friried applied
1 sciences

Article

An Approach to Migrate a Monolith Database into
Multi-Model Polyglot Persistence Based on Microservice
Architecture: A Case Study for Mainframe Database

Justas Kazanavicius *, Dalius Mazeika and Diana Kalibatiené

Citation: Kazanavicius, J.; MaZeika, D.;
Kalibatiené, D. An Approach to
Migrate a Monolith Database into
Multi-Model Polyglot Persistence
Based on Microservice Architecture:
A Case study for Mainframe
Database. Appl. Sci. 2022, 12, 6189.
https://doi.org/10.3390/app12126189

Academic Editor: Paolino Di Felice

Received: 26 April 2022
Accepted: 15 June 2022
Published: 17 June 2022

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Department of Information Systems, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
dalius.mazeika@vilniustech.lt (D.M.); diana.kalibatiene@vilniustech.lt (D.K.)
* Correspondence: justas.kazanavicius@vilniustech.lt, Tel.: +370-6-795-9290

Abstract: Migration from a monolithic architecture to a microservice architecture is a complex chal-
lenge, which consists of issues such as microservices identification, code decomposition, commina-
tion between microservices, independent deployment, etc. One of the key issues is data storage ad-
aptation to a microservice architecture. A monolithic architecture interacts with a single database,
while in microservice architecture, data storage is decentralized, each microservice works inde-
pendently and has its own private data storage. A viable option to fulfil different microservice per-
sistence requirements is polyglot persistence, which is data storage technology selected according
to the characteristics of each microservice need. This research aims to propose and evaluate the ap-
proach of monolith database migration into multi-model polyglot persistence based on microservice
architecture. The novelty and relevance of the proposed approach are double, that is, it provides a
general approach of how to conduct database migration from monolith architecture into a micro-
service architecture and allows the data model to be transformed into multi-model polyglot persis-
tence. Migration from a mainframe monolith database to a multi-model polyglot persistence was
performed as a proof-of-concept for the proposed migration approach. Quality attributes defined
in the ISO/IEC 25012:2008 standard were used to evaluate and compare the data quality of the mi-
croservice with the multi-model polyglot persistence and the existing monolith mainframe data-
base. Results of the research showed that the proposed approach can be used to conduct data stor-
age migration from a monolith to microservice architecture and improve the quality of the con-
sistency, understandability, availability, and portability attributes. Moreover, we expect that our
results could inspire researchers and practitioners toward further work aimed to improve and au-
tomate the proposed approach.

Keywords: software migration; microservice architecture; polyglot persistence; SQL; NoSQL; cloud
computing; software engineering

1. Introduction

The International Data Corporation predicts that 90% of all new applications in 2022
will be developed based on microservice architectures [1]. Microservice architecture as
well as software development and IT operations (DevOps) practice, improve software de-
velopment agility and flexibility, and allows enterprises to bring their digital products
and services to a very competitive market faster [1-3]. In order to remain competitive,
companies have started to modernize their legacy monolithic systems by decomposing
them into microservices [4-9].

Although the topic of monolithic software migration into microservice architecture
has already been explored by scientists and software engineers, there is little research on

Appl. Sci. 2022, 12, 6189. https://doi.org/10.3390/app12126189

www.mdpi.com/journal/applsci

Appl. Sci. 2022, 12, 6189

2 of 30

the database adaptation during the migration from a monolith architecture to a micro-
service architecture [4,10-24]. Despite this, it is recognized that data management is a ma-
jor challenge in microservices [25-31]. The primary focus of most of the research is the
microservice identification within monolith application and source code decomposition
into microservices. All of the existing migration methods provide very little or no recom-
mendations on how to adopt data storage to a microservice architecture during the mi-
gration from a monolith to microservice architecture. To the best of the authors’
knowledge, aside from A. Levcovitz et al., who proposed a technique of microservice ex-
traction from monolith enterprise systems, there have been no further migration methods
that have investigated the adaption of data storage to a microservice architecture [32].

To bridge this gap, the authors of this research aim to propose and evaluate a new
migration approach that would allow to migrate the data store from a monolith to a mi-
croservice architecture. In order to propose a migration approach, the authors first had to
conduct a literature review to answer to questions: What data store to use? What database
pattern to use? To evaluate the proposed approach, a proof-of-concept of migration from
a monolith mainframe database to a multi-model polyglot persistence was performed.
The mainframe application was chosen because it best represents a typical monolith leg-
acy application as used by 71 percent of Fortune 500 companies [33-35]. Quality attributes
defined in the ISO/IEC 25012:2008 standard were used to evaluate the data quality of the
microservice with a multi-model polyglot persistence and compare it with the existing
monolith mainframe application.

Our main scientific contribution and novelty of this paper are as follows:

1. Anew approach on how to conduct database migration from a monolith architecture
into a microservice architecture is proposed.

2. A new approach on how to transform the monolith data model into multi-model pol-
yglot persistence is proposed.

This article is a continuity on the research of legacy monolith software migration to
a microservice architecture. A literature review and monolith decomposition into micro-
services methods have been analyzed in previous articles [36,37].

The rest of this paper is organized as follows. Section 2 presents a literature review
on the topics of data storage in microservices, SQL vs. NoSQL, and polyglot persistence.
Section 3 provides a review of the related work. Section 4 describes the proposed approach
and its evaluation. Section 5 reports the results of the experimental investigation. Section
6 provides an evaluation of the data quality results. Section 7 discusses the advantages
and disadvantages of the proposed migration approach. Finally, Section 8 concludes this
work.

2. Background

To better understand the decisions made by the authors while creating the proposed
approach, this section provides the background of a literature review conducted on the
following topics: SQL vs. NoSQL, polyglot persistence, and data storage in microservices.

2.1. SQL Vs. NoSQL

For the last 40 years, relational databases (SQL) have been the market leader because
of their ability to solve most of the challenges. Such a long existence has given a high level
of maturity and it is still the most recommended storage for many applications. However,
SQL databases are not capable of solving all of today’s challenges, and inspired by SQL
limitations, NoSQL has emerged as a solution to fulfil these gaps [38-39].

The key feature of relational databases is the high consistency guarantee provided by
ACID (Atomicity, Consistency, Isolation, and Durability) properties. Many NoSQL data-
bases have focused on high levels of availability and resilience, even though this may com-
promise consistency for a few moments. To achieve availability and resilience, NoSQL

Appl. Sci. 2022, 12, 6189

3 of 30

databases work with BASE (Basically available, Soft state, and Eventually consistent))
properties [39].

The CAP theorem (Consistency, Availability, and Partition tolerant), also known as
Brewer’s theorem, states that it is impossible to provide all three guarantees simultane-
ously [40]. While SQL primary is focusing on consistency, NoSQL is giving up either con-
sistency or availability and embracing partition tolerance [38]. There is no perfect database
that could solve all the problems and fits all the requirements. Polyglot persistence is a
single storage system that combines the SQL and NoSQL database features.

In relational databases, the stored data are managed and represented as tables. Each
table can have a relation to an arbitrary number of tables. A table consists of rows and
columns. A row represents a dataset item, a column represents a dataset item’s field. In
NoSQL, the data store management can be grouped into four types: Key-value, Wide-
column, Document, and Graph. Data in key-value stores is managed and represented as
key and value pairs stored in efficient, highly scalable, key-based lookup structures. A
value represents data with an arbitrary type, structure, and size is uniquely identified by
an indexed key. Indexing and querying based on values are not supported, so in cases
where querying is needed, it has to be implemented on the client side. The conception of
wide-column stores (also known as column-family stores) was taken from the Google
Bigtable store. Data are represented in a tabular format of rows and column-families. A
column-family is an arbitrary number of columns logically connected to each other. A
wide-column store is an extended key-value store in which the value is represented as a
sequence of nested (key, value) pairs. An extended key-value store in which the value is
represented as a document encoded in standard formats such as XML, JSON, or BSON
(Binary JSON) is a Document store. The biggest difference from the key-value store is that
document stores know the format of the documents and support querying based on value
functionality. Graph stores are based on graph theory, in which a graph consists of verti-
ces representing entities and edges represent the relationships between them. The datasets
of graphs are stored efficiently to provide effective operations for their querying and an-
alyzing. Because the data relationship variety can be very different in many aspects, many
types of graphs such as undirected, directed, labelled, etc. are used to represent a different
type of data [39-45].

According to Nayak et al., the advantages of NoSQL are: it provides a wide range of
data models to choose from, is easily scalable, no database administrators are needed, can
handle hardware failures, is faster and more flexible, and evolves at a very high pace. The
disadvantages of NoSQL are its immaturity, no standard query language exists, not all
NoSQL databases are ACID compliant, a standard interface not exist, and difficult mainte-
nance [45].

According to the DB-Engines initiative, relational databases are still the most popular
database technology, even though NoSQL popularity has emerged in the last few years.
Twelve out of the 20 most popular database technologies are relational databases. The
most popular NoSQL database is MongoDB (Document store). There is only one repre-
sentative for each NoSQL technology in the TOP 20 list: #5 MongoDB (Document store),
#7 Redis (Key-Value store), #9 Casandra (Wide-Column store), and #20 Neo4j (Graph
store) [46]. Based on the data from the DB-Engines initiative, we can state that relational
databases are more mature, have more products to choose from, and have a bigger user
community. All of these three points are valid points when considering what database to
choose.

2.2. Polyglot Persistence

The general polyglot persistence conception was evaluated from the polyglot pro-
gramming conception proposed by Neal Ford in 2006. The main idea of both conceptions
is choosing the right tool for the given task. In polyglot programming, it is a programming
language, in polyglot persistence, it is a data storage engine. Polyglot persistence defines

Appl. Sci. 2022, 12, 6189

4 of 30

a hybrid approach where different kinds of data are best dealt with in different data stores
[47-48].

No single database technology, be it SQL or NoSQL, can satisfy all of the business
needs and solve all technological challenges. To choose the right database, a set of criteria
has to be considered: the data model, CAP support, capacity, performance, query API,
reliability, data persistence, rebalancing, and business support. It is also important to eval-
uate databases from different viewpoints: technical, business, system domain, and envi-
ronmental. Polyglot persistence technology has the potential to scale to millions of users
a day and be able to store an incredible amount of data by combining SQL and NoSQL
technologies into one solution [38—49].

