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Abstract: The saga pattern manages transactions and maintains data consistency across distributed 
microservices via utilizing local sequential transactions that update each service and publish mes-
sages to trigger the next ones. Failure by one transaction causes the execution of compensating trans-
actions that counteract the preceding one. However, saga lacks isolation, meaning that reading and 
writing data from an incomplete transaction is allowed. Therefore, this research proposes an en-
hanced saga pattern that resolves the lack of isolation issue via the use of the quota cache and the 
commit-sync service. Some transactions will be transferred from the database layer to the memory 
layer. Thus, no wrong commit to the main database will occur. If a microservice fails to be com-
pleted, the other microservices will run compensation transactions to rollback the changes that only 
affect the cache layer instead of the database layer. Database commit will be performed when all 
transactions are completed successfully. A lightweight microservices-based e-commerce system 
was implemented for comparison. Experiments were conducted for validation and evaluation. Re-
sults demonstrate that the proposal has the capability of resolving the lack of isolation. Results in-
dicate that the proposal achieves better performance not only in typical cases but also in the scenario 
that needs to handle exceptions. 
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1. Introduction 
A microservice based-application [1,2] is a distributed system where the functional-

ities of the application are provided by multiple smaller services that are working to-
gether. The microservice architecture has restructured the monolithic application into sev-
eral individual services in order to provide loose coupling, high maintainability, high 
availability, and scalability for the application development. The microservices architec-
ture enables selecting the technology stack per service. For instance, the relational data-
base could be employed to provide one service while the NoSQL database could be uti-
lized to implement the other one; thus, allowing the services to manage the domain data 
independently. Moreover, with the microservice architecture, scaling data stores on-de-
mand is enabled. Each microservice has its own database that contains some business 
transactions; therefore, managing distributed transactions and maintaining data con-
sistency when transactions span across multiple services are challenging. 

To manage distributed transactions in the microservice architecture, the Saga Pattern 
(Software Automation, Generation, and Administration) was proposed. Saga design pat-
tern manages transactions and maintains data consistency across distributed micro-
services transactions. Saga is a set of local sequential transactions that is responsible for 
updating the microservices and publishing messages to trigger the next transactions. In 
the case of failure by one transaction, compensating transactions will be run to counteract 
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the preceding one. However, the saga pattern does not have read isolation. It is ACD (at-
omicity, consistency, durability), not ACID (atomicity, consistency, isolation, durability) 
[3]. The missing isolation means that data reading and writing from an incomplete trans-
action are allowed which, in turn, introduces various isolation anomalies [4,5]. Therefore, 
to address this problem, this research proposes an enhanced saga pattern that aims to 
achieve eventual consistency via the use of the quota cache and the commit-sync service. 
The idea is to integrate the standard saga pattern with an in-memory data caching layer 
by allocating the quota of the main database to the in-memory data caching server. There-
fore, the CRUD (create, read, update, and delete) tasks will be handled via the quota cache 
instead of the main database which ensures that no wrong commit to the main database 
will occur. When a microservice fails to be completed, the other microservices will run 
compensation transactions to rollbacks the changes that only affect the cache layer instead 
of the main database layer. This will resolve the lack of read-isolation of the saga pattern 
and, additionally, it will enhance the performance. The database commit will be post-
poned and handled via the message queue middleware at the end of the workflow when 
all transactions are completed successfully to achieve eventual consistency. The clean ar-
chitecture approach was utilized for the implementation where all the domain use cases 
have been defined in advance. 

For demonstration, a lightweight microservices-based e-commerce system was im-
plemented to compare the standard baseline version of the saga pattern with the proposed 
enhanced version. Several experiments were conducted for validation and evaluation. Re-
sults demonstrate that the proposed approach has the capability to resolve the lack of 
isolation in the saga pattern. Results also indicate that the proposed approach achieves 
better performance than the standard baseline version not only in typical cases but also in 
the scenario that needs to handle exceptions as employing the cache operations instead of 
the database operation enhances the performance and reduces the latency time. 

