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Abstract: Advanced technologies in modern industry collect massive volumes of data from a plethora
of sources, such as processes, machines, components, and documents. This also applies to predictive
maintenance. To provide access to these data in a standard and structured way, researchers and
practitioners need to design and develop a semantic model of maintenance entities to build a reference
ontology for maintenance. To date, there have been numerous studies combining the domain of
predictive maintenance and ontology engineering. However, such earlier works, which focused on
semantic interoperability to exchange data with standardized meanings, did not fully leverage the
opportunities provided by data federation to elaborate these semantic technologies further. Therefore,
in this paper, we fill this research gap by addressing interoperability in smart manufacturing and the
issue of federating different data formats effectively by using semantic technologies in the context of
maintenance. Furthermore, we introduce a semantic model in the form of an ontology for mapping
relevant data. The proposed solution is validated and verified using an industrial implementation.

Keywords: predictive maintenance; Industry 4.0; semantic technologies; semantic interoperability;
data federation; ontology engineering

1. Introduction

The sustainability and efficiency of manufacturing systems depend on the utilization
of technologies that facilitate the smart, sustainable digital factories of the future [1]. In
particular, the design and deployment of predictive, prescriptive maintenance strategies
that achieve increased reliability in manufacturing systems are of significant importance in
fostering competitive advantage among manufacturing companies [2,3].

Manufacturing companies now face immense pressures to continuously improve the
performance and reliability of their assets; at the same time, they are required to lower
costs and ensure safety [4]. Furthermore, the emergence and advancement of modern,
Industry 4.0 technologies—such as artificial intelligence (AI) and the industrial internet
of things (IoT)—offer companies the possibility to accurately predict machines’ statuses
and thus optimize maintenance activities, achieving far more than conventional reactive
maintenance [5]. The future of maintenance, operations, and asset management requires
manufacturing companies to move toward more proactive and optimized maintenance [6].
Further, researchers and practitioners should increase their focus on the synergies between
key business processes and maintenance activities across the lifecycle of key manufacturing
assets. They also need to leverage the opportunities provided by advanced maintenance
solutions to optimize the cost efficiency and performance of these valuable assets [7].

The most basic and inefficient approach to maintenance is reactive maintenance,
which runs assets to failure and only reacts when the equipment breaks down. Hence, this
approach is often implemented with manufacturing assets that have minimal replacement
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or repair costs. Such assets are not critical and do not have any significant or immediate
impact on plant availability or safety [8]. The second level of maintenance is preventive
maintenance (PM), which follows a fixed maintenance schedule with predefined time
intervals coupled with best practices and the recommendations of manufacturers [9].
Condition-based maintenance monitors the physical condition of manufacturing equipment
and operates when key and measurable performance metrics indicate critical issues before
their occurrence [10]. Finally, the predictive maintenance (PdM) strategy studied in this
research applies to more critical, complex assets and provides a data-driven analysis to
predict a piece of equipment’s operating profile during different process conditions [11].
PdM thus uses data records and Industry 4.0 technologies and methods to determine the
underlying issues that affect the reliability and performance of manufacturing assets [12].
To improve scheduled PM, Van Staden et al. designed a sequential “predict, then optimize”
approach to bridge PM with a predictive approach [13]. In the same context, a novel
hybrid approach is implemented to assess and test real-world and synthesized information
through a combination of statistical and symbolic Al to lay the foundations for Industry 4.0
PdM [14].

The PdM functions by accessing data relevant to the status and condition of machinery
and focuses on the knowledge to be gained from the data [15,16]. A PAM mechanism hence
aims to improve the reliability of production assets by identifying potential problems and
providing early warning of issues and critical events before the occurrence of catastrophic
failures in the production run [17,18].

Advanced technologies in modern industry collect massive volumes of data from a
plethora of sources, such as processes, machines, components, and documents [19]. This
also applies to the case of PAM. Hence, to provide access to all these data in a standard
and structured way, researchers and practitioners must design and develop a semantic
model of maintenance entities to build a reference ontology for maintenance [20]. Semantic
enrichment can be achieved by exploring and filtering cross-sectoral information related
to maintenance [21]. Semantic interoperability is the capability of information systems to
unambiguously exchange data with shared meaning [22].

Scope of the Paper

In response to these challenges, this paper addresses the issue of federating different
data formats effectively in the maintenance context using semantic technologies. Accord-
ingly, we propose a method and validate our approach by designing and implementing a
maintenance ontology for a case study: a European manufacturing company.

2. Motivation for Implementing Semantic Technologies toward Industry 4.0

During the last two decades, manufacturing problems have become more diverse and
complicated [23]. Where the contexts of data in obsolete systems are ambiguous or lost,
data-management challenges are as follows [24]:

e  The documents and guidelines depicting the use of datasets may be corrupted or lost.
e  Often, a data description disaccords with its field name.
e Itis hard to manage tabular datasets or update their data schemas.

Even if a new database or table is created to overcome these challenges, there remains a
problem with data mapping. When field names are updated, it is difficult to retrieve data in
the previous database or table. Moreover, data instances can have different names because
technical terminology depends on the services and functions provided. For instance, global
and multicultural companies may face a multilingual information problem, depending on
the locations and languages.

To solve the data-mapping problem automatically through communication between
the old and new datasets, a company should make extra efforts to understand the structure
of the data schema and the meaning of the data. Sometimes, it is impossible to understand
these aspects with the provided information. Furthermore, depending on the data source,
datasets are stored in different formats that need to be reflected in the automatic method.
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Therefore, creating an automatic process may become a highly demanding task in terms of
both time and resources. In this regard, Mami et al. (2020) proposed a graphic-based user
interface to help non-experts efficiently interact with data [25]. They employed a SPARQL
protocol and resource description framework query language (SPARQL) query to extract
surface mount technology (SMT) data using triples.

