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Abstract: Graph neural networks are graph-based deep learning technologies that have attracted
significant attention from researchers because of their powerful performance. Heterogeneous graph-
based graph neural networks focus on the heterogeneity of the nodes and links in a graph. This is
more effective at preserving semantic knowledge when representing data interactions in real-world
graph structures. Unfortunately, most heterogeneous graph neural networks tend to transform
heterogeneous graphs into homogeneous graphs when using meta-paths for representation learning.
This paper therefore presents a novel motif-based hierarchical heterogeneous graph attention network
algorithm, MBHAN, that addresses this problem by incorporating a hierarchical dual attention
mechanism at the node-level and motif-level. Node-level attention aims to learn the importance
between a node and its neighboring nodes within its corresponding motif. Motif-level attention is
capable of learning the importance of different motifs in the heterogeneous graph. In view of the
different vector space features of different types of nodes in heterogeneous graphs, MBHAN also
aggregates the features of different types of nodes, so that they can jointly participate in downstream
tasks after passing through segregated independent shallow neural networks. MBHAN’s superior
network representation learning capability has been validated by extensive experiments on two
real-world datasets.

Keywords: heterogeneous graphs; graph neural networks; representation learning; motif; attention
mechanism

1. Introduction

Graph neural networks (GNNs) have attracted extensive attention in academia as a
powerful way of approaching deep representation learning for graph data. They have
been proven to perform especially well in network analysis [1,2]. The basic idea of a graph
neural network is to undertake representation learning on the nodes themselves, according
to their local neighborhood information. This involves aggregating the information of
each node and its surrounding nodes through a neural network. So, in [3–5], the node
features and graph structure in graphs are used to learn node embeddings. Convolutional
operations can also be introduced into graph representation learning [6–9].

Alongside GNNs, a significant amount of interest has been shown to attention mecha-
nisms [10], which encourage models to focus on the most salient parts of the data that will
affect downstream tasks. Attention mechanisms have been highly effective when incorpo-
rated into deep neural network frameworks and are widely used across a range of different
domains [11–15]. Graph Attention Networks (GAT) [16] assume that different neighboring
nodes may play different roles for the core nodes. A self-attention mechanism can therefore
be employed [17] to aggregate neighbor nodes and achieve an adaptive matching of weights
that captures the different importance of different neighbors. However, GAT can only be
applied to homogeneous graphs and cannot be easily migrated to heterogeneous graphs.
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Heterogeneous graph-based neural network representation learning methods are a
natural extension of deep learning approaches to the processing of structured graph data.
The most popular approach, here, is to transform heterogeneous graphs into homogeneous
graphs for representation learning through meta-paths [18]. Wang et al. [19], for instance,
introduced a two-level hierarchical attention mechanism in graph neural networks where
the node-level attention captures the relationship between neighboring nodes generated
by a certain meta-path, while meta-path semantic attention captures the importance of the
different meta-paths in the original heterogeneous graph. To make the most of the rich in-
teraction information present in heterogeneous graphs focused on intent recommendation,
Fan et al. [20] used meta-path guided neighbors to aggregate the node information and
designed different aggregation functions based on different types of neighbor features. All
of these methods require an expert to design and manually set the meta-paths for specific
issues. There is also inevitably a loss of information during the transformation between
heterogeneous and homogeneous graphs, and the selection of different meta-paths can
lead to significant performance fluctuations in downstream tasks [21].

Numerous studies [22–30] have verified the superior performance of motifs as funda-
mental building blocks of non-random real-world graph-structured data for the purposes
of graph representation learning. A motif is essentially a subgraph structure consisting of
multiple nodes and links. The semantic relationships among the set of nodes that make
up a motif are particularly closely related. Thus, it seems reasonable to assume that, if the
representation of nodes in motif-based subgraphs with different structural patterns can
be captured, it will be possible to characterize different types of nodes in heterogeneous
graphs from multiple perspectives. The Multiscale Convolutional Network (MCN) [30]
constructed graph convolutional neural network introduces multiple weighted motif-based
adjacency matrices to capture higher-order neighborhood information. Peng et al. [31]
used motifs for subgraph normalization and designed the Motif-based Attentional Graph
Convolutional Neural Network (MA-GCNN) for subgraph classification tasks. However,
the MCN, here, is still constrained to the pre-design of the motif structure by an expert
and does not consider the motif schemas of other morphologies in the graph. The MCN is
also not scalable to heterogeneous graphs. MA-GCNN similarly pays no attention to the
heterogeneity of nodes in the graph and can only be applied to subgraph classification tasks.

In view of the above, and inspired by the Heterogeneous Graph Attention Network
(HAN) [19], this paper proposes an end-to-end Motif-based Heterogeneous Attention
Network, MBHAN, which employs a hierarchical attention mechanism that includes node-
level and motif-level attention. MBHAN is able to focus on the degree of importance of
both a node’s neighbors and the motif subgraph where the node is located.

The MBHAN approach presented in this paper offers the following contributions:
It efficiently learns multi-perspective representations for all the nodes in a heteroge-

neous graph, without having to artificially establish any meta-paths (or subgraphs).
It avoids the knowledge loss in the conversion of heterogeneous graphs to homoge-

neous graphs and can learn the global node information in heterogeneous graphs.
It can capture the subtle effects of different node types on downstream tasks, leading

to more accurate knowledge mining.

