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Abstract: The main purpose of the joint entity and relation extraction is to extract entities from
unstructured texts and extract the relation between labeled entities at the same time. At present,
most existing joint entity and relation extraction networks ignore the utilization of explicit semantic
information and explore implicit semantic information insufficiently. In this paper, we propose Joint
Entity and Relation Extraction Network with Enhanced Explicit and Implicit Semantic Information
(EINET). First, on the premise of using the pre-trained model, we introduce explicit semantics from
Semantic Role Labeling (SRL), which contains rich semantic features about the entity types and
relation of entities. Then, to enhance the implicit semantic information and extract richer features of
the entity and local context, we adopt different Bi-directional Long Short-Term Memory (Bi-LSTM)
networks to encode entities and local contexts, respectively. In addition, we propose to integrate
global semantic information and local context length representation in relation extraction to further
improve the model performance. Our model achieves competitive results on three publicly available
datasets. Compared with the baseline model on Conll04, EINET obtains improvements by 2.37% in
F1 for named entity recognition and 3.43% in F1 for relation extraction.

Keywords: named entity recognition; relation extraction; semantic role labeling; Bi-directional long
short-term memory network; pre-trained model

1. Introduction

The main purpose of the joint entity and relation extraction is to extract entities from
unstructured texts and extract the relationship between labeled entities. It completes
Named Entity Recognition (NER) and Relation Extraction (RE) based on joint learning
methods. For example, for the sentence “Leonardo DiCaprio starred in Christopher Nolan’s
thriller Inception”. The goal of the joint entity and relation extraction task is to extract
triples (Leonardo DiCaprio, Plays-In, Inception) and (Inception, Director, Christopher
Nolan), and so on.

Recently, pre-trained models such as BERT [1], Transformer-XL [2], and RoBERT [3]
have received great attention in the field of Natural Language Processing (NLP). These
models are typically pretrained on large document data, and they are transferred to target
tasks with relatively little supervised training data. In many NLP tasks, work based
on a pre-trained model achieves the best performance, such as question answering [4],
contextual emotion detection [5] and joint entity and relationship extraction. Despite the
success of these pre-trained language models, existing joint entity and relation extraction
networks only focus on the text representation provided by pre-trained models, while
ignoring the introduction of explicit semantic information and enhancements of implicit
semantic information.

Semantic Role Labeling (SRL) can build dependencies between the predicates and
arguments of a sentence, and this semantic structure information can provide rich semantics
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for text representation. At present, there are a number of approaches that incorporate
auxiliary explicit semantic information into some NLP tasks [6,7], but there is currently a
lack of work on using SRL information for joint entity and relation extraction tasks. If a
word or phrase is labeled with one semantic role, it is more likely to be labeled as an entity.
For example, the semantic role label ArgM-LOC contains location information, which can
provide auxiliary information for entity extraction of type Location. At the same time,
explicit semantic information can cover the semantic relationship between words, which
is very useful for relation extraction. Semantic role labeling can provide explicit auxiliary
information for NER and RE, and then help the model improve performance. Therefore, we
fuse the explicit semantic information obtained by SRL with BERT for joint entity and
relation extraction tasks.

In addition to ignoring the introduction of explicit semantic information, many existing
models also do not adequately explore implicit semantic information. In most of the existing
models, the representation vector of text is shared in both entity recognition and relation
extraction. However, named entity recognition focuses on the semantic extraction of entities,
while relation extraction focuses on the semantic information of the local context which is
drawn from the end of the first entity to the beginning of the second entity. Therefore, in
order to fully explore the implicit semantic information, we not only adopt Bi-LSTM to
further extract implicit semantic information, but also design a novel separately encoded
method which adopts two different Bi-LSTMs to enhance the implicit semantic information
of the entity and the local context, respectively.

It is worth noting that, considering the importance of the context information where the
entity pair is located for relation extraction, we introduce the global contextual information
based on Bi-LSTM, and enhance semantic information of the local context by adding local
context length representation. Enriching the semantic information of the context from
global and local perspectives further improves the performance of the model on relation
extraction. In general, our contributions can be summarized as follows:

• We propose a Joint Entity and Relation Extraction Network with Enhanced Explicit
and Implicit Semantic Information (EINET). On the premise of using the pre-trained
model, we introduce explicit semantic information and fully explore the implicit
semantic information for joint entity and relation extraction.

• As far as we know, we are the first one to use semantic role labeling information for
joint entity and relation extraction. Semantic role labeling can not only provide explicit
semantic information for NER and RE, but also helps the model to enhance semantic
understanding of text.

• While adopting the BERT pre-trained model, we further explore the implicit semantic
information of entities and local contexts based on different Bi-LSTMs. By our separate
encoding method, the different features of entities and local contexts are fully explored,
so as to purposefully improve the performance of named entity recognition and
relation extraction.