L. Wiese categorized polyglot database architectures into three types: polyglot per-
sistence, lambda architecture, and multi-model databases [48]. L. Wiese recommends us-
ing polyglot persistence only if several diverse data models have to be supported, other-
wise there is a risk to overhead maintenance. The lambda architecture is recommended
for real-time data analytics applications. The lambda architecture relies on the same data
stores as polyglot persistence and has similar disadvantages. Multi-model databases store
data in a single store but provide access to the data with different APIs according to dif-
ferent data models. This type of polyglot database architecture is recommended if only a
limited set of data models is required by the accessing applications.

C. Zdepski et al. proposed a modeling methodology capable of unifying design pat-
terns for polyglot persistence, bringing an overview of the system as well as a detailed
view of each database design [47]. The proposed methodology consists of three steps: (1)
conceptual design, (2) logical design, and (3) physical design. The conceptual design trans-
lates the requirements into a conceptual database schema. The logical design realizes the
translation of the conceptual model to the internal model of a database management sys-
tem. The physical design implements all peculiarities of each database software.

According to C. Shah et al., a crucial part of the efficiency of a polyglot system is the
selection of a database engine [40]. The authors proposed the design of a polyglot persis-
tence system for an e-commerce application and compared it with a system where data
were stored only in the SQL or NoSQL databases. The most optimum results were ob-
tained from the polyglot system with three databases: (1) document type (Mongo DB),
and (2) key-value type (Redis), and (3) relational database (SQLite).

An evaluation of the NoSQL Multi-Model data stores in polyglot persistence appli-
cations were conducted by F. R. Oliveira et al. [30]. Multi-model databases (ArangoDB
and OrientDB) were compared with a combination of the document type database (Mon-
goDB) and graph type database (Neo4j). The experimental results showed that in some
scenarios, multi-model data stores had similar or even better performance than a combi-
nation of different data stores.

2.3. Data Storage in Microservices

A microservice architectural style is an approach for developing an application as a
suite of small services where every service communicates with other services via light-
weight mechanisms such as HTTP API. Services are built around business capabilities and
are independently deployable by fully automated deployment machinery. There is a bare
minimum of the centralized management of services that may be written in different pro-
gramming languages and use diverse data storage technologies [2].

H. Chawla et al., in the book Building Microservices Applications on Microsoft Azure,
discuss the various critical factors of designing a database for microservice architecture-
based applications [50]. The authors recommend that each microservice should have a
separate database because data access segregation helps fit the best technology to handle
the respective business problem. The authors, based on CAP theorem, suggested choosing
an intersection of two functionalities: consistency and availability, or availability and par-
tition. The database should depend on the nature of the application. While monolith ap-
plications usually use a single data store, microservices use many data stores, both SQL

Appl. Sci. 2022, 12, 6189

5 of 30

and NoSQL. SQL is recommended for use where transactional consistency is critical and
structured data are stored. NoSQL is recommended for microservices where schema
changes are frequent, maintaining transactional consistency is secondary, and semi-struc-
tured or unstructured data are stored. Microservice architecture offers the flexibility to
use polyglot persistence.

According to H. Chawla et al., there are four main challenges to using microservice
architecture and polyglot persistence: (1) maintaining the consistency for transactions
spanning across microservice databases; (2) sharing, or making the master database rec-
ords available across microservices databases; (3) making data available to reports that
need data from multiple microservices databases; and (4) allowing effective searches that
receive data from multiple microservices databases [50]. To ensure efficient changes trans-
ferring across the microservices, the authors suggest using two approaches: (1) a two-
phase commit for managing transactions in SQL databases, and (2) eventual consistency
to managing any distributed application.

R. Laigner et al. attempted to bridge the gap of a lack of thorough investigation on
the state of the practice and the major challenges faced by microservice architecture prac-
titioners about data management [25]. The authors identified three main reasons as why
a microservice architecture should be adopted regarding data management: (1) functional
partitioning is used to support scalability and high data availability; (2) decentralized data
management provides the ability to manage data store schemas for each microservice in-
dependently; (3) even driven architecture allows one to build a reactive application.

Database and deployment patterns were investigated by R. Laigner [25]. Three main-
stream approaches for using database systems in microservice architectures were identi-
fied: (1) private tables per microservice, sharing a database server and schema; (2) schema
per microservice, sharing a common database server; and (3) database server per micro-
service. Based on the conducted survey, the authors stated that the most preferred and
efficient way for data persistence in a microservice architecture is to encapsulate a micro-
service state within its own managed database server and avoid any resource sharing be-
tween different microservices. The most widely used databases in a microservice archi-
tecture are Redis, MongoDB, MySQL, PostgreSQL, and MS SQL.

K. Brown et al. researched the implementation patterns for microservice architectures
and proposed a pattern language [51]. Part of the proposed pattern language consisted of
scalable store patterns used to build a scalable and stateless data store for a microservice
architecture-based application. The key in these patterns is that the database must be nat-
urally distributed and able to both scale horizontally and survive the failure of a database
node. The authors suggest choosing a database based on the need: if the application
strongly depends on the SQL-centric complex query capability, then a solution such as a
SQL database or a distributed in-memory SQL database may be more efficient, otherwise,
the recommendation is to use NoSQL databases.

The importance of data persistence choice in microservice architecture-based appli-
cations was highlighted by N. Ntentos et al. in the article “Assessing Architecture Con-
formance to Coupling-Related Patterns and Practices in Microservices” [52]. According to
the authors, three things have to be taken into account while choosing data storage: relia-
bility quality, scalability quality, and adherence to microservice architecture best prac-
tices. The most recommended option is the database per service pattern and the second
option is to use a shared database, but this way negatively affects the loose coupling qual-
ity.

A. Messina et al. proposed and tested a simplified database pattern for microservice
architecture where a database is a separate microservice itself [53]. The proposed data
persistence pattern was based on four patterns: (1) the API gateway pattern; (2) the client-
side discovery and server-side discovery patterns; (3) the service registry pattern; and (4)
the database per service pattern. Proposed pattern benefits are: no traditional service
layer, microservices has no third-party dependencies, database microservice encapsulated
all specific database details, less involved components, and less complexity. The main

Appl. Sci. 2022, 12, 6189

6 of 30

drawback is the dependency on the chosen database. Proof-of-concept showed an im-
proved performance compared with the standard SQL based storage.

L. H. Villaca et al. evaluated the use of a multistore database canonical data model in
microservice architecture [54]. The authors proposed and implemented an architecture for
microservices with polyglot persistence based on the strategy of a canonical data model.
The benefits found during the evaluation were: (1) usability —high understandability and
operability; (2) high performance —better resource utilization and shorter response time;
(3) compatibility —the proposed architecture has enabled systems implemented with dif-
ferent technologies to coexist in an encapsulated form; and (4) maintainability —the API
structure provides processing of the linked objects (as defined in the scheme) in a segre-
gated manner, facilitating the decomposition processing logic and improving the reada-
bility of the mediator node code.

A different approach of data persistence in microservice architecture was presented
by N. Viennot et al. in the paper: “Synapse: A Microservices Architecture for Heterogene-
ous-Database Web Applications” [55]. The authors developed a framework called Syn-
apse, which supports data replication among a wide variety of SQL and NoSQL databases
including MySQL, Oracle, PostgreSQL, MongoDB, Cassandra, Neo4j, and Elasticsearch.
With Synapse, different microservices that operate on the same data but demand different
structures can be developed independently and with their own database. Synapse trans-
parently synchronizes shared data subsets between different databases in real-time. Syn-
chronization is conducted via a reliable publish/subscribe communication mechanism.
The biggest advantage of the synapse is that it enables microservices to use any combina-
tion of heterogeneous databases (SQL and NoSQL) in an easy-to-use framework.

2.4. Summary

To sum up, it can be stated that there is no one criteria based on which SQL or NoSQL
could clearly be chosen as a database for microservice. Instead, there are recommenda-
tions when SQL or NoSQL could be a better option. For example, the SQL is a recom-
mended technology if transactional consistency is critical and NoSQL is a recommended
technology if schema changes are frequent, etc. In theory there are clear boundaries be-
tween SQL and NoSQL, but in practice it is much more complicated. For example, even
though the transaction consistency is considered as a benefit of SQL, there are NoSQL
databases such as RavenDB or MongoDB that also support it.

On the other hand, the nature of microservice architecture offers the flexibility to use
a polyglot persistence and leverage different data store models and engines. Polyglot per-
sistence based on supported models can be grouped into two types: single-model and
multi-model. The biggest advantage of multi-model polyglot persistence is that it uses
only one database engine to support all models, while in single-model polyglot persis-
tence, each model is supported by a separate database engine. According to L. Wiese,
multi-model polyglot persistence is recommended only if a limited set of data models is
required to access.

There are many different suggestions on how to implement data persistence for mi-
croservice architecture, but a common consensus among practitioners is that good practice
is to use a separate database for each microservice. However, an actual implementation
depends on many different factors such as the size of a microservice, the actual need of
the database for each microservice, the limitations of the existing infrastructure and archi-
tecture, security requirements, consistency requirements, code quality, etc. The most com-
mon patterns used for data persistence in microservice architecture are: table per micro-
service, schema per microservice, database per microservice, and database as micro-
service.

What data storage to use? Each microservice can be different in a variety of aspects and
there is no one database that could potentially satisfy all the needs, which naturally leads
to the usage of polyglot persistence as a microservice data store. The multi-model polyglot

Appl. Sci. 2022, 12, 6189

7 of 30

persistence model was chosen to be used because it uses only one data store, which sup-
ports different data model types and at the same time, according to F. R. Oliveira et al.,
multi-model data stores have similar or even better performance than a combination of
single-model data stores.

What database pattern to use? The authors decided to use the simplified database pat-
tern for microservice architecture proposed by A. Messina et al. where a database is a
separate microservice itself. The decision to use this pattern was made based on the ben-
efits this pattern provides: less complexity and better performance results.

3. Related Work

Despite the increased attention on the migration from monolith architecture to mi-
croservice architecture, there is a lack of research that has focused on the database part.
The primary focus of most of the research is source code decomposition or extraction from
monolith applications [4,10-24]. R. Laigner et al. stated that essentially, there is little re-
search on the characteristics of data management in microservices in practice [25].

For example, when P. Cruz et al. conducted a migration from a monolith to micro-
service architecture, the database was not changed at all [25]. In another example, G.
Mazlami et al. proposed a microservice extraction from the monolith application ap-
proach, which excluded the database part and considered ORM technology as a repre-
sentative layer of the database tables [21]. In C. Fan et al., they proposed migration from
a monolith to a microservice architecture method using the domain-driven design (DDD)
principle to identify microservices and amend the database schema accordingly, but did
not provide any instructions or recommendations on how to amend database or which da-
tabase technology to choose [22].