2. Related Work
2.1. Graph Neural Networks

Graph representation learning, also known as graph embedding, aims to represent
nodes in a network as low-dimensional dense vectors with real values, and the results can
then be stored in a vector space. The resulting vector representations can be easily and
conveniently used as the input for machine learning models, which can then be applied
to common social network applications, such as visualization, node classification, link
prediction, and community discovery [32]. The impressive results of neural networks in
solving Euclidean space data (e.g., for images [33] and text [34], etc.) have resulted in
proposals to extend deep neural networks to the processing of data with graph (network)
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structures [4,5]. However, applying graph neural network techniques to heterogeneous
graphs and distinguishing the heterogeneity of nodes and links in the graph structure has
consistently proved challenging.

The first attempt to model graph structure data with multiple correlations using GNNs
involved Relational Graph Convolutional Networks (R-GCNs) [6], which maintain unique
linear mapping weights for each different type of link. They also decompose relationship-
specific parameters into linear combinations of several elementary matrices, so as to be
able to deal with networks with a large number of relationships. To handle the structure
and node properties of heterogeneous graphs, Zhang et al. [35] began by introducing a
random walk with a restart strategy that can extract a fixed number of strongly correlated
heterogeneous neighbors for each node and group them according to node types. They then
used a type-specific Recurrent Neural Network (RNN) to encode the vertex features of each
type of neighbor. The encoded representations of different types of neighbors were then
aggregated using another RNN. To address the problem of heterogeneous graph GNNs still
needing to artificially set meta-paths, with a consequent loss of accuracy in downstream
tasks, Yun et al. [21] proposed a graph transformation network (GTN) that is capable of
generating new network structures. It can identify useful interactions between unconnected
nodes in the original graph, while learning valid node representations in the transformed
graph in an end-to-end fashion. A similar approach that does not involve setting meta-
paths is the Heterogeneous Graph Transformer (HGT) [36], which has parameters relating
to different types of nodes and links, so as to be able to characterize the heterogeneous
attention for each link. This enables HGT to generate specialized representations for
different types of nodes and links.

Most existing graph neural networks based on heterogeneous graphs tend to use meta-
paths to transform the heterogeneous graphs into homogeneous graphs for representation
learning. This inevitably results in a lack of non-vertex information in the meta-paths. At
present, most methods cannot perform global node representation learning.

2.2. Motifs

The notion of graph motifs, which are higher-order structures in a network, was first
proposed by Milo et al. [27]. They are small subordinate structures consisting of multiple
nodes. In real-world applications, motifs play a critical role in complex graph analysis.
Benson et al. [37] used motifs to analyze higher-order clustering in the Caenorhabditis
elegans neuronal network and the higher-order spectral network of airports in Canada and
the United States. Zhou et al. [38] looked at how a star motif structure might correspond
to a synthetic counterfeit personal account number in a bank’s customer information
network. Other studies [39,40] have shown that triangles consisting of three nodes form the
basic motif structure in most real-world networks and that this plays an important role in
network formation and evolution. Some motif-based representation learning methods have
also been proposed. Motif2vec [25], for instance, aggregated and shuffled random walk
sequences created for both a motif-based higher-order graph and an original graph. The
ultimate sequences were then fed to a Skip-Gram model [41] to learn the node embedding.

In this paper, we focus on all the triangle motif schemas in the graphs we are working
with and assemble all the “atomic-level” higher-order heterogeneous connectivity patterns,
so as to eliminate any interference by man-made semantic assignments.

3. Preliminary Information

Table 1 gives the notations used in this paper and their corresponding explanations.
We will then define the most relevant concepts and the problem we are seeking to address,
before introducing the MBHAN algorithm.
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Table 1. Notations and Explanations.

Notation Explanation

G Heterogeneous graph
V Node set
E Link set
vi The i-th node
T Type of node set
R Type of link set
mi The i-th motif pattern
Gm The subgraph in G that satisfies the motif pattern, m
Nm

i The set of neighboring nodes of vi in Gm
h Node features

em
ij Importance of node pair

(
vi, vj

)
in Gm

am Node-level attention vector in Gm

am
ij Weight of Gm-based node pair

(
vi, vj

)
q Motif-level attention vector

wmt Importance of t-type nodes in Gm
βmt Attention weight of t-type nodes in Gm
Z t Final representation vector of the t-type nodes

Definition 1. Heterogeneous graphs [42]: A heterogeneous graph is a network data structure,
G = (V , E), with a node type that can be mapped as ϕ : V → T and a link type that can be
mapped as ψ : E → R , where |T | > 1 represents the number of node types in the network or
|R| > 1 represents the number of link types in the network. If |T | = 1 and |R| = 1, this indicates
that the graph, G, is a homogeneous network.

Example 1. Typical examples of heterogeneous graphs are academic citation networks (see Figure 1).
In Figure 1a, DBLP consists of four different types of nodes (author (A), paper (P), conference (C),
and term (T)) and multiple types of links (A− P : an author writes a paper or a paper is written
by an author; P − C : a paper is published in a conference or a conference publishes the paper;
T − P : a paper contains a term or a term is mentioned in a paper). Figure 1b again contains
multiple types of nodes, e.g., author (A), paper (P), topic (S), and publication venue (V). These are
similarly connected by multiple types of links. It is worth noting that in these kinds of academic
citation heterogeneous graphs, different types of nodes have different feature spaces. So, for the
DBLP and ACM datasets used in this paper, only the paper (P) type nodes have initial features
(bag-of-words vectors).
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Figure 1. Academic citation heterogeneous graphs for (a) DBLP and (b) ACM.