• We propose to integrate global semantic information and local context length repre-
sentation in relation extraction to further improve the model performance.

• Our model shows strong competitiveness on three publicly available joint entity and
relation extraction datasets (Conll04, SCIERC, ADE), achieving competitive experi-
mental results.

2. Related Work

The pipeline-based method is a typical method to realize NER and RE. However,
this type of method ignores the relationship between NER and RE, and it produces errors
caused by the cascade relationship [8]. Therefore, methods based on joint learning have
emerged. The method based on joint learning can be divided into two categories, the
sequence tagging-based method and the span-based method.



Appl. Sci. 2022, 12, 6231 3 of 16

2.1. Sequence Tagging Based Method

Zheng et al. [9] first propose the truly joint entity and relation extraction model
which uses a sequence tagging scheme for joint extraction. Takanobu et al. [10] propose a
hierarchical reinforcement learning-based (RL) deep neural model for joint extraction. High-
level reinforcement learning is used to determine relationships based on relation-specific
tokens. After determining the relationship, the low-level reinforcement learning extracts the
connection between two entities and the relation by using a sequential annotation method.
To address the problem that the CopyR [11] model can only extract the last token of an entity,
the CopyMTL [12] model improves CopyR and is able to extract the entity name completely
using the sequence annotation method. Bowen et al. [13] decompose the joint extraction into
two sub-tasks, the first task is head entity extraction and the second task is tail entity and
relation extraction. They also use the sequence tagging approach to accomplish these two
sub-tasks. Wei et al. [14] added BERT to the model proposed by Bowen et al. [13] to improve
the performance of the model. Yuan et al. [15] add relation-specific attention mechanism to
the joint extraction model based on sequence tagging and achieve a good improvement.
Multi-head+AT [16] treats the relation extraction task as a multi-head selection problem.
Each entity is combined with all other entities to form entity pairs, and then the relationships
of these entity pairs are predicted. Each relationship is independent to achieve multiple
relationship predictions for entity pair. SciIE [17] reduces the error propagation problem
between named entity recognition and relation extraction by introducing a multi-task
mechanism and disambiguation task. In addition, joint entity and relation extraction based
on question answering systems or reading comprehension have emerged. Multi-turn
QA [18] treats joint entity and relation extraction as a multi-turn question answering task.
MRC4ERE++ [19] proposes a multi-turn question answering-based diversity question
answering mechanism and designs two selection strategies to integrate different answers.
Zhao et al. [20] propose a unified multi-task learning framework, which decomposes the
task into three interactive subtasks, and they present a problem-based method to generate
extracted objects.

Sequence tagging-based methods mark words with labels (BIO/BILOU). In this way,
each word can only be assigned one label, which leads to the problem that overlapping
entities can not be well extracted. In addition, methods based on question-answering de-
pend on the quality of question generation and the performance of the question-answering
model. Therefore, span-based joint entity and relation extraction methods have emerged.

2.2. Span-Based Method

The span-based method first identifies the boundary of entities, and then classifies
entities according to the boundary identifier, so that overlapping entities can be identified
due to different boundaries. Dixit et al. [21] propose a simple Bi-LSTM based model
that generates a span representation for each possible entity and performs joint entity
and relation extraction. Following this, DyGIE [22] shares span representations between
multiple tasks via dynamically constructed span graphs. The MrMep model proposed by
Chen et al. [23] uses a variant of the pointer network to generate the boundaries (start/end)
of all head and tail entities in turn, and then uses a multi-headed attention mechanism [24]
to extract the relationships corresponding to each entity.

With the advent of pre-trained models, some Transformer-based networks such as
BERT, Transformer-XL, and RoBERT have achieved outstanding results in a number of
natural language processing tasks. Wadden et al. [25] propose DyGIE++ on the basis of
DyGIE, and replace the Bi-LSTM with the BERT pre-trained model, which further improves
the performance of DyGIE. Following this, Eberts et al. [26] propose a simple and effective
lightweight inference model SpERT, which is a typical span-based joint entity and relation
extraction model. Based on SpERT, Ji et al. [27] enhance the semantic representation of can-
didate entities and relations by attention mechanism, thereby improving the performance
of joint entity and relation extract. TriMF is proposed by Shen et al. [28], which employs
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a multi-level memory flow attention mechanism to enhance the bidirectional interaction
between entity recognition and relation extraction.

However, most of the current models lack the use of explicit semantic information.
Specifically, they usually share context representation in name entity recognition and
relation extraction, and they do not explore implicit semantic information fully and pur-
posefully. In response to the above problems, we not only introduce explicit semantic
information, but also extract more fully implicit semantic information. We propose a simple
and effective separate encoding method based on joint learning. This method enhances
the implicit semantic information of entity and local context, respectively, while ensuring
effective information transfer between NER and RE.

