
Citation: Anton, N.; Lisa, C.;

Doroftei, B.; Curteanu, S.; Bogdanici,

C.M.; Chiselita, D.; Branisteanu, D.C.;

Nechita-Dumitriu, I.; Ilie, O.-D.;

Ciuntu, R.E. Use of Artificial Neural

Networks to Predict the Progression

of Glaucoma in Patients with Sleep

Apnea. Appl. Sci. 2022, 12, 6061.

https://doi.org/10.3390/

app12126061

Academic Editor: Christian

W. Dawson

Received: 22 April 2022

Accepted: 13 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Use of Artificial Neural Networks to Predict the Progression of
Glaucoma in Patients with Sleep Apnea
Nicoleta Anton 1 , Catalin Lisa 2,* , Bogdan Doroftei 1,* , Silvia Curteanu 2, Camelia Margareta Bogdanici 1 ,
Dorin Chiselita 1, Daniel Constantin Branisteanu 1, Ionela Nechita-Dumitriu 1, Ovidiu-Dumitru Ilie 3

and Roxana Elena Ciuntu 1

1 Surgery Department, Grigore T. Popa University of Medicine and Pharmacy, No. 16, University Street,
700115 Iasi, Romania; anton.nicoleta1@umfiasi.ro (N.A.); camelia.bogdanici@umfiasi.ro (C.M.B.);
dorin.chiselita@gmail.com (D.C.); daniel.branisteanu@umfiasi.ro (D.C.B.);
dumitriuionela@yahoo.com (I.N.-D.); roxana-elena.ciuntu@umfiasi.ro (R.E.C.)

2 Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi
Technical University, No. 67, Prof.dr.doc Dimitrie Mangeron Avenue, 700050 Iasi, Romania;
silvia_curteanu@yahoo.com

3 Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A,
700505 Iasi, Romania; ovidiuilie90@yahoo.com

* Correspondence: clisa@ch.tuiasi.ro (C.L.); bogdandoroftei@gmail.com (B.D.)

Abstract: Aim: To construct neural models to predict the progression of glaucoma in patients
with sleep apnea. Materials and Methods: Modeling the use of neural networks was performed
using the Neurosolutions commercial simulator. The built databases gather information on a group
of patients with primitive open-angle glaucoma and normal-tension glaucoma, who have been
associated with sleep apnea syndrome and various stages of disease severity. The data within
the database were divided as follows: 65 were used in the neural network training stage and 8
were kept for the validation stage. In total, 21 parameters were selected as input parameters for
neural models including: age of patients, BMI (body mass index), systolic and diastolic blood
pressure, intraocular pressure, central corneal thickness, corneal biomechanical parameters (IOPcc,
HC, CRF), AHI, desaturation index, nocturnal oxygen saturation, remaining AHI, type of apnea,
and associated general conditions (diabetes, hypertension, obesity, COPD). The selected output
parameters are: c/d ratio, modified visual field parameters (MD, PSD), ganglion cell layer thickness.
Forward-propagation neural networks (multilayer perceptron) were constructed with a layer of
hidden neurons. The constructed neural models generated the output values for these data. The
obtained results were then compared with the experimental values. Results: The best results were
obtained during the training stage with the ANN network (21:35:4). If we consider a 25% confidence
interval, we find that very good results are obtained during the validation stage, except for the
average GCL thickness, for which the errors are slightly higher. Conclusions: Excellent results were
obtained during the validation stage, which support the results obtained in other studies in the
literature that strengthen the connection between sleep apnea syndrome and glaucoma changes.

Keywords: artificial neural networks; glaucoma; sleep apnea syndrome; AHI; BMI

1. Introduction

Artificial neural networks (ANN) are an attempt to simulate the structure and func-
tions of the brain specific to living organisms. A key feature of these is the fact that, starting
from a lot of examples, a certain model of the problem can be synthesized. The neural net-
work practically builds its own algorithm in solving a problem, if it is trained by providing
multiple particular cases, from which it extracts the necessary information. Based on the
collected data, the network is trained, i.e., the process behavior is memorized. During the
work or reference stage, the network will use the acquired information to process similar
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situations like those involved in the training set. This represents the ability to generalize,
based on which the ANN can operate correctly with data that were not presented during
the training process [1].