A thorough search of the relevant literature yielded only one related method, which
contained detailed instructions on how to adapt data storage during the migration from
the monolith architecture to microservice architecture [32]. A. Levcovitz et al. proposed a
method that only groups tables within the microservice scope and keeps the data in the
same data storage. The authors of this paper aim to contribute by filling this gap by pro-
posing and evaluating a new migration method that would provide guidelines on how to
transform database storage from a monolith relational database management system into
a polyglot persistence, which is more suited for microservice architecture.

In addition, we conducted a proof-of-concept migration from a legacy monolith
mainframe application to a microservice architecture. The term mainframe is used in this
paper to refer to the computers that have IBM System 390, zSeries, or compatible computer
architecture, which was invented in the 1950s. The mainframe application was chosen as
a source because it best represents a typical monolith legacy application, as it was used by
the majority of the biggest companies [33-35]. Moreover, the mainframe uses a relational
database, which is the most widely used database type [46]. As microservice architecture
is becoming a standard architecture and many enterprises still run their digital services
through a mainframe, the challenge of how to migrate from the mainframe to microservice
is important, as it never was.

4. Proposed Migration Approach and Its Evaluation

The authors of this paper proposed and evaluated the approach of monolith database
migration to multi-model polyglot persistence based on the microservice architecture. The
purpose of the proposed approach is shown in Figure 1.

Appl. Sci. 2022, 12, 6189

8 of 30

MONOLITH
APPLICATION

DATABASE AS
MICROSERVIC

_____ : i . MICROSERVICE1 |
Database " ; : ! :

BEFORE MIGRATION 'E AFTER MIGRATION

Figure 1. The purpose of the proposed approach.

The approach can extract a database from a monolith application and transform it
into a multi-model polyglot persistence, which is encapsulated as a microservice itself and
exposes data access through a representational state transfer (REST) application program-
ming interface (API). Multi-model polyglot persistence allows us to better utilize the ben-
efits of microservices such as agility and scalability [18,26,39-40]. The encapsulation of a
database into a microservice reduces the complexity and increases the performance [53].
After migration, the data are accessible not only to an existing monolith application but
also to any microservice within an ecosystem. This allows source code migration to be
conducted from the monolith architecture to microservice architecture gradually, without
taking into account the database that is already adopted into the microservice architecture.

As a proof-of-concept for the proposed approach, the migration has been executed
from an existing mainframe monolith application to a new microservice architecture-
based application with multi-model polyglot persistence. The migration results were eval-
uated by the chosen criteria.

This section describes the proposed migration approach and its evaluation. The mi-
gration approach used in the experiment is explained in Section 4.1, the criteria used for
the evaluation are described in Section 4.2, the multi-model polyglot database software is
described in Section 4.3, and the tools, libraries, and IT equipment used to perform the
experiment are listed in Section 4.4.

4.1. Migration Approach

The proposed approach of migration from a monolith database to multi-model pol-
yglot persistence based on microservice architecture is shown in Figure 2. It consists of six
steps where each step is divided into sub-steps. A detailed explanation of each step and
its sub-steps are provided below.

4.1.1. Analysis of an Existing Monolith Application

The aim of the first step is to identify the functional requirements and the data model
of an existing monolith application. Domain experts and IT experts have to work together
in order to identify all functional requirements and build the most optimum data model.
The first sub-step is to conduct a business analysis and identify business processes that
depend on an existing monolith application. Understanding business logic is crucial to
listing out the essential business rules. The second sub-step is code base and database
analysis with the aim of identifying the technical implementation details such as code
components or database tables, related to essential business rules. Based on the identified
essential business rules and technical implementation details, the functional requirements
have to be specified in sub-step three. Finally, in sub-step four, the domain data model
has to be defined based on an existing database data model and the business processes

Appl. Sci. 2022, 12, 6189

9 of 30

that it caters for. To achieve the optimal data model results, a top—down approach has to
be used instead of a bottom—up one [56].

4.1.2. Data Model Development

During the second step, the data model for multi-model polyglot persistence has to

be created based on the defined model of an existing monolith database. The proposed
data model creation process is inspired by C. Zdepski et al., who proposed an approach
to model the polyglot persistence that consists of five sub-steps (Figure 3):

1.

Conceptual design—based on the gathered functional requirements to build a concep-
tual database schema as an entity—relationship model. A conceptual database schema
is a foundation that will be used in the next sub-steps to develop a new data model.
Segmentation design—divides the conceptual database schema into independent func-
tion units and defines borders between these units. The cut points defined on the
existing data model during segmentation design will be used to split the current data
model into different data models suitable for multi-model polyglot persistence.
Target data model design —choose the best data structure for each identified segmenta-
tion unit from the different data structures supported by multi-model polyglot per-
sistence.

Physical design—implement the built target data model into a multi-model polyglot
persistence database. As each database is different, the aim of this sub-step is to im-
plement all technical peculiarities needed to support the developed target data model
in the database.

10 of 30

Appl. Sci. 2022, 12, 6189

aseqelep yyjouow oreosadAn yyjouow P02 Yyjouowl uofjeullojsuel} 99IAI8S0I0IW JuewAojdeq pue sses|ey
10 UOISIWWO03(] |« -G dols-qng < jo JuswAholdeq |« JO SuBWPUBWY | BJEp |NJSS800NS jouewholde |« g doig
‘g dajs-qng ‘v dajs-gng ‘¢ deis-gng ‘g deis-gng ‘| deys-gng
sjuswpuswe s)|nsal s9sed auibus s8] S9SE? 158) UOILEDIIEA BIE
Jo uonejuswa|dw| (€ 189} JO sIsAleuy |« 1S9] JO UONNOSXT |« Jo uoneuswa|dw| JO uoneoyuapP| |« .ﬁ. v.h.w 1ed
‘G deys-qng p deys-ang ‘¢ dejs-gng ‘¢ deys-gng ‘| deys-gng 58
odw uoljeullojsuel uonoelIXa
tﬁm n_. P W we m V .w&m o§ P uoljjewlojsuel) eyeq
¢ dojs-qng 2 deis-ang | deys-ang v dois
0160| ssauisnq Jo 1dV 1S3Y Jo JaAe| Aoyisodal O EENH |opow elep Jo dnes
uolejuewaldw| | uoljejusweldw] | J0 uolejuBwWa|dw| |« B0IMBSOIN |« uonejuawa|dw| aseqejeq < H:wan_w»wﬂMo_Emmoho_E
‘g deys-qng ‘G deys-gng 't do)s-gng ‘¢ dels-qng 'z deis-gng ‘| deis-gng g deis
ubisep ubisop ubisep ubisep ubisep
|ealsAud < [opowl eyep Jeble] (g Aouslsisuo) g uoljeluawbheg lenydasuon < Eman_m.\,mmw_mvoE gied
‘g dais-gng 't da)s-gng ‘¢ deis-gns 'z deis-gng ‘| deis-gns ¢ deis
Jepow sjuawaiinbai sisAjeue sisAleue uoneoldde
Blep ulewoq |« |euonoun4 W [eoluyos | ssauisng < yyjouow Bunsixs ue Jo sisAjeuy
‘v dals-gng ‘¢ deis-gng ‘¢ deis-ang '} deis-gng ‘| deaig

Figure 2. The proposed migration approach.

Appl. Sci. 2022, 12, 6189

11 of 30

Is segmentation unit is independant Is data model compatibile with
' and can fullfil functional requirements? 5 segmentation unit data structure?
Develop entity ° Identify Identify
relationship segmentatlon consistency Define data model Im_plemen?
" physical design
diagram unl(s : unlts
Is consistency unit is complete and can
ensure consistency requirements?

Figure 3. The data model development.

4.1.3. Microservice Development

The main goals of step three are to set up the multi-model database and encapsulate
it into the microservice. This allows us to implement the database as a service pattern,
where a database is a microservice itself.

The first sub-step is to install a multi-model polyglot database and set up technical
peculiarities such as creating cluster, users, firewall rules, etc. The database setup can be
different in many aspects such as the operating system, virtual machine or Docker, cluster
or single instance, cluster type, etc. The decision on how to install and set up a database
has to be determined based on the application of non-functional requirements, the capa-
bilities of the existing company infrastructure, database capabilities, availability require-
ments, security requirements, scalability requirements, etc.

During the next sub-step, the physical design of the data model created in the second
step has to be implemented into the installed database. All models and data structures
defined in step 2 have to be implemented and ready to be used. This sub-step could be
skipped if the database supports a code-first approach where models and data structures
are defined in an application.

The purpose of the third sub-step is to create a microservice skeleton that has to be
able to be deployed and run as a Docker container. At this stage, a microservice should
only contain the code and settings needed to run it as a Docker container in the company’s
infrastructure. An infrastructure has to be created to run a Docker container, for example,
it could be an OpenShift project in a private cloud. The number of active containers and
scalability settings have to be determined based on the non-functional requirements, the
capabilities of the existing company infrastructure, database capabilities, availability re-
quirements, security requirements, scalability requirements, etc. A continuous integra-
tion and continuous deployment (CI/CS) pipeline has to be set up in order to automate
build, test, and deploy activities and ensure security that only the entitled person can de-
ploy anew version of the microservice. Microservice capabilities to log have to be ensured.
A good practice for a microservice architecture is to use centralized logging solutions. An
example of a good logging solution could be ELK Stack.

The repository layer has to be built in order to provide microservice accessibility to the
database in sub-step four. All actions needed to establish a connection between a database and
a microservice have to be executed first, for example, firewall rules, service account access
rights, connection string, etc. The next step is the implementation of a repository layer. The
code able to communicate with a database and manipulate its data has to be written. For each
data model defined in step 2 and implemented in the database, a repository has to be created
and support four main operations: create, read, update, and delete.

During sub-step five, the REST API has to be built and exposed with all of the neces-
sary methods to support the interfaces for all identified functional requirements. For ex-
ample, if the functional requirements consist of creating customer, viewing customer, updat-
ing customer, deleting customer. All four methods have to be created in the customer’s con-
troller. The authentication and authorization functionality have to be implemented in or-
der to fulfil the security requirements and manage the accessibility to different methods.

