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Abstract: The finite element method (FEM) is an essential method for predicting the response of
the spar platform considering all nonlinear variables. Although FEM is an extremely laborious
and time-consuming process for predicting platform responses using hydrodynamic loads, artificial
neural networks (ANNs) can predict the response quickly, as required for platform management to
either linger or stop the production of oil and gas. The application of ANN approaches to estimate the
wave height and period from the expected wind forces is investigated in this paper. The ANN model
can also predict the nonlinear responses of the spar platform subjected to the structural parameter as
well as the wave height and wave period. The backpropagation technique depletes feed-forward
neural networks, allowing the network to be trained. Following the formation of the neural network,
rapid reactions from a freshly anticipated wind force are obtained. The results are validated via
a comparison with results from a conventional finite element analysis. The findings demonstrate
that the artificial neural network (ANN) technique is effective and is able to significantly reduce the
required time to make predictions when compared to the conventional FEM.

Keywords: spar platform; finite element method; artificial neural networks; response prediction;
environmental forces

1. Introduction

Offshore structures arrange immense potentials for the progress and utilization of
oceanic energy and resources. Offshore industrializations are moving rapidly towards deep
seawaters for oil and gas exploration in oceanic environments to meet global energy de-
mands. Typically, these constructed structures are subjected to more severe load conditions
than those seen on land. The main source of structural load pressure for soil foundations is
the ocean waves affecting the platform. In addition to the conditions and situations that
often occur in inland structures, offshore structures have additional complications due to
their location in the marine environment, where hydrodynamic interactions and dynamic
reactions are essential considerations in their design. An offshore structure based on mobil-
ity can be of two types: offshore fixed structures and offshore floating structures. In shallow
waters, both fixed types of offshore-based structures (gravity and jacketed platforms) are
cost-effective and practical. Using fixed platforms, mainly in deep water (nearly 300 m
deep), is vulnerable to technical complications linked to economic issues that increase
rapidly as the water depth increases. Contrarily, compatible floating structures such as
tension leg platforms and spar platforms provide an economical solution to exploration
and production facilities in profound and ultra-deep water [1].
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Most floating-on-water-based offshore structures are largely ostentatious by certain
uncertainties primarily related to steep and nonlinear waves, wind, and currents, which
cause the ringing and springing of tension leg platforms (TLPs), slow the drift-yaw motion
of floating production, storage, and offloading (FPSO), and significant oscillations in spar
platforms due to vortex shedding [2].

Due to non-linearities such as geometry, changeable pretension, and varying immer-
sion, investigating floating offshore constructions such as spar platforms and evaluating
their environmental impact is difficult. Spar platforms are the most suitable and economi-
cal offshore floating structures suitable for deep-sea waters. In the exploration phase of
oil and gas drilling operations, several environmental and associated forces often affect
offshore floating structures. An early decision should be made to either delay or stop
production based on the prediction of the spar platform’s response to several anticipated
environmental situations.

The finite element method (FEM) can be considered a key practice for dealing with
such analysis. Several recent studies have been conducted to forecast and predict the
responses of spar types of platforms using several conventional methods [3–6]. However,
utilizing such methodologies to analyze the reaction of spar platforms is time-consuming
and difficult.

Artificial neural networks (ANNs) are cutting-edge algorithms that can deliver very
quick and efficient results in instances where a traditional analysis would be quite difficult.
Hence, Simoes et al. [7] developed an ANN model to predict the mooring forces and analyze
the dynamic behavior of guard tent and FPSO in a tandem configuration. It is of great
importance to monitor the integrity of the mooring lines [8] on floating offshore platforms
in order to detect any damage or failures. To address the problem, Sidarta et al. [9] exploited
an ANN model for mooring line damage detection based on a proprietary methodology
that only uses GPS tracking to detect tiny fluctuations in the long drift period of a moored
floating vessel as a signal of mooring line failure. ANN was applied by Yee et al. [10] for
the purpose of monitoring the health of a floating offshore structure’s mooring line. Two
machine learning models, a gradient-boosted regression tree (GBRT) and an artificial neural
network (ANN), were used to forecast offshore platform risk assessments [11]. In other
work, Uddin et al. [12] predicted the top tension response of the spar mooring lines using
an ANN for a long-time history. This style was appropriate for averting ship strikes and
maintaining the mooring line.