Today, the emergence and advancements of Industry 4.0 technologies are leading to
a paradigm shift in manufacturing. Manufacturing applications have been widened, and
manufacturing companies are trying to seamlessly connect their manufacturing assets [26].
In addition, their assets are creating big data that captures their behaviors [27]. However, the
challenges mentioned above complicate data management since manufacturing companies
first need to spend time and resources to perform unwieldy research to comprehend the
data schema and formats.

Semantic technologies provide certain capabilities to machines and systems. Using
these technologies, machines can do more beneficial work, and systems facilitate reliable
communication between machines. Semantic technology facilitates the capture of data’s
meaning. To cope with the challenges mentioned above, semantic technology provides
clear and explicit meanings for data instances, an ontology as a semantic model, standard
metadata, and reference of semantics. It enables machines to share a common understand-
ing with humans. The ontology provides certain rules to describe data instances and their
labels; therefore, following the rules of the ontology, all data instances can have meaning
and context. In other words, semantic technology facilitates context-awareness by linking a
data instance to a predefined class in an ontology or another instance, or both. The context
of data can be clearly and explicitly stated because an ontology provides strong terminology
based on natural language. For this reason, it enables convenient data storage and retrieval.

It is of paramount importance that an ontology provides standard meanings and rules
for data. Particularly in an Industry 4.0 environment, it is necessary for multiple systems
to communicate with each other. Generally, each system has its own format to describe
data; hence, interoperability is essential and critical to overcoming issues caused by the
interaction of a variety of formats. An ontology provides appropriate locations to store
data, as it is a graphical representation of domain knowledge, including explicit definitions
of terms. In addition, it is easy to retrieve data through an ontology, even for non-experts,
since it describes domain knowledge in natural language.

3. State of the Art on Ontologies
3.1. Ontology-Based Knowledge Representation and Relevant Efforts for Maintenance

Ontology engineering presents methods and principles that are used when building
ontologies [28]. This is an important field of study, as ontologies have a crucial role in
knowledge management: they enable knowledge sharing and knowledge processing be-
tween domain experts and users [29]. Hence, ontologies enable a common understanding
of any domain that is communicated across application systems and among people [30].
There have been many endeavors to address the issue of knowledge management and
representation in the maintenance domain. In this regard, James et al. (2017) proposed
a knowledge-management mechanism for system failures in automobiles in the form of
an ontological model to improve maintenance processes in the automotive industry [31].
Wan et al. (2017) mapped decision-making and knowledge-management processes through
an ontology and highlighted the collaboration of various factors in managing the lifecycle of
a machine tool [32]. Liang (2020) proposed and implemented an ontology-based approach
for achieving semantic interoperability across several systems in a collaborative manu-
facturing environment [33]. This system permits knowledge management and effective
decision-making in automotive troubleshooting. The most recent work, by Polenghi et al.
(2021), focused on prognostics and health management on the shop-floor level, utiliz-
ing ontologies to effectively integrate product-related and process-related data [34]. This
facilitates a joint decision-making mechanism for maintenance and production.
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3.2. Semantic Interoperability in Smart Manufacturing

Semantic interoperability is required to integrate information from heterogeneous
sources of data and to interpret this information in a standardized way [35]. Several schol-
ars have focused on achieving semantic interoperability in Industry 4.0. For example, the
work of Adamczyk et al. (2020) contributes to the field by developing a semantically inter-
operable manufacturing system [36]. It uses ontologies to overcome semantic barriers in the
representation, sharing, and reuse of knowledge and information across different phases
of manufacturing processes. Weichhart et al. (2021) highlighted semantic interoperability
as the key factor for supporting system-of-systems implementations [37]. They illustrate
the need for interoperability in system-of-systems, as opposed to integration in a single
system, focusing specifically on cyber—physical manufacturing systems. A recent study
by Margaria and Steffen (2021) overcame the challenge of semantic interoperability by
establishing a model-driven, digital thread platform that proposes reusable and gener-
alizable techniques and methods to cover the integration space (domain by domain) in
cyber—physical production systems [38].

3.3. Semantic Technologies and Ontologies for Predictive Maintenance

A PdM platform should be based on the continuous monitoring of the behavior of
manufacturing assets and the utilization of several data sources across different levels of a
manufacturing system (e.g., component, machinery, production system, product). As state-
of-the-art ontologies model these problems independently, Canito et al. (2021) investigated
existing ontologies in the domain of PAM and proposed extensions to bridge the gaps
with machine learning [39]. Cho et al. (2019) addressed the issue of data management and
integration in PAM and proposed a new method to effectively integrate data for Industry 4.0
applications via semantic technologies [19]. Cao et al. (2019) provided an approach based
on ontologies to support and foster PAM applications in the manufacturing industry using
a combination of semantic technologies and fuzzy clustering [40]. In a later work, Cao et al.
(2020) introduced another method: a combination of semantics and data mining to predict
failures in industrial machines [41]. They developed a PAM ontology for manufacturing,
including a rule-based extension to create a formal representation of the predictive results.
One of the latest research studies by Polenghi et al. (2021) highlighted the importance
of cross-functional knowledge management [34]. They also stressed the need for and
significance of both process- and product-related information for joint decision-making in
maintenance and production and demonstrate the role and importance of ontologies for
this purpose in smart factories.

3.4. Research Gap

As highlighted here and in the pertinent literature, to date, there have been numerous
studies combining the domains of PAM and ontology engineering. However, earlier works
that focused on semantic interoperability to exchange data with standardized meanings did
not fully leverage the potential of data federation to further elaborate these semantic tech-
nologies. Therefore, the gap to be filled by this paper is the issue of federating various data
formats across different manufacturing phases by using semantic technologies in the PdM
context. In addition, we implemented a PAM ontology in a real-life manufacturing scenario.