The most commonly used networks are those with forward propagation. They are
characterized by the presence of a layer of input neurons, a number of hidden layers, and a
layer of output neurons. Networks have the ability to learn from examples, which makes
them highly flexible and stable in medical diagnosis. They have the ability to generalize
and operate with data different from those presented in the training stage. The back
propagation algorithm is also called the generalized delta algorithm because it extends the
method of the adaline network (delta rule), and it is based on the difference between the
desired and the real output, driven by the descending gradient method (the gradient tells
us how a function varies in different directions). ANNs have been widely used not only
in industry but also in scientific research to perform various tasks: data processing, shape
recognition, and medical diagnosis. Neural networks were defined and introduced for the
first time between 1950 and 1951 [2]. They have been widely used in various fields such as
cardiology, oncology, and ophthalmology. Due to their predictive role, they have been used
to diagnose sick patients in clinical practice [3–6].

In ophthalmology, the detection of visual function abnormalities plays a key role in
diagnosing eye diseases. Most neural networks have been used to measure retinal structures
and visual function. Joseph Caprioli et al. [7–11] used various artificial intelligence tools
(neural networks and genetic algorithms) to determine a possible progression of the visual
field in glaucoma patients, to classify changes in diabetic retinopathy (presence or absence
of signs of retinopathy) and glaucoma stage [1,11,12].

The most common use of neural networks in ophthalmology has been in early diag-
nosis of glaucoma, when a doubtful diagnosis occurred. Neural networks have played an
essential role in determining the need for early antiglaucoma therapy to prevent disease
progression [13]. Applications that involve a neural network driven by data from medical
records are intended to help physicians, not to replace them. A neural network generates
a rule based on a large volume of input data. They provide the information needed for
patient care and increase the amount of information available to a doctor. Developing a
system that uses a neural network to help a physician is difficult because valid training
data is needed, which the network can use to generate rules [1].

In its simplest version, the structure of a neural network involves three layers. The
network receives the input vector and propagates the signal forward, layer by layer, until
the output is generated. The error signal is propagated back from the output layer to the
input layer, adjusting the network weights. With a possible infinite number of neurons, the
network can approximate any real constant function [1].

However, the use of an additional layer can greatly decrease the number of neurons
needed in the hidden layers and, obviously, can increase the modeling performance. The
choice of the best number of hidden units depends on many factors: the size of the database,
the type of activation function, the used training algorithm, etc. The only way to establish
it is to try several networks with different numbers of hidden units and evaluate their
performance [13,14].

The most commonly used type of neural network is the multilayer perceptron (MLP)
and feed-forward neural network, its frequent use being based on simplicity and the good
results it provides in most cases. It is considered to be a universal approximator because it
can model (render) any type of function and the signals are transmitted inside the network
in one direction only: from input to output. There are no loops, the output of each neuron
does not affect that neuron. This architecture is called feed-forward.

The mean square error (MSE), the correlation coefficient (r2), and the percentage error
Ep (%) are used as criteria for choosing the best topology. The key step is to validate the
network, in which the answers given by them are verified by data in which they were not
involved. The network topology was encoded by (m:n:p): m represents the number of
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neurons in the input layer, n the number of neurons in the hidden neuron layer, and p the
number of neurons in the output layer.