Response-based hydrodynamic models (SAMERS) were suggested by Mazaheri et al.
to predict the excursion and mooring power of the FPSO over a lifetime of year N [13,14].
They computed the responses from an offshore floating-based platform exposed to arbitrary
waves, current loads, and wind. Hybrid versions of the ANN-FEM technique have been
implemented by Guarize et al. [15] for a long-term time-based history to predict the retort
of the FPSO and for the indiscriminate dynamic-based response of ladder tubes as well as
for mooring lines.

Pina et al. [16] have developed an ANN-based surrogate model for predicting the
response of offshore structures. They used FEM instead of dynamic analysis. The authors
employed the line tension of FPSO to find the test model, and the results demonstrated that
ANN is highly successful in precisely and swiftly anticipating responses. Moghim et al. [17],
Shafiefar et al. [18], Shafiefar and Moghim [19], and Zhou and Luan [20] used ANNs to
forecast the hydrodynamic forces caused by waves and currents on thin cylinders.

With an ANN-based technique, the current study proposes a nonlinear prediction of
spar platform responses under numerous environmental-related factors, such as the wave
period and wave height. By using entirely new environmental forces as inputs for the
ANN, it was found that the response of the spar platform time history could be predicted
more accurately. The findings demonstrate that the ANN technique is proficient and can
ominously shorten the computation time required to predict response time histories.
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2. Materials and Methods
2.1. Finite Element Modelling and Analysis

To implement pairs of completely integrated spar hulls and mooring lines that are
coupled under wave loading, a finite element model (FEM) was used. The spar platform
analysis considers the actual physical connection between a vertical rigid floating hull and a
mooring line. Such a unique model can capture all different types of loading, nonlinearities,
and boundary conditions [21]. Thus, the integrated binding consequence used in this study
was examined to demonstrate the drag damping importance in mooring systems under
deep water conditions. The FEM code AQUA/ABAQUS was utilized to find the responses
of the spar types of the platform.

The primary purposes of this research are to achieve the right catenary shape of the
mooring line under gravity (self-weight), stiffness, and axial tension, all of which are
related to its mean curvature. This equilibrium state is obtained conclusively when the spar
cylinder is gently released under buoyancy. This dynamic analysis was performed under
normal seawater circumstances.

A decoupled quasi-static method that totally or partially ignores the influences of
the interaction between the platforms and mooring lines is the most commonly used
strategy for handling the dynamics of a spar platform. In this technique, the mooring
lines are used to model as massless linear or nonlinear springs. For the mooring line
responses, the platform motions are applied in a comprehensive finite element model of
the catenary mooring line as an external loading with regard to the imposed boundary
conditions. Hence, the dynamic interactions between mooring lines and platforms are
not appropriately modelled in the uncoupled conventional analysis [22]. For platforms
in deeper waters, moorings often contribute to considerable damping and inertia due to
their longer length, greater weight, and greater dimensions. These damping values must
be taken into account in order to provide an appropriate motion analysis of a platform in
deep waters.

2.1.1. Modeling of the Spar Platform

The installation of a spar platform at a depth of 1018 m was selected for this study.
The spar platform is mainly made up of three parts: spar hulls, a riser, and mooring
lines. The geotechnical and mechanical characteristics of the mooring system are listed
in Table 1. Table 2 also shows the hydrodynamic characteristics and properties of the
marine environment.

In the vertical guiding position, the spar hull was depicted as a rigid beam with a
mooring line securing it to the bottom. The riser’s reaction point was attached to the riser.
Six springs were used to connect the hard spar platform to the flexible mooring lines (three
for translations such as surge, heave, and sway and three for rotations such as pitch, roll,
and yaw). The translation spring had a relatively high individual stiffness, but the rotation
spring had a relatively low stiffness, approximating a hinge connection.

The relevant mooring line was designed to cover all sorts of significant non-linearity,
including low deformation and variable deformation non-linearity. The mooring line was
developed using the hybrid beam element. It has been called a hybrid system since the
situation uses two shape functions to preserve the catenary shape of every mooring line:
one to simulate elastic behavior and the other to simulate axial tension. For simplicity of
convergence, other elements such as linear or nonlinear truss elements can be explored in
addition to the hybrid beam element.