Appl. Sci. 2022, 12, 6189

12 of 30

The aim of the last sub-step is to implement the business logic layer, which has to
connect the REST API layer and the repositories layer. Because the REST API layer oper-
ates with business domain data models and the repository layer operates with database
specific data models, they cannot work directly. The business logic layer works as an in-
termediate layer that contains all of the logic needed to implement all of the functional
requirements identified in step one and connects the REST API and repository layers.

An example of one possible implementation is presented in the sequence diagram
below (Figure 4). The REST APl layer exposes a method GetCustomer, which can be called
by a client application to obtain all the customer details. Once the call is received, it is
routed to the business logic layer, which calls the repository twice to obtain different de-
tails about the customer: GetCustomerInfo and GetCustomerHistory. GetCustomerlnfo obtains
the general customer information such as name, surname, address, etc. GetCustomerHis-
tory obtains the customer’s payment history. The repository layer is called twice because
CustomerInfo and History data are stored in separate data models within a database and
two separate calls to a database are needed. In the business layer, CustomerInfo and History
data received from the repository layer are combined and mapped into one consistent
domain data model — Customer, which is used as a response to a client’s GetCustomer re-
quest. To sum up, the repository layer is responsible for data manipulation within the
database, it encapsulates all of the technical implementation peculiarities such as connec-
tion establishment, data mapping, etc. The REST API layer is responsible for data expo-
sure to clients via the REST API interface and encapsulates all technical implementation
peculiarities such as connection establishment, authorization, authentication, etc. The
business logic layer is responsible for building a consistent domain data model.

Client application / Microservice \ Database cluster
i E Rest API “Repostiory ' :

' GetCustomer

Lo > GetCustomerinfo :

GetCustomerlnfo : H

Customerlnfo ! u

......Customerinfo I A R T

i | GetCustomerHistory GetHistory ;

§ ; .. Customert O SR - U

; Customer H : :
: : _Customer \ [e : /

Figure 4. An example of the function GetCustomer implementation within the microservice layers.

4.1.4. Data Transformation

Once a microservice is created, the next step is to transform the data from a monolith
database into multi-model polyglot persistence. The biggest challenge here is that both
databases use different data models, so it is not possible to directly transfer data from one
to another, it has to be transformed. The aim of this step is to create an application that
can execute data transformation between databases. The proposed data transformation
process is shown in Figure 5.

- >
=
Monolith
database

Identify all data Create entities for
Extract data structures in new each identified Import data
data model data structure
O+ Ol+]

Figure 5. The proposed data transformation process.

—
Multi-model
polyglot

Appl. Sci. 2022, 12, 6189

13 of 30

The first sub-step is to extract everything needed to transform the data from a mon-
olith database. A code that is able to read data from a monolith database and transform it
into data models that represent the used data structure has to be written. The authors
recommend creating a repository layer with a repository for each data table in a monolith
database. An example of the simplified repository and model implementations written in
the C# programming language are shown in Figure 6.

public class MonolithModel1Repository public class MonolithModel1
{ {
private readonly IDatabase<MonolithModel1> _database; public long Id { get; set; }
public string PropertyA { get; set; }
public CustomerRepository(IDatabase<MonolithModel1> database) public long MonolithModel2Id { get; set; }
{ }

_database = database;

}

public IEnumerable<MonolithModel1> GetAllRecords()
{
return _database.GetAllRecords(tableName: "Model1Table");
¥
¥

Figure 6. An example of the simplified repository and model implementations.

The MonolithModell is a model that represents the data in the Model1Table data table.
The MonolithModel1Repository has one method, GetAllRecords, which calls the generic in-
terface IDatabase that executes the SQL query to obtain all records from the specific table
Model1Table and maps the result to the defined model MonolithModell. Finally, read-only
access rights should be granted and firewall rules should be set up in order for the appli-
cation to access the data in a monolith database.

The purpose of the next sub-step is to transform the extracted data into a data model
that is supported by multi-model polyglot persistence. As the data models and repository
layer for multi-modal polyglot persistence have already been implemented in the third
step, the code can be reused. Once both data models for the monolith database and multi-
modal polyglot persistence are created, the mapping logic between models has to be im-
plemented. Each field of each data model for polyglot persistence has to be mapped.

The simplified example of the data model of multi-model polyglot persistence is
shown in Figure 7. It is a combination of two data models used in monolith application.
The MonolithModell and MonolithModel2 models represent two data tables in the monolith
database and PolyglotModel represents a document with the embedded sub-document Pol-
yglotChildModel. Even though the given example looks simple and straightforward, in
practice, mapping logic can be more complicated: the data model for the polyglot can be
a combination of dozens of data tables, fields from the same data table can be part of many
data models of the polyglot, data types for fields could be different, etc. The complexity
of data model mapping strongly depends on the quality of the monolith database data
model where a lower quality means a higher complexity.

Appl. Sci. 2022, 12, 6189

14 of 30

public class MonolithModel1

{
public long Id { get; set; }
public string PropertyA { get; set; }
public long MonolithModel21d { get; set; }

public class PolyglotModel
{
public long Id { get; set; }
public string PropertyA { get; set; }
public PolyglotChildModel Child { get; set; }

} }
public class MonolithModel2

{ {
public long Id { get; set; }

public class PolyglotChildModel

public long Id { get; set; }
public string PropertyB { get; set; } public string PropertyB { get; set; }

public string PropertyC { get; set; } public string PropertyC { get; set; }

public PolyglotModel Map(MonolithModell modell, MonolithModel2 model2)
{
return new PolyglotModel
{
Id = modell.1d,
PropertyA = modell.PropertyA,
Child = new PolyglotChildModel
{
Id = model2.1d,
PropertyB = model2.PropertyB,
PropertyC = model2.PropertyC,
}
h
}

Figure 7. An example of simplified data model mapping.

The next action in the second sub-step is to create all records for polyglot persistence
based on records in a monolith database. If we follow the examples defined in Figures 6
and 7, the number of records for the PolyglotModel model should be equal to the number
of records in the Model1Table table. For each data model of polyglot persistence, a main
data table in a monolith database has to be identified. A simplified example of records
creation is shown in Figure 8. The PolyglotModel Transformer class uses MonolithModel1Re-
pository and MonolithModel2Repository classes to obtain MonolithModell and Mono-
lithModel2 records from the monolith database and passes these to the PolyglotModelMap-
per, which maps all of the fields and creates PolyglotModel records.

The last sub-step imports all records created in the second sub-step into a multi-
model polyglot database installed in the third step. The authors suggest reusing the re-
pository layer created in the microservice.

Even though the data transformation process could be implemented in different
ways, the authors recommend building a separate application for this purpose. This
would allow for the process to be repeated as many times as needed in event that errors
or failures occur. It also would allow for the transformation process to be executed grad-
ually in case it is planned to transform the data in stages.

Appl. Sci. 2022, 12, 6189 15 of 30

public class PolyglotModelTransformer

{
private readonly MonolithModel1Repository _monolithModel1Repository;
private readonly MonolithModel2Repository _monolithModel2Repository;
private readonly PolyglotModelMapper _polyglotModelMapper;

public PolyglotModelTransformer(
MonolithModel1Repository monolithModel1Repository,
MonolithModel2Repository monolithModel2Repository,
PolyglotModelMapper polyglotModelMapper
)

_monolithModel1Repository = monolithModel1Repository;
_monolithModel2Repository = monolithModel2Repository;
_polyglotModelMapper = polyglotModelMapper;

public IEnumerable<PolyglotModel> Transform()

{
var monolithModels1 = _monolithModel1Repository.GetAllRecords();
var monolithModels2 = _monolithModel2Repository.GetAllRecords();

foreach (var modell in monolithModels1)

{
var model2 = monolithModels2.Single(x => x.Id == model1.MonolithModel21d);
yield return _polyglotModelMapper.Map(modell, model2);

Figure 8. An example of the simplified record creation class.

4.1.5. Data Validation

The purpose of the fifth step is to create automatic data validation. Transformed data
have to be validated before releasing it into production. In the first sub-step, test cases
have to be created based on the functional requirements and data in the mainframe mon-
olith database. The second sub-step is to create a test engine that has to be able to execute
created test cases in the previous sub-step. The purpose of the last three sub-steps is to
execute the test cases and make amendments if needed (Figure 9). The step is finished
only when all of the test cases are passed.

Analyse tests
results

Execute tests

No

Make

amendments

Figure 9. The test case execution.

For example, the functional requirements for the data records of PolyglotModel de-
fined in Figure 7 are: read, create, update, and delete. Four test cases have to be created in

Appl. Sci. 2022, 12, 6189

16 of 30

order to validate the data integrity and persistence, one test case for one functional re-
quirement. The first functional requirement is the possibility to read the data. In this ex-
ample, it is the possibility of reading data records of PolyglotModel. Two main criteria have
to be verified. First, in each data record of PolyglotModel, all fields have to be mapped
correctly and the data have to be consistent. Second, the multi-model polyglot persistence
has to contain the same number of records as the data table Model1Table in the monolith
database. Figure 10 contains an example of the possible records. The monolithModel1Record
represents a record of the data table Model1Table in the monolith database, the mono-
lithModel2Record represents a record of the data table Model2Table in the monolith data-
base, and the polyglotModelRecord represents a record of the PolyglotModel in multi-model
polyglot persistence. The test case for functional requirement read has to verify that all
fields that exist in the MonolithModell and MonolithModel2 models also exist in Polyglot-
Model and the values are the same. For example, the PropertyB value in monolithModel2Rec-
ord should be the same as the PropertyB value in polyglotModelRecord. To verify that all
records were transformed to multi-model polyglot persistence during step 4, the test case
has to be executed as many times as the Model1Table table has records.

var monolithModel1Record = new MonolithModell var polyglotModelRecord = new PolyglotModel
{ {

Id=1, Id=1,

PropertyA = "PropertyAValue", PropertyA = "PropertyAValue",

MonolithModel2Id = 2 Child = new PolyglotChildModel
b {

Id=2,

var monolithModel2Record = new MonolithModel2 PropertyB = "PropertyBValue",
{ PropertyC = "PropertyCValue"

Id=2, ¥

PropertyB = "PropertyBValue", }¥

PropertyC = "PropertyCValue"
%

Figure 10. An example of the data records in the monolith database and multi-model polyglot
persistence.