A neural network is performing if MSE (mean square error) tends to zero and r2

(correlation coefficient) tends to 1.
Artificial intelligence (AI) is the fourth industry to revolutionize human history. AI

tools have been highlighted for their efficiency in modeling and optimization, the most
widely used being ANN, evolutionary algorithms, and fuzzy systems [15]. Their application
in medicine and especially in ophthalmology is a promising direction due to the predictions
that could complete the clinical observations. Glaucoma is an eye disease that is difficult
to understand, with difficulties in providing accurate and timely diagnosis and early
prognosis. The most common use of neural networks in ophthalmology occurred in early
diagnosis of glaucoma, when there is some doubt about the diagnosis. Neural networks
have played a key role in determining the need for early antiglaucoma therapy to prevent
disease progression. The first article that mentions the use of artificial neural networks
is that of Anton A. et al., which consists of the use of ANN in interpreting the incipient
perimeter lesions produced in glaucoma. The authors concluded that neural networks are
able to differentiate incipient glaucoma lesions from those caused by other diseases with
97% accuracy [16].

There is still no algorithm that can guarantee the creation of an optimal network,
because optimizing the network architecture must meet several requirements:

- The “perfect” network must provide reliable predictions, avoid excessive training,
ensure fast convergence, minimize training time, provide a better understanding of
the process that generates data (facilitating the extraction of rules), and reduce time
and the cost of data collection and processing

- An optimal network must be large enough to learn the basic function, and small
enough to generalize successfully.

The most common use of neural networks in ophthalmology has been in early diag-
nosis of glaucoma, when there is some doubt about the diagnosis having a key role in
determining the need to initiate early antiglaucoma therapy to prevent disease progression.
In 2008, Parsaei H et al. used various artificial intelligence tools (neural networks and
learning algorithms) to determine a possible visual field progression in glaucoma patients.
Recent studies indicate that AI has an astounding potential to perform some tasks much
better than human beings, especially in the image recognition field. The authors presented
the basic workflow for building an AI model and systematically reviewed applications of
AI in diagnosing eye diseases. [10,16,17].

In 2014, Zhu et al. developed a neural network using a Bayesian function to establish
the relationship between structure and visual function in glaucoma; the results showed
that the network could improve the prediction of visual function. Based on the analysis
of the literature, the same team shows that diabetes is an individual risk factor for the
development of open-angle glaucoma [18]. Another study conducted in 2008 by Parsaei
H., Moradi P.H., and Parsaei Roya uses artificial neural networks to classify changes in
the visual field in glaucoma by using classification tools and the results are comparable to
global ones [17].

An interesting study on the usefulness of ANN in ophthalmology can be found in
a doctoral thesis conducted by Anton Apreutesei Nicoleta at UMF Ias, i. Artificial neural
networks are used for the first time to demonstrate the relationship between glaucoma
and diabetes, as well as to predict the progression of ocular changes in diabetes (diabetic
retinopathy) in patients with glaucoma and diabetes. The constructed neural models
demonstrated the possibility of their use in predicting MD (mean deviation) depreciation,
the best results being obtained by using JEN networks (Jordan Elman type neural networks).
Thus, the connection between diabetes and glaucoma is demonstrated by two types of
applications of neural modeling: direct and reverse. By direct neuronal modeling, their
influence on the ocular changes represented by the presence or absence of diabetic retinopa-
thy is evaluated. Reverse modeling involves the inversion of some inputs and outputs: in
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this case the correlation was made between the mean deviation and the other characteristics
at the input to which diabetic retinopathy was added. In this case, high accuracy was
exhibited by Jordan Elman networks with the confidence interval of ±15% [19].

The aim of this study was to construct neural models to predict the progression of
glaucoma in patients associated with sleep apnea.

2. Materials and Methods
2.1. Study Group

The clinical study took place in the Ophthalmology Clinic of St. Spiridon Hospital
and Oftaprof Clinic in Iaşi, during October 2018 and December 2019. The groups included
patients with sleep apnea syndrome associated with glaucoma and dry eye syndrome.
Neural network modeling was performed using the Neurosolutions commercial simulator.
This can determine the number of hidden layers, the number of neurons in each layer,
the different types of the activation function, and the driving algorithms. The built-in
databases gather information on a group of patients with primitive open-angle glaucoma
and normal-tension glaucoma, who have been associated with sleep apnea syndrome in
various stages of severity (73 eyes).

