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Abstract: Steel surface defect detection is challenging because it contains various atypical defects.
Many studies have attempted to detect metal surface defects using deep learning and had success in
applying deep learning. Despite many previous studies to solve the steel surface defect detection,
it remains a difficult problem. To resolve the atypical defects problem, we introduce a hierarchical
approach for the classification and detection of defects on the steel surface. The proposed approach
has a hierarchical structure of the binary classifier at the first stage and the object detection and
semantic segmentation algorithms at the second stage. It shows 98.6% accuracy in scratch and other
types of defect classification and 77.12% mean average precision (mAP) in defect detection using the
Northeastern University (NEU) surface defect detection dataset. A comparative analysis with the
previous studies shows that the proposed approach achieves excellent results on the NEU dataset.

Keywords: defect detection; deep learning; steel defect detection; RetinaNet model; UNet

1. Introduction

In recent years, digital transformation has been rapidly spreading in the manufac-
turing industry, and the concept is expanding from factory/process automation to the
smart factory. Among the related technologies, automatic vision inspection technology,
in particular, was created by combining machine vision and artificial intelligence tech-
nology. Its application is extensive and used in all manufacturing processes that require
inspection [1–5]. The automatic vision inspection is a technology that automatically detects
defects in parts of a product in a manufacturing line. The automatic vision inspection
system takes an image of the finished part (or end product) from a dedicated camera
installed on the production line and compares it with the normal product image to check
for any defects. By detecting in advance the defective parts during the manufacturing
stage, there is the possibility of a lower final defect rate and increased product productivity,
thereby enhancing the reliability and profit of the company. The traditional manufacturing
defect inspection is a method that relies on human eyesight and has the advantage of
being able to detect various types of defects very quickly and accurately, depending on
the skill level of the inspector. However, it takes a large amount of time and money to
train skilled inspectors. In addition, it has the disadvantage of missing defects due to the
accumulation of fatigue caused by the long-term work of the operator. On the other hand,
machine vision is a system that replaces a human inspector for the visual inspection of
product defect detection with a computer [6–19]. However, full automation is difficult to
achieve due to many variables. Although it is a necessary technology for factory/process
automation, it is still in the growing phase. Conventional machine vision technology is
developed in a rule-based way. After defining the good products first, the method of
classifying non-good products as defective products was adopted. At the time of the initial
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introduction of machine vision, it was evaluated as a groundbreaking technology that
could make accurate and consistent decisions, but it gradually showed limitations. As the
industry is segmented, more sophisticated technologies are needed. For example, parts
and products have been miniaturized and more diversified throughout the manufacturing
industry, such as machinery, automobiles, semiconductors, and electronic products. The
demand for rapid and accurate technology development for precision (may be precise)
parts has also increased rapidly. In particular, as atypical defects are difficult to distin-
guish by general definition, there is an active movement to introduce artificial intelligence
(AI) technology, such as machine learning (ML) and deep learning to automatic vision
inspection. Among AI technologies, the deep learning-based vision inspection system, in
particular, guarantees high accuracy and efficiency in areas that are difficult to inspect by
conventional methods [20–34].

On the other hand, with the development of the automobile, aerospace, and ship-
building industries, the importance of the steel industry is also increasing. As a result,
the requirements for automated technology for steel surface defect detection to control
the quality of steel products are increasing. Steel surface defects contain various atypical
defects, such as pitted surface, inclusion, patches, rolled-in scale, crazing and scratches;
thus, it remains a difficult problem. Many previous studies have tried to solve the steel
surface defect detection problem by using only one ML or deep learning-based meth-
ods, such as object detection and image segmentation. Despite the introduction of deep
learning technology, it is difficult to detect all of the aforementioned metal surface defects
accurately [35–37].

In this study, we propose a hierarchical approach for steel surface defect detection,
which has a hierarchical structure of the binary classifier at the first stage and the object
detection and image segmentation algorithms at the second stage. In general, an object
can be defined based on the characteristics such as closed boundary, different appearance
and uniqueness. Most defective types of steel surfaces, such as pitted surfaces, inclusion,
patches, rolled-in scale, and crazing, can be considered objects. However, scratches are very
thin and elongated in shape, so they are not included in the general category of objects.
We defined scratch detection as an image segmentation problem and other types of defect
detection as an object detection problem. In the first stage, the binary classifier classifies
whether the input image is an image containing a scratch defect or an image containing
other types of defects. In the second stage, an image segmentation algorithm for detecting
scratches or an object detection algorithm for detecting other types of defects is applied
according to the classification result of the first stage. We obtained 98.6% accuracy in scratch
and other types of defect classification and 77.12% mAP in defect detection using the NEU
surface defect detection dataset.