2. Literature Review 
2.1. Distributed Transactions in Microservices 

The microservice architecture also known as microservices is an architectural style 
that enables organizing an application or a system as a collection of services. It allows the 
frequent, rapid, and reliable delivery of large, complex applications. As presented at the 
otto.de, one of the biggest European e-commerce platforms [2], the properties of the mi-
croservices include: high availability, scalability, loosely coupling, agility, and reliability. 
The microservice architecture restructured the monolithic application into several indi-
vidual services. The most common challenge with the traditional monolithic application 
is the use of a single shared database which raises additional issues related to the scalabil-
ity and the single point of failure [6]. A microservice architecture could be viewed as a 
distributed system where each transaction is distributed across multiple services that are 
invoked in sequence or in parallel to complete the entire workflow. As the microservice 
architecture enables applying the database per service pattern, transactions have to span 
across different databases. With a microservice architecture, handling and implementing 
distributed transactions that guarantee data consistency in addition to the rollbacks oper-
ation are key issues that need to be considered. The following subsections summarize the 
patterns to be used in implementing distributed transactions in a microservice architec-
ture. 

2.1.1. Two Phases Commit Protocol 
One of the most popular patterns to implement distributed transactions in a micro-

service architecture is the two-phase commit protocol (2PC) [7]. In this protocol (see Fig-
ure 1), a coordinator is the component that controls transactions and contains the logic for 
managing them, while the microservices (participating nodes) execute their local transac-
tions. With the 2PC protocol, a distributed transaction is executed in two phases. In the 
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first phase or what is known as the prepare phase, the coordinator asks the participating 
nodes to commit the transaction. Thus, a yes or no response will be returned. In the second 
phase (i.e., the commit phase), when a yes response is received by the coordinator from 
all participating nodes, the coordinator, in turn, asks all nodes to commit. Note that the 
coordinator asks all participants to rollback their local transactions upon receiving at least 
one negative response. 

 
Figure 1. Illustration of the two-phases commit protocol. 

Although the 2PC is viewed as a useful way to implement distributed transactions 
[8], the coordinator can become a single point of failure. Moreover, the overall perfor-
mance of the transactions depends on the slowest service as all other services need to wait 
until the slowest service finishes its confirmation. Thus, it does not perform very well in 
large-scale and highly loaded systems [9]. 

2.1.2. Saga Pattern 
To solve the problems with the 2PC protocol, the saga pattern was introduced [3,10] 

to organize the communication in a microservice architecture. In 1981, Campbell and Rich-
ards introduced the SAGA project [11] which explored both the practical and the formal 
characteristics of computer-aided support for the software lifecycle in order to enable the 
design of a practical software development environment. In 1987, Garcia-Molina and Sa-
lem [10] introduced the idea of utilizing the saga pattern for long lived-transactions by 
organizing them as a sequence of local transactions where each update of the database 
publishes an event or message to trigger the next local transaction. In other words, the 
saga has been introduced for updating data in multiple services in a microservices archi-
tecture without using distributed transactions. When one local transaction fails because 
of not complying with the business rules, a series of compensating transactions will be 
executed by saga to undo the changes that were made by the preceding local transactions. 

The authors in [10] described the saga as a sequence of operations that perform a 
specific unit of work and are generally interleaved with each other. Saga operations are 
allowed to be rolled back by a compensating action. Saga pattern ensures either the suc-
cessful completion of all operations or running the corresponding compensation actions 
for all executed operations to rollback any work previously done. The idea of the saga 
pattern is rather than having long transactions which hold into locks, long transactions 
will be broken into a series of short transactions that commit in sequence [10]. 

Generally, the choreography and the orchestration are the most two common ap-
proaches to coordinating the saga pattern. With choreography, sagas are coordinated with 
no centralized point of control where events are exchanged by participants. Domain 
events are published by local transactions to trigger local transactions in other services. 
On the other hand, the orchestration is another means to coordinate sagas where sagas 
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will be coordinated with a centralized controller who tells saga participants what local 
transactions to execute based on the events. With the orchestrator, saga requests are exe-
cuted, stored, and the task states are interpreted. With compensating transactions, the or-
chestrator handles failure recovery. 