Definition 2. Motif subgraphs: To be able to characterize different types of nodes under different mo-
tif patterns and from multi-perspectives in the representation learning process, GM = (VM, EM)
can be defined as the motif subgraph corresponding to the motif pattern,M, whereM is one of the
motif patterns in G, VM ∈ V , and EM ∈ E . The motif pattern,M, has a fixed form that can be
naturally observed when the structure of the heterogeneous graph, G, has been determined.

Example 2. MBHAN focuses on a motif pattern that consists of three nodes while taking into
account node heterogeneity (see Figure 2). Given prior knowledge of the structural schema of the
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heterogeneous graph, the motif subgraph is a subset of the original heterogeneous graph based on
different node types and compositions. Unlike the motif-based representation learning method,
MBRep [24], where all the motif instances that satisfy a specific motif pattern are extracted, the
node-level attention learning process of MBHAN can be performed entirely on the motif subgraph.
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motif subgraphs.

As noted previously, there is a tendency for heterogeneous graph-based graph neural
network methods to transform heterogeneous graphs into homogeneous graphs for repre-
sentation learning via meta-path relationships, making it impossible to undertake global
node representation learning. To deal with this, we propose the motif-based hierarchical
attention graph neural network algorithm, MBHAN, which is an end-to-end global learning
model and that can excavate subtle disparities in the magnitude of attention applicable to
different node levels and motif subgraphs.

4. The Proposed Method

Figure 3 shows the MBHAN algorithm framework. Several aspects of the MBHAN
algorithm will be presented in this section, including its node-level attention mechanism
(4.1), its motif subgraph-level attention mechanism (4.2), and its nodes features mapping
mechanism (4.3).
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4.1. Node-Level Attention Mechanism

Before aggregating different motif subgraphs for different aspects of the nodes’ repre-
sentations, we first focus on the different roles played by the nodes’ neighbors in each motif
subgraph. To that end, we will begin by looking at the significance features aggregated by
the neighbors of each node in a specific motif subgraph. MBHAN employs a self-attention
mechanism [10] that can learn the weights between different nodes. Given a motif sub-
graph, Gm, containing a pair of nodes, (vi, vj), the node-level attention, em

ij , can be defined
as follows:

em
ij = attnode−level

(
hi, hj; m

)
, (1)

where eij denotes the importance of node vj to node vi; attnode−level refers to the deep
neural network that performs the node-level attention [16]; and, for a given motif subgraph,
Gm, attnode−level is shared for all its node pairs. From Equation (1), it can be seen that the
attention level of the node pairs (vi, vj) within the motif subgraph depends on their features.
Unlike the approach adopted in [19], the types of node pairs are not necessarily the same in
MBHAN. For example, in the “A− C− B” motif pattern subgraph in Figure 2, a node of
type A is represented by aggregating the features of its first-order neighbors, which are type
C nodes. The feature space transformations for different types of nodes will be presented in
Section 4.3. Note also that vi and vj are asymmetric. So, the degree of importance of node
vi to node vj is not necessarily the same as the degree of importance of node vj to node vi.
This is a fundamental property of heterogeneous graphs. Thus, Equation (1) can be more
precisely expressed as:

em
ij = σ

(
aT

m
[
hi
∣∣∣∣hj
])

, (2)

where hi denotes the features vector of node vi; σ denotes the activation function (LeakyReLU
was selected in this case); am denotes the node-level attention vector based on the motif
subgraph, Gm; and || denotes the concatenate vector operation. After obtaining the initial at-
tention scores of all the first-order neighbors of node vi, normalization is undertaken using
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a SoftMax function, and this gives the attention weights, αij, for the degree of importance,
eij, from node vj to node vi:

αm
ij =

exp
(
σ
(
aT

m
[
hi
∣∣∣∣hj
]))

∑n∈Nm
i

exp(σ(aT
m[hi||hn]))

, (3)

where Nm
i denotes the neighboring nodes of node vi in Gm. It should be noted that αij

is not symmetric, so nodes vi and vj do not contribute to each other equally. This is not
only because of the order of the vector concatenation on the numerator in Equation (3),
but also because they have different neighbors. The embedding vector of node vi in the
motif subgraph Gm is now an attention-based weighted aggregation of its neighboring
nodes’ features:

zm
i = σ

 ∑
j∈Nm

i

αm
ij hj

, (4)

As the attention weight, αm
ij , is based on the specific motif subgraph, Gm, it reflects

only the side profile of the node representations in a specific motif pattern. This is also
because the non-Euclidean spatial properties of graph data, especially heterogeneous graph
data, exhibit high levels of variance [19]. To enrich the ability of the model and stabilize the
training process, MBHAN extends the node-level attention to multi-head attention so as to
avoid overfitting. To do this, MBHAN iterates the node-level attention training process K
times and concatenates the learned representations to give the specific embedding:

zm
i = K

k=1‖σ

 ∑
j∈Nm

i

αm
ij ·hj

, (5)

Given a heterogeneous graph, G, the set of its motif subgraphs
(
Gm0 ,Gm1 , . . . ,Gmk

)
can be extracted easily after determining its network connectivity pattern. By inputting
the features of the nodes, MBHAN can obtain the set of node representation vectors
corresponding to all the motif subgraphs in the node-level attention neural network,(
Zm0 ,Zm1 , . . . ,Zmk

)
.