The organization of the paper is as follows. In Section 2, we discussed the related work
on traditional and state-of-the-art methods in defect detection, followed by the hierarchical
steel surface detection methodology explaining the proposed steel surface defect detection
model in Section 3. In Section 4, the experiment evaluation is illustrated. Section 5 provides
the analysis and discussion. Finally, the paper is concluded in Section 6.

2. Related Work
2.1. Traditional Methods

The traditional methods are also referred to as ML methods. They are the tradi-
tional techniques for image processing. The traditional techniques are broadly classi-
fied as statistical-based, structural-based, spectral/filter-based, and model-based. The
statistical technique is based on the pixel value distribution of the given images. The
methods included in this technique are thresholding [6], gray-level [7], co-occurrence ma-
trix [8], histogram of oriented gradient (HOG) [9], and local binary pattern (LBP) [10]. The
structural-based technique is based on detecting the edges and skeleton of the images.
This method includes the following techniques: edge-based [11], skeleton-based [12], and
morphological-based [13]. The spectral/filter-based detection techniques are based on
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regions, texture and edges. Filtering is a process in which filter algorithms extract specific
features during the transformation process. Several approaches are classified into spatial
domain, frequency domain and spatial-frequency domain. The frequency domain methods,
such as Fourier transform [14], help to eliminate the noise from an image and then process
it. The shortcomings of the Fourier transform are determined by the Gabor filter [15],
which provides an optimal location of defects in spatial and spatial-frequency domains.
The wavelet transform [16] has a greater ability than the Gabor filter for defect detection.
It detects the defect location horizontally or vertically and diagonally through wavelets,
which are small waves of differing frequency in a limited time period. The model-based
techniques are the combination of certain attributes of the aforementioned approaches. The
models associated with this technique are the fractal model [17], Markov random field [18]
and autoregressive model [19]. The fractal models provide information regarding irregular
texture surfaces. The Markov random model is a combination of the above two approaches.
It has performed texture analysis defect detection on fabrics. Lastly, the autoregressive
model defines the textural features based on pixel linear dependency. The ML methods
have two-step processes, which include feature extraction and classification. The above
approaches are challenging for the real world due to several issues, such as the illumination
of the surface, noise, background factor and environmental factor. Due to this, every time,
we have to change the parameters according to the concern raised, which makes it difficult
to adapt to real-time applications.

2.2. Deep Learning Methods

The deep learning methods were introduced to overcome the drawbacks of traditional
methods. Various deep learning models have been introduced to date. In the paper [20], the
author introduced an end-to-end defect detection network (EDDN) on the metallic surface
based on the single shot multibox detector (SSD). The detection model base comprises
two modules; one is the visual geometry group (VGG)16 for feature extraction and non-
maximum suppression, as the model focuses on different scales of defects. Due to class
imbalance, the author introduces a hard negative mining technique to resolve the issue. The
mAP evaluated on the NEU dataset is around 72.4%. In the paper [21], Vira Fitriza Fadli et al.
introduced an automated and more sophisticated approach for defect detection on the steel
surface. The architecture uses Xception as the CNN model for defect detection. The model
performs a two-step classification of four types of defects, first the binary classification for
identifying the presence of a defect or not with resulting accuracy of 94% and then the multi-
classification to categorize the different types of defects with 85% accuracy. This technique
focuses on the classification method and not localization. In the paper [22], the author
proposes a defect classification model that endorses GoogleLeNet as its base model for
feature extraction. This model uses inception modules for extraction and a softmax classifier
for classification. The model achieves 98.5% classification accuracy. In the paper [23], the
author uses the VGG model [24] for defect classification with an accuracy of 90%. In the
paper [25], the author proposed a defect detection system DDN consisting of residual neural
network (ResNet) 50 [26] as a base model for classification. They introduce the multi-level
feature network for fusing all the features into one, which further helps the region proposal
network to evaluate the regions of interest for better detection. These regions of interest
are severed into two fully connected layers for classification and detection, resulting in
82.3% detection accuracy. In the paper [27], the author proposes an improvised faster
region-based convolutional neural network (Faster-RCNN) [28], along with the support
of multi-scale feature fusion for defect detection, resulting in 98.26% accuracy. The model
performed data augmentation to reach this result. Various other convolutional neural
networks (CNN), such as the OverFeat network [29], are the pre-trained models on the
ImageNet and COCO dataset and are used as a feature extractor for defect detection.
Various state-of-the-art approaches, such as Faster-RCNN [28], SSD [30], You Only Look
Once V2 (YOLOV2) [31,32], YOLO-V3 [33,34], including the above two, are introduced for
the defect detection on steel or metal surface. These models outperform the traditional
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methods on all classes of defects. In the coming section, the proposed model is compared
with the traditional and state-of-the-art methods.