The saga pattern was utilized by previous research. In general, implementing the 
saga pattern requires a creative way of thinking in order to coordinate transactions and 
maintain data consistency for a business process that spans multiple microservices. The 
design of a SAGA-based Pilot-Job was proposed in [12]. The design proposed by the re-
search supports several types of applications to be usable over a broad range of infrastruc-
tures. In [13], a multi-agent-based framework in the microservices architecture, namely 
SagaMAS is proposed where the distributed transactions are coordinated by the frame-
work simplifying the interactions among microservices and relieving developers from co-
ordination tasks. In [14], the authors proposed a model-based approach for microservices 
and service integration through formal models using the UML and UML profiles. Previ-
ous research concluded that the saga architecture pattern is a useful means to implement 
distributed transactions in a microservice-based system. However, the saga pattern is 
ACD (atomicity, consistency, durability), not ACID (atomicity, consistency, isolation,    du-
rability) [3]. Read-isolation is missing in the saga pattern which in turn allows reading 
and writing data from an incomplete transaction [4] and in saga, the microservices commit 
changes to their local databases. The lack of read-isolation imposes a durability challenge. 
The saga implementation must include countermeasures to reduce anomalies. 

3. Proposed Approach: Design and Components 
This section demonstrates the proposed approach that enhances the saga pattern via 

the use of the quota cache and the eventual commit sync service. In a microservices archi-
tecture, the system will be structured as a collection of services, namely microservices each 
of which has its own database. The proposed approach employs in-memory data caching 
to resolve the read-isolation issue in the saga pattern. A quota from the main database will 
be allocated to the memory cache server initially. The operations of the databases will be 
transferred to the memory cache server. Database commit will only be performed when 
transactions are completed successfully. 

The workflow of a standard e-commerce microservices-based system will be illus-
trated in the next section. Moreover, the components of the proposed approach will be 
demonstrated in detail in Section 3.2. 

3.1. Workflow of a Standard E-Commerce Application 
Figure 2 presents the event workflow of an e-commerce microservices-based system. 

The system allows buying products over the Internet, and offers the possibility to select 
the products, the payment method, and the shipping means. This is a long-lived transac-
tion that consists of several microservices: the Warehouse-Service, the Order-Service, the 
Billing-Service, and the Shipping-Service. As shown in Figure 2, the system includes both 
the warehouse-before-billing and the billing-before-warehouse to simulate real-world e-
commerce applications [15]. The flow starts with the Warehouse-Service that fetches 
goods. Then, the Order-Service initializes an empty order marked as “IN-PROGRESS”. 
The order will be marked as “FAILED” when the goods cannot be fetched. The Billing-Ser-
vice in turn validates the specified payment. The Billing-Service collects the payment if 
the validation is completed successfully; otherwise, it terminates the flow with the order 
marked as “FAILED”. The Shipping-Service dispatches the delivery. The Order-Service, 
finally, completes the order and updates the order information including: the status, the 
shipping-id, and the amount. 
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Figure 2. Saga workflow of a standard e-commerce microservices-based system. 

3.2. Components of the Proposed Approach 
This section demonstrates the backend components of the proposed enhanced saga 

pattern. Figure 3 shows the architecture and the tech stacks of the e-commerce system 
whose workflow is described in Section 3.1. The clean architecture approach was utilized 
for the implementation [16]. All the domain use cases have been defined in advance. For 
example, the Billing-Service has: the add-payment-use-case, the create-billing-use-case, 
the validate-payment-use-case, the payment-pay-use-case, the revert-payment-pay-use-
case, etc. 

 
Figure 3. The architecture of a system implemented the proposed approach (enhanced saga pattern). 

3.2.1. Microservices 
As shown in Figure 3, five microservices are involved in the system: the Warehouse-

Service, the Order-Service, the Billing-Service, the Shipping-Service, and the Cus-
tomer-Service. Each microservice has its own database. The microservices were developed 
via the spring boot technology that has inherited the relevant use cases and implemented 
them [17] (see Figure 4). The microservices were exposed via the REST API [18,19] inter-
nally; thus, communication can be accomplished with the simple HTTP method. 
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Figure 4. The tree of the implemented e-commerce system modules. 

3.2.2. Message Queue Middleware 
The message queue middleware is a distributed event-store and a stream-processing 

platform handling both the failure and the completion events. It supports sending and 
receiving messages between the microservices. It preserves the order of requests from the 
microservices to guarantee the correctness of the eventual commitment. As shown in Fig-
ure 3, various types of message queue middleware were applied to handle the different 
events involved. 