For modeling purposes, the seabed was treated as a rigid plate. The mooring line
was in contact with the seafloor but did not penetrate it. This interface was modeled as
a frictionless surface-to-surface contact. For contact interaction, the surfaces around the
mooring lines and the seabed surfaces were chosen. For the final pieces, the integrated spar
hulls and mooring lines were simulated in the ABAQUS code, as illustrated in Figure 1.
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Table 1. Geometrical and mechanical properties of moorings and spar hull.

Description Value Unit

Sea-bed size 5000 × 5000 m2

Spar (Classic JIP Spar)

Length 213.044 m
Diameter 40.54 m
Draft 198.12 m
Mass 2.515276 × 108 kg
Mooring Point 106.62 m
No. of Nodes 17
No. of Elements 16
Type of Element Rigid beam element

Depth of Water 1018 m

Mooring

No. of Moorings 4
Length 2000.0 m
Stiffness (EA) 1.50 × 109 N
Mass 1100 Kg/m
Mooring line
pretension 1.625 × 107 N

No. of Nodes 101
Element Type Hybrid beam element

Table 2. Hydrodynamic Properties for spar platform.

Description Coefficient Value

Spar
Drag 0.6
Inertia 2.0
Added mass 1.0

Mooring line
Drag 1.0
Inertia 2.2
Added mass 1.2
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2.1.2. Response Analysis of Spar Platform

In our current investigation, a completely coupled analysis of the mooring line and
spar hull was performed as a single and integrated prototype. At each phase, this tactic
maintained a dynamic steadiness among the forces operating on the mooring lines and spar
hull. This accurately depicted the damping and showed the genuine behavior of the spar
hull and mooring line arrangement. A completely integrated analysis method was used
to determine the ability to forecast the platform’s response more correctly. The structural
behavior of the spar platform was examined after it was simulated and studied under
hydrodynamic loadings.

The wave data were considered when analyzing responses in Morrison’s regime, and it
was assumed that these measures provided statistical stability in the structure and accuracy
in the solutions for short periods [23]. The results of the response analysis of the platform
and the detailed responses of the mooring lines are presented. Dynamic and static loads
were applied depending on the analysis. The model automatically incorporated the stress
and stiffness related with the mean curvature. Hence, it was an accurate approach. The
wave loading of the mooring line was carried out at each stage.

2.2. Artificial Neural Network

An ANN was employed to develop models to predict the response of the spar platform.
The reaction of the spar platform was anticipated using the ANN model, and the wave
period and height were obtained. Prior to that, the wave period and height were anticipated
by means of forecasting the wind speed and the ANN model. The ANN model was
developed in this study considering a nonlinear autoregressive network model (NARX)
to predict the wave period and wave height. The NARX is a dynamic recurrent neural
network model with many layers involving feedback connections. The NARX model can
be expressed mathematically as follows:

y(t) = F(x(t − 1), x(t − 2), . . . , x(t − n), y(t − 1), y(t − 2), . . . , y(t − n)) (1)

where F(.) is the nonlinear function assessed by a multi-layer perceptron, x(t − n) and
y(t − n) are the input and output of the network at the time (t − n), respectively, and n is
the input delay. The trained network can predict output y(t) based on the input values.

The NARX network contains five neurons in the hidden layer with an activation
function and two-step delays for both the input and the output. The Levenberg–Marquardt
backpropagation [24,25] algorithm helps to obtain the minimum mean square error (MSE)
between the target and output by adjusting the weights and bias. In total, 1460 data samples
were collected, of which 992 were used for training, 234 were used for validation, and 234
were used for testing. The NARX network was trained and predicted the wave height and
wave period from randomly selected wind forces.

The obtained wave height and wave period, along with the geometrical and mechani-
cal properties (Table 1) and hydrodynamic properties (Table 2), were used as inputs for the
response prediction of the spar platform using an ANN. A feed-forward backpropagation
neural network was used to develop the ANN model for the prediction responses such as
the heave, surge, and pitch of spar hulls and the top tension of the mooring line. The ANN
architecture primarily consists of input, output, and hidden layers. The ANN architecture
may be expressed mathematically as

yj(t) = ϕ
(
xi(t) Wij + b

)
(2)

where xi(t) is the value of the input at time t; i is the number of inputs; yj(t) is the value of
the output, which consists of responses at time t; j is the number of output data; Wij is the
weight that is multiplied with the input; b is the bias; and ϕ is the activation function.
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The activation function can be utilized via a hyperbolic tangent sigmoid transfer
function that can be expressed as