4. Two-Cycle Methodology to Build a Semantic Model

To build an ontology to use as a semantic model, it is important to apply a proper
methodology. The explicitness of the context is a primary feature of an ontology: it should
have a very clear scope and specific boundaries. For this purpose, we propose a two-cycle
methodology that includes a vocabulary cycle and a context cycle (Figure 1). Figure 1 shows
how the two cycles interact. Each cycle includes five manual processes. This methodology,
therefore, creates a solid, explicit, clear foundation for an ontology.
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Figure 1. Two-cycle methodology.

4.1. The Vocabulary Cycle

To achieve explicitness for a semantic model in the context of maintenance, Griininger
and Fox (1995) introduced a methodology to create an ontology as an enterprise model [42].
They listed a set of carefully characterized problems, named competency questions, and
used them as a foundation to build an ontology. They intended this ontology to solve
the competency questions. Today; it is one of the most widely used methods to build an
ontology. Competency questions are a way to determine the scope of an ontology and
to sketch a list of questions to be answered [42]. These are forms of the questions in the
domain of interest used to easily define the scope and boundaries of an ontology.

In the Z-BRE4K project, competency questions were created after repeated discussions
with three business owners. The businesses involved a lighthouse manufacturing process
producing automotive chassis, cold forming tooling, and molding machines. The list of
competency questions for this study is as follows:

In each use case, which machines are considered?

For each use case, what stakeholders and/or actors are considered?

For each machine, what is the bill of materials (represented as a hierarchy diagram)?
In a specific use case, which component is critical for the management of assets?
For each critical component, what are the failure modes?

For each failure mode, what are the effects?

For each failure mode, what is the criticality?

Before the failure, what actions are needed?

After the failure, what actions are needed?

Which sensors are required for each critical component?

Which critical components are associated with a sensor?

For any sensor, what signals are collected?

These questions can be used to check the following questions: Does the ontology
include sufficient information in response to these questions? Is a specific level of detail or
representation of a particular area required to answer the questions? The list of competency
questions does not need to be exhaustive and can be considered a sketch [43].
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From these competency questions, entities are easily captured. Since they will be the
basis of the taxonomy of the ontology, competency questions are useful to recognize the
relationships between entities. The easiest way to capture entities is to find nouns in the
competency questions. For instance, we can easily find the nouns failure_modes and criti-
cal_components in the question, “For each critical component, what are the failure modes?”
To answer this question, the relationship between failure_modes and critical_components is
needed. Based on this competency question, we designed the logical diagram in Figure 2
with the following contexts:

e  Each System as a maintainable item plays its own Role, and the Role of the System inheres
in Maintenance_Proccess_Definition

Each System consists of the System_part and the Embedded Data-Source_Component
The Embedded Data-Source_Component generates the Source_Data

Each System_part has a Quality, a Failure_Mode, and an Indicator showing performance
Each Failure_Mode has a Failure_Symptom and an Indicator presenting its risk, probabil-
ity, and so on

Depending on the condition, the System requires Maintenance

The Product_Provider provides the System

The Maintenance_Service_Provider provides the Maintenance_Process_Definition

The Business_Customer owns the System

Processual_Entity Resource_Entity

Source_Data

requires -
Embedded Data

Material_Entity e

generates

Stakeholder

_Product_Provider _

Maintenance_Service_
Provider

System_Component

Embedded Data-
Source_Component

Business_Customer ___

hi

Failure_Cause
System_Part_Failure_
System_Failure_Cause Mode
Predictive_Maintenance

as
Information_Entity L
i has
Failure_Symptom
System_Failure_
Process_Definition Symptom = System_Part_Failure_Symptom Indicator

— — .

Specifically_Dependent_Countinuant

inheres_in

inheres_in

Maintenance_Process_Definition

Correntive_Maintenance_
ition _

Process_Definitiol

Figure 2. Logical diagram of the maintenance semantic model.

After identifying the entities and their relationships from the knowledge extraction
process, they are compared to the reference ontologies. The identified entities and their
relationships are elaborated to reflect the same philosophy and to enable communication
with the references. Thus, to suit the requirements of end-users, the ontology in this paper
can be merged with one or more reference ontologies. In this phase, the similar contexts in
the references are carefully and manually checked. The reference ontologies in this task
are the basic formal ontology (BFO) [44], the product-service system (PSS) ontology [45],
and the product lifecycle (PLC) ontology. These were selected because they all have the
same philosophy as the BFO, and the PLC and PSS ontologies were created in reference to
each other.

For an ontology to be a generic and applicable semantic model, the names of entities
should use the standard vocabulary in the scope. All of the vocabulary should be explic-
itly defined and refined (this occurs during vocabulary definition and refinement), and
definitions should be described in the ontology. After vocabulary refinement, all of the
selected terms are given definitions. In this study, the definitions were made based on the



Appl. Sci. 2022, 12, 6065

7 of 20

definitions in the reference ontologies. If a term was missing in the reference ontologies,
we have elaborated it, so its definition matches existing contexts in the references.

4.2. The Context Cycle

BFO is a formal ontology framework developed by Smith and his associates [44]. BFO
comprises two disjoint ontologies: continuant and occurrent ontology. The continuant on-
tology includes continuant entities, such as three-dimensional enduring objects; occurrent
ontology covers entities with four dimensions that unfold during a time interval (e.g., life,
smiling, sending an email). Based on the BFO, we established ontology design principles
as follows:

Single nouns should be used (except “data”).

Acronyms should be avoided.

Univocity of terms and relational expression should be ensured.

General should be distinguished from particular.