Apache Kafka [20] was utilized as a message queue middle. Apache Kafka is an open-
source distributed event streaming platform that can be used to publish and subscribe to 
the streams of messages. Kafka is able to build a high throughput application as it is ca-
pable of handling thousands of messages per second. Kafka has the durability character-
istic; thus, it always will store the messages on the disk for persistence [21]. 
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3.2.3. Quota Cache 
A cache in computing is generally a hardware or a software component that stores 

data. It is known as a high-speed data storage layer. A cache increases the performance of 
data retrieval by reducing main memory access. The quota cache (see Figure 5) is the quota 
of a specified resource from the main database. Quota is a feature that estimates the avail-
able bytes (i.e., the amount of available space) to store contents. 

To resolve the read-isolation property in the saga pattern, in-memory data caching is 
utilized. A quota from the main database will be allocated to the memory cache server. 
The CRUD (create, read, update, and delete) tasks will be handled via quota cache. This 
in turn will never cause a wrong commit to the main database. In addition, the micro-
services which apply the quota cache will also benefit from the in-memory operations to 
ensure low latency and high throughput and thus achieve better performance in compar-
ison to the baseline standard saga. 

As shown in Figure 3, microservices that require validation apply the quota cache as 
exceptions may occur when the validation fails. When a microservice fails to be com-
pleted, the other microservices will run compensation transactions to rollback the 
changes. Assuming that an error occurs from the Warehouse-Service when fetching the 
goods, in the standard saga pattern, initial good fetching will cause updating of the main 
database; thus, a customer could see the created order. However, when the compensation 
transaction is run to rollback the changes, the order will be removed in the next few sec-
onds. In contrast, with the enhanced version, the CRUD operations are moved to the cache 
level instead of the main database level. This will not cause a wrong database commit or 
update. The compensation request will be sent to the corresponding message queue mid-
dleware in the case of an error. Several message queue middleware were utilized to han-
dle different events, including: the buy events, the completion events, and the failure 
events. For instance, the request will send to the warehouse-compensate queue if an error 
occurs in either the Warehouse-Service or the Billing-Service. Moreover, the request will 
be sent to the payment-related queue if an error occurs in the Billing-Service. As a result, 
with the enhanced saga pattern, database commit will only be performed when the trans-
action is completed successfully. 

Redis [22] was utilized as our memory cache server. Redis is an open-source data-
base, with an in-memory data store. Redis is suitable for building low latency in-memory 
cache, and also can increase the throughput. Several well-known companies, such as Twit-
ter, GitHub, and StackOverflow, have applied Redis. 

 
Figure 5. Quota cache example. 

3.2.4. Eventual Commit Sync Service 
This service is a synchronous commit and will be blocked until either the commit 

succeeds or an unrecoverable error is encountered (in which case it is thrown to the caller). 
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Although the CRUD operations are shifted to the memory cache server, there is still a need 
to commit to the main database. Therefore, the eventual commit sync service is needed. 

The system that applies the proposed approach will send the “finished message” to 
the message queue middleware at the last step when all the events are accomplished suc-
cessfully. Then, the microservices that have applied the quota cache will get the event-
record and perform database commit. In other words, database commit will be done only 
when all the events are successful. 

As shown in Figure 3, when all the purchase events are successfully accomplished, a 
successful message will be sent to the “finished-buy-event-queue” and both the Ware-
house-Service and the Billing-Service will get the event record. Finally, these two micro-
services will run the eventual commit sync service to perform database commit. Therefore, 
the proposed approach ensures that no incorrect commit to the main database will occur. 

3.2.5. Orchestrator Module 
In the orchestrator module, all the microservices were configured to the correspond-

ing web-client, and organized via the RxJava library which composes asynchronous and 
event-based programs by using the observer pattern [23]. Due to the orchestrator module, 
all the microservices can be managed easily and the workflow can be adjusted when 
needed. 

3.2.6. Main Database 
For the main database, PostgreSQL [24,25] was employed. PostgreSQL is an open-

source object- relational database that is suitable for java application development. 

4. System Implementation 
This section illustrates the implementation of the preceding illustrated system (see 

the Supplementary Materials section). Two versions of the system will be implemented 
for later comparison. The first version employs the baseline standard saga pattern and the 
second version utilizes the proposed approach (i.e., enhanced saga pattern via the use of 
the quota cache and the eventual commit sync service). 

The implementation is mainly based on the spring boot. The communication between 
the microservices is done via the REST API, which lets the other services obey the REST 
rules. Moreover, several message queues middleware were utilized to handle the different 
events, including: the buy events, the completion events, and the failure events. With 
these message queues, higher throughput can be achieved for the entire system.  