ϕ(x) = tan sig(n) =
2

1 + e−2n − 1 (3)

The hidden layer contains 20 neurons with a transfer function in the ANN and the
output layer with a purely linear function type of activation function. When the ANN
results differed from the anticipated output response, the Levenberg–Marquardt backprop-
agation was employed to reduce error. The weights were determined using the gradient
optimization method, and the ANN network was created using the trial-and-error method.
The effectiveness and efficiency of the network were then measured using MSE. In order to
observe the ANN performance, the root-mean-square errors (RMSE), correlation coefficient
(R), and bias were calculated using the following expressions:

Bias =
1
n

n

∑
i=1

(
yi(Predict) − yi(Target)

)
(4)

RMSE =

√√√√∑n
i=1

(
yi(Predict) − yi(Target)

)2

n
(5)

R =
∑n

i=1

(
yi(Target) −

−
y(Target)

)(
yi(Predict) −

−
y(Predict)

)
√

∑n
i=1 (yi(Target) −

−
y(Target) )

2
∑n

i=1 (yi(Predict) −
−
y(Predict) )

2
(6)

where yi(Target) is the target value at the ith step, yi(Predict) is the predicted value at the

same step, n is the number of increments,
−
y(Target) is the average target, and

−
y(Predict) is the

average of the predicted values.
The time history data that contain 3000 s responses (i.e., surge, heave, pitch, and top

tension) of the spar platform obtained from FEM were used as the target in the ANN. The
data were randomly divided into three groups: 70% for training, 15% for validation, and
15% for testing. Before training the ANN, the input and target data were normalized within
the range of −1 to 1 using the following equation:

a
xi − xmin

xmax − xmin
+ b (7)

where xmin and xmax are the minimum and maximum values of input and target, and a and
b are the scaling factors. The network was trained by the iterative process, and it stopped
when the error variation was too small.

3. Results
3.1. Prediction of Wave

The NARX neural network model was used to forecast the wave height and period
based on a random wind force. Because the gradient of the performance function tended
to be zero, the ANN network training was terminated after 436 training epochs. The
performance of the NARX neural network model was evaluated by comparing the predicted
results with the observed data for the wave height and wave period (Figures 2 and 3,
respectively).
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Figure 3. Comparison of ANN results and observed data of wave period for the training results.

Figure 4a,b compares the observed data and the results predicted by the ANN model
of wave period and wave height for the training results. Here, the ANN model’s predicted
results and observed values are plotted with corresponding trend lines. In the ANN model,
the overall prediction accuracies were discovered to be good.

The predictions of wave period and wave height, using a randomly chosen wind force
as the input, along with the observed data for testing, are shown in Figure 5a,b, respectively.
Despite modest changes in the observed and anticipated wave height and length due to
the new randomly picked wind force, the ANN model’s overall performance was good.
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3.2. Surge Response

The FEM model’s predictions of the surge response of the spar hull for an 11.39 s wave
period and a 12.65 m wave height were contemplated to validate the ANN model in the
current study. Figure 6 shows the surge responses of the spar hull from the training data of
the ANN model results alongside the FEM results. The expected responses of the network
outcome align with the FEM results.
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for 11.39 s wave period and 12.65 m wave height.

The statistics of the surge response of the spar platform predicted by ANN and FEM
for a wave height of 12.65 m and wave period of 11.39 s for the training results are shown
in Table 3. The ANN model was used to predict the surge response based on newly chosen
environmental forces and a mechanical parameter (Figure 7). A 3000 s time history of surge
response was predicted by the ANN model for a wave height of 9.65 m and a wave period
of 10.10 s.
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Table 3. Statistical surge response of spar platform for wave height of 12.65 m and wave period of 11.39 s.

Response of Surge (m) Max Min Mean Std. Deviation

ANN model 11.311 −10.154 0.916 3.917
FEM 11.279 −9.497 1.017 3.741
Difference (%) 0.29 6.478 9.93 4.477

3.3. Heave Response

The prediction of the heave response of the spar hull using the ANN model was
compared with the FEM results for a wave height of 9.65 m and a 9.94 s wave period
(Figure 8). The figure shows that the training data of the ANN model results follow the
same trends as the FEM results.
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Figure 8. The heave response time history predicted by the training data of ANN and FEM results
for wave height of 9.65 m and wave period of 9.94 s.