The study was approved by the Ethics Commission of Sf. Spiridon University Hospital
Iasi, approval no. 49/9.12.2018 in compliance with the ethical and deontological rules for
medical and research practice. The study was conducted in accordance with the Helsinki
Declaration and with several published principles.

All patients underwent the following determinations, according to a standardized
protocol: the best corrected visual acuity (Snellen optotype), the Schirmer I test (without
anesthetics); intraocular pressure (with the Goldmann applanation tonometry), OCT (opti-
cal coherence tomography Cirrus HD OCT Zeiss) with the evaluation of the optic nerve,
macula, and measurement of the retinal nerve fiber layer, determination of the visual field
(Humphrey perimeter—C24-2 program), measurement of the central corneal thickness
(Tomey ultrasonic pachymeter), and the corneal hysteresis with ORA (ocular response
analyzer, Reichert technology). Moreover, the respiratory functional parameters (apnea-
hypopnea index—AHI) and body mass index were recorded. The age of the patients, sex,
background data, and associated general conditions (hypertension, obesity, diabetes, etc.)
were also recorded.

The data included in the database were divided as follows: 65 out of the 73 data
points were used in the neural network training stage and 8 were kept for the testing stage.
In total, 21 parameters were selected as input parameters for neural models, including:
age of patients, BMI (body mass index), systolic and diastolic blood pressure, intraocular
pressure, central corneal thickness, corneal biomechanical parameters (IOPcc, HC, CRF),
AHI, desaturation index, nocturnal oxygen saturation, remaining AHI, type of apnea,
and associated general conditions (diabetes, hypertension, obesity, COPD). The output
parameters were: c/d ratio, modified visual field parameters (MD, PSD), OCT parameter
(ocular computer tomography, ganglion cell layer thickness, linear CDR, and average GCL.

A new group of four patients was included in this study to make predictions with
the best performing neural model. It included patients aged 75–88 years with sleep apnea
syndrome, hypertension, three of them obese and without diabetes. The output parameters,
c/d ratio, MD, PSD, linear CDR, and average GCL, were obtained from the neural model,
which were then compared with the experimental values.

2.2. Neural Network Design

The most commonly used networks are those with forward propagation. They are
characterized by the presence of a layer of input neurons, a number of hidden layers,
and a layer of output neurons. Thus, networks have the ability to learn from examples,
which makes them highly flexible and stable in medical diagnosis. They have the ability to
generalize and operate with data different from those presented in the training stage.
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In our study, artificial neural networks with forward propagation were built with
21 inputs, a layer with 7–35 hidden neurons, and 4 outputs. The method applied for the
development of the network was trial and error.

Ep (%) were used as criteria for choosing the best network topology.
The network topology was coded by (m:n:p), where m represents the number of

neurons in the input layer, n the number of neurons in the hidden neuron layer, and p
represents the number of neurons in the output layer. A specialized software product,
NeuroSolutions, was used to train neural networks. The generalization capacity of the
constructed neural models was analyzed by the evolution of the MSE error on the validation
data set. It has been established empirically that after about 50,000 epochs the performance
of the models does not improve significantly, and the training process stopped at that
moment. Accurate performance values differ from network to network, but an intuitive
assessment can be made. Transfer functions such as SigmoidAxon were used, and the
duration of the training process was less than 5 min. Modeling with neural networks
involves going through a series of steps, the major ones being the training (learning the
network) and validating the results of the network.

Modeling with neural networks involves the following steps, as described in Figure 1.
Input data with experimentally measured numerical values were considered as such,
and those associated with the general condition of the patients were coded in a binary
system (0/1).
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Figure 1. Stages of modeling with neural networks.

2.3. Statistical Analysis

The database was created in the EXCEL program and was statistically processed
with the SPSS 18.0 program. The ANOVA (analysis of variance) test, Student’s t test,
χ2 test, Kruskal–Wallis test, non-parametric test comparing 3 or more groups, the study
of the correlation between different phenomena performed using the “r” (Pearson) cor-
relation coefficient, the receiver operating characteristic (ROC) curve highlighting the
specificity/sensitivity balance as a prognostic factor, and logistic regression (multivariate
analysis) were used as analytical tests.