Three more test cases have to be created to validate create, update and delete functional
requirements. The test case for create should try to create a new record of PolyglotModel
and verify that the record is actually created and that all of the fields are filled correctly.
The test case for update should try to update all of the value fields in a record of Polyglot-
Model and verify that all of them are updated correctly. Finally, the test case for delete
should try to delete a record of PolyglotModel and verify that it was actually deleted.

4.1.6. Release and Deployment

The aim of the last step is to release and deploy the developed microservice and the
amended monolith application into a production environment. The first sub-step is to de-
ploy the developed microservice into the production environment. It includes all the tech-
nical peculiarities needed to deploy and run the microservice as a Docker container. All
preparation actions such as the creation of the OpenShift project, creation of the CI/CD
pipeline, etc., should be conducted during step 3. In essence, it should be just a run of the
CD part in the CI/CD pipeline.

During the next three sub-steps, the monolith application should start using the mi-
croservice as a data source instead of the monolith database (Figure 11). At first, the mon-
olith application has to be stopped and data transformation has to be executed with the
application created in the fourth step. Then, the monolith code has to be amended to use
the microservice created in the third step instead of the monolith database and be de-
ployed into the production environment. The precondition for the deployment of the
amended monolith application is successful data transformation. The application created

Appl. Sci. 2022, 12, 6189

17 of 30

in the fifth step has to be executed to verify that the data are valid after transformation. If
data validation fails, the release operation must be stopped and the old version of the
monolithic program used until the cause of the failed validation is identified and elimi-
nated.

i Start new version
phoaton T verty Yes of monolith
application data data onol
application
l\io
Fix the Identify the Start old version
roblem roblem of monolith
P P application

Figure 11. Release and deployment execution.

The fifth sub-step is hyper care, during which the domain and IT experts have to give
hyper attention to newly released software and fix any last errors in case they appear. The
last sub-step is decommissioning a not used monolith database.

Another important aspect that has to be taken into account during this step is to en-
sure that only the monolith application is using its database. In the case that other pro-
grams are using the same database, then the migration process has to be coordinated with
the teams who are responsible for those programs to ensure that after migration, the da-
tabase is not used by any program.

4.2. Criteria

The ISO/IEC 25012:2008 standard quality attributes were used to evaluate and com-
pare the data quality of the proposed multi-model polyglot persistence model and the
existing monolith mainframe persistence model. The quality attributes used in the evalu-
ation were: Accuracy, Completeness, Consistency, Credibility, Correctness, Accessibility,
Compliance, Confidentiality, Efficiency, Precision, Traceability, Understandability, Avail-
ability, Portability, and Recoverability.

4.3. Multi-Model Polyglot Database Software

ArangoDB is an open-source multi-model polyglot persistence system that imple-
ments a data model integrating the document, graph, and key-value models with one da-
tabase core. It supports the transactions, partitioning, and replication. ArangoDB has its
own query language, AQL, which allows for joins, operations on graphs, iterations, filters,
projections, ordering, grouping, aggregate functions, union, and intersection. The Aran-
goDB supports all of the ACID properties [57].

4.4. Tools

The ArangoDB database was used as the multi-model polyglot database engine [57].
The microservice that exposes multi-model polyglot persistence was written using the
C#.NET5 framework [58]. All coding and testing were conducted using Microsoft Visual
Studio IDE and Arango Management Interface [59]. All libraries used in the research were
downloaded from NuGet gallery [60]. The experiment was performed on a computer with
the following specification: CPU—Core i7 9850H, memory—32 GB RAM, storage—512
GB SSD, and OS—Windows 10 Enterprise. All applications were run on a computer, no
external devices or networks were used.

5. Result of Experiment

This section provides the results obtained during the evaluation of the approach of
the mainframe monolith database migration to multi-model polyglot persistence based
on microservice architecture. The results of each step of the proposed approach are ex-
plained in separate subsections: 5.1. Research of an existing monolith application; 5.2.

Appl. Sci. 2022, 12, 6189

18 of 30

Data Model Creation; 5.3. Microservice Creation; 5.4. Data Transformation; 5.5. Data Val-
idation; 5.6. Release into Production.

5.1. Analysis of an Existing Monolith Application with a Mainframe Database

The primary function of the standard settlement instructions (SSI) application is to
store and provide standard settlement instructions to other information systems across
the organization. Standard settlement instructions are used to execute payments between
banks and organizations. A simplified model of the SSI application is shown in Figure 12.

The SSI application is implemented with IBM mainframe and Microsoft. NET frame-
work technologies. The data are persisted in 35 tables in the DB2 database and can be
accessed and edited through IBM mainframe modules. SSI data are exposed to other in-
formation systems across the organization through Rest API, which is implemented with
the Microsoft. NET framework.

Consumers ': { Microsoft .Net \: IBM Mainframe

Modules DB2 Database

y‘ Module 1 < Table 1
Module 2 7< > Table 2
*l Module 3 <

Rest API

i

» Table 3

:

> Table x

'

Figure 12. The simplified model of the SSI application.

Based on the top-down approach, functional requirements were gathered in two
steps: (1) defining critical functionality by talking with domain experts within the organ-
ization, and (2) deep revision of the legacy code. The most important functional require-
ments gathered during the evaluation are presented in Table 1.

Table 1. The functional requirements of the SSI application.

Functional Requirements

Ability to view/add/update/delete customers

Ability to view/add/update/delete agreements

Ability to view/add/update/delete standard settlement instruction
Two types of standard settlement instruction: receive and deliver
One customer can have many agreements

One customer can have many confirmation settings

One customer can have one netting settings

An agreement can have many instructions

O XN LN

An agreement can have one account information

Appl. Sci. 2022, 12, 6189

19 of 30

5.2. Data Model Development

The aim of this step is to design a new data model that will be used in multi-model
polyglot persistence. The creation of a new model process consists of five steps: (1) con-
ceptual design; (2) segmentation design; (3) consistency design; (4) target data model de-
sign; and (5) physical design.

5.2.1. Conceptual Design

The aim of the conceptual design step is to translate the identified functional require-
ments into a conceptual schema. The entity—relationship model is used as a conceptual
schema because it is a widely exploited model and allows for a detailed definition of the
entities and their relationships on the database. The simplified conceptual database
schema of the SSI application is shown in Figure 13. The root element of the system is a
customer, which can have one netting agreement and many confirmations and agree-
ments. Netting is an option to merge many payments into one. An agreement is a special
contract with a customer, usually for a specific product and currency that have a specific
settlement instruction. Each short name can have one account and many receive and de-
liver instructions. A receive instruction is an instruction for incoming payment and a de-
livery instruction is an instruction for outgoing payment.

1 N 1 1
Customer Agreement has Account

; 1 J L 1

N 1 N N

N
Confirmation Netting Receive Instruction Deliver Instruction refers

Figure 13. The simplified conceptual schema of the SSI application.

5.2.2. Segmentation Design

The segmentation step identifies independent functional units and defines the bor-
ders between them. Segmentation units have to be identified in order to take full ad-
vantage of the multi-model polyglot persistence feature, which is the capability of using
multiple different data models in the same database. The outcome of this step is defined
cut points on the existing data model that can be used to split it into different data models.
Any of the segmentation units can be detached from the model and work as an independ-
ent system. Segmentation units identified in the simplified conceptual database schema
of the SSI application are shown in Figure 14. During the segmentation design sub-step,
the SSI application was divided into three independent functional units: customer man-
agement, agreement management, and instruction management.

Appl. Sci. 2022, 12, 6189 20 of 30
i Cutomer management T Agreement management
1
Customer Account
1 1 1
N
H H N
Confirmation Netting H i | Receive Instruction Deliver Instruction i refers

Instructions management

Figure 14. The segmentation units are identified in the simplified conceptual database schema.

5.2.3. Consistency Design

The consistency step ensures consistency of the dataset across all subsystems and
allows for data fragmentation. As polyglot supports NoSQL data models, the eventual
consistency provided by BASE properties has to be taken into account during the data
model creation step. Polyglot persistence does not have to be consistent across the entire
database, but some data groups must be consistent to be valid. These groups are called
consistency units and play a key role in allowing data fragmentation and horizontal scala-
bility. The consistency unit has to ensure a guarantee that, provided no new updates to an
entity are made, all reads of the entity will eventually return the last updated value. An
example of one consistency unit in the SSI application is shown in Figure 15. Customer,
agreement, and receive instruction comprise a consistency unit, and in the case a query
returns the response with different versions of items, we have an inconsistency that may
cause a system failure.

Customer has Agreement 0 has Account

N : N

H : N
Confirmation Netting H Receive Instruction ' Deliver Instruction refers

Figure 15. The consistency unit identified in the simplified conceptual database schema.

5.2.4. Target Data Model Design

The target data model step defines the best data model for each segmentation unit.
All three subsystems fit into a combination of the key-value and document-oriented data
model.

The identified target data model is shown in Figure 16. One customer can have many
agreements and each agreement can contain many instructions. Customers, agreements,
and instructions are saved as documents in separate collections. The relations between the
customers and agreements and relations between the agreements and instructions were
defined as collections and also stored in separate collections.

Appl. Sci. 2022, 12, 6189

21 of 30

Y

AgreementsinCustomers InstructionsinAgreements
Customers > Agreements

Figure 16. The target data model.

Instructions
5.2.5. Physical Design

The aim of the physical design step is to implement all peculiarities of the planned to
use database, in order to implement the target model. As multi-model polyglot persistence
was chosen as data persistence, only one database engine was used. The physical design
step is less complex with a multi-model compared to standard polyglot persistence, which
is used by many different databases.

In the ArangoDB database, data are stored as documents (JSON format) and each
document could be considered a as key—value pair. Documents are grouped into collec-
tions. ArangoDB supports two types of collections: document collection and edge collec-
tions. Documents are vertices and edges are edges in the context of graphs. Edge collec-
tions are used to create relations between documents.

The physical model created during the experiment is shown in Figure 12. It consists
of document collection: (1) Customers—to store the customers’ data; (2) Agreements—to
store the agreements’ data; (3) Instructions —to store the instructions” data. To create rela-
tions between the documents, two edge collections were introduced: (1) Agree-
mentsInCustomers—to store the relations between a customer and its agreements, (2) In-
structionsInAgreement—to store the relations between an agreement and its instructions.
The physical data model can be considered as a graph. An example with two customers
is shown in Figure 17.

Agreements in Customers collection Instructions in Agreements collection
Key Key
From (Customer key) From (Agreement key)
To (Agreement key) To (Instruction key)
Customers collection Agreements collection Instructions collection
Key Key Key
Customer information Agreement information Instruction information
Confirmations [] Account Instruction type
Netting

Figure 17. The physical data model.