2.3. Segmentation Methods

Image segmentation has proven to be one of the best ways of detecting defects on
any surface. Various semantic segmentation models have been introduced for defect
detection in the past few years. In the paper [35], the model used is a convolutional auto-
encoder and sharpening process to highlight the defective area on the NEU dataset. The
model segmented the illuminated parts of an image as defects, which led to compromised
efficacy and incorrect defect detection. The evaluation parameters are not discussed for
diagnosing the performance of the model. With regard to the other segmentation model,
a fully convolutional network (FCN), ref. [36] with transfer learning was proposed. The
model is tested on the NEU dataset, obtaining 98% classification accuracy. Although
the classification accuracy is satisfactory, the author still feels the contours of the defect
images are not segmented appropriately, due to which model is unable to achieve high
segmentation accuracy. Various papers have included the promising model UNet as their
base model with slight changes in the architecture and showed satisfactory results. The
author [37] proposed an FCN model influenced by UNet to detect defects on the DAGM
2007 textured surface dataset. The paper introduced two models with a slight tweak in
the architecture. Model 2 performed slightly better than model 1, with the intersection
over union (IoU) value of 68.3% and F1-score of 79%. However, the model accuracy is
still low, and there is room for further improvement. The paper [38] proposed UNet with
ResNet34 and an additional decoder for severity evaluation of the defects and to obtain the
two segmented images, one for defect information and another for defect severity. They
included production process parameters to improve the performance of the model. The
ground truth image provides a mask in box form, which led to false positive detection
and resulted in the poor performance of the model. The model is evaluated through
IoU metrics, which is around 40%. The paper [39] introduces DSUNet to overcome the
variability in the types of defects, shape and location. They introduced a multi-scale module
to improve segmentation between the encoder end and decoder start. The model’s dice
coefficient of 80.8% and accuracy of 95.4% were achieved on the SD-saliency-900 dataset.
The generalization of the model for other defects is not clear. The paper [40] used the
pre-trained transfer learning classic UNet model for feature extraction. No additional
features are used in the model to improve the segmentation, and model generalization is
fuzzy. The model resulted in a mean IOU (mIoU) of 84.3%.

Various enhancements have been carried out to existing models for better performance;
one of them is the attention module. Some papers have discussed the advantageous use
of the attention module in their proposed models. In paper [41], the author proposed the
PGA-Net model, a combination of two main modules, pyramid feature fusion (PFF) and
global context attention (GCA) network. The PFF module extracts features for fusing into
five resolutions. Along the boundary refinement block, the GCA network propagates the
information and refines boundaries from low to high-resolution feature maps. The model is
evaluated on the NEU dataset (containing three defects), resulting in 82.15% mIOU. Despite
the promising results, the model failed to detect some defects correctly due to overfitting.
The paper [42] discussed the dual attention network (DAN)-DeepLabv3+ model, including
a dual attention module and Xception as the backbone. Only three defects of the Severstal
defect dataset were considered. The first defect was weakly detected out of the three, due
to data imbalance and shape. The mIoU value of 89.9% was evaluated. The paper [43]
proposed a triple attention semantic segmentation network (TAS2-Net) architecture. Multi-
level feature extraction and focus context module are introduced to extract and fuse the
small defects with multi-level feature information for defect segmentation. The IoU of 86.3%
on the NEU dataset shows that the proposed model performed well. In [44], the author
introduced a model transfer learning-based UNet (TLU-Net) based on transfer learning,
with ResNet and DenseNet as encoders. The performance of both is compared, and it is
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observed that the pre-trained models performed relatively well compared to the random
initialization. The other paper [45], with the concept of transfer learning in the UNet model
with various pre-trained models as backbones, shows how the model’s accuracy increases.
Among all the backbones, EfficientNetb0 performed well.

