci. 2022, 12, 5881 14 of 17

(b) Line scans between FE/SDL simulation with the 7 MHz central frequency, at identical time steps.

Figure 9. Line scans of reflected wave propagation with varying frequency: The FE- and SDL-model-
generated simulations are compared, quantitatively, by extracting the displacement values, which are
extracted at x = 15 mm and y = 0 to 40 mm for different time instances, from Figure 8. (a) Represents
the line scans that are extracted from Figure 8a for 4 MHz, and (b) illustrates the line scans that are
extracted from Figure 8b, for 7 MHz in the rectangular domain.

(a) FE/SDL simulation comparison for the 5 MHz central frequency with two cycles.

(b) FE/SDL simulation comparison for the 5 MHz central frequency with three cycles.

Figure 10. Reflected wave propagation with a varying number of cycles: A qualitative comparison
between the FE and SDL simulations modeled in the rectangular domain, with the varying number
of cycles with a 5 MHz central frequency with a single-point excitation source on the top edge.
(a) represents the simulation of two cycles, and (b) illustrates the simulation of three cycles, at
identical time instances.
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(a) Line scans between FE/SDL simulation with the 2-cycles at identical time steps

(b) Line scans between FE/SDL simulation with the 3-cycles at identical time steps

Figure 11. Line scans of reflected wave propagation with a varying number of cycles: The SDL model
predicted simulation with FE simulation to examine quantitatively; the displacement values are
extracted at x = 15 mm and y = 0 to 40 mm for different time instances from Figure 10. (a) Represents
the line scans are extracted from Figure 10a for two cycles, and (b) illustrates the line scans are
extracted from Figure 10b, for three cycles in the rectangular domain.

Table 3. Reflection wave propagation on the rectangular domain with varying frequencies and cycles:
The SDL model line scan amplitude and time of flight (TOF) are compared with FE using MAE,
RMSE, and MAPE methods at different time instances, as shown in Figures 9 and 11.

Line Scan

Datasets of MAE RMSE MAPE (%)

Varying Frequencies Sequence of Images at Sequence of Images at Sequence of Images at

and Cycles T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5 T-1 T-2 T-3 T-4 T-5

Amplitude

5 MHz with 2 cycles 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 50.1
5 MHz with 3 cycles 0.01 0.00 0.02 0.01 0.01 0.23 0.22 0.21 0.05 0.21 118 477 108 99.2 111

4 MHz with 2 cycles 0.00 0.00 0.01 0.02 0.01 0.24 0.12 0.07 0.13 0.28 132 221 24.8 44.7 54.0
7 MHz with 2 cycles 0.00 0.01 0.01 0.01 0.01 0.09 0.15 0.09 0.12 0.11 203 111 87.7 116 135

Time of Flight

5 MHz with 2 cycles 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.00 0.00 1.19
5 MHz with 3 cycles 1.14 1.00 2.86 0.86 1.59 2.03 1.68 5.05 2.72 2.38 3.03 2.39 5.44 2.72 2.95

4 MHz with 2 cycles 0.36 1.50 0.21 0.57 0.79 0.71 2.87 0.46 0.93 1.16 1.51 2.60 0.78 1.19 2.03
7 MHz with 2 cycles 0.36 0.64 0.43 0.50 1.14 0.71 0.96 0.65 0.71 2.45 0.81 1.37 0.93 0.94 5.21
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5. Conclusions

In this work, the data-driven spatio-temporal deep learning (SDL) model is used
to rapidly compute ultrasonic wave propagation for modelling forward and reflected
ultrasonic wave propagation in the different geometrical domains as well as varying fre-
quencies and cycles. The SDL is trained with simulation-assisted FE simulation data. Here,
we have used two types of training datasets to teach two individual SDL models, using
multiple point sources of wave simulation in a single domain and reflected wave propa-
gation from boundaries with different geometries. The SDL can learn representations of
the time-domain ultrasonic wave propagation phenomenon from the training datasets,
thus employing a data-driven approach to understand the underlying physics to build an
AI predictive model to simulate ultrasonic wave propagation and reflection from bound-
aries. The SDL model can be used for modelling forward and reflected ultrasonic wave
propagation simulations, in the different geometrical domains and varying incident wave
parameters, such as frequencies and number of cycles with significantly reduced time
(20×) and computation resources, which compare well with the FE model simulations.
Furthermore, the SDL models have, traditionally, been successfully used for creating con-
ventional 2D wave propagation simulations. Understanding the seismic wave propagation
in the geological structure is complex, due to various geological and geometrical structures,
to take into account that the various numerical methods are used to model seismic wave
propagation in the geological structure but need huge numerical costs and memory storage
for handling larger domains with higher frequencies. However, the proposed SDL model
can be a direct replacement, where time and a high-processor computer are the constraints
for seismic wave propagation simulation. Hence, the SDL model approach may be further
extended for modelling the scattering effects of the defects and virtual source imaging
in nondestructive evaluation and biomedical imaging.
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