The physical data model can also be represented as a graph. The example of the data
model with two customers where each has one agreement and the first agreement con-
tains two instructions, and the second agreement contains three agreements, is shown in
Figure 18.

Agreement 1 Agreement 2

Figure 18. The graphical representation of the physical data model.

5.3. Microservice Development

The simplified model of the built microservice with multi-model polyglot persistence
is shown in Figure 19.

Appl. Sci. 2022, 12, 6189

22 of 30

ArrangoDB cluster

Docker 1

Microservice 1

Rest APl endpoint 1

Rest API Business Reposnory\L

ayer logic layer JJ T ArrangoDB 1
layer HE H

...

Docker 2

Microservice 2
Rest API BL;;'TCQSS Reposnoryl
layer Iager layer U

Figure 19. The simplified model of a new SSI application with multi-model polyglot persistence.

Rest API endpoint 2

Y

ArrangoDB 2

The pattern—database as a service was chosen to be used in order to build multi-
model polyglot persistence based on microservice architecture. Based on the gathered
functional requirements, the application was implemented as a microservice written with
the C# programming language within the Microsoft. NET framework. It was deployed to
the OpenShift project as a Docker container by the AzureDevOps CI/CD pipeline. Based
on the availability and scalability requirements, two separate OpenShift projects were cre-
ated, each in a separate availability zone. In each availability zone, one Docker container
was created with the possibility to scale up on demand automatically. The ArangoDB was
used as a multi-polyglot database and its cluster was established with two nodes, one
node per availability zone. The security and accessibility were ensured by firewall rules
and separate access rights for specific operations.

In the new SSI application, a database and a business logic worked as one unit—the
SSI microservice. The data are exposed to the other information systems across an organ-
ization via REST API, which is available to new microservices and legacy monolith solu-
tions. The business logic layer interacts with a database through a repository layer that
encapsulates the database-specific details. The details on the business logic and database
are hidden from the consumers: the only way to manipulate the data is through the REST
API by using domain data models.

5.4. Data Transformation

In order to migrate data from a monolith database to a multi-model polyglot persis-
tence database, a data transformation application was written with the C# programming
language (Figure 20). The application contained three layers: extraction, transformation, and
import. The Extraction layer extracts all data from the existing monolith database. Thirty-
five repositories and data models were created to extract data from each data table. The
Transformation layer transforms the extracted data into a data model that is supported by
multi-model polyglot persistence. The Import layer imports the transformed data into a
multi-model polyglot database. The repository layer code from the microservice code base
was reused.

Appl. Sci. 2022, 12, 6189

23 of 30

The data was extracted from 35 tables in the IBM DB2 database, transformed, and
imported into three document collections and two edge collections. To make sure that the
data is consistent in both databases, the actual data transformation was conducted during
the release and deployment step. The mainframe application was temporarily stopped to
transform the data and make all of the amendments needed to use the microservice in-
stead of the existing monolith database.

Extraction Transformation Import
layer layer layer

Data transformation application

Multi-model

polyglot
persistence

Monolth
database

Figure 20. The data transformation from the monolith database to multi-model polyglot persis-
tence.

5.5. Data Validation

Based on specified functional requirements, test cases for data validation were cre-
ated in a forum of domain experts and IT experts within the organization. The forum con-
sisted of three SSI domain experts, four mainframe software engineers, and four C# soft-
ware engineers. A test engine was written with the C# programming language to execute
automatic data validation (Figure 21) and contained three modules. The data extraction
module extracts data from the monolith database. The Test execution module uses the ex-
tracted data to make calls to the Microservice REST API. The analysis module compares
responses from Microservice REST API and data extracted from the monolith database.
For example, the data extraction module extracts all of the existing customers from the
monolith database, the test execution module one by one requests customer data from
Microservice REST API, and the analysis module validates that all customers exist in
multi-model polyglot persistence.

Monolith application

1) Extract data
Database

e : E :

S . 2) Execute tests [€—> &
g) : 1 < :

L = . .

r N () Multi-model i

P L !

3) Analyse results [€—» polyglot :

DA J) v I.

Figure 21. The automatic data validation process.

5.6. Release and Deployment

The first sub-step during the release is the deployment of microservice to the produc-
tion environment. The microservice was deployed to the on premise cloud as a Docker
container to OpenShift [61-62]. Four instances of microservice were distributed between
two microsegments, two instances in each microsegment. Each microsegment was in dif-
ferent data centers. Microservice deployment into the cloud schema ensures a high resili-
ence and availability level (Figure 22). Kubernetes ensure resilience for containers in each
microsegment and the distribution between two microsegments ensures high availability
[63]. A load balancer provides one point for the clients to the REST API. The continuous

Appl. Sci. 2022, 12, 6189

24 of 30

integration (CI) and continuous deployment (CD) pipeline was created in Azure DevOps
[64].

Load balancer

Microservice Microservice

Microservice Microservice : :
' POD 1 POD 2 !

; POD 1 POD 2 ;

Microsegment 1 Microsegment 2

Figure 22. Microservice deployment into the cloud schema.

During the next sub-step, the monolith mainframe application was stopped and data
transformation and validation were executed with separate applications. Then, the code
of the existing monolith application was amended to use a microservice instead of a mon-
olith database, and all of the SQL queries were changed to calls to the microservice ex-
posed REST API. The new version of the mainframe monolith application was released
into production and the hypercare period started. The switch between databases was ex-
ecuted during the weekend. The downtime did not have any impact because the monolith
mainframe application was only used on working days. Once the hypercare was over, the
legacy monolith mainframe database was decommissioned.

6. Evaluation of the Data Quality of the Proposed Microservice with Multi-Model
Polyglot Persistence

Data quality is a key component of the quality and usefulness of information systems.
The effectiveness of business processes directly depends on the quality of the data. This
section provides the results of the evaluation and comparison of the ISO/IEC 25012:2008
standard quality attributes between the monolith mainframe application and micro-
service with multi-model polyglot persistence. Each quality attribute was evaluated and
graded on a scale from 1 to 5 for each application. A lower value showed a lower quality
and a higher value showed a higher quality. Descriptions of the used evaluation grades
are provided in Table 2.

Table 2. The description of the used evaluation grades.

Value Description
1 Lowest quality
2 Low quality
3 Average quality
4 High quality
5 Highest quality

The evaluation was conducted in a forum of domain experts and IT experts within
the organization. The forum consisted of three SSI domain experts, four mainframe soft-
ware engineers, and four C# software engineers. Proof-of-concept of a microservice with
multi-model polyglot persistence was compared to an existing monolith mainframe ap-
plication going through the list of questions for each quality attribute. There were 150
questions, 10 questions for each quality attribute. Each question had to be applied to both
applications. Questionnaires were constructed in a way to make answering possible for
staff with low IT knowledge levels (domain experts). For example, one of the questions to

Appl. Sci. 2022, 12, 6189

25 of 30

evaluate understandability is: “Is the data model easily understandable?” Experts had to
choose an answer from five possible options: strongly disagree (1 point), disagree (2 points),
neither agree nor disagree (3 points), agree (4 points), strongly agree (5 points). Kendall’'s W
coefficient of concordance was used to assess the agreement among the experts [65]. The
coefficient value was 0.76, which indicates a relatively high level of agreement between
the experts. If the test statistic W was 1, then all of the survey respondents were unani-
mous, and each respondent has assigned the same order to the list of concerns. If W was
0, then there was no overall trend of agreement among the respondents, and their re-
sponses may be regarded as essentially random. Intermediate values of W indicate a
greater or lesser degree of unanimity among the various responses.

The final results of the evaluation and comparison are shown in Table 3. The final
value for each quality attribute is an average of the experts’ values rounded to the nearest
whole number.

Table 3. The results of the evaluation and comparison of the ISO/IEC 25012:2008 standard quality
attributes between the monolith mainframe and microservice applications.

Quality Attribute Monolith Microservice
Accuracy

Q1

Completeness
Consistency
Credibility
Correctness
Accessibility
Compliance
Confidentiality
Efficiency
Precision
Traceability
Understandability
Availability
Portability
Recoverability

=N W O O OO s 01 WO O
= 01 = 01 U1 O &= 01 G = = U1 G1 O

Most of the ISO/IEC 25012:2008 standard quality attributes such as accuracy, com-
pleteness, credibility, correctness, accessibility, compliance, confidentiality, efficiency,
precision, traceability, and recoverability were the same for both applications, but micro-
service with multi-model polyglot persistence showed better results in consistency, un-
derstandability, availability, and portability.

1. Consistency—a microservice with multi-model polyglot persistence provides strong
data consistency and uses three methods to ensure consistency: eventual, immediate,
and OneShard (highly available, fault-tolerant deployment mode with ACID seman-
tics) while mainframe monolith data persistence only uses an immediate method to
ensure consistency. In addition to database supported consistency methods, the busi-
ness layer of microservice ensures that consumers operate only with consistent data
models. Consumers, through REST API, can only manipulate data at the domain
level as they are not aware of the database schema details and do not have access
rights to access it directly.

2. Understandability—a new data model with five collections instead of 35 tables that
were used in the mainframe application is simpler and easier to understand. The re-
lations between entities are represented as a graph, which is a great help in improv-
ing the readability. The AQL query language used to query polyglot persistence is

Appl. Sci. 2022, 12, 6189

26 of 30

considered as a human-readable query language and increases understandability
compared to the SQL query language used in mainframe application.

3. Awailability—the biggest advantage of microservice with polyglot persistence in
terms of availability is that it supports many resilient deployment modes to meet the
different needs of a different project. Active failover deployment is used for smaller
projects with fast asynchronous replication from the leading node to passive replicas.
OneShard deployment is used for multi-node clusters with synchronous replication
from the leading node it provides. A synchronously-replicating cluster technology
allows it to scale elastically with the applications and all data models. The last but
not least feature of multi-model polyglot persistence is the support for datacenter to
datacenter replication.

4. Portability—while the mainframe requires a very specific infrastructure to run an ap-
plication, a microservice with multi-model polyglot persistence can be installed on
all main operating systems (Linux, Windows and macOS) and can be deployed to a
private or public cloud.