4.2. Motif Subgraph-Level Attention Mechanism

In heterogeneous graphs, each node consists of multifaceted semantic information,
but a particular motif subgraph only reflects a side view of that node given its current
motif connectivity pattern. To more thoroughly learn the embedding of the nodes, it is
necessary to fuse the representations of the corresponding nodes in all the motif subgraphs.
To achieve this, MBHAN employs a motif subgraph-level semantic attention mechanism
for each possible triangular motif subgraph in the heterogeneous graph. This enables it
to learn the importance of different motif subgraphs for the final representation of the
node and fuse them within an end-to-end learning process. Using the node embeddings
learned in the node-level attention mechanism as input, the learning process for each motif
subgraph can be represented as follows:(

βm0 , βm1 , . . . , βmk

)
= attmoti f−level

(
Zm0 ,Zm1 , . . . ,Zmk

)
, (6)

where attmoti f−level refers to the execution of a motif subgraph-level deep learning attention
process. This can capture the importance of all the triangular motif subgraphs in the
heterogeneous graph for the final embeddings of the nodes. To capture the impact of
each motif subgraph on the final node representation, MBHAN first uses a one-layer
multilayer perceptron (MLP) to nonlinearly transform the embeddings of the nodes in the
corresponding motif subgraphs. It then measures the motif importance of the impact on
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the final node embedding by using the motif semantic-level attention vector, q, where W is
the weight matrix and b is the bias vector:

wmi =
1
|V|∑i∈V qT ·tanh

(
W·zmi

i + b
)
, (7)

Note that MBHAN attempts to learn the representation of all the nodes in the het-
erogeneous graphs, so a simple weighted global average for the different types of nodes
is clearly inappropriate. As the motif subgraph division of MBHAN is predicated on the
heterogeneity of the nodes, different motif subgraphs will have semantic nuances due to
the node types, and their influence on the node-level representation learning process will
certainly vary. So, to isolate the influence of node heterogeneity, different types of nodes
should be treated differently in the attention mechanism’s execution. Equation (7) can
therefore be reformulated as:

wmt
i
=

1
|V t|∑i∈V t qT ·tanh

(
W·zmi

i + b
)
, t ∈ T , (8)

where wmt
i

is the importance coefficient for the t-type nodes in the motif subgraph, Gmi , and

V t is the set of t-type nodes. To ensure the stability of the training process, different types
of nodes all share the one-layer MLP parameters described above when calculating each
separate attention coefficient. Having calculated the importance coefficients for different
types of nodes in different motif subgraphs, they are normalized to obtain the motif
subgraph-level attention weights for each node type, t, in Gmi by using a SoftMax function:

βmt
i
=

exp
(

wmt
i

)
∑Tt=1 exp

(
wmt

i

) , (9)

βm∑
i

can be interpreted as the contribution of each of the t-type nodes in Gmi to a

specific task. The higher the value of βmt
i
, the more important the t-type nodes in Gmi .

The importance varies across different tasks. By fusing the various motif-level weights as
coefficients, the final t-type nodes embedding will be:

Z t = Mi=1‖β mt
i
·Z t

mi
, (10)

Unlike the Heterogenous Graph Attention Network (HAN) described in [19], which
averages all meta-path-based node embeddings, MBHAN uses a vector concatenation
strategy to accentuate the different influences of different motif subgraphs on the final
node embeddings. As a result, the node representations in different motif subgraphs are
reflected in the attention deep learning process at the motif subgraph-level. For node types
that do not exist in the motif subgraphs (e.g., nodes of type D in the “A− C− B” motif
subgraph in Figure 2), the final global node representation, Z , of the heterogeneous graph
employs zero-complement and feature alignment operations.

As shown in Figure 3, the final node representations consist of an aggregation of all
the motif-specific subgraph semantics, for which different loss functions can be designed
to apply the representations to different downstream tasks. For node classification tasks,
MBHAN uses a cross-entropy loss function:

Loss = − ∑
l∈YL

Yl ln
(

CtZ l
)

, (11)

where C is the classifier parameters; YL is the set of nodes with labels; and Yl and Z l are
the labels and embeddings of the labeled nodes, respectively. Guided by the labeled node
data, MBHAN can use back propagation to optimize the model and learn the embeddings
of the nodes.
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4.3. Node Feature Mapping Mechanism

Having presented the details of the model for deep learning of the node-level and
motif subgraph-level attention mechanisms, we now need to consider the incompatibility
of feature spaces due to the heterogeneity of the nodes. By seeking to preserve the rich
semantics contained in different types of nodes and their links during the graph represen-
tation learning process, we are obliged to deal with there being different feature spaces
for different types of nodes. Many meta-path-based heterogeneous graph representation
learning methods transform heterogeneous graphs into homogeneous graphs for anal-
ysis [19,20]. This results in a loss of semantic information for the non-end nodes in the
meta-paths. MBHAN aims to learn the embedding of global nodes. In the motif subgraphs
subdivided by node types, the node-level attention learning process usually aggregates
neighborhood information that is different from the current type of node. In real-world
graph datasets, it is also quite possible that only features of specific types of nodes can be
accurately extracted. In the DBLP heterogeneous graph dataset shown in Figure 1a, for
instance, only features of Paper-type nodes (bag-of-words vectors) can be observed, while
features relating to the Author, Term, and Conference-type nodes cannot be easily obtained.