3. The Hierarchical Steel Surface Detection Methodology

Many previous studies have employed object detection methods for steel surface
defect detection [20–34]. They reported that the results showed its inability to detect the
scratch defect. The other defects were precisely detected. The reason behind the model’s
incompetence in detecting scratches is its features and the visibility of the defect in an
image. The scratch defect look is a thin elongated line, whose clarity is affected by the
luminosity of the image, which further makes it difficult to distinguish the defect from the
background. In some images, the shape of the scratch was the whole image horizontally or
vertically, due to which the limited anchor boxes in the object detection model led to lower
detection of the scratch. The bounding boxes of ground truth (GT) and the anchor boxes
were not coordinating correctly. According to the literature review, the image segmentation
methods show good results in detecting scratches among steel surface defects [33–45]. Most
of the defects of steel surfaces, such as pitted surfaces, inclusion, patches, rolled-in scale
and crazing, can be considered objects because they satisfy most of the characteristics of
object definition, i.e., closed boundary, different appearance and uniqueness. However,
scratches are not included in the general category of objects.

To overcome the limitations of object detection and image segmentation approach for
steel surface defect detection, a proposed hybrid architecture for defect detection on the
steel surface is in this study. The proposed approach has a hierarchical structure of the
binary classifier on the top layer, the image segmentation algorithm for scratch detection
and object detection algorithm for detecting other types of defects on the second layer. The
image classifier of the top layer classifies the input image into scratch images and other
defect images. If the input image is classified as a scratch image, it is input to the image
segmentation algorithm of the second layer, that is, UNet, and the location of the scratch is
found through object segmentation. If the input image is classified as a different kind of
defect images, it is fed into an object detection algorithm of the second layer, i.e., RetinaNet,
and the defect is located. In the final phase, the result is evaluated with an evaluation
metric. The proposed architecture is shown in Figure 1.
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Figure 1. The overall architecture of the proposed approach.

3.1. Defect Image Classification

For defect image classification, the combination of CNN and ensemble algorithm is
carried out. In this study, three convolutional models, VGG16, VGG19 and ResNet50, are
experimented with, and out of them, VGG16 outperforms the other two models. In Table 1,
it is clearly depicted that VGG16 accuracy is better than the other two models. The VGG16
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convolutional neural network is used as a feature extractor model where it extracts the
features of defects. The architecture is a simple and uniform convolutional network. It
is a recognized and preferred choice for feature extraction. It is the pre-trained model on
the imagenet dataset. The input to this network has the dimension of 256 × 256 × 3. The
VGG16 has a total of five convolutional blocks. The first two convolutional blocks provide
two convolution filters, followed by max-pooling and the remaining three convolutional
blocks contain three convolution filters, followed by max-pooling. The final output of this
feature extractor is in the shape of 8 × 8 × 512. These extracted features go through the
ensemble model, the XGBoost classifier [46], for the classification of the defects. XGBoost
(extreme gradient boosting) is a ML algorithm based on the decision tree. XGBoost is a
scalable boosting tree that optimizes gradient boosting. It is capable of handling missing
data and overfitting issues, through a parallel process. The system is optimized through
parallelization. It handles sparse data and performs out-of-core computation with large
datasets. In steel surface defect detection where time is the critical factor, XGBoost can
handle this factor, as it is computationally fast and requires fewer resources for computation.
This algorithm is the most effective ML algorithm among most of the existing ones for
classification. The XGBoost’s main feature is the gradient descent algorithm. The results
of this ensemble algorithm are promising. The XGBoost subsists of classification and
regression modules. In this study, we need the classifier module. The reason behind using
this algorithm is that it involves less computational resources and requires less time for
classification, compared with other ensemble algorithms. It uses the depth-first approach
and avoids overfitting through regularization. It is capable of handling missing data
and has an in-built cross-validation feature for determining the model’s effectiveness and
reduces the bias and variance. After the classification of the defects, it goes to the detection
phase consisting of two models parallelly aligned. The first one is the object detection
model, RetinaNet, and the other is the image segmentation model UNet. The five defects
(crazing, inclusion, pitted surface, patches, rolled-in scale) pass through the RetinaNet
model, and the scratch defect goes through the UNet model.

Table 1. Comparison between the three feature extractor models.