3. Results
3.1. Statistical Analysis Results

The study was conducted in groups that included patients with or without sleep apnea
syndrome associated with glaucoma and dry eye syndrome. Statistical data processing
was performed with the program SPSS18.0. Prior to ANN modeling, statistical processing
of the database was performed. After collecting the data, that was accessible enough to
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ensure their informational character, the processing was performed using appropriate
statistical methods: ANOVA test, Student’s t test, χ2 test, correlation study, ROC curve
tracing the specificity/sensitivity balance as a prognostic factor, and logistic regression
(multivariate analysis).

The age ranged from 28 to 88 years, registering a significantly lower average level in
patients with severe mixed type syndrome, compared to the highest average level recorded
in patients with mild obstructive syndrome (53.40 vs. 67.52 years; p = 0.036). Severe
mixed apnea syndrome was found only in males, and 4% of the patients with obstructive
syndrome average = 71 were male (p = 0.046). It was found that 60% of all cases with POAG
(primitive open-angle glaucoma) and 61.9% of all cases of NTG (normal pressure glaucoma)
associated with mild obstructive sleep apnea syndrome, 45.5% of patients with severe
obstructive SAS also had NTG; 40% of patients with mixed severe syndrome associated
with NTG and 40% associated with POAG (Table 1 and Figure 2). The lowest mean level
of AHI/h was recorded in patients with mild obstructive syndrome, and the highest in
patients with severe obstructive syndrome (p = 0.043).

Table 1. Percentage distributions of sleep apnea syndrome by type of glaucoma (NTG, POAG, other
types of glaucoma) and dry eye syndrome.

Glaucoma Type

NTG POAG Other Type Dry Eyes Total

SAS

Obstructive light form

Count 13 9 7 13 42

%with SAS 31.0% 21.4% 16.7% 31.0% 100.0%

%with type G 61.9% 60.0% 77.8% 65.0% 64.6%

Obstructive medium form

Count 1 3 0 3 7

%with SAS 14.3% 42.9% 0.0% 42.9% 100.0%

%with type G 4.8% 20.0% 0.0% 15.0% 10.8%

Obstructive severe form

Count 5 1 2 3 11

%with SAS 45.5% 9.1% 18.2% 27.3% 100.0%

%with type G 23.8% 6.7% 22.2% 15.0% 10.8%

Mixt severe form

Count 2 2 0 1 5

%with SAS 40.0% 40.0% 0.0% 20.0% 100.0%

%with type G 9.5% 13.3% 0.0% 5.0% 7.7%

Total

Count 21 15 9 20 65

%with SAS 33.3% 23.1% 13.8% 30.8% 100.0%

%with type G 100.0% 100.0% 100.0% 100.0% 100.0%
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Depending on the type of sleep apnea syndrome (Figure 3), the mean level of disc area
in the right eye was lower in mild obstructive SAS and higher in severe mixed SAS (1.98 vs.
2.45; p = 0.081), an aspect that is not validated in the left eye (p = 0.858).
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Figure 3. Comparative values of the optic disc compared to the eyes according to the type of sleep
apnea syndrome. * and circle maxim/minim mean level of the type of disease.

By tracing the ROC curve, it is highlighted that, in the right eye, the optical disc
area is a good predictor in determining severe SAS (AUC = 0.842; IC95: 0.632–1.051;
p = 0.012) (Figure 4).
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Figure 4. Severe SAS-dependent variable. Predictor of optic disc area.

Multivariate analysis also shows that AHI (apnea/hypopnea index) correlated with
the optical disc area are good predictors of SAS severity: model 2 shows that approximately
24% of patients with severe SAS have higher values of optical disc area size associated with
lower AHI values.