All non-root terms should be provided with their definitions.

Key features should be used to define terms and avoid circularity.

The most generic terms of the domain should be defined first.

Simpler terms should be used in comparison to the term being defined (to ensure in-
telligibility).

Creating terms for universals through logical combinations should be avoided.

The ontology should be structured around an “is_a” hierarchy, and completeness of
“is_a” must be ensured.

e  Single inheritance should be ensured.

The authors held biweekly meetings to address feedback and comments from domain
experts and business partners. In these meetings, all participants intensely discussed
terminology in the ontology and its definitions. Then, the relationships were checked to
ensure alignment with the reference ontologies.

Not only the context cycle but also vocabulary is iterative. Consequently, competency
questions, the entities, their relationships, and definitions were updated by iterations of the
two-cycle methodology. Utilizing the stated methodology, a maintenance ontology was con-
structed through iterative cycles. This was applied to a specific project, providing a platform
for PAM that led to improvement in the useful remaining life of the production systems.

5. Maintenance Ontology and Implementation
5.1. Entities of the Maintenance Ontology

To ontologically represent the structure of a target system and its failure mechanism
in a standard way, the maintenance ontology refers to the Failure Mode, Effects and
Criticality Analysis (FMECA) methodology, a widely recognized tool to study and analyze
the reliability of a process [46]. The International Electrotechnical Commission published
IEC 60812 to explain how the FMECA variant is planned, performed, documented, and
maintained for general use [47]. In IEC 60812, the system structure is represented as follows:

System breakdown to major subsystems that include functional relationships
Properly tagged inputs and outputs and identification numbers to consistently refer-
ence each subsystem

e Redundancies, alternative signal paths, and key engineering features that facilitate
protection against system failures

Referring to IEC 60812, a logical diagram (Figure 3) was created as part of the imple-
mentation of our Z-BRE4K project [48]. This logical diagram includes failure mechanism
entities, physical entities, and information entities. Failure mechanism entities describe
how a component’s failure affects system failure and related failure symptoms. Physical
entities depict the physical structure of maintainable items and embedded data-source
components. Maintainable items are the physical entities that form a part or an assembly
of parts—such as a part, module, subsystem, or system—that are at the lowest level in
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Information
Entities

the equipment hierarchy during maintenance. ISO 14224:2006 [49] Appendix A provides
examples of maintainable items for a variety of equipment. Information entities represent
information and data generated from advanced enabling technologies that can be used
in management.

Interpreted as

Source Data

Key
Performanc
e Parameter

Embedded
Data Source
Physical
Entities
System Subsystem Module
Failure Failure Failure
Cause Cause Cause
Failure socts
Mechanism has effects has effects e
Entities
System Subs_ystem quule Part Failure Mgde
Failure Failure Failure Symptom Failure
S ¢ S t S t C
\\ ymptom ymptom ymptom gzEn ause

Figure 3. Logical diagram of maintainable items and failure mechanisms.

The maintenance ontology was created through iterative cycles of the methodology
we proposed. This task was accomplished as part of the H2020 Z-BRE4K project. The
Z-BRE4K project [48] provides a platform for PAM to eliminate unplanned breakdowns
and hence extend the useful life of production systems.

The Z-Bre4k solution is comprised of the introduction of eight scalable strategies at
component, machine, and system levels: (i) the prediction of failure based on evidence
(Z-PREDICT), (ii) the early detection of current or emerging failure (Z-DIAGNOSE), (iii) the
prevention of failure occurrence, accumulation, or propagation within the production
system (Z-PREVENT), (iv) the estimation of the remaining useful life (RUL) of assets
(Z-ESTIMATE), (v) the management of these strategies through event modeling, key perfor-
mance indicator (KPI) monitoring, and real-time decision support (Z-MANAGE), (vi) the
replacement, reconfiguration, re-use, retirement, and recycling of components or assets
(Z-REMEDIATE), (vii) the synchronization of remedial actions, production planning, and
logistics (Z-SYNCHRONISE), (viii) the ongoing preservation of the safety, health, and com-
fort of human workers (Z-SAFETY) [12]. The Z-BRE4K ontology serves as a backbone of the
Z-BRE4K platform since it enables semantic interoperability between system components.

The standardization in Z-BRE4K is based on the design of the semantic model of the
maintenance entities. It is also based on the reference ontology, which provides standards-
based access to all the data in the domain of interest. The Z-BRE4K ontology manages
the design and implementation of the semantic model and the mechanisms for intelligent
filtering. It provides a unified and all-spanning semantic model covering the multi-domain
knowledge of all Z-BRE4K use cases. Therefore, Z-BRE4K achieves semantic enrichment by
receiving maintenance knowledge that results from cross-sectoral knowledge exploration
and filtering. Thus, it requires semantic interoperability: the ability of information systems
to exchange data unambiguously with shared meanings as a standard. This section depicts
the form of the Z-BRE4k ontology and its implementation within the PAM context.
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Independent_Continuant

Specific_Dependent_Continuant

General_Dependent_Continuant
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5.2. Implementation of the Maintenance Ontology

The maintenance ontology describes the context based on the competency questions
described in Section 4.1. It comprises physical entities, realizable entities, and information
entities. Physical entities are existing three-dimensional objects, realizable entities are
objects or events that can be achieved or made to happen, and information entities are
knowledge collected through measurement records.

The maintenance ontology has System, System_Component, and Embedded_Data_Source
as physical entities to describe the structure of a maintainable item. The System is defined as
a Material_Entity: a universal set of a target system that can be a single or multiple machine
or product. System_Component is a material part of the System. The subcomponent also can
be a System_Component. The Embedded_Data_Source represents a System_Component that is
intended to generate data: it is a type of sensor or digital device. The Stakeholder is also a
physical entity: the human (or being) that manages a maintenance scenario.