3. Materials and Methods

The overall architecture of our model EINET is shown in Figure 1, which includes
three parts: Word Representation, Named Entity Recognition and Relation Extraction.

Figure 1. The overall architecture of our model EINET contains three components, Word Representa-
tion, Named Entity Recognition, and Relation Extraction. Blue vectors and red vectors are entities
representations, and local context is represented by the orange vector.

Word Representation: The purpose of word representation is to convert each word in
the sentence into a d-dimensional word embedding. The representation of word vectors
consists of two parts, which are word embeddings from the pre-trained model and explicit
semantic label embeddings based on SRL.

Named Entity Recognition: Named Entity Recognition is mainly responsible for
obtaining candidate entity representations by span-based methods. Then, we can obtain
the corresponding entity types by classifying the candidate entity representations.

Relationship Extraction: Relation extraction is mainly responsible for combining
entities which are not assigned to the none class into entity pairs and then predicting the
relation type of these entity pairs. The judgment of the relation type is not only based
on the representation of the entity pair, but also is based on the global semantics of the
sentence where the entity pair is located and the local semantics of the local context.

3.1. Word Representation

The joint entity and relation extraction task depends on the semantic information
of entities, so in order to obtain a richer semantic representation, we not only adopt a
pre-trained model to encode sentences, but also introduce explicit semantic information by
utilizing semantic role labeling tools.

3.1.1. Pre-Trained Model

Transformer attracts a lot of attention at present. The Transformer-based model is pre-
trained on large-scale text data, which has a strong ability to capture language features, and
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it can provide relatively high-quality word vector representation for joint entity and relation
extraction. The multi-head attention mechanism, the core component of Transformer, is
used to capture multi-angle features of language. BERT is a typical Transformer-based
pre-trained model. In order to obtain high-quality word vectors, we choose the BERT model
to provide the initial word vector representation for EINET.

The initialized sentence representation is passed into the BERT pre-trained model.
BERT uses Byte-Pair Encoding. For example, the words “loved”, “loving”, and “loves” are
disassembled into “lov”, “ed”, “ing” and “es”. This method can better reduce the number
of vocabulary, improve the training speed, and also link the phenomenon of OOV (Out
of Vocabulary).

However, the labels of SRL are given to complete words, so in order to fuse the
word embedding obtained by BERT with label representations, the subword represen-
tations encoded by BERT need to be aggregated into complete word representations.
Inspired by Zhang et al. [6], we adopt convolution and maxpooling to aggregate subwords.
(s1, s2, . . . , sl) is the subword sequence of xb

i , where l is the subword sequence length.
First, the subword sequence is passed to a one-dimensional convolution layer:

ei = W1[BERT(si), BERT(si+1), . . . , BERT(si+k−1)] + b1 (1)

where k is the convolution kernel size, W1 and b1 are trainable vectors. BERT(.) is vector
representation from BERT. Then, subword embeddings are aggregated into a word-level
representation vector after Maxpooling:

xb
i = Maxpooling[ReLU(ei), . . . , ReLU(el−k+1)] (2)

Xb =
(

xb
1, xb

2, . . . , xb
n

)
(3)

where n is the length of the input text sequence, and ReLU is a common activation function.

3.1.2. Semantic Role Labeling Information

Explicit semantic information is obtained from SRL. We adopt the most commonly
used PropBank-style annotator, which considers one single sentence as a unit to analyze
the related local semantic structure of each predicate in the sentence. Semantic structure in-
formation is very related to named entity recognition and relation extraction tasks. The role
information such as agent, theme, time and location can help model extract entities. The rela-
tion information between predicates and other words can improve relation extraction to a
certain extent.

Figure 2 shows an example for semantic role labeing. SRL centers on the predicate to
mark the relationship between other words and predicates in the sentence. In this example,
ARG1 represents the theme, ArgM-TMP is an adjunct indicating the timing of the action, O
represents non-argument word, and V represents the predicate.

Figure 2. An example for Semantic Role Labeling.

SRL is predicate-centric to assign labels to words in sentences. Since the concerned
predicates are different, the resulting semantic label sequences are different. In order to
express the semantic structure of sentences as much as possible, we select five semantic
label sequences for each sentence and vectorize them, respectively. Their aggregated
representations are then concatenated with the sequence of word vectors from BERT to
obtain the final word vector representation.

One semantic role label sequence is represented as:

T1 = (t1
1, t1

2, . . . , t1
n) (4)
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where t1
1, t1

2,. . . , tn
1 are labels of the first one semantic role label sequence.

Five semantic label sequences are aggregated through a full connections layer:

Ts = W2(T1, T2, . . . , T5) + b2 (5)

where W2 and b2 are trainable vectors.
The final word vector is represented as:

Xw = [Xb; Ts] (6)

where [;] is vector concatenation across row.