3.2. Neural Network Modeling Results

Following the statistical application of statistical formulas to the database, it was
established that there is a statistically significant correlation between the degree of sleep
apnea and the type and stage of glaucoma.
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Applying the method of successive tests, neural networks with forward propagation
of different topologies were built. The performances of the constructed neural models
were plotted by the mean squared error (MSE), the correlation coefficient between the
experimental data, and the network data (r2) and the percentage error Ep (%).

MSE =

(
P
∑

j=1

N
∑

i=1

(
dij − yij

)2
)

/(N·P)

r2 =
∑(Yexpi−Yexp)·(Yneti−Ynet)√
∑(Yexpi−Yexp)

2·(Yneti−Ynet)
2

Ep =
Yexp − Ynet

Yexp
·100

The key step is to validate the network, by comparing its answers with data that was
not used in the training stage. The closer the MSE is to zero and the closer the r2 is to 1, the
higher the network performance. Table 2 shows the constructed ANN topologies and their
performances. The number of training epochs used was 50,000 for all neural networks. Transfer
functions such as SigmoidAxon were used, and the training process took less than 5 min.

Table 2. Different types of ANN tested and their performance in the training stage.

No. Network
Topology MSE r2 Ep(%)

1. ANN (21:7:4) 0.004794 0.935800 18.00

2. ANN (21:14:4) 0.000105 0.998700 4.00

3. ANN (21:21:4) 0.000002 0.999970 0.36

4. ANN (21:28:4) 0.000000 0.999996 0.12
5. ANN (21:35:4) 0.000000 1.000000 0.059

The best results were obtained in the training stage with the ANN network (21:35:4).
In the validation stage (Figures 5 and 6), if we consider a confidence interval of ±25%, we
find that excellent results are obtained except for the Average GCL for which the errors
are higher.
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Figure 6. Comparison of experimental results with those provided by the ANN network (21:35:4) in
the validation stage (a) (experimental c/d); (b) (average GCL). The positioning of the points near the
center line indicates a very good correlation.

In the validation stage, Figures 5 and 6 compare the values of the output parameters
calculated by ANN network (21:35:4) model with the experimental values. The positioning
of the points near the center line indicates a very good correlation of the experimental
data with those calculated with the neural model (output parameter model = experimental
value). Most of the points are close to the center line for the MD, PSD, and linear CD output
parameters. Larger deviations are highlighted for the Average GCL output parameter.

The best-performing validated neural models can be used to make predictions outside
the experimental field. With the same network, predictions were made for new data not
used in the training and validation stages. The new data had the same type of input and
output data. In fact, the network was verified on data from new patients who did not
participate in the initial evaluation, presented in Table 3, and the results obtained by using
the network (Table 3).

Table 3. Data on new patients not previously used by the network.

MD-Exp PSD-Exp LINEAR
CDR-Exp

AVERAGE
GCL-Exp MD-Model PSD-Model LINEAR

CDR-Model
AVERAGE

GCL-Model

−9.27 6.24 0.9 76 −15.69 4.34 0.87 62.18

−1.5 2.22 0.52 88 −5.15 2.59 0.64 76.09

−6.5 1.88 0.6 81 −8.61 1.30 0.30 97.64

−3.29 4.97 0.52 90 −1.73 2.84 0.52 58.71

The results are also excellent except for the Average GCL for which the errors are
higher (Figures 7 and 8). If we consider a confidence interval of ±25%, the results offered
by the network are similar to the experimental ones for the three parameters (MD, PSD,
C/D) (−4.5 DB, 2–4 DB, 0.6–0.7). As a remark, it is necessary to expand the database in
order to increase the accuracy of the network prediction.
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Figure 8. Comparison of experimental results with those provided by the ANN network (21:35:4) for
(a,b) predictions (C/D, experimental average GCL).