As realizable entities, there are Failure_Cause and Quality entities. Failure_Cause is a
defect in a process that is the underlying cause of a failure or that initiates a process leading
to failure. Quality is a characteristic of physical entities. Failure can be a sort of Quality.

The information entities are Indicator, Process_definition, and Failure_Symptom. The
Indicator is an observed value that indicates the level or state of an entity. Process_definition
is the structured set of activities that are designed to accomplish a particular objective.

These three types of entities, as a foundation of classes for a maintenance ontology,
were extended in the maintenance ontology (Figure 4). We present the list of classes together
with their definitions in Table A1 in Appendix A.

‘ «—— s

T swmrm >
ST e e
» Predicted_System_Part_Quality
S —
S —
«——— isa
S —
e o
T —
e e

Figure 4. Z-BRE4K semantic model hierarchy.
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To enhance the ontology of maintenance, this study deals with information and data
from the packaging industry. The packaging company provides service to its end users
for compression molding machines concerning PdM. The ontology was specialized for
this industry after it was populated since this ontology is a generalization of the business
scenarios, a reference semantic model. The populated ontology codifies and encapsulates
explicit knowledge of the machine operating in the packaging company. In this study, we
present the case of the compression molding equipment as a target system. It consists
of pumps, screws, bypass valves, cooling fans, mixers, heaters, cylinders, and polymer
as system components (Figure 5). Their failure modes and symptoms are described in
Table A2 in Appendix A.

Compression Molding Machine

|
| | | | | 1 | |
Cooli . .
Pump Screw Bypass ootng Mixer Heaters Cylinder Polymer
valve fans
| |
Pump Screw
Gearbox Gearbox
| |
Pump Plastic extruder
motor screw motor

Figure 5. Structure of the compression molding machine.

According to the Z-BRE4K ontology, a structure of a target system can be presented
within the class system and system_parts. The physical objects of a system and its parts
should be instances under these classes. The notions of physical objects are described as
roles, failure modes, and symptoms associated with these notions. A physical object can
have a sensor as an embedded_data_source that generates the data properties embedded_data,
which has a measured value, and date and time. Embedded_data is interpreted as Perfor-
mance_Parameters, which are indications of quality measurement. If a PdM service detects
a potential failure, it is described as a predicted_quality with an expected date and time.
Figure 6 depicts how the Z-BRE4K ontology describes an example scenario.

This example from the packaging industry serves as a guide for users of this ontology.
It provides a basic idea of how we designed the maintenance ontology so that users can
understand the correct position of data in the ontology.

Since this ontology was created as part of the H2020 Z-BRE4K project, the maintenance
ontology for the packaging industry was validated and tested with a semantic component
on the Z-BRE4K platform named the knowledge base system (KBS). The KBS makes it
possible for all data on the platform to have semantics following the rules provided by the
maintenance ontology. It stores data in the form of graphs, making links between the data
and providing context to the maintenance ontology. The KBS also facilitates describing
the data in a triple format (Subject, Predicate, Object) by using a resource description
framework (RDEF). In addition, it provides semantic services, such as search, authentication,
dataset, revision, and SPARQL (Figure 7). Thus, it facilitates governance of the maintenance
ontology, controlling all the data on the platform and the semantic enrichment of the
Z-BRE4K platform.
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Figure 6. Semantic description of an example scenario.
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Figure 7. The knowledge base system’s component diagram.
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The implementation details of the Z-BRE4K semantic model as an ontology provide
some insights based on the practical implementation issues that developers have encountered:

e  The competency question methodology proved to be a useful tool for meeting the
requirements of stakeholders in the domain field. Future efforts to develop ontologies
for smart manufacturing applications should consider this method to standardize the
ontology design and development process.

e  The BFO framework was successfully implemented to create ontologies in the main-
tenance engineering domain, and other domains should follow (e.g., zero-defect
manufacturing, product-service systems, energy-efficient manufacturing).

¢ Ontology engineering requires iterative processes. Hence, updates to the classes and
their relationships from iterative feedback from end-users and technical providers in
different use cases may help developers consolidate the ontology for application to
further scenarios.

A preliminary assessment of the evidence-based effectiveness of combining the data
and this management approach is confirmed by the successful implementation of the
Z-BRE4K platform, as presented in detail by Rousopoulou et al. (2022) [50]. The Z-BRE4K
system, which was developed following the principles of the semantic model provided,
has contributed to industrial digitization and the creation of smart factories. It provides a
generic platform as a complete solution, supporting standards-based factory connectivity,
data management, various Al models’ training and comparisons, live predictions, and
real-time visualizations.

Finally, Table A3 (in Appendix A) presents the Z-BRE4K ontology’s object properties.

6. Discussion and Concluding Remarks

A review of both research literature and industrial practices concerning ontologies
shows that there are no quantitative measures or KPIs to evaluate and compare the results
and effectiveness of industrial ontologies. This is one of the major limitations of ontology
development studies and a potential subject for further studies. For this reason, in this
section, we compare our study with the most pertinent literature. We consider various
key features of design and development, such as the main principles adopted for ontology
design, whether the ontology was tested in an industrial use case or in the development
of a software platform, the focus of the ontology, and whether any method was followed
when designing the ontology.

In this paper, we followed the design principles of the BFO and used a two-cycle
methodology for semantic model design, as explained in detail in Section 4. The focus
of our ontology is maintenance in the manufacturing context, and an industrial test was
performed to validate the ontology that also aided the successful implementation of the
Z-BRE4K platform [50].