Feature Extractor VGG16 VGG19 ResNet50

Accuracy 98.6 97.2 92.2

3.2. Object Detection for the Pitted Surface, Inclusion, Patches, Rolled-In Scale and Crazing
Defects Detection

To provide an algorithm for real-time applications, the one-stage detectors, Reti-
naNet [47], as the defect detection for pitted surface, inclusion, patches, rolled-in scale
and crazing is employed. The RetinaNet model, compared with other state-of-the-art
detectors, has a simple architecture with good speed and acceptable accuracy. The Reti-
naNet architecture comprises the following three sections: first, the backbone network;
second, the classification subnet and third, the regression subnet. The backbone network
section comprises of a bottom-up pathway and a top-down pathway. The input image
is passed through the bottom-up pathway, consisting of ResNet50 as a feature extractor.
This extractor generates the multi-scale feature maps in bottom-up hierarchical form. Each
feature maps belongs to the last layer of the convolution stage. In the bottom-up path,
the semantic values increases and the spatial resolution decrease. In the top-down path-
way, a feature pyramid network (FPN) [48] generates the multi-scale feature maps from
semantic-rich layers in a top-down hierarchy. The hierarchy of the feature maps generated
by the ResNet50 is laterally connected with the feature maps of FPN on the same spatial
size with strong semantics. The levels in FPN mainly focus on providing the hard features
that are difficult to detect. The output feature maps of FPN are used in the prediction of
objects and their classes. The block diagram representation of FPN is shown in Figure 2.
The classification subnet section consists of a fully convolutional network connected to
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each level of FPN. The feature maps generated at each pyramid level serve as input to the
classification subnet. These feature maps go through four sets of convolutional layers of
size 3 × 3 with 256 filters each, followed by rectified linear unit (ReLU) activation, again
with a convolutional layer of size 3 × 3 with C × A filters, where C is the number of classes
and A is the number of anchor box, followed by sigmoid function for classification of
objects. The regression subnet is attached to FPN and aligned parallel to the classification
subnet. The subnet has identical convolutional layers to the classification subnet, except
for the last convolutional layer with 4 × A filters. This subnet detects the bounding box
of an object present in an image. The final image output is predicted with the bounding
box and respective class. The reason to choose this model is that it performs better than
the one-stage detectors. Approximately, there is a gap of 6 points in the average precision
(AP) of RetinaNet with the nearest competitor model, deconvolutional single shot detector
(DSSD). The two-stage detectors are well-known for good accuracy, Faster R-CNN is the
top-performing model among them; regardless of that, RetinaNet surpasses the model with
a gap of 2.3 points. This model uses focal loss as its loss function, which is very good for
class imbalance.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 18 
 

the ResNet50 is laterally connected with the feature maps of FPN on the same spatial size 

with strong semantics. The levels in FPN mainly focus on providing the hard features that 

are difficult to detect. The output feature maps of FPN are used in the prediction of objects 

and their classes. The block diagram representation of FPN is shown in Figure 2. The clas-

sification subnet section consists of a fully convolutional network connected to each level 

of FPN. The feature maps generated at each pyramid level serve as input to the classifica-

tion subnet. These feature maps go through four sets of convolutional layers of size 3 × 3 

with 256 filters each, followed by rectified linear unit (ReLU) activation, again with a con-

volutional layer of size 3 × 3 with C × A filters, where C is the number of classes and A 

is the number of anchor box, followed by sigmoid function for classification of objects. 

The regression subnet is attached to FPN and aligned parallel to the classification subnet. 

The subnet has identical convolutional layers to the classification subnet, except for the 

last convolutional layer with 4 × A filters. This subnet detects the bounding box of an 

object present in an image. The final image output is predicted with the bounding box and 

respective class. The reason to choose this model is that it performs better than the one-

stage detectors. Approximately, there is a gap of 6 points in the average precision (AP) of 

RetinaNet with the nearest competitor model, deconvolutional single shot detector 

(DSSD). The two-stage detectors are well-known for good accuracy, Faster R-CNN is the 

top-performing model among them; regardless of that, RetinaNet surpasses the model 

with a gap of 2.3 points. This model uses focal loss as its loss function, which is very good 

for class imbalance. 

 

Figure 2. Block diagram of feature pyramid network (FPN). 

3.3. Image Segmentation for the Scratch Defect Detection 

Image segmentation is a process in which the image is broken down into small seg-

ments. Out of all the segments, the segment that contains the important information is 

processed in the image processing algorithm. The pixels with related features are accu-

mulated together through image segmentation. Along with the classification and 

Figure 2. Block diagram of feature pyramid network (FPN).