4. Discussions

In our study, the used neural models demonstrated the possibility of their application
in predicting glaucoma progression in patients with sleep apnea. The best results were
obtained in both the training and the validation phase with the ANN network (21:35:4).
Using a confidence interval of ±25%, we find that excellent results are obtained for both
models (MD, PSD and C/D), except for the average GCL where the results are weaker. The
high-performance network obtained was given new data for another group of patients,
not used for training and validation in order to make predictions. Excellent similar results
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are achieved; thus, showing that there is a correlation between the data provided to the
network and those obtained, except for the ganglion cell models. The results are similar
to those in the literature. Relatively simple models were used in a study on groups of
glaucoma and diabetes by Apreutesei et al., while advanced neural networks with one
or two intermediate layers provided clinically significant data in direct modeling, with
a 95% probability of correct answers. Reverse modeling in which MD depreciation was
the output parameter was also performed. High accuracy was provided in this case by
Jordan and Elman’s networks, with a confidence interval of ±15%. The neural models
provided by them have demonstrated the possibility of their use in successfully predicting
the connection between glaucoma and diabetes in a real clinical setting. The advantage of
such neural networks is the ability to provide high accuracy in predicting glaucoma and
retinal changes, using the characteristic clinical features of two conditions as input in a
relatively short time [20]. Another study that started from the same idea and used artificial
intelligence tools (ED and SVM) to evaluate changes related to diabetic retinopathy (DR) (no
changes, mild or moderate changes) in glaucoma patients and diabetes using intelligence
tools is support vector machines (SVM) in combination with a powerful optimization
algorithm—differential evolution (DE). The results were very good; in the test phase, an
accuracy of 95.23% was obtained, only one sample being classified incorrectly. Thus, the
efficacy of the classification algorithm (SVM), developed optimally with DE and used in
predicting retinal changes related to diabetes, was demonstrated [21].

As in previous studies, it can be used later in making predictions after establishing
and validating the best performing model. In the present study, the best network was ANN
(21:35:4) with 21 input neurons, 35 hidden neurons, and 4 outputs, by which predictions
were made for new data not used in the training and validation stages. Input data includes
clinical data for both glaucoma and sleep apnea syndrome. The output ones are represented
by four parameters: c/d ratio, modified visual field parameters (MD, PSD), and OCT
parameters (ocular computer tomography, ganglion cell layer thickness). The results are
also excellent except for the Average GCL for which the errors are higher. In the case of
the other parameters, the results are similar to the experimental ones. Similar to previous
studies, the results obtained in this study are encouraging and demonstrate the possibility
of using neural patterns in predicting glaucoma progression in patients associated with
sleep apnea.

Various studies in the literature also demonstrate the successful use of these tools of
artificial intelligence in ophthalmology: the evaluation of the visual field, optic nerve, retinal
nerve fiber layer, thus, providing better accuracy in identifying progression in glaucoma
and retinal changes in diabetes [8,10,11]. The latest reviews provide an analysis of all
studies in the literature that used artificial intelligence in ophthalmology, i.e., glaucoma,
in predicting the progression of early changes that may occur in this disease, as well
as for other conditions such as diabetic retinopathy, prematurity, age-related macular
degeneration, etc. [22,23].

In the short term, artificial intelligence could pave the way for the first cost-effective
glaucoma screening campaigns. In an ideal future scenario, there may also be clinical
prognostic tools that inform patients about their overall prognosis and the expected clinical
outcome with or without treatment.

5. Conclusions

The applied neural models showed the possibility of their use in predicting the
progression of glaucoma in patients associated with sleep apnea. The best results were
obtained with the neural model (21:35:4). In the validation stage, most of the output
parameters calculated with the neural model were within a confidence interval of ±25%.
These results demonstrate the connection between sleep apnea syndrome and glaucoma
changes, as indicated in the literature.
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Although we know that a database of thousands of data is needed to increase the accu-
racy of network prediction, the results of our study are promising and reinforce the claim
that the use of artificial intelligence is useful in predicting the progression of glaucoma.

The main advantages of using these techniques in medical diagnosis enable: the ability
to process a large amount of data, the low probability of neglecting relevant information,
and the reduction in waiting time for diagnosis.
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