The most pertinent research to compare to our study in terms of achievements are
by Cao et al. (2022) [51], Montero-Jimenez et al. (2021) [52], Polenghi et al. (2021) [34],
Emmanouilidis et al. (2020) [53], Karray et al. (2019) [54], and Cao et al. (2019) [40].
The method we followed for the development of the semantic model—the use of a two-
cycle methodology, competency questions, and BFO compliance—is the strength of our
model. Table 1 highlights the achievements of our research in comparison with other
relevant literature.
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Table 1. Comparison of our research with relevant literature.

+
This manuscript + Basic Formal . Two-cycle
(May et al., 2022) Ontology methodology to build
semantic model
Reused previous! N
Cao et al. (2022) [51] + de\’/eeulf)e egl;)e:;g;:) S iyes + Core Reference
P & Ontology (CROS)
Montero-Jimenez et al. + Noy and ) _
(2021) [52] McGuinness (2001)
Polenghi et al. + Reused previously + _
(2021) [34] developed ontologies
Emmanouilidis et al. + _ 4 -
(2020) [53]
Karray et al. + Basic Formal Ontolo + -
(2019) [54] &
Cao et al. (2019) [40] + M GEXeZI;(%ZOOl) + -

This paper reviewed the data-federation and data-management challenges of obsolete
systems and proposed the use of semantic technology for Industry 4.0. Inspired by the
competency questions, the two-cycle methodology was introduced to create the domain
ontology. It comprises a vocabulary cycle and a context cycle to strengthen semantics
through interactive updates.

The maintenance ontology was created through the two-cycle methodology. This on-
tology was designed considering the use together with other domain ontologies, following
BFO principles. This ontology was tested and verified on the Z-BRE4K platform with KBS.
As semantic services are provided by the KBS, the maintenance ontology was used for data
governance as part of the platform. This article discusses interoperability at semantic and
technical levels. Other key contributions were removing ambiguous terms and redundant
contextual terminologies, focusing on established vocabularies, and emphasizing a struc-
ture to compartmentalize essential vocabulary. This approach could be suitable for broader
adoption; however, this falls beyond the scope of this study.

Leveraging the maintenance ontology and the encapsulation of maintenance domain
knowledge helps to achieve semantic enrichment for the manufacturing industry. Fu-
ture work could utilize the proposed method in other relevant manufacturing practices,
such as agile manufacturing, additive manufacturing, information integration in cloud
manufacturing, and digital manufacturing.

Semantic interoperability in industry remains a challenge. To successfully adopt In-
dustrial Ontologies Foundry (IOF) ontologies and adapt them to different industries, a
real-world application and associated validation are crucial. The proposed ontology was
verified on the stated platforms; however, the validation of this methodology on large
datasets remains a topic for future research. To overcome this limiting factor in future stud-
ies and align with the vision of the current work, a large-scale testing environment could
promote learning for researchers who develop and propose ontologies and for customers
who use ontologies in their industries. On a more complex level, research could be con-
ducted in industries with different geographical locations, diverse cultures, and a variety of
organizational issues. This could help highlight the importance of data integration and har-
monization. An interoperable ontology that considers information gathered from several
stakeholders leads to operational improvements in manufacturing. As a continuation of
this work, progressing beyond the needs of local industries, recruiting data engineers, and
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Independent_Continuant

comprehensively studying resources could further promote the development of a robust
ontology scheme.
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Appendix A
We present the list of classes of the ontology together with their definitions in Table Al.

Table A1l. Z-BRE4K ontology classes and definitions.

Independent_Continuant (see BFO)

Material_Entity

Material_Entity (see BFO)

System

The System is a Material_Entity which is a universal set of the target system

System_Component

Product Component is a Material Entity which is a part of the System.

System_Part

The System_Part is a System_Component which are a modularity subset of the system

Embedded Data-Source Component is a Product Component that refers to

Embedded_Data-Source_Component  product-embedded information devices/parts (e.g., sensors), which allows for

(additional) services to be offered for the product.

Stakeholder

Stakeholder/Actor is an entity that describes the humans (or beings) involved in a
business scenario (development, deployment, use etc.).

Individual_Person

Individual Person is a Stakeholder indicating a separate person who is not a legal entity
(i.e., not legally considered a corporate group, as for example a company).

Individual_Customer

Individual Customer is an Individual Person that buys or consumes (consumer) any
product/maintenance service.

Employee

An employee is an Individual Person that works in a Company in the domain.

Company

Company is a Stakeholder that can be one or more individuals forming a legal entity
(corporate body).

Business_Customer

Business Customer is a Company that buys and uses the products, and maintenance
services. It is the (group/company) customer of the system, using the system for their
own business.

Product_Provider

Product Provider is a Supplier/provider/vendor that both produces and sells a product
or only sells it.

Maintneance_Service_Provider Service_Provider is a Supplier/provider/vendor that offers a maintenance service.

Generally_Dependent_Continuant Generally Dependent Continuant (see BFO)

Resource_Entity

Resource_Entity is a mean (source) that can be used for the design, development, offer
and delivery of a PSS, from which benefit can be produced.

Source_Data

Source-Data is a Resource_Entity that refers to the digitalised information coming as
input from the product or the service, specifically for the scope of Project.

Product_Data

Product Data are Source_Data used in the scope of the product and refer specifically to
the system part.

Embedded_Data

Embedded Data is Product Data generated from embedded data-source components.

Digital Log_Data

Digital Log Data is Product Data generated from a software element, part of the product.

Information_Entity

Information_Entity is a Resource, immaterial, describing aspects affecting Project, and
referring to all the (processed) data that one can acquire knowledge from, or further
process.