3.2. Named Entity Recognition

Named entity recognition mainly depends on the context in which the entity is located.
Because of different contextual information, words with the same letter have different
meanings. Therefore, in addition to introducing explicit semantic information to the word
vector representation, we design a novel entity representation algorithm based on Bi-LSTM
and Maxpooling.

The entity representation algorithm has two advantages: (1) It enhances the implicit
semantics of text sequences and the association between entities and contexts. (2) The algo-
rithm mainly encodes the implicit semantics information of the entity. Except for entities,
the rest of the vector representations are not shared between NER and RE. Entities and
local contexts are encoded separately to extract richer context implicit features.

Compared with the ordinary recurrent neural network, Bi-LSTM alleviates the prob-
lems of gradient vanishing and gradient exploding to a certain extent. Compared with
LSTM, Bi-LSTM has the characteristics of capturing bidirectional sequence information.

First, the word vector sequence Xw is passed into Bi-LSTM to build the dependencies
between entities and contexts. The Bi-LSTM responsible for obtaining the implicit semantic
information of the entity is denoted as Bi − LSTMe.

X t = Bi − LSTMe(Xw) (7)

Considering the identification of overlapping entities, we adopt the span-based
method to construct candidate entity representations. The word vector representation
from X t = (xt

1, xt
2, . . . , xt

i , . . . , xt
n) is selected as the candidate entity representation accord-

ing to any length. A candidate entity vector of length f represents:

Et = (xt
i , xt

i+1, xt
i+2, . . . , xt

i+ f−1) (8)

Then, we use Maxpooling to obtain the aggregated entity representation:

et = Maxpooling(Et) (9)

Similar to SpERT, we take the length of candidate entity sequences as one of the
features affecting entity classification. The entity length representation is searched from the
entity length representation matrix according to different lengths. At the same time, the
global representation vector CLS obtained by BERT contains rich contextual information,
so CLS is also one of the influencing factors of candidate entity classification.

Finally, the candidate entity representation is represented by the aggregation of three
parts, which are the entity representation vector, the candidate entity sequence length
representation vector, and the global semantic vector CLS.

ye = Softmax(W3[et; went
f ; c] + b3) (10)
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where et is entity representation vector, went
f is a representation vector of sequence length

f , c is the global semantic vector CLS, W3 and b3 are trainable parameter vectors, Softmax
is the classification function.

3.3. Relation Extraction

Relation extraction is to predict the relations between the entities in addition to those
assigned to the none class in the candidate entities. Therefore, the essential basis for relation
extraction is entity pair representation. In addition, relation extraction also depends on the
context information where entity pairs are located, especially the local context.

For local context information, we adopt Bi-LSTM to enhance its implicit semantic in-
formation instead of sharing input with name entity recognition. The Bi-LSTM responsible
for obtaining the implicit semantic information of local contexts is denoted as Bi − LSTMr.
In addition, the local context length representation is added. The length of the local context
reflects the spacing of entities, which affects the judgment of the relationship between entities.
The smaller the entity interval is, the greater the degree of association between entity pairs.

For the global context information, we use the last hidden state obtained by Bi − LSTMr
as the global semantics representation instead of CLS in Equation (10). This is because
CLS information obtained by BERT has been added in the entity pair representation, and
global semantic information is obtained through different methods, which makes the
representation of global semantics more abundant.

First, we enhance implicit semantics of the contextual representation by Bi − LSTMr.

Xr = (xr
1, xr

2, . . . , xr
n) = Bi − LSTMr(Xw) (11)

The local context is the text sequence from the end of the first entity to the beginning
of the second entity. We aggregate local context representation by Maxpooling:

ca−b = Maxpooling(xr
aend

, xr
aend+1, . . . , xr

bstart
) (12)

where aend denotes the subscript of the end of the first entity, and bstart denotes the subscript
of the beginning of the second entity.

The method of obtaining the local context length representation and the entity length
representation is similar. Local context length representation is also obtained from the local
context length representation matrix, and each local context length representation has its
corresponding representation vector. Finally, the entity pair representation vector ea, eb, the
local context length representation vector wc

g, and the last hidden state h from Bi − LSTMr
are concatenated to form the final relation representation vector. Then, we adopt Softmax
classification function to classify the relation representation.

yr
a = Softmax(W4[ea; ca−b; eb; wc

g; h] + b4) (13)

yr
b = Softmax(W5[eb; cb−a; ea; wc

g; h] + b5) (14)

where wc
g is the representation vector of the local context length g, W4, W5, b4 and b5 are

the trainable parameter vectors.
Due to the asymmetry of the relationship, the possibility of bidirectional relationship is

considered in relation extraction. If any one value of yr
a and yr

b does not reach the threshold,
it is considered that there is no relationship between entity a and entity b.