The statistical heave responses for a wave height of 9.65 m and a wave period of 9.94 s
are reported in Table 4, as predicted by both the ANN and FEM approaches. The results
show that the ANN approach is suitable for predicting the heave response.

Table 4. Statistical heave responses of ANN and FEM at a wave height of 9.65 m and a period of 9.94 s.

Heave Response (m) Max Min Mean Standard Deviation

Resp-Pred 0.574 −0.575 0.033 0.222
FEM 0.675 −0.668 0.033 0.250
Difference (%) 14.96 13.92 0.480 11.2

The performance of the ANN approach was assessed by the heave response predictions
of a spar platform using newly selected environmental force and mechanical parameters
and comparing these predictions with the FEM results (Figure 9). The 3000 s heave response
time history was predicted for a wave height of 6.65 m and a wave period of 8.25 s. The
heave response oscillated about the mean location, alternating between smaller and greater
amplitudes and repeating the same trend over time. The fluctuations narrowed by around
20% as they progressed from wide to narrow.
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Figure 9. Heave response time history predicted for wave height of 6.65 m and wave period of 8.25 s.

3.4. Pitch Response

The ANN model was used to validate the pitch response results and FEM results for a
wave height of 9.65 m and a wave period of 9.94 s. Figure 10 presents the convergence of
the predicted values from the ANN training data and the FEM response of the spar hull.
As shown, the outcomes forecasted by the ANN model results and the FEM results follow
similar trends.
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Figure 10. The pitch response time history predicted by the training data of ANN and FEM results
for wave height of 9.65 m) and the wave period of 9.94 s.

Table 5 displays the ANN’s statistical pitch response and the FEM results for a wave
height of 9.65 m and a period of 9.94 s. The results of the ANN technique indicate accurate
pitch response predictions.

Table 5. ANN and FEM statistical pitch responses for wave height of 9.65 m and the wave period of 9.94 s.

Pitch Response (m) Max Min Mean Standard Deviation

FEM 0.055 −0.057 0.00026 0.021
Resp-Pred 0.057 −0.057 0.00019 0.021
Difference (%) 3.56 0.287 24.038 0.173
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The average prediction error was less for the prediction of the pitch response of the
spar hull based on the newly chosen mechanical parameters and environmental forces
(Figure 11). The response for a time history of 3000 s, wave height of 12.65 m, and wave
period of 11.39 s was predicted by the ANN, and the outcomes were compared with the
FEM model results. The pitch response exhibited a peak value of 0.8 rad.
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3.5. Maximum Mooring Tension Response

The maximum mooring response was predicted by the ANN model using training
data; the results were then compared with the FEM model’s results (Figure 12). The
prediction of the top tension responses of the spar platform was obtained by considering a
wave height of 12.65 m and a wave period of 11.39 s. The ANN model’s predictions aligned
with the FEM findings.
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Figure 12. Mooring line tension response predicted using training data by ANN and FEM models for
12.65 m wave height and 11.39 s wave period.

Table 6 presents the statistical analysis of the mooring line tension response of the spar
platform concerning the FEM and ANN results. The results of the ANN model are suitable
for predicting the top tension response in terms of newly chosen mechanical parameters
and environmental forces (Figure 13). The top tension response for the 3000 s time history
was predicted by the ANN model and compared with the FEM model results for a wave
height of 11.30 m and a wave period of 14.15 s.
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Table 6. FEM and ANN results for statistical mooring line top tension response for wave height of
12.65 m and time of 11.39 s.

Mooring line Tension (N) Min Max Mean Standard Deviation

Resp-Pred 11,182,323.9 17,085,820.59 16,263,011 463,165.8
FEM 11,182,200 17,062,834.5 16,266,318 463,666.5
Difference (%) 0.001 0.13 0.020 0.108
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Figure 13. Top tension response time history predicted for 14.15 s wave period and 11.30 m wave height.

4. Discussion

The performance of the artificial neural network (ANN) model was evaluated primar-
ily using three parameters: root-mean-square errors (RMSE), the coefficient of correlation
(R), and bias (Table 7). The statistical parameters were analyzed from the network-predicted
results and the target for the training data. The ANN results exhibited good performance for
predicting the wave height and wave period, as revealed by the high correlation coefficient
values of 0.996 and 0.989, respectively.

Table 7. The statistics of the ANN models for training results.