To address the above problem, one can create a matrix, Mti , that is specific to the type
transformation to project the features of different types of nodes into the same feature space.
The feature conversion process for node vi can be formulated as follows:

h′i = Mti ·hi, (12)

where hi and h′i are the original and transformed features of node vi. In MBHAN, this type
of transformation is implemented by employing a shallow perceptron whose output dimen-
sionality is consistent with that of the node features that already exist. The specific feature
transformation matrix parameters of the model can be guided and learned according to
particular downstream tasks throughout the training process. Note that, when undertaking
a feature transformation process for multiple types of nodes, the perceptron models should
be segregated from each other, i.e., Mt 6= Mt′ . We expect this type of transformation process
to only serve for specific node types, where it is important to avoid any possible interference
between different types of nodes.

Although Equation (12) provides the process for feature transformation, it does not
address the problem of missing node features in heterogeneous graphs. Looking at graph
representation learning methods based on a random walk strategy [24,43,44], there is an
essential assumption being made: that the rich semantic interactions between node pairs
will be reflected in the structure of the heterogeneous graphs. So, if an author has numerous
important paper nodes connected to him (her) in the field of data mining, it means that the
author has contributed significantly to the field of data mining, and vice versa. If this as-
sumption is correct, the node features obtained by graph analysis from the node connectivity
patterns can describe the knowledge contained in the nodes from another perspective (i.e.,
a graph structure perspective). A classic “random walk + Skip-Gram” strategy is therefore
typically included in the heterogeneous graph feature preprocessing process. In this paper,
MBHAN adopts the approach of Grover et al. [45], where parametrically controlled node
sequence selection is applied during the random walk process:

αpq(s, c) =


1
p , i f dsx = 0

1, i f dsx = 1
1
q , i f dsx = 2

(13)

where s is the previous hop node; c is the current node; αpq is the transfer probability;
dsx is the shortest path distance between node s and node c’s neighboring node, x; p is
the return probability parameter, which corresponds to the Breadth First Search (BFS) of
the walk process; and q is the departure probability parameter, which corresponds to the
Depth First Search (DFS). This approach can adapt the random walk strategy for a specific
downstream task or a specific graph structure. In the experiments presented in Section 5, we
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make p = q = 1. This enables a fair comparison between MBHAN and other benchmark
algorithms and avoids the need to set specific parameters for the datasets. Doing this
collapses the node sequence generation process into a classic random walk process [43].
Finally, the sequence of nodes is fed into a Skip-Gram model to obtain the embedding of
the nodes. This is treated as a “structural” feature, hstr, and the corresponding inherent
features of the nodes themselves are treated as “semantic” features labeled hsem

i . Equation
(12) can then be reformulated as follows:

hsem
i = Mti ·h

str, (14)

For any given heterogeneous graph, the input layer of the hierarchical attention model
accepts nodes with “semantic” features directly, while nodes without intrinsic features
have to pass through a random walk model and undergo the “structural” to “semantic”
feature transformation described by Equation (14).

The overall MBHAN process is shown in Algorithm 1. In summary, MBHAN provides
an end-to-end semi-supervised node representation learning approach that includes a
feature space mapping process, a node-level attention mechanism, and a motif subgraph-
level attention mechanism. For specific downstream tasks, MBHAN can automatically learn
the relevant feature transformation parameters and node-level and motif subgraph-level
attention weight parameters. In the next section, we report on an evaluation of the full-scale
performance of MBHAN when handling a node classification task and a clustering task.
We then analyze the impact of various hyperparameters on its performance.

Algorithm 1 The Overall MBHAN Process

1: Input: A heterogeneous graph: G = (V , E);
2: Node types: T ;
3: A random walk + Skip-Gram Parameters set: c;
4: The inherent semantic features contained in some types of nodes: hsem;
5: The collection of motif subgraphs with node-type connectivity patterns based on the
heterogeneous graph, G: (Gm0 ,Gm1 , . . . ,Gmk );
6: The number of attention heads: K;
7: Output: Node representation learning vectors: Z ;
8: Generate node “structure” features using the random walk strategy;
9: hstr ←Random Walk, (c);
10: for every node type, t, in T do:
11: if vt

i does not have semantic features hsem do;
12: hsem

i = Mt·hstr;
13: Integration of all node features→h;
14: for every motif sub-graph, Gm, in (Gm0 ,Gm1 , . . . ,Gmk );
15: for k = 1 . . . k do;
16: for vi in Gm do;
17: find, for vi, the neighboring nodes set, Nm

i ;
18: for j ∈ Nm

i do;
19: Calculate the weight coefficient αm

ij ;
20: Calculate the motif subgraph-specific node embedding;

21: zm
i ← σ

(
∑j∈Nm

i
αm

ij hj

)
;

22: Calculating embeddings learned from all attention mechanisms;

23: zm
i ←

K
K=1||σ

(
∑j∈Nm

i
αm

ij ·hj

)
;

24: Calculate the weight of the motif subgraphs, βmt
i
;

25: Calculate the t-type node embedding Z t←Mi=1||βmt
i
·Z t

mi
;

26: Fuse all types of node embedding, Z ;
27: Calculate the downstream task-specific loss functions;
28: Back-propagate and update the parameters in MBHAN;
29: return Z .
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5. Experiments

Before reporting on our evaluation of MBHAN’s performance, we will outline the two
heterogeneous graph datasets and the state-of-the-art benchmark heterogeneous graph
representation learning methods that were used in our experiments.