4. Experiment and Result Analysis

In this section, we introduce the settings and results related to our experiments, includ-
ing the introduction of datasets, the experimental parameter settings, and the comparison
with advanced methods on three datasets to prove the effectiveness of our model. In addi-
tion, we conduct ablation experiments to demonstrate the performance of each component
in our model.
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4.1. Experimental Settings
4.1.1. Datasets

In this paper, we verify the effectiveness of EINET on three publicly available datasets,
namely Conll04, SciERC, and ADE.

Conll04: The Conll04 [29] dataset consists of sentences containing entities and rela-
tions extracted from news articles. There are four entity types in total, namely Location,
Organization, People, and Other. There are five relationship types in total, namely Work-For,
Kill, Organization-based-in, Live-In, and Location-In. We choose 1153 sentences as the training
set, 288 sentences as the test set, and 20% of the training set as the validation set, which is
consistent with Gupta et al [30].

SciERC: The SciERC [17] dataset is derived from 500 abstracts of papers in artificial
intelligence-related fields. It contains a total of six scientific entity types, namely Task,
Method, Metric, Material, Other-Scientific-Term, and Generic, and seven relation types, namely
Compare, Conjunction, Evaluate-For, Used-For, Feature-Of , Part-Of, and Hyponym-Of . We use
the same train (1861 sentences), validation (275 sentences) and test (551 sentences) split as
in [17].

ADE: The ADE [31] dataset comes from medical reports describing adverse drug reac-
tions, and it contains two entity types, Adverse-Effect and Drug, and one relationship type,
Adverse-Effects.

4.1.2. Implementation Details

We choose BERT-Base as the pre-trained model on Conll04 and ADE datasets. How-
ever, since SciERC is a dataset related to the scientific field, and SciBERT is a BERT model
trained on a large amount of scientific corpus, we choose SciBERT as the pre-trained model
on the SciERC dataset. In Equation (10), the dimension of the entity length representation
vector is set to 20 which is consistent with our baseline model SpERT [26]. In Equations (13)
and (14), the dimension of the local context length representation vector is set to 200 which
is selected in [25, 50, 100, 150, 200, 250] based on the development set. As shown in Figure 3,
the F1 of NER and RE are the highest when the dimension of the local context length
representation is 200. Referring to SpERT [26], the relation filtering threshold is set to 0.4,
and the upper bound for sample calculation of relation pairs in each sentence is 100. On
the Conll04 dataset, the batch size is set to 2, the learning rate is set to 5 × 10−5, and the
dropout rate is set to 0.5. On the SciERC dataset, the batch size is set to 4, the learning rate
is set to 5 × 10−5, and the dropout rate is set to 0.5. On the ADE dataset, the batch size is
set to 8, the learning rate is set to 6 × 10−5, and the dropout rate is set to 0.5.

Figure 3. F1 values for named entity recognition (Entity) and relationship extraction (Relation) when
the local context length representation vector with dimensions of 25, 50, 100, 150, 200 and 250 (on
Conll04 development set) .
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4.2. Comparison of Results on Datasets

We compare EINET with advanced models on three publicly available datasets. In
order to fairly and comprehensively illustrate the effectiveness of models, three evaluation
indicators are used: Precision, Recall, and F1. Among them, F1 is the most important
evaluation index. For consistency with other models, micro- and macro-average results
are compared on Conll04, micro-average results on SciERC, and macro-average results
on ADE.

Conll04: We report the average over three runs for the Conll04 dataset. The com-
parison of methods on the Conll04 dataset is shown in Table 1, where † represents the
calculation result of micro-average, ‡ represents the result of macro-average calculation,
and * represents that the model does not specify the calculation method.

Table 1. Performance on Conll04 dataset. (The highest F1 is shown in bold. metrics: micro-average = †,
macro-average = ‡, not stated = *).

Entity Relation
Model Precision Recall F1 Precision Recall F1

Relation-Metric [32] ‡ 84.46 84.67 84.57 67.97 58.18 62.68
Biaffine Attention [33] ‡ - - 86.20 - - 64.40

Multi-turn QA [18] † 89.00 86.60 87.80 69.20 68.20 68.90
Multi-head + AT [16] ‡ - - 83.61 - - 61.95

Multi-head [34] ‡ 83.75 84.06 83.90 63.75 60.43 62.04
Hierarchical Attention [35] * - - 86.51 - - 63.32

SpERT [26] † 88.25 89.64 88.94 73.04 70.00 71.47
SpERT [26] ‡ 85.78 86.84 86.25 74.75 71.52 72.87

MRC4ERE++ [19] * 89.30 88.50 88.90 72.20 71.50 71.90
UMT w/ NLGQ [20] * 88.70 88.80 88.80 72.90 71.60 72.20

UMT w/ PseudoGQ [20] * 88.80 89.00 88.90 73.20 71.60 72.40
TriMF [28] † 89.26 90.34 90.30 73.01 71.63 72.35