Parameter Max. Error Min Error Standard
Deviation Error RMSE Bias R

Wave Height (m) 0.3368 −0.4832 0.0662 0.0673 0.0123 0.996
Wave Period (s) 0.6969 −2.1046 0.2078 0.2106 0.0344 0.989

The artificial neural network (ANN) model’s predictions were compared to the ob-
served values of wave height and wave period. It was critical to train the network so
that the series-parallel configuration errors were relatively tiny for the model to be effec-
tive in parallel response (iterated prediction). The greatest prediction error was less than
±1 per cent, and this model can estimate wave height and period based on randomly
selected wind forces.

The relative comparison between the ANN and FEM models’ results for surge response
error is shown in Figure 14. The ANN model’s overall performance was obtained to be
reliable for predicting surge responses.
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Figure 14. Surge response error between ANN and FEM model results for wave height of 12.65 m
and wave period of 11.39 s.

Figure 15 shows the standard error bar of heave responses between the ANN model
and FEM results for the 9.65 m wave height and 9.94 s wavelength. The ANN model’s
response predictions were very accurate.
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Figure 15. Heave response error between ANN and FEM model results for wave height of 9.65 m
and the wave period of 9.94 s.

The pitch response error obtained by the difference of predicted responses by ANN
and FEM is depicted in Figure 16. The overall prediction performance of the neural network
was decent.
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Figure 16. Pitch response error between ANN and FEM model results for wave height of 9.65 m and
wave period of 9.94 s.

The maximum mooring line tension response error was calculated based on the
difference between the FEM results and ANN results (Figure 17). The predicted FEM and
ANN results were plotted for a wave height of 12.65 m and a wave period of 11.39 s.
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Figure 17. The mooring line response error between ANN and FEM for 12.65 m wave height and
11.39 s wave period.

The performance of the ANN model was assessed based on how much the predicted
responses differed from the obtained FEM results and generated errors. As shown in Table 8,
the correlation coefficient (R) and root-mean-square error (RMSE) reflect the network’s
error function and prediction abilities, respectively.

Table 8. Results predicted by ANN and FEM in a statistical comparison of Spar mooring responses.

Parameter MaxE MinE StdevE Bias RMSE R

Surge response (m) 2.564 −2.749 0.75 0.1005 0.757 0.9819
Pitch response (rad) 0.004 −0.003 0.001 0.0001 0.001 0.999
Heave response (m) 0.119 −0.128 0.041 −0.0002 0.041 0.9919
Top tension (N) 116230 −88155 35704 3307.5 35839 0.997
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Based on the above discussion, the ANN model can predict the surge, pitch, and heave
response of a spar hull and the maximum mooring line response using untrained wave
height and wave period data as well as structural parameters. It has been observed that
the ANN model is highly efficient and considerably reduces the time needed to predict
response time histories of spars and mooring lines. The responses of the spar platform
predicted by the ANN model correlate well with the FEM results. However, an ANN model
that has already been trained and formed the networks for a spar platform cannot predict
the response for other different types of platforms.

5. Conclusions

Using newly chosen wave periods and wave heights, an ANN model was used
to anticipate the responses of a spar platform. Based on structural and environmental
limitations and parameters, this attempt forecasted the heave, surge, and pitch response of
a spar hull as well as the top tension of mooring lines.

The ANN model remains effective and can significantly reduce the prediction time of
spar hull and mooring line response time histories.

The spar platform responses predicted by the ANN technique align with FEM-
derived outcomes.

The required time to calculate the response of a spar platform by means of the ANN
technique is 10 s with 4.0 GB of RAM (i3-2100 CPU @ 3.10 GHz) on a normal desktop PC,
while the FEM model on a Dell Workstation (Intel Xeon E5620 @ 2.40 GHz and 8 GB of
RAM) takes 23 h. Rapid forecasting using the ANN will assist in making decisions related
to whether to stop or continue oil and gas production in the event of adverse weather
conditions. Furthermore, the practice of ANN does not necessarily require the on-site
attendance of a skilled technical person to obtain the platform responses.

The accuracy of predicting the spar platform responses within the range of the training
data was 90.0%.

The accuracy of predicting responses outside the range of the training data was 85.35%.
Thus, accurate results can be obtained if more data are used for training.

An artificial neural network (ANN) can be used to monitor the responses of spar
platforms in the face of extreme storms, unintentional collisions with supply vessels, and
more. For safety analysis and design, an ANN can be employed to investigate the reliability
of the spar platform.
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