5.1. Datasets

The experiments were performed using two real-world heterogeneous graph datasets,
which were often used as the benchmark datasets to evaluate the performance of the proposed
methods [19,36,46]. Table 2 shows their key statistics, including all the possible triangular
motif patterns and details of the nodes and links for the corresponding subgraphs.

Table 2. Details of the datasets used in the MBHAN evaluation experiments.

Nodes
Type

Nodes
Number

Is
Labeled

Is
Featured

Motif
Pattern

DBLP_
four_area

Author (A) 14475 • #
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DBLP_four_area [47]: is a subset of the academic citation heterogeneous network DBLP
(https://dblp.uni-trier.de). The database covers four domains: databases; data mining;
information retrieval; and artificial intelligence. It contains four different types of nodes
(Author, Paper, Term, and Conference) and three different types of links (Author↔Paper,
Paper↔Term, and Paper↔Conference). The features of the Paper type nodes consist of
their keyword bag-of-words vectors. The features of the Author type nodes are a composite
of the bag-of-words vectors for all the Paper type nodes connected to this type of node.
The Term type nodes and Conference type nodes do not have any features. The Paper
type nodes in the dataset are labeled according to the research fields that correspond
to their publication sites. The Author type nodes are labeled according to the research
fields associated with their published papers. A graph schema of the dataset is shown
in Figure 1a.

ACM (http://dl.acm.org/): Papers published in KDD, SIGMOD, SIGCOMM, Mo-
biCOMM, and VLDB were extracted and grouped into three research areas: databases;
wireless communication; and data mining. This dataset contains four different types of
nodes (Author, Subject, Paper, and Venue) and three different types of links (Author↔Paper,
Paper↔Subject, and Paper↔Venue). We used a dataset preprocessing approach similar to

https://dblp.uni-trier.de
http://dl.acm.org/
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that used in [48], where the features of the Paper type nodes were taken to be the vectors of
the bag-of-words elements given by their keywords. They were labeled according to the
conference in which the papers were published. In this dataset, the Subject type nodes and
Venue type nodes do not have any node features. A graph schema for this dataset is shown
in Figure 1b.

5.2. Baseline Algorithms

MBHAN was compared with the following baseline algorithms, which together cover
homogeneous graph representation learning methods, heterogeneous graph representation
learning methods, and graph neural networks.

DeepWalk [43]: is a graph representation method based on a random walk strategy
that is usually applied to homogeneous graphs. In the experiments, it treated the datasets
as homogeneous graphs because it could not handle the heterogeneity of the nodes.

metapath2vec [44]: is a heterogeneous graph representation learning method based on
a meta-path random walk that leverages Skip-Gram to learn the embedding of the nodes.
In the experiments, all possible meta-paths consisting of three node types were processed.
The reported results give the average performance.

GCN [9]: is a semi-supervised graph convolutional neural network designed for
homogeneous graphs. As not all nodes in the datasets have features, the experiments used
a meta-path based heterogeneous graph transformation operation. For the Author node
classification and clustering task in the DBLP_four_area dataset, the meta-paths A− P− A,
A− P−C− P−C− A, and A− P− T− P− A were employed for the transformation. For
the Paper node classification and clustering task, the meta-paths P− A− P, P− C− P, and
P− T − P were employed, with the given results being the average performance. For the
ACM dataset, the meta-paths P− A− P and P− S− P were employed, with the average
performance again being reported.

HAN [19]: is a hierarchical graph attention neural network that can be used for
heterogeneous graphs. It takes into account both node-level attention and meta-path-level
attention. We adopted the meta-path selection scheme given in the literature. The meta-
paths A− P− A, A− P−C− P−C− A, and A− P− T− P− A were used for the Author
node classification and clustering task in the DBLP_four_area dataset, while the meta-paths
P − A − P, P − C − P, and P − T − P were used for the Paper node classification and
clustering task. For the ACM dataset, the meta-paths P− A− P and P− S− P were used.

GTN [21]: is a heterogeneous graph neural network representation learning method
that requires no prior knowledge. It generates new graph structures from multiple candi-
date adjacency matrices from the original graph to achieve more efficient graph convolu-
tion operations.

MBHANnon_type: is a simplified version of MBHAN that does not distinguish between
the node types when calculating the motif subgraph attention. To be precise, after calculat-
ing the importance coefficients for the different motif subgraphs in Equation (7), a SoftMax
function is applied to normalize all the node types.

5.3. Implementation Details

For the full version of MBHAN, we first randomly initialized the parameters and
optimized the model using Adam [49]. The learning rate was set at 0.005, the weight decay
parameter was 0.001, the dimensionality of the motif subgraph-level attention vector, q, was
128, the number of multi-headed attention mechanisms, K, was set at 8, and the dropout
ratio [50] was set at 0.6. To ensure that all of the experiments were fair, the semi-supervised
graph neural network models, i.e., GCN, GAT, HAN, and GTN used exactly the same split
for their training, validation, and test sets (80%: 10%: 10%). For the random walk-based
graph representation learning methods, i.e., DeepWalk and metapath2vec, the Skip-Gram
model context window size was set at 5, the walk sequence length was set at 100, the
number of walks per node was set at 5, the negative sampling dimension was set at 5, and
the embedding vector dimension was set at 128. All of the experiments were executed
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on a Lenovo R9000P 2021 with an AMD 3.2GHz processor, 64Gb RAM, and an NVIDIA
RTX3060 laptop graphics card with a video memory capacity of 6Gb.