3.3. Image Segmentation for the Scratch Defect Detection

Image segmentation is a process in which the image is broken down into small seg-
ments. Out of all the segments, the segment that contains the important information is
processed in the image processing algorithm. The pixels with related features are accumu-
lated together through image segmentation. Along with the classification and localization,
it also provides us with the exact shape of an object in an image. The image segmentation
techniques are broadly classified into the following two types: semantic segmentation
and instance segmentation. Keeping in mind the constraint of this paper, we focus only
on semantic segmentation. Semantic segmentation works on every pixel of an image. It
assigns a label to every pixel of the image. It denotes the same labels to pixels of multiple
objects but belongs to the same class. It reduces the inference time for detection, as it only
processes the particular region instead of the whole image for detection.
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One of the semantic segmentation models is UNet [49]. UNet is a special type of
architecture for semantic segmentation. It was designed for biomedical image applications,
but now it is widely used in different fields. UNet, as the simple and efficient segmentation
model, has inspired many researchers to implement it for defect segmentation on any
surface. The architecture shown in Figure 3 is the combination of convolutional and
max-pooling layers arranged in a particular form for processing the image. It contains
two paths, one is the down sampling, encoder, or contraction path and the other path
is the up sampling, decoder, or expansion path. The concatenation process between the
encoder and decoder path provides us with the localization information of the objects.
During concatenation, cropping of the encoder output is eliminated in the proposed model,
although it is carried out in the original model. In the model, the upper layers provide
the information about the classification of objects, which means that it answers the ‘what’
question. As we go to deeper layers, it provides the localization information, which means
the answer to the ‘where’ question. The advantage of this model is that it can be trained
efficiently with fewer datasets. The UNet model for scratch detection is adopted. The
visibility of some scratches is very low in the dataset, due to which it was difficult to detect
the scratch properly on an image. The UNet model, which is simple with less inference
time, generated better results by precisely locating the defect and its shape. We use the
binary focal loss to calculate the loss to reduce the imbalance issue.
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4. Experimental Results

The experiment is conducted on the NEU dataset, which is described shortly. The
dataset is split into two sets. One set contains crazing, pitted surface, inclusion, patches
and rolled-in scale, and the other set contains only scratches. The first set of datasets goes
through the RetinaNet model as the ResNet50 backbone, and the other set goes through the
UNet model. These models are combined through the evaluation process. The following
section contains the description of the dataset used, the performance analysis based on
individual defects and comparison of our method with the deep learning methods and
traditional methods.
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4.1. Implementation Details

This study considers the Northeastern University (NEU) [10] surface defect detection
dataset. This dataset is a collection of defects on hot-rolled steel strips, consisting of
the following six defects: pitted surface, inclusion, patches, rolled-in scale, crazing and
scratches. This dataset includes 360 image samples for each defect, respectively.

The parameters were set for various models used in the experiment. The RetinaNet
model used a pre-trained model with weights, with the number of anchor boxes as nine, the
learning rate 10−5. The backbone used in RetinaNet is ResNet50, and the model is executed
for 50 epochs. In the UNet model, the learning rate parameter is set to a 10−2 value, and the
model is executed for 300 epochs. The XGBoost classifier is supported by stochastic gradient
boosting. It has a parallel computing environment. The classifier has two types of boosters,
gbtree and linear. The classifier in this study uses a gbtree booster. The total number of trees
in this booster is 100, and each level of tree size is 6. These trees are constructed parallelly,
which is supported by the block structure feature of the algorithm. The classifier performs
multi-classification, with multi-softmax probability as the optimization objective.

An evaluation metric is a standard for measuring or evaluating the performance and
efficiency of ML and deep learning models. There are various evaluation metrics accessible
according to the models and the conditions to be satisfied. Among all the available metrics,
we adopted confusion matrix (CM), AP and mAP [50]. The CM is a matrix of form MxM.
This evaluation metric is introduced in the classification phase of the proposed approach,
where the defects are classified into one of the six classes of defects. So, the CM is of
6 × 6 size in this study and depicts six classes of defects. The general representation of the
CM is shown in Figure 4.
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Figure 4. Confusion matrix representation. TP = true positive, FP = false positive, FN = false negative
and TN = true negative.

In this study, the AP and mAP for evaluation of the steel surface defect detection are
used [51]. The AP is calculated from the graph plotted between precision and recall values.
We can obtain the AP using Equation (1), which is as follows:

AP =
k=n−1

∑
k=0

[R(k)− R(k + 1)] ∗ P(k) (1)

where n is the number of thresholds, R is recalls and P is precisions.
The precision and recall are computed by the Equations of (2) and (3), respectively.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
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The mAP is the mean of all the AP calculated for the individual classes.

mAP =
1
c

k=c

∑
k=1

APk (4)

where APk is the average precision of class k and c is the number of classes.