It can be summarized that by using the proposed migration approach, it is possible
to execute the migration from the monolith mainframe persistence model to the multi-
model polyglot persistence model without losing data quality. Eleven of fifteen ISO/IEC
25012:2008 standard quality attributes were the same for both models and four were even
better for the multi-model polyglot persistence model. It must also be noted that the re-
sults could be different for different monolith applications.

7. Discussions

This section provides the results of the comparison between the authors” proposed
monolith database migration approach and the alternative technique for extracting micro-
services from monolith enterprise systems [39]. The authors have chosen to compare its
approach with A. Levcovitz et al.’s proposed technique, because the other authors” pro-
posed methods do not provide or provide very little details on how to adopt data storage
to microservice architecture during the migration from monolith to microservice architec-
ture [4,10-24]. The advantages and disadvantages of the authors’ proposed approach
compared with the alternative proposed technique are shown in Table 4. The sign “+” in
Table 3 means that criteria is an advantage, while the sign “~” means that the criterion is
a disadvantage or there is no mention of this criteria. We put the final grades based on
common agreements between the authors of this paper.

Table 4. The results of the comparison of the authors” proposed monolith database migration ap-
proach and the technique proposed by A. Levcovitz et al.

Criteria Authors Alternative
1. Possible improvement of quality of consistency, under-

standability, availability, and portability " -
2. Availability to used different data models for different . B
data structures
3. Database adaptation to microservice architecture + -
4. Extensive business experts involvement into migration _ N
process
5. Ability to divide database per microservice - +

Three advantages of our proposed migration approach were identified. First, it allowed
us to improve the quality of consistency, understandability, availability, and portability, while
A. Levcovitz et al.’s proposed technique does not provide any information about improved
quality after migration. Second, it migrates the data store to multi-model polyglot persistence,
which allows for the use of different data models for different data structures and better uti-
lizes the advantages of the microservice architecture. While the alternative technique divides

Appl. Sci. 2022, 12, 6189

27 of 30

the monolith database by tables and reuses the same legacy relational data store. Third, it al-
lows one to extract the database from the monolith application and adopt it to the microservice
architecture. Data are exposed through the REST API and are accessible not only within the
microservice ecosystem but also for the legacy monolith application. This allows us to conduct
migration gradually and combine other migration methods for code decomposition.

Two disadvantages of our proposed migration approach were identified. First, our pro-
posed migration approach requires extensive involvement of business experts to create a con-
ceptual diagram and identify functional requirements. On the other hand, an alternative tech-
nique can be executed without the involvement of business experts. Second, A. Levcovitz et
al.’s proposed technique allows one to divide the database per microservice, while our pro-
posed approach extracts the database and converts it to the microservice itself.

In theory, both disadvantages of the proposed approach could be addressed, but a
deeper investigation is needed. A hypothetical possible solution to reduce the extensive
involvement of business analysts in the first step could be a program that would automat-
ically analyze the existing monolithic program and its database and provide a list of pos-
sible functional requirements and an optimal data model. A potential solution for the sec-
ond disadvantage could be an additional step or an extension of the first step in the pro-
posed approach. The purpose of additional action would be to identify different business
domains in the current data model and decompose it into as many data models as business
domains are identified. For each identified business domain, steps 2-6 of the proposed
approach should be applied separately.

8. Conclusions

In this paper, we proposed and evaluated the approach of monolith database migra-
tion into multi-model polyglot persistence based on microservice architecture. As a proof-
of-concept, the migration from an existing monolith mainframe application to a micro-
service was conducted. Existing and new applications were evaluated and compared
based on the quality attributes defined in the ISO/IEC 25012:2008 standard.

Based on the results of the research, it can be stated that the proposed approach can
be applied to the migration from a monolith mainframe persistence to a microservice ar-
chitecture based multi-model polyglot persistence, and multi-model polyglot can be used
as storage persistence for microservices. By using the proposed migration approach, it is
possible to improve the quality of the consistency, understandability, availability, and
portability attributes. On the other hand, every monolith application could have a signif-
icant architectural difference. Therefore, the proposed approach must be adopted based
on the specific application.

The next step in this work is to investigate the possibility of the automation of the
proposed migration approach. Currently, all steps of the proposed migration approach
have to be implemented manually for each application, which makes it a very slow and
expensive process. A tool that could automatically execute migration or part of it could
dramatically reduce the time and cost.

Author Contributions: Conceptualization,].K., D.M. and D.K.; methodology,].K.; software,].K,;
validation, J.K., D.M. and D.K,; formal analysis, J.K.; investigation,].K.; resources,].K.; data cura-
tion, J.K.; writing —original draft preparation,] K.; writing—review and editing,].K.; visualization,
J.K.; supervision, D.M.; project administration, J.K. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding;: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 6189 28 of 30

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

International Data Corporation Web Site. Availaible online: https://www.idc.com/ (accessed on 30 October 2021).

Newman, S. Monolith to Microservices. Evolutionary Patterns to Transform Your Monolith, 1st ed.; 1005 Gravenstein Highway North;
O’Reilly Media: Sebastopol, CA, USA, 2019; pp. 1-272.

Columbus, L. IDC Top 10 Predictions for Worldwide IT. 2019. Available online: https://www.forbes.com/sites/louiscolum-
bus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019/?sh=5e55583c7b96 (accessed on 30 October 2021).

Francesco, P.D.; Lago, P.; Malavolta, I. Migrating towards microservice architectures: An industrial survey. In Proceedings of
the International conference on software architecture (IEEE), Seattle, WA, USA, 30 April-4 May 2018; pp. 29-2909.
https://doi.org/10.1109/ICSA.2018.00012.

Knoche, H.; Hasselbring, W. Using Microservices for Legacy Software Modernization. IEEE Softw. 2018, 35, 44-49.
https://doi.org/10.1109/MS.2018.2141035.

Wang, Y.; Kadyala, H.; Rubin, J. Promises and Challenges of Microservices: An Exploratory Study. Empir. Softw. Eng. 2020, 26,
63. https://doi.org/10.1007/s10664-020-09910-y.

Wolfart, D.; Assungao, W.; Silva, I.; Domingos, D.; Schmeing, E.; Villaca, G.; Paza, D. Modernizing Legacy Systems with Micro-
services: A Roadmap. EASE 2021, 2021, 149-159. https://doi.org/10.1145/3463274.3463334.

Beni, E.H.; Lagaisse, B.; Joosen, W. Infracomposer: Policy-driven adaptive and reflective middleware for the cloudification of
simulation & optimization workflows. J. Syst. Archit. 2019, 95, 36-46. https://doi.org/10.1016/j.sysarc.2019.03.001.

Mohamed, D.; Mezouari, A.; Faci, N.; Benslimane, D.; Maamar, Z.; Fazziki, A. A multi-model based microservices identiftcation
approach. J. Syst. Archit. 2021, 118, 102200. https://doi.org/10.1016/j.sysarc.2021.102200.

Azevedo, L. G; Ferreira, R. S,; Silva, V. T.; Bayser, M.; Soares, E. F. de S.; Thiago, R. M. Geological Data Access on a Polyglot
Database Using a Service Architecture. In Proceedings of the XIII Brazilian Symposium on Software Components, Architectures,
and Reuse, Salvador, Brazil, 23-27 September 2019; pp. 103-112. https://doi.org/10.1145/3357141.3357603.

Cruz, P.; Astudillo, H; Hilliard, R.; Collado, M. Assessing Migration of a 20-Year-Old System to a Micro-Service Platform Using
ATAM. In Proceedings of the 2019 IEEE International Conference on Software Architecture Companion (ICSA-C), Hamburg,
Germany, 25-26 March 2019; pp. 174-181. https://doi.org/10.1109/ICSA-C.2019.00039.

Gouigoux, J.P.; Tamzalit, D. From Monolith to Microservices: Lessons Learned on an Industrial Migration to a Web Oriented
Architecture. In Proceedings of the 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), Gothen-
burg, Sweden, 5-7 April 2017; pp. 62-65. https://doi.org/10.1109/ICSAW.2017.35.

Hasselbring, W.; Steinacker, G. Microservice Architectures for Scalability, Agility and Reliability in E-Commerce. In Proceed-
ings of the 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), Gothenburg, Sweden, 5-7 April
2017; pp. 243-246. https://doi.org/10.1109/ICSAW.2017.11.

Krylovskiy, A.; Jahn, M.; Patti, E. Designing a Smart City Internet of Things Platform with Microservice Architecture. In Pro-
ceedings of the 2015 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24-26 August 2015; pp.
25-30.

Lotz, J.; Vogelsang, A.; Benderius, O.; Berger, C. Microservice Architectures for Advanced Driver Assistance Systems: A Case-
Study. In Proceedings of the 2019 IEEE International Conference on Software Architecture Companion (ICSA-C), Hamburg,
Germany, 25-26 March 2019; pp. 45-52. https://doi.org/10.1109/ICSA-C.2019.00016.

Esposte, A.M.; Kon, F.; Costa, F.M.; Lago, N. InterSCity: A Scalable Microservice-Based Open Source Platform for Smart Cities.
In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems, Porto, Portugal, 22-24 April 2017;
pp. 35-46. https://doi.org/10.5220/0006306200350046.

Mazzara, M.; Dragoni, N.; Bucchiarone, A.; Giaretta, A.; Larsen, S.T.; Dustdar, S. Microservices: Migration of a Mission Critical
System. IEEE Trans. Serv. Comput. 2018, 14, 1464-1477.

Singhal, H.; Saxena, A.; Mittal, N.; Dabas, C.; Kaur, P. Polyglot Persistence for Microservices-Based Applications. Int.]. Inf.
Technol. Syst. Approach 2021, 14, 17-32. https://doi.org/10.4018/IJITSA.2021010102.

Carrasco, A.; Bladel, B.; Demeyer, S. Migrating towards microservices: Migration and architecture smells. In Proceedings of the
2nd International =~ Workshop on Refactoring, = Montpellier, France, 4 September 2018; pp. 1-6.
https://doi.org/10.1145/3242163.3242164.

Carvalho, L.; Garcia, A.; Assungao, W.; Mello, R.; de Lima, M.]. Analysis of the criteria adopted in industry to extract micro-
services. In Proceedings of the 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical Studies in Industry
(CESI) and 6th International Workshop on Software Engineering Research and Industrial Practice (SER&IP), Montreal, QC,
Canada, 28 May 2019; pp. 22-29. https://doi.org/10.1109/CESSER-IP.2019.00012.