Indicator

The Indicator is an Information_Entity which is an observed value indicating the state or
level of something

Key_Performance_Parameter

The Key_Performance_Parameter is an indicator to measure the performance of each
mode at time t
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The Key_Risk_Indicator is an indicator of risk exposures to address potential warning

Key_Risk_Indicator

events

Risk_Probability_Indicator

The Risk Probability Indicator is an indicator which is a frequency of occurrence of
Failure_Effect

Severity_Indicator

The Severity Indicator is an indicator of how serious and destructive a failure mode is

Detection_Indicator

The Detection_Indicator is a numerical subjective estimation of the effectiveness of the
controls to prevent or detect the cause or failure mode before the failure (Threshold?)

Risk_Indicator

The Risk is an indicator multiplying Probability Indicator by Severity Indicator of
the failure

Risk_Priority Number

The Risk Priority Number is an indicator multiplying Risk Indicator by Detection
Indicator of the failure

Failure_Symptom

The Failure_Symptom is a Failure_Mechanism_Entity which is a physical feature that is
regarded as indicating a condition of the failure

System_Failure_Symptom

The System_Failure_Symptom is a Failure_Symptom described in the level of System

System_Part_Failure_Symptom

The Subystem_Failure_Symptom is a Failure_Symptom described in the level of
System_Part

Process_Definition

Process Definition is a structured set of activities designed to accomplish a specific
objective. For example, the Process Definition can be the manufacturing process where
the equipment is manufactured, or the process where the equipment is used, or the
development process where products and maintenance services are being developed etc.

Maintenance_Process_Definition

Maintenance Process Definition is a Process Definition referring to a set of non-tangible
entities (activities, software modules etc.), related to the maintenance service part, which
aims to satisfy a need of the end-users.

Predictive_Maintenance_Process
_Definition

The Predictive_Maintenance_Process_Definition is a Maintenance_Process_Definition to
prevent failures by monitoring

Correntive_Maintenance_Process
Definition

The Correntive_Maintenance_Process_Definition is a Maintenance_Process_Definition
to correct failures after break down or malfunction

_Speciﬁcally_Dependent_Countinuant

Specifically Dependent Continuant (See BFO)

Realisable_Entity

Realisable Entity (See BFO)

Failure_Mechanism_Entity

Failure_Mechanism_Entity

Failure_Cause

The Failure_Cause is a Failure_Mechanism_Entity which is a defect in design, process,
quality, or part application, which are the underlying cause of a failure or which initiate
a process which leads to failure.

System_Failure_Cause

The System_Failure_Cause is a Failure_Cause described in the level of System

System_Part_Failure_Mode

The System_Part_Failure_Mode is a Failure_Cause described in the level of System_Part

Quality

Quality (See BFO)

Current_Quality

The Current_Quality is a Quality at time t. If they inhere in an entity at all, they are fully
exhibited or manifested or realized in that entity.

Current_System_Quality

The Current_Quality is a Quality of a System entity at time t.

Current_System_Part_Quality

The Current_System_Part_Quality is a Quality of a System_Part entity at time t.

Predicted_Quality

The Predicted_Quality is a predicted Quality at future time t.

Predictied_System_Quality

The Predictied_System_Quality is a Quality of a System entity at future time t.

Predictied_System_Part_Quality

The Predictied_System_Part_Quality is a Quality of a System_Part entity at future time t.

Role

(See BFO)

System_Role

borne by a group of one or more System(s) by Maintenance_Process_Definition

System_Part_Role

borne by a group of one or more System_Part(s) by Maintenance_Process_Definition

Embedded_Data-
Source_Component_Role

borne by a group of one or more Embedded_Data-Source_Component(s) by
Maintenance_Process_Definition

Processual_Entity

See BFO

Maintenance

Maintenance is a Process made for, and driven by customers, with economic value, and
refers to the maintenance Offer entity in conjunction with time t.

In this study, we present the case of the compression molding equipment as a target

system. Its components, failure modes, and symptoms are described in Table A2.



Appl. Sci. 2022, 12, 6065

16 of 20

Table A2. System Components, Failure Modes, Failure Symptoms.

System Components
motor is worn

stop the machines (no polymer provided in machine)

Plastic extruder screw motor

motor bearing is damaged

local abnormal heating
local abnormal noise/vibrations

motor is worn

stop the machines (no polymer provided in machine)

Pump motor

motor bearing is damaged

local abnormal heating
local abnormal noise/vibrations

Screw gearbox Wear local abnormal noise/vibration

broken stop the machines (no polymer provided in machine)
Pump gearbox Wear local abnormal noise/vibration

broken stop the machines (no polymer provided in machine)

wear (teeth and bearing)

abnormal flow rate and pressure

Pump local abnormal noise/vibration
broken stop the machines (no polymer provided in machine)
. abnormal process conditions (flow rate,
wrong composition
temperatures, pressures)
Polymer

polymer

presence of humidity within the

abnormal process conditions (flow rate,
temperatures, pressures)

Block

stop the machines (no polymer provided in machine)

B 1 i
ypass vaive starts sticking

increase in the switching time
incomplete switching of the valve
increase in the pump outbound pressure

motor is worn

abnormal temperature regulations (no airflow
provided)

Cooling_fans

motor bearing is damaged

abnormal temperature regulations (different amount
of airflow provided)

Mixer broken

thermal drift of the melted polymer
irregular color mixing

Heaters burns itself

abnormal temperature regulations (different heating
provided)

Screw Wear

increase in the screw speed
abnormal melt pressure fluctuation
abnormal flow rate fluctuation
abnormal melt temperature
abnormal temperature regulations

Cylinder wear

increase in the screw speed; abnormal melt pressure
fluctuation; abnormal flow rate fluctuation;
abnormal melt temperature; abnormal temperature
regulations

Table A3 presents the Z-BRE4K ontology’s object properties.