4.2. Evaluation of the Defect Image Classification and Defect Detection

The classification of the dataset was distinguished. The accuracy score for defect
classification was 98.6%. Figure 5 presents the CM of the six defects classified. Crazing,
rolled-in scale and scratches were classified at 100%. For the inclusion defect, one image
was classified as pitted surface and two images as scratches. In the case of patches and
pitted surface, only one image was incorrectly classified, respectively. The patches image
is classified as pitted surface, and the pitted surface image is classified as patches. The
proposed classification model performed quite well and was effective.
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Through the evaluation process, we combined the two disparate models. The evalua-
tion metric used in this paper is AP and mAP. The AP of individual defects is evaluated
and the mAP of all six defects is calculated. Table 2 exhibits the AP of individual defects
during the evaluation process.

Table 2. Average precision of individual defects.

Average Precision

Pitted Surface 0.8504
Inclusion 0.7117
Patches 0.8987

Rolled-in Scale 0.6794
Crazing 0.6928

Scratches 0.7942
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4.3. Comparison of Average Precision with Traditional Methods

Xiaoming Lv et al. [20] provided significant and valuable research results on steel
surface defects. They presented the performance evaluations of steel surface defect de-
tection with traditional ML algorithms on the NEU dataset. In this section, we provide a
comparison between the proposed method and the traditional methods, which are HOG
and LBP with two classifiers, neighbor classifier (NNC) and a support vector machine
(SVM), based on the experimental results in [20]. Table 3 illustrates the outperformance of
the proposed method with the other traditional models on all defects. Figure 6 displays
the overall mAP compared to the other traditional approaches. The graph shows that the
proposed approach is the best among all the traditional approaches by a 30% margin.

Table 3. Comparison of average precision between traditional models and the proposed method.

Defects HOG + NNC [20] HOG + SVM [20] LBP + NNC [20] LBP + SVM [20] Proposed Method

Pitted Surface 0.438 0.328 0.446 0.515 0.8504
Inclusion 0.576 0.580 0.412 0.378 0.7117
Patches 0.612 0.630 0.538 0.601 0.8987

Rolled-in Scale 0.358 0.330 0.237 0.330 0.6794
Crazing 0.400 0.412 0.321 0.335 0.6928

Scratches 0.474 0.463 0.326 0.432 0.7942
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4.4. Comparison of Average Precision with Deep Learning Methods

This section shows the comparison among diverse deep learning methods used in the
field of defect detection. The paper [20] also provided the performance evaluation of the
state-of-the-art methods. Based on the experimental results in their work, the comparison
between our method and the state-of-the-art methods, which are SSD, Faster-RCNN, YOLO-
V2, YOLO-V3, EDDN, and Xception, is shown in Table 4. The table shows how our method
performed well for defects such as patches, crazing, rolled-in scale, and pitted surfaces.
Although the proposed method scored lower in scratch and inclusion, the overall mAP
of the proposed model is the best among the other state-of-the-art methods. The Figure 7



Appl. Sci. 2022, 12, 6004 12 of 18

displays the overall mAP compared to the other approaches. The figure asserts that the
proposed model performance is better than the others by a 5% difference.

Table 4. Comparison of average precision between deep learning models and the proposed method.

Defects SSD [20] Faster-RCNN [20] YOLO-V2 [20] YOLO-V3 [20] EDDN [20] Xception [21] Proposed
Method

Pitted Surface 0.839 0.815 0.454 0.239 0.851 0.75 0.8504
Inclusion 0.796 0.794 0.592 0.580 0.763 0.50 0.7117
Patches 0.839 0.853 0.774 0.772 0.863 0.67 0.8987

Rolled-in Scale 0.621 0.545 0.246 0.335 0.581 N/A 0.6794
Crazing 0.411 0.374 0.211 0.221 0.417 N/A 0.6928

Scratches 0.836 0.882 0.739 0.570 0.856 0.93 0.7942
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4.5. Detection Results

The detection results of the test data are displayed in Figure 8. The figure shows
the original image, the GT annotation and the predicted image. The predicted image’s
similarity with the GT images can be observed. The proposed model detected images
with acceptable accuracy and performed quite well. For scratch detection, the model was
able to detect weak scratches. Although the GT mask did not provide the weak scratch
information, the proposed model can still predict it, and the result is better than the GT
mask image.