Mazlami, G.; Cito, J.; Leitner, P. Extraction of Microservices from Monolithic Software Architectures. In Proceedings of the 2017
IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25-30 June 2017; pp. 524-531.
https://doi.org/10.1109/ICWS.2017.61.

Fan, C.; Ma, S. Migrating Monolithic Mobile Application to Microservice Architecture: An Experiment Report. In Proceedings
of the 2017 IEEE International Conference on Al & Mobile Services (AIMS), Honolulu, HI, USA, 25-30 June 2017; pp. 109-112.
https://doi.org/10.1109/AIMS.2017.23.

Furda, A,; Fidge, C.; Zimmermann, O.; Kelly, W.; Barros, A. Migrating Enterprise Legacy Source Code to Microservices: On
Multitenancy, Statefulness, and Data Consistency. IEEE Softw. 2018, 35, 63-72.

Appl. Sci. 2022, 12, 6189 29 of 30

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

Mishra, M.; Kunde, S.; Nambiar, M. Cracking the Monolith: Challenges in Data Transitioning to Cloud Native Architectures. In
Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings, Madrid, Spain, 24-28 Sep-
tember 2018; pp. 1-4. https://doi.org/10.1109/MS.2017.440134612.

Laigner, R.; Zhou, Y.; Salles, M.A.V.; Liu, Y.; Kalinowski, M. Data Management in Microservices: State of the Practice, Chal-
lenges, and Research Directions. Proc. VLDB Endow. 2021, 14, 3348-3361. https://doi.org/10.14778/3484224.3484232.

Azevedo, L.G,; Ferreira RD, S.; Silva VT, D.; de Bayser, M.; Soares, E.F.D.S.; Thiago, R.M. Geological Data Access on a Polyglot
Database Using a Service Architecture. In Proceedings of the XIII Brazilian Symposium on Software Components, Architectures,
Richter, D.; Konrad, M.; Utecht, K.; Polze, A. Highly-Available Applications on Unreliable Infrastructure: Microservice Archi-
tectures in Practice. In 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C),
Prague, Czech Republic, 25-29 July 2017; pp. 130-137. https://doi.org/10.1109/TSC.2018.2889087.

Francesco, P.; Malavolta, I.; Lago, P. Research on Architecting Microservices: Trends, Focus, and Potential for Industrial Adop-
tion. In International Conference on Software Architecture, Gothenburg, Sweden, 3-7 April 2017, pp. 21-30.
https://doi.org/10.1109/ICSA.2017.24.

Knoche, H.; Hasselbring, W. Drivers and Barriers for Microservice Adoption— A Survey among Profesionals in Germany. En-
terp. Model. Inf. Syst. Archit. (EMISA])-Int. |. Concept. Modeling 2019, 14, 1-35. https://doi.org/10.18417/emisa.14.1.

Luz, W.; Agilar, E.; Oliveira, M.S.; Melo, C.E.R; Pinto, G.; Bonifacio, R. An Experience Report on the Adoption of Microservices
in Three Brazilian Government Institutions. In Proceedings of the XXXII Brazilian Symposium on Software Engineering, Sao
Carlos, Brazil, 17-21 September 2018; SBES ’18; ACM: New York, NY, USA, 2018; pp. 32-41.
https://doi.org/10.1145/3266237.3266262.

Soldani, J.; Tamburri, D.A.; Van Den Heuvel, W.]. The pains and gains of microservices: A Systematic grey literature review. J.
Syst. Softw. 2018, 146, 215-232. https://doi.org/10.1016/j.jss.2018.09.082.

Levcovitz, A,; Terra, R.; Valente, M.T. Towards a Technique for Extracting Microservices from Monolithic Enterprise Systems.
In Proceedings of the 3rd Brazilian Workshop on Software Visualization, Evolution and Maintenance (VEM), Belo Horizonte,
Brazil, 23 September 2015; pp. 97-104. https://doi.org/10.48550/arXiv.1605.03175.

Tozzi, C. 9 Mainframe Statistics That May Surprise You. 2021. Available online: https://www.precisely.com/blog/mainframe/9-
mainframe-statistics (accessed on 30 October 2021).

Precisely Editor. Why The Mainframe Still Matters in 2021. 2021. Available online: https://www.precisely.com/blog/main-
frame/mainframe-still-matters (accessed on 30 October 2021).

Henry, A. Mainframe Batch to Microservice. 2018. Available online: https://aws.amazon.com/fr/blogs/apn/how-to-migrate-
mainframe-batch-to-cloud-microservices-with-blu-age-and-aws/ (accessed on 30 October 2021).

Kazanavicius, J.; MaZeika, D. Analysis of Legacy Monolithic Software Decomposition into Microservices. In Proceedings of
Baltic-DB&IS-Forum-DC 2020, Tallin, Estonia, 16-19 June 2020.

Kazanavicius,].; Mazeika, D. Migrating Legacy Software to Microservices Architecture. In Proceedings of the 2019 Open Con-
ference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 25 April 2019; pp. 1-5.
https://doi.org/10.1109/eStream.2019.8732170.

Brewer, E.A. Towards robust distributed systems. In Proceedings of the Symposium on Principles of Distributed Computing
(PODC), Portland, OR, USA, 16-19 July 2000. https://doi.org/10.1145/343477.343502.

Khine, P.P;, Wang, Z. A Review of Polyglot Persistence in the Big Data World. Information 2019, 10, 141.
https://doi.org/10.3390/info10040141.

Meier, A.; Kaufmann, M. SQL & NoSQL Databases: Models, Languages, Consistency Options and Architectures for Big Data Manage-
ment; Springer: Wiesbaden, Germany 2019. https://doi.org/10.1007/978-3-658-24549-8.

Shah, C,; Srivastava, K.; Shekokar, N.M. A novel polyglot data mapper for an E-Commerce business model. In Proceedings of
the 2016 IEEE Conference on e-Learning, e-Management and e-Services (IC3e), Langkawi, Malaysia, 10-12 October 2016; pp.
40-45. https://doi.org/10.1109/IC3e.2016.8009037.

Davoudian, A.; Chen, L.; Liu, M. A Survey on NoSQL Stores. ACM Comput. Surv. (CSUR) 2018, 51, 1-43.

Krishnan, G. IBM Mainframe Database Overview and Evolution of DB2 as Web Enabled Scalable Server. Datenbank-Spektrum
2002, 3, 6-14.

Sharma, V.; Dave, M. SQL and NoSQL Databases. Int.]. Adv. Res. Comput. Sci. Softw. Eng. 2012, 12, 467-471.
https://doi.org/10.1145/3158661.

Nayak, A.; Poriya, A.; Poojary, D. Type of nosql databases and its comparison with relational databases. Int.]. Appl. Inf. Syst.
2013, 5, 16-19.

DB-ENGINES. DB-Engines Ranking, 2021. Available online: https://db-engines.com/en/ranking (accessed on 30 October 2021).
Zdepski, C.; Bini, T.A.; Matos, S.N. An Approach for Modeling Polyglot Persistence. In Proceedings of the International Con-
ference On Information Systems (ICEIS), Funchal, Madeira, 21-24 March 2018. https://doi.org/10.5220/0006684901200126.
Serra,]J. What is Polyglot Persistence? 2015. Available online: https://www jamesserra.com/archive/2015/07/what-is-polyglot-
persistence/ (accessed on 30 October 2021).

Wiese, L. Polyglot Database Architectures. In Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, Trier,
Germany, 7-9 October 2015.

Chawla, H.; Kathuria, H. Building Microservices Applications on Microsoft Azure; Apress: Berkeley, CA, USA, 2019.

Appl. Sci. 2022, 12, 6189 30 of 30

51.

52.

53.

54.

55.

56.

57.
58.
59.
60.
61.
62.

63.
64.
65.

Brown, K.; Bobby, W. Implementation patterns for microservices architectures. In Proceedings of the Pattern Language of Pro-
grams Conference, Allerton Park, IL, USA, 24-26 November 2016; p. 35.

Ntentos, E.; Zdun, U.; Plakidas, K.; Meixner, S.; Geiger, S. Assessing Architecture Conformance to Coupling-Related Patterns
and Practices in Microservices. In European Conference on Software Architecture; Springer: Cham, Switzerland, 2020.
https://doi.org/10.1007/978-3-030-58923-3_1.

Messina, A.; Rizzo, R.; Storniolo, P.; Urso, A. A Simplified Database Pattern for the Microservice Architecture. In Proceedings
of the Conference: DBKDA 2016, The Eighth International Conference on Advances in Databases, Knowledge, and Data Appli-
cations, Lisbon, Portugal, 26-30 June 2016; pp. 223-233. https://doi.org/10.13140/RG.2.1.3529.3681.

Villaga, L.H.; Azevedo, L.G.; Siqueira, S.W. Microservice Architecture for Multistore Database Using Canonical Data Model. In
Proceedings of the XVI Brazilian Symposium on Information Systems, Sao Bernardo do Campo, Brazil, 3-6 November 2020.
https://doi.org/10.1145/3411564.3411629.

Viennot, N.; Lécuyer, M.; Bell,].; Geambasu, R.; Nieh, J. Synapse: A microservices architecture for heterogeneous-database web
applications. In Proceedings of the 10th European Conference on Computer Systems, Bordeaux, France, 21-24 April 2015.
https://doi.org/10.1145/2741948.2741975.

Rodriguez, J.; Crasso, M.; Mateos, C.; Zunino, A.; Campo, M. Bottom-up and top-down COBOL system migration to Web Ser-
vices: An experience report. IEEE Internet Comput. 2011, 17, 44-51.

ArangoDB. Available online: https://www.arangodb.com/ (accessed on 19 March 2022).

C# Documentation. Available online: https://docs.microsoft.com/en-us/dotnet/csharp/ (accessed on 19 March 2022).

Visual Studio. Available online: https://visualstudio.microsoft.com/ (accessed on 19 March 2022).

NuGet. Available online: https://www.nuget.org/ (accessed on 19 March 2022).

Docker. Available online: https://www.docker.com (accessed on 19 March 2022).

OpenShift. Available online: https://www.redhat.com/en/technologies/cloud-computing/openshift (accessed on 19 March
2022).

Kubernetes. Available online: https://kubernetes.io (accessed on 19 March 2022).

AzureDevOps. Available online: https://azure.microsoft.com/en-us/services/devops (accessed on 19 March 2022).

Dodge, Y.; Cox, D.; Commenges, D. The Oxford Dictionary of Statistical Terms; Oxford University Press: Oxford, UK, 2006.