Table A3. Z-BRE4K Ontology Object Properties.

has_System_Part

System

System_Part

has_System_Failure_Cause

System_Role

System_Failure_Cause

has_System_Part_Failure_Mode

System_Part_Role

System_Part_Failure_Mode

effects_System_Failure_Cause

System_Part_Failure_Mode

System_Failure_Cause

has_System_Failure_Symptom

System_Failure_Cause

System_Failure_Symptom

has_System_Part_Failure_Symptom

System_Part_Failure_Mode

System_Part_Failure_Symptom

has_Embedded_Data-Source_Component_of_System_Part

System_Part

Embedded_Data-
Source_Component

generates_Embedded_Data

Embedded_Data-
Source_Component

Embedded_Data

inheres_in_System_of_Current_System_Quality

Current_System_Quality

System

inheres_in_System_Part_of_ Current_System_Part_Quality

Current_System_Part_Quality

System_Part
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inheres_in_System_of_Predictied_System_Quality

Predictied_System_Quality

System

inheres_in_System_Part_of_Predictied_System_Part_Quality

Predictied_System_Part_Quality

System_Part

has_System_Failure_Cause_of_Current_System_Quality

Current_System_Quality

System_Failure_Cause

has_System_Part_Failure_Mode_of_Current_System_Part
_Quality

Current_System_Part_Quality

System_Part_Failure_Mode

has_System_Failure_Cause_of_Predictied_System_Quality

Predictied_System_Quality

System_Failure_Cause

has_System_Part_Failure_Mode_of_Predictied_System_Part
_Quality

Predictied_System_Part_Quality

System_Part_Failure_Mode

has_Detection_Indicator_of_System_Failure_Cause

System_Failure_Cause

Detection_Indicator

has_Detection_Indicator_of_System_Part_Failure_Mode

System_Part_Failure_Mode

Detection_Indicator

has_Key_Performance_Parameter_of_System

System

Key_Performance_Parameter

has_Key_Performance_Parameter_of_System_Part

System_Part

Key_Performance_Parameter

has_Key_Risk_Indicator_of_System_Failure_Cause

System_Failure_Cause

Key_Risk_Indicator

has_Key_Risk_Indicator_of_System_Part_Failure_Mode

System_Part_Failure_Mode

Key_Risk_Indicator

has_Risk_Probability_Indicator_of_System_Failure_Cause

System_Failure_Cause

Risk_Probability_Indicator

has_Risk_Probability_Indicator_of_System_Part_Failure_Mode

System_Part_Failure_Mode

Risk_Probability_Indicator

has_Severity_Indicator_of_System_Failure_Cause

System_Failure_Cause

Severity_Indicator

has_Severity_Indicator_of_System_Part_Failure_Mode

System_Part_Failure_Mode

Severity_Indicator

inheres_in_Risk_Probability_Indicator

Risk_Indicator

Risk_Probability_Indicator

inheres_in_Severity_Indicator

Risk_Indicator

Severity_Indicator

inheres_in_Risk_Indicator

Risk_Priority_Number

Risk_Indicator

inheres_in_Detection_Indicator

Risk_Priority_Number

Detection_Indicator

requires_Maintenance_of_System

System

Maintenance

requires_Maintenance_of_System_Part

System_Part

Maintenance

requires_Predictive_Maintenance_Process_Definition_of
_System_Failure_Symptom

System_Failure_Symptom

Predictive_Maintenance_Process
_Definition

requires_Predictive_Maintenance_Process_Definition_of
_System_Part_Failure_Symptom

System_Part_Failure_Symptom

Predictive_Maintenance_Process
Definition

requires_Correntive_Maintenance_Process_Definition_of
_System_Failure_Symptom

System_Failure_Symptom

Correntive_Maintenance_Process
_Definition

requires_Correntive_Maintenance_Process_Definition_of
_System_Part_Failure_Symptom

System_Part_Failure_Symptom

Correntive_Maintenance_Process
_Definition

provides_Predictive_Maintenance_Process_Definition

Maintneance_Service_Provider

Predictive_Maintenance_Process
_Definition

provides_Correntive_Maintenance_Process_Definition

Maintneance_Service_Provider

Correntive_Maintenance_Process
_Definition

provides_System Product_Provider System
owns_System Business_Customer System
owns_System Individual_Customer System

works_in_Product_Provider Employee Product_Provider
works_in_Maintneance_Service_Provider Employee Maintneance_Service_Provider
has_System_Role System System_Role

has_System_Part_Role

System_Part

System_Part_Role

has_Embedded_Data-
Source_Component_Role_of Embedded_Data-
Source_Component

Embedded_Data-
Source_Component

Embedded_Data-
Source_Component_Role

inheres_in_Predictive_Maintenance_Process_Definition_of
_System_Role

System_Role

Predictive_Maintenance_Process
_Definition

inheres_in_Predictive_Maintenance_Process_Definition_of
_System_Part_Role

System_Part_Role

Predictive_Maintenance_Process
_Definition

inheres_in_Predictive_Maintenance_Process_Definition_of
_Embedded_Data-Source_Component_Role

Embedded_Data-
Source_Component_Role

Predictive_Maintenance_Process
_Definition

inheres_in_Correntive_Maintenance_Process_Definition_of
_System_Role

System_Role

Correntive_Maintenance_Process
_Definition

inheres_in_Correntive_Maintenance_Process
_Definition_of
_System_Part_Role

System_Part_Role

Correntive_Maintenance_Process
Definition

consists_of_System_Part_Role_of_System_Role

System_Role

System_Part_Role

consists_of Embedded_Data-
Source_Component_Role_of_System_Role

System_Role

Embedded_Data-
Source_Component_Role

realized_in_Embedded_Data-
Source_Component_Role_of_System_Part_Failure_Mode

System_Part_Failure_Mode

Embedded_Data-
Source_Component_Role
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