5.4. Multi-Class Classification

Multi-class nodes are nodes’ labels with more than two classes, but where each node is
assigned to only one label in the graph. The multi-class classification prediction assigns one
and only one label to each node. MBHAN uses a fully connected linear layer to perform
the multi-class node classification task. We employed a 10-fold cross-validation experiment
and report the average Macro-F1 and Micro-F1 performance for MBHAN and all the other
baseline methods in Table 3.

Table 3. Node classification performance results (%).

Datasets DBLP_Four_Area ACM

Target Nodes Author Paper Paper

Metrics Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1

DeepWalk 85.01 85.71 84.35 84.17 84.71 85.07
metapath2vec 87.74 87.58 84.61 84.89 84.81 84.57

GCN 86.47 87.09 85.84 86.58 85.77 85.29
GAT 88.57 89.11 87.85 89.64 87.44 87.80
HAN 93.08 93.99 89.48 92.40 90.40 90.72
GTN 94.14 94.17 88.80 91.64 90.77 90.68

MBHANnon_type 94.47 94.14 90.00 93.43 90.71 90.32
MBHAN 95.45 95.57 90.00 93.65 91.17 90.82

It can be seen that MBHAN outperformed the various benchmark methods. Out of
the traditional graph representation learning methods, metapath2vec with guided meta-
paths guided performed better than DeepWalk. This again confirms that considering the
heterogeneity of the nodes preserves more knowledge in the graph. The graph neural
network-based methods, e.g., GAT and GCN, not only retained the structural information
for the graph, but also attempted to fuse the node features. These methods performed
better than the traditional graph representation learning methods. Looking more closely
at the results, because of its differential treatment of the nodes’ neighboring objects, GAT
was better able to capture the degree of importance of the node neighbors in the graph
than the simple GCN approach, where the neighboring nodes are merely averaged. When
compared with GAT, HAN not only focused on relevant knowledge of the nodes and their
neighbors, but also differentiated the influence of substructures (subgraphs that satisfied
the meta-paths) on the final embedding of the nodes from a high-dimensional (meta-path)
perspective. Unfortunately, it remains the case that HAN transforms heterogeneous graphs
into homogeneous ones, so there was inevitably some loss of information and fluctuation
in the effectiveness of the artificially selected meta-paths for the downstream tasks. Thus,
GTN’s convolution of multiple meta-path graphs enabled it to learn the importance of the
length of the meta-paths more adaptively and gain a better performance than HAN.

Unlike GTN, MBHAN not only has the advantages of the HAN hierarchical attention
mechanism, but also avoids the need for homogeneous transformation of heterogeneous
graphs by using motif subgraphs, so it does not require a priori meta-path knowledge.
MBHAN can also classify different types of nodes, such as the Author node and Paper
node in the DBLP_four_area dataset, simultaneously without needing to change the graph
neural network model. So, to sum up, MBHAN performed better than GTN because it can
handle non-Euclidean spatially heterogeneous graph data with high degrees of variance
and because using a hierarchical attention mechanism enables it to better capture the differ-
entiation between nodes than other graph neural network methods. As a final observation,
note that the performance of MBHAN was also better than the simplified MBHANnon_type.
This indicates that having different types of nodes in downstream tasks can mean that
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different motif subgraphs are of different importance, so being able to distinguish different
node types makes it possible to capture this subtle differential knowledge more precisely.

5.5. Clustering

For the clustering performance evaluation, MBHAN used normalized mutual informa-
tion values (NMI). To this end, a k-means algorithm was employed in the experiments to
cluster the final embedding of the nodes, and the number of clusters, K, was set to the num-
ber of classes. As the performance of a k-means algorithm is influenced by the initial cluster
centers, we repeated the experiment 10 times and report here the average performance.

It can be seen from Table 4 that MBHAN performed better than all the baseline
methods. By fusing the inherent features of the nodes in the graph, the graph neural
network-based methods generally performed better than the traditional random walk-
based graph representation learning methods. As GCN did not distinguish the importance
of neighboring nodes, in most cases its performance was inferior to GAT. This underscores
the fact that attention mechanisms capture more meaningful node embeddings in the graph
neural network representation learning process.

Table 4. Node clustering performance results (%).

Datasets DBLP_Four_Area ACM

Metrics NMI NMI

Target Nodes Author Paper Paper

DeepWalk 73.49 57.91 43.89
metapath2vec 66.17 53.48 22.47

GCN 76.31 60.47 54.26
GAT 76.80 60.70 58.47
HAN 79.87 62.79 61.56
GTN 80.05 63.09 61.77

MBHANnon_type 81.17 63.00 60.74
MBHAN 81.75 63.14 61.79

Note, however, that HAN, which does employ a hierarchical attention mechanism,
performed less well than GTN, where there was no use of prior knowledge, and MB-
HAN. This is because it focused only on the importance of certain meta-paths and in-
evitably missed information about the influence of other high-dimensional node sets on the
final embedding.

5.6. Comparative Statistical Tests for the Different Algorithms

The previous two subsections involved the comparison of multiple algorithms on
multiple datasets. However, the same algorithm may not have the same ranking on different
datasets. We therefore undertook some statistical tests to assess the overall performance of
each particular algorithm across the multiple datasets.