Figure 9 shows the incorrectly detected images of all the defects. Various reasons are
to blame for false detection, firstly the inter-class similarity and the intra-class diversity of
the dataset. Secondly, for some images, annotation files are not apt. The limited number of
anchor boxes in RetinaNet is not provided, especially for very small or very long defects. In
some images, it is difficult to distinguish between the foreground and the background parts
of the image, which made the model confused during detection. One of the main reasons is
the less availability of datasets for training. In segmentation detection, the boundary of the
scratch defect is not clear or distinct, which leads to unacceptable segmentation. The faint
boundaries of the defects cause the detection of the defect incorrectly.
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5. Analysis and Discussion

The proposed model performed relatively well compared with the state-of-the-art
method. The XGBoost classifier achieves outstanding classification accuracy of 98.6%. The
classification result is presented by a CM, which shows that crazing, rolled-in scale and
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scratches are classified at 100%, patches and pitted surface classification is around 98%,
and inclusion classification is 95%. The model is compared with the traditional methods
and state-of-the-art deep learning models. In Table 3, it can be observed that the proposed
model performed extraordinarily well. The feature extraction of traditional methods is
limited and is not sufficient enough to detect the defects properly. Figure 6 shows that
the mAP of the proposed method is around 30% higher than the traditional methods.
Regarding the state-of-the-art method, the proposed model performed well on the pitted
surfaces, crazing, patches, and rolled-in scale. Although the SSD model performed well
in inclusion, our result is still acceptable. In scratches, although our model shows less
compared to other models, it is still better because the proposed model can detect strong, as
well as weak, scratches. Furthermore, the information about weak scratch is not provided
in the GT image; thus, this shows the model’s efficiency. The YOLO-V2, YOLO-V3, and
Faster-RCNN model performed poorly in the detection of crazing and pitted surface defects
because crazing and pitted surfaces are small-scale defects, and this model focuses on high-
level features with a fixed detection scale, with leads to low detection rate. The overall
detection accuracy of the model is better than the others, with 77.12% mAP. The detection
visualization of the proposed model is shown in Figure 8, where the GT image and the
predicted results are completely matching, with an impressive score. Although the model
achieves promising outcomes, some defects were still left undetected, as shown in Figure 9.
Various conditions can result in undetected images. Firstly, with defects such as crazing,
and rolled-in scale, the difference between the foreground defect and background is fuzzy.
When defects are narrow and blend with the background, it is not easy to detect them. With
the limited set of anchor boxes, some defects, such as inclusion, are difficult to detect as the
anchor box requires that some images in inclusion are narrow and elongated. The dataset
also lacks proper annotations for some defects and suffers from the illumination factor.

6. Conclusions

Steel surface defect detection is a very difficult task, due to various atypical defects. In
this study, we propose a hierarchical method for detecting various atypical defects on steel
surfaces. We divided the steel surface defect detection into object detection problems and
object segmentation problems according to the type of defect. We defined the detection of
pitted surface, inclusion, patches, rolled-in scale, and crazing as an object detection problem
because these kinds of defects have characteristics of objects, such as closed boundary,
different appearance and uniqueness. Scratch detection is defined as an image segmentation
problem, since it has a very thin and elongated shape. In order to apply different defect
detection methods according to the defect types, the proposed approach hierarchically
combines a classifier with object recognition and an image segmentation algorithm. The
proposed model classifies defect images as scratch images or other defect images in the first
step. In the second step, object detection or image segmentation algorithms are applied
according to the classification result of the first step. The proposed method is able to
detect steel surface defects with high accuracy by applying different detection algorithms
that are suitable for each defect type. To summarize the experimental and verification
results, the proposed approach achieves 98.6% accuracy in scratch and other types of defect
classification and 77.12% mAP in defect detection using the NEU dataset. In future studies,
we will conduct a study on scratch detection for simultaneously detecting both strong and
weak scratches.
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Nomenclature

NEU Northeastern University
mAP Mean average precision
AI Artificial intelligence
HOG Histogram of oriented gradient
LBP Local binary pattern
EDDN End-to-end defect detection network
SSD Single shot multibox detector
CNN Convolutional neural network
VGG Visual geometry group
DDN Defect detection network
ResNet Residual neural network
Faster-RCNN Region-based convolutional neural network
YOLO You Only Look Once
FCN Fully convolutional network
IoU Intersection over union
PFF Pyramid feature fusion
GCA Global context attention
DAN Dual attention network
TAS-Net Triple attention semantic segmentation network
TLU-Net Transfer learning-based UNet
GT Groundtruth
XGBoost Extreme gradient boosting
ML Machine learning
FPN Feature pyramid network
ReLU Rectified linear unit
DSSD Deconvolutional single shot detector
CM Confusion matrix
AP Average precision
SVM Support vector machine
NNC Neighbor classifier
mIoU MeanIoU
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