Two are better than one [36] † - - 90.10 - - 73.80
Two are better than one [36] ‡ - - 86.90 - - 75.80

EINET † 92.43 90.22 91.31 77.15 72.78 74.90
EINET ‡ 90.65 86.70 88.51 77.98 74.16 75.91

Compared with the baseline model SpERT, the F1 of EINET on the entity recognition
exceeds 2.37% (micro-average), 2.26% (macro -average), and the F1 on the relation extraction
exceeds 3.43% (micro-average), 3.04% (macro-average). EINET is also better than the current
advanced model proposed by Wang et al. [36]. The experimental results show that the
EINET has achieved relatively advanced experimental results on Conll04 dataset, and the
comparison with the baseline model shows that enhanced semantic information can indeed
bring obvious benefits.

SciERC: We report the average over three runs for the SciERC dataset. The comparison
of methods on the SciERC dataset is shown in Table 2. Compared with the baseline model
SpERT, the F1 of EINET on entity recognition is 1.01% higher, and the F1 on relation
extraction is 2.09% higher. It is worth noting that, in terms of NER, the performance of
EINET is better than the advanced model PL-Marker [37]. The experimental results show
that EINET has reached a relatively advanced level on the SciERC dataset. Our proposed
method of enriching semantics from explicit and implicit perspectives has a significant
positive impact on scientifically relevant dataset.

ADE: The comparison between the proposed model EINET and other methods on the
ADE dataset is shown in Table 3. For a fair comparison with existing methods, the final
results are averaged over 10 cross-validations. It is worth noting that ADE also contains
120 instances of relations with overlapping entities, which can be discovered by span-based
approaches such as EINET and SpERT. These have been filtered in sequence tagging based
work [32,34,38]. Compared with the baseline model SpERT, the F1 of EINET is 1.32%
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(without overlap) and 1.20% (with overlap) higher in the named entity recognition, and
it is 2.80% (without overlap) and 2.54% (with overlap) higher in the relation extraction.
overlap). This result shows that EINET has advantages in extracting both overlapping and
non-overlapping entities.

Table 2. Performance on SciERC dataset. (The highest F1 is shown in bold.)

Entity Relation
Model Precision Recall F1 Precision Recall F1

SciIE [17] 67.20 61.50 64.20 47.60 33.50 39.30
DyGIE [22] - - 65.20 - - 41.46

DyGIE++ [25] - - 67.50 - - 48.40
SpERT [26] 70.87 69.79 70.33 53.40 48.54 50.84
UNIRE [39] 65.80 71.10 68.40 37.30 36.60 36.90

PFN [40] - - 66.80 - - 38.40
PURE [41] - - 68.90 - - 50.10
TriMF [28] 70.18 70.17 70.17 52.63 52.32 52.44

SpERT.PL [43] 69.82 71.25 70.53 51.94 50.62 51.25
PL-Marker [37] - - 69.90 - - 53.20

EINET 71.26 71.43 71.34 55.34 50.73 52.93

Table 3. Performance on ADE dataset. (The highest F1 is shown in bold.)

Entity Relation
Model Precision Recall F1 Precision Recall F1

BiLSTM + SDP [38] 82.70 86.70 84.60 67.50 75.80 71.40
Multi-head [34] 84.72 88.16 86.40 72.10 77.24 74.58

Multi-head+AT [16] - - 86.73 - - 75.52
Relation-Metric [32] 86.16 88.08 87.11 77.36 77.25 77.29

SpERT(without overlap) [26] 89.26 89.26 89.25 78.09 80.43 79.24
SpERT(with overlap) [26] 88.99 89.59 89.28 77.77 79.96 78.84

PFN [40] - - 89.60 - - 80.00
Two are better than one [36] - - 89.70 - - 80.10

EINET(without overlap) 90.03 91.12 90.57 80.38 83.79 82.04
EINET(with overlap) 89.69 91.29 90.48 79.74 83.11 81.38

4.3. Ablation Analysis

In this section, we investigate the effectiveness of each module in the proposed EINET.
The results of the ablation experiment are detailed in Table 4.

Table 4. Ablation study on Conll04 dataset.

Entity(F1) Relation(F1)
Model Micro-Average Macro-Average Micro-Average Macro-Average

1 EINET 91.31 88.51 74.90 75.91
2 w/o SRL 89.93 87.57 72.86 73.50
3 w/o Bi − LSTMe 90.39 87.50 73.73 74.62
4 w/o Bi − LSTMr 90.72 88.01 73.46 74.63
5 w/o Bi − LSTMe and Bi − LSTMr 90.19 87.33 73.16 74.39
6 w/o global semantics (relation) 91.01 88.10 74.26 75.78
7 w/o local context length information 90.85 87.87 74.07 75.52

8 w/o global semantics (relation) and local
context length information 90.40 87.40 73.56 74.71

9 Baseline 88.94 86.25 71.47 72.87
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To demonstrate the effectiveness of explicit semantic information, we design Model 2
and compare it with the complete model EINET (Model 1). Model 2 is EINET with removal
of the vector representation of SRL. Compared with EINET, the F1 of Model 2 in name
entity recognition decreased by 1.38% (micro-average) and 0.94% (macro-average), and it
is decreased by 2.04% (micro-average) and 2.41% (macro-average) in relation extraction.
The obvious drop in model performance after removing the explicit semantic information
provided by SRL demonstrates the effectiveness of explicit semantic information. Since the
explicit semantic information is introduced in the word representation, removing SRL has
a significant impact on both named entity recognition and relation extraction.