A Friedman test [51] can be employed to determine whether the performance of a
particular algorithm (MBHAN, in this case) is significantly different from other algorithms.
It is a classic non-parametric statistical test that is based on the hypothesis that there is no
significant difference in the overall distribution of multiple pairs of algorithms’ mean ranks.
If we let Ranki

j be the rank of the j-th method on the i-th data set, its mean performance
ranking on a dataset can be calculated using Equation (15), where N is the number of
methods to be compared and S is the number of datasets. The Friedman statistic can then
be computed using Equation (16). As τχ2 was found to be too conservative, an improved
version is given by Equation (17).

Rank j =
1
S

S

∑
i=1

Ranki
j, j ∈ [1, N], (15)



Appl. Sci. 2022, 12, 5931 15 of 19

τχ2 =
12S

N(N + 1)

(
N

∑
i=1

Rank2
i −

N(N + 1)2

4

)
(16)

F =
(S− 1)τχ2

S(N − 1)− τχ2
, (17)

To perform an overall comparison, the experimental results for the different datasets
need to be combined. S was set at 3 and N was set at 8. The Mac-F1, Mic-F1, and NMI
Friedman test values were 41.200, 24.999, and 73.600, respectively. These are all much
higher than the critical value (2.76) for a significance level of α = 0.05. Therefore, the
original hypothesis can be safely rejected. In other words, there are significant performance
differences between the different methods.

Because the null-hypothesis is rejected, a post-hoc test can be proceeded. The Nemenyi
test [51], which is calculated using Equation (18), defines the critical difference (CD) value
for a case where two methods are significantly different with a certain confidence (1− γ).
Here, qγ is the critical value based on the Studentized range statistic divided by

√
2.

CD = qγ

√
N(N + 1)

6S
, (18)

The critical difference for the 95% confidence interval was calculated (CD = 6.06). The
results of the test are shown in Figure 4, where the mean rank of each method is marked
by a dot, and the length of the horizontal bar across each dot shows the critical difference.
For any two methods, a mothed outperforms another one if its mean rank is smaller. More
strictly, if the mean ranks of any two methods differ by more than CD, the superiority
is significant. According to the mean ranks and the results of the Nemenyi test, we can
conclude that our MBHAN method achieves the best overall performance, and significantly
outperforms some of these methods.
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5.7. Analysis of the Hyperparameters

The parameter sensitivity was analyzed by using Micro-F1 metrics for MBHAN’s
classification performance in relation to the Author type nodes in the DBLP_four_area
dataset. The analyzed parameters included the embedding dimensions of the node-level
attention mechanism output, the motif subgraph-level attention vector dimensions, q, and
the multi-head attention parameter, K.

Node-level attention mechanism output dimensions: As the final node embedding
of MBHAN was a concatenation of the outputs from the motif subgraphs’ attention process,
its size was impacted by the number of motif subgraphs that could be subdivided by the
specific heterogeneous graphs. The results are shown in Figure 5a, where it can be seen
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that its performance initially improved as the number of embedding dimensions increased,
but then began to slowly decrease. This is due to the fact that the final representation
of the nodes requires a suitable dimension for encoding. Furthermore, when the output
dimensions of the node-level attention process became too large and multiple motif sub-
graphs with various kinds of representations had to be stacked, this introduced redundancy
into the node embedding. Note, however, that the dimensions of the node-level attention
output did not cause significant performance fluctuations in the downstream tasks because
MBHAN not only learned the attention weights at the node level and motif subgraph level,
but also the differentiation between different types of heterogeneous graph node. Thus, the
concatenation strategy for the final embedding of the nodes could assign useful knowledge
to the representation feature space.
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The motif subgraph-level attention vector, q: The results for how the motif subgraph-
level attention mechanism was affected by the dimensionality of vector q are shown in
Figure 5b. Here, it can be seen that MBHAN’s performance increased in line with the
dimensions of q and reached its best performance at 128. After that, its performance
started to decline because of overfitting of the training process caused by the large number
of dimensions.

The multi-head attention parameter, K: The influence of the multi-head attention
parameter, K, on MBHAN’s performance is shown in Figure 5c. When K = 1, MBHAN
did not adopt the multi-head attention strategy. Its performance improved slightly as the
number of heads increased. This is because the multi-head attention strategy essentially
involves integrating several independent attention coefficient computations. This strategy
not only characterizes the nodes from multiple perspectives, but also prevents overfitting
and makes the training process more stable.

6. Conclusions

In this paper, we have proposed a method for motif-based hierarchical attentional
graph neural network representation learning, called MBHAN. It consists of a node-level
attention mechanism and a motif semantic attention mechanism. MBHAN does not require
any prior knowledge, but instead seeks to reflect the node features from different perspec-
tives. MBHAN treats the relative importance of various node types differently for the node
embedding during the learning process. This enables it to capture subtle nuances caused
by having different node types in the motif subgraphs. A full-scale evaluation of the perfor-
mance of MBHAN was undertaken on two heterogeneous graph datasets, which involved
node classification and clustering tasks, and the impact of various hyperparameters on its
performance were also evaluated. The F1 and NMI metrics of the results and a statistical
analysis show that the proposed method can outperform other state-of-the-art methods.

It should be noted that the feature space mapping proposed by MBHAN is still not
able to completely solve the problem of there being incompatible feature spaces for different
node types in heterogeneous graphs. This will therefore be the focus of our future research.
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