To demonstrate the effectiveness of enhancing implicit semantic information, we com-
pare Model 3, Model 4, and Model 5 with the complete model EINET. After removing
the named entity recognition Bi-LSTM (Bi − LSTMe), we obtain Model 3. It is worth not-
ing that Bi-LSTM will double the vector dimension. Therefore, in order to ensure that
the dimension of the entity representation vector and the local context vector between
entity pairs are consistent, after removing Bi − LSTMe, we concatenate two identical entity
representation vectors to keep the dimensions consistent with the local context representa-
tion. Compared with EINET, F1 of Model 3 decreases by 0.92% (micro-average) and 1.01%
(macro-average) in named entity recognition, and it decreases by 1.17% (micro-average)
and 1.29% (macro-average) in relation extraction. The experimental results show that after
removing Bi − LSTMe, the performance of the model in terms of NER and RE is greatly
reduced. A high-quality entity representation will not only improve the performance
of NER, but also have a positive impact on RE. After removing the relation extraction
Bi-LSTM (Bi − LSTMr), we obtain Model 4. It is worth noting that in Model 4, the local
context representation comes from Bi − LSTMe, which is shared between NER and RE.
The experimental results show that compared with EINET, the F1 of Model 4 decreases
by 0.59% (micro average) and 0.50% (macro average) in named entity recognition, and it
decreases by 1.44% (micro average) and 1.28% (macro average) in relation extraction. It
is proven that enhancing local semantic information has a significant effect on relation
extraction. Compared with shared representation, separate encoding can better capture
the implicit semantic features of local context. At the same time, NER is positively affected
by Bi − LSTMr. Model 5 removes all implicit semantic enhancement information on the
basis of EINET, that is, removes Bi − LSTMe and Bi − LSTMr at the same time. The exper-
imental results show that compared with EINET, the F1 of Model 5 decreases by 1.12%
(micro average) and 1.18% (macro average) in named entity recognition, and it decreases
by 1.74% (micro average) and 1.52% (macro average) in relationship extraction. Removing
the enhancement of implicit semantics leads to a large performance drop, which once again
illustrates the necessity of the enhancement of implicit semantic information.

To demonstrate the effectiveness of global semantic information and local context
length information in relation extraction, we compare Model 6, Model 7, and Model 8 with
the complete model EINET. After removing the global semantic information in relation
extraction, we obtain Model 6. Compared with EINET, the F1 of Model 6 decreases by 0.30%
(micro-average) and 0.41% (macro-average) in named entity recognition, and it decreases
by 0.64% (micro average), 0.13% (macro average) in relationship extraction. It shows that
global semantic information is helpful to improve the performance of relation extraction,
and it can also promote the performance of named entity recognition. Model 7 is obtained
after removing the local context length representation information. Compared with EINET,
the F1 of Model 7 reduces by 0.46% (micro average) and 0.64% (macro average) in named
entity recognition, and it decreases by 0.83% (micro average) and 0.39% (macro average)
in relation extraction. It shows that local context length information is helpful to improve
the performance of relation extraction, and it can also promote the optimization of named
entity recognition. At the same time, compared with the influence of global semantic
information in relation extraction, the effect of local context length information is more
obvious. Model 8 removes both the global semantic information and local context length
information in relation extraction. The experimental results show that compared with
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EINET, the F1 of Model 8 reduces by 0.91% (micro-average) and 1.11% (macro-average)
in named entity recognition, and it reduces by 1.34% (micro-average) and 1.20% (macro-
average) in relation extraction. This experiment further proves that the global semantic
information and the local semantic information are effective.

Model 9 is our baseline model. Compared with Model 9, the F1 of EINET is 2.37%
(micro-average) higher and 2.26% (macro-average) higher in named entity recognition,
3.43% (micro average) higher and 3.04% (macro average) higher in relation extraction.
The experimental results show that the performance gain of EINET in named entity recogni-
tion and relation extraction is remarkable, which also confirms that our proposed method of
enriching explicit and implicit semantics is effective for joint entity and relation extraction.

4.4. Visualization

In order to better represent the effect of our model, we conduct a visualization on
the Conll04 dataset. Some visualizations are shown in Figure 4. As shown in Figure 4a,
EINET is able to accurately identify entity-pair relationships that are not identified by the
baseline model (Khrushchev, Live In, Soviet). As shown in Figure 4b, EINET recognizes the
entity type of “DOE” as “Org” and the relation triple (Steve Wright, Work For, DOE), but
the baseline model can not recognize them. The experimental results show that EINET
can extract entities and relationships that cannot be recognized by the baseline model after
integrating rich semantic information. The rich semantic information makes the model’s
semantic understanding of text more accurate.

Figure 4. Visualization of joint entity and relation extraction results of different models on
Conll04 dataset.

4.5. Error Cases

Although our model achieves competitive results, there are still some errors that
leave room for further research. As shown in Table 5, there are a total of three common
errors, respectively:

(1) Incorrect spans: A common error is the prediction of a slightly incorrect entity span,
usually with one more or one less word than the ground truth. Here, “interferon alfa”
should be marked as an entity but we marke “interferon” as one entity. This error
occurs particularly often in domain-specific ADE and SciERC datasets.

(2) Logical: Sometimes, the relationship between entities is not explicitly described in
the sentence, but can be logically inferred from the context. In the case described, the
“Work-For” relationship between “Robert Bernero” and “DOE” needs to be inferred
from some information (“Robert Bernero , chief of waste disposal for the commission”
and “the commission refers to DOE”).
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(3) Missing annotation: There are some cases where a correct prediction is missing in the
ground truth. Here, in addition to the correct prediction (Shoshone-Bannock, Located-
In, Idaho), EIENT also outputs (Hatcher, Live-In, Onondaga territory), (Hatcher, Live-In,
Shoshone-Bannock) and (Hatcher, Live-In, Idaho), which are correct but unmarked.

Table 5. Cases of common errors.

Error Cases

Incorrect Spans Sentences Cutaneous necrosis after injection of polyethylene glycol—modified
interferon alfa.

Ground Truth
Entities: {’type’: ’Adverse-Effect’, Cutaneous necrosis} {’type’: ’Drug’,
interferon alfa} Relations: (interferon alfa, ’Adverse-Effect’, Cutaneous
necrosis)

Our Model Entities: {’type’: ’Adverse-Effect’, Cutaneous necrosis} {’type’: ’Drug’,
interferon} Relations: (interferon, ’Adverse-Effect’, Cutaneous necrosis)

Logical Sentences

“NRC has a broad programmatic concern that the pressure to meet
unrealistic schedule milestones may leave DOE insufficient time to plan
and to execute proper technical information-gathering activities.” said
Robert Bernero, chief of waste disposal for the commission.

Ground Truth Entities: {’type’: ’Org’, NRC} {’type’: ’Org’, DOE} {’type’: ’Peop’, Robert
Bernero} Relations: (Robert Bernero, Work-For, DOE)

Our Model Entities: {’type’: ’Org’, NRC} {’type’: ’Org’, DOE} {’type’: ’Peop’, Robert
Bernero} Relations:

Missing Annotation Sentences Hatcher also fled to the Onondaga territory but has since moved to a
Shoshone-Bannock reservation in Idaho.

Ground Truth
Entities: {’type’: ’Peop’, Hatcher } {’type’: ’Loc’, Onondaga territory} {’type’:
’Loc’, Shoshone-Bannock} {’type’: ’Loc’, Idaho} Relations:
(Shoshone-Bannock, Located-In, Idaho)

Our Model

Entities: {’type’: ’Peop’, Hatcher } {’type’: ’Loc’, Onondaga territory} {’type’:
’Loc’, Shoshone-Bannock} {’type’: ’Loc’, Idaho} Relations:
(Shoshone-Bannock, Located-In, Idaho) (Hatcher, Live-In, Onondaga
territory) (Hatcher, Live-In, Shoshone-Bannock) (Hatcher, Live-In, Idaho)

5. Conclusions

We propose a novel Joint Entity and Relation Extraction Network with Enhanced
Explicit and Implicit Semantic Information (EINET). On the premise of using the pre-
trained model, EINET introduces explicit semantic information and fully explores the
implicit information for joint entity and relation extraction. Semantic role labelings are
vectorized and fused with context representation vectors from BERT. Then, the Bi-LSTM
network is used to enhance the implicit semantic information of text. It is worth noting that
we adopt different Bi-LSTM networks to capture different features of entities and contexts,
respectively. In addition, we introduce the global semantic representation vector based on
Bi-LSTM in relation extraction, and add the local context length information to enrich the
local semantics. We demonstrate the effectiveness of EINET through comparisons with
existing models on three publicly available datasets, and EINET has achieved competitive
results. In the next stage, we will further enrich the semantic information of contextual
representation based on external knowledge, and explore the common points of joint entity
and relation extraction task and other tasks, so as to apply our method to more natural
language processing tasks.
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