For the microservices architecture, there are two approaches to coordinate sagas: the 
orchestration and the choreography. In our proposal, both the orchestration and the event 
choreography techniques were utilized for implementation. 
• With the orchestration-based saga, the manager controller manages all the commu-

nications among the microservices. As shown in Figure 3, in our proposal, the or-
chestrator module is responsible for telling the corresponding microservice what 
transactions have to be executed. Thus, the order of the workflow could easily be 
managed without changing any microservices. When the orchestration module cap-
tures a “buy-event”, it tells the Warehouse-Service to start fetching goods. Addition-
ally, the orchestration handles both the failure and the completion events via the mes-
sage queue middleware where each event happens in an asynchronous manner. 
When all transactions are completed successfully, the orchestration publishes a 
“complete-event” to the message queue middleware which enables the Warehouse-
Service and the Billing-Service to consume it and perform database commit. 

• The choreography service applies a decentralized approach to service composition. 
In our proposal, via the choreography-based saga, after a microservice finishes its 
local transaction, it will publish domain events that will be subscribed by the other 
microservices to trigger their local transactions. 
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4.1. Version 1: A System with the Standard Baseline Standard Saga Pattern 
In this version, the back-end components excluding the memory cache server and the 

message queue middleware were employed for implementing the standard saga pattern. 
The standard baseline system (see Figure 6) is a standard saga pattern that organizes all 
the microservices via the orchestrator module, and each task will follow the workflow 
explained in Section 3.1. The logic of the revert transaction that is responsible for the roll-
backs operation to the main database was implemented (i.e., to be used for the scenario 
with the exception). Once the “buy event” is published, the orchestrator module will start 
the event workflow: The Warehouse-Service fetches the goods based on the request, the 
Order-Service initializes the order for the customer, the Billing-Service validates the spec-
ified customer’s payment and collects it, the Shipping-Service dispatches the delivery for 
a customer, and, finally, the Order-Service completes the created order. There may be a 
need to perform the revert transaction in the case of an error after fetching the goods by 
the Warehouse-Service. 

 
Figure 6. The architecture of a system with the standard baseline standard sage pattern. 

4.2. Version 2: A System Implemented the Proposed Approach (Enhanced Saga Pattern) 
This version (see Figure 3) employs all the back-end components, including: the 

memory cache server and the message queue middleware. As shown in the figure, the 
memory cache server and the message queue middleware only apply to the Warehouse-
Service and the Billing-Service as only these two microservices may perform the rollbacks 
operation when an error occurs in the system (i.e., the fetched goods and the collected 
payment should be reverted in the case of exception). 

The Warehouse-Service fetches goods in the memory layer using Redis, the Billing-
Service validates the customer’s payment and collects it in the memory layer, the Shipping-
Service dispatches the delivery for a customer, and the Order-Service completes the order. 
Simultaneously, the system will publish the finished event to the corresponding message 
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middleware. The subscribed services will consume it and commit the specified update to 
their main database. Moreover, this system has compensation transactions that are run in 
the case of an error. Compensation transactions affect only the allocated quota cache instead 
of the main database (i.e., the memory layer instead of the disk). Moreover, the micro-
services, which apply the quota cache, postpone the database commit which, in turn, will 
be handled via the message queue middleware at the end of the workflow to achieve even-
tual consistency [26]. Thus, by applying the quota cache and the eventual commit sync ser-
vice, the database commit will only be executed if all the involved events are completed 
successfully. 

5. System Validation and Performance Evaluation 
To verify the capability of the proposed approach in resolving the lack of read-isola-

tion in the saga pattern, validation experiments that simulate a completion scenario with 
no exception and with a failure scenario were designed. Several experiments will be con-
ducted on the two implemented versions based on both scenarios and the log of the sys-
tems will be observed. In addition, the performance of both systems was evaluated. 

5.1. System Validation 
For system validation, the main database and the memory cache server-related logs 

were exported from both versions in order to track and test the read-isolation in the saga 
pattern. The traced log contains information, such as the timestamp, the thread name, and 
the message. The experiment will show that by applying the proposed approach, there is 
no need to do the rollbacks operation to the main database. 

5.1.1. Monitoring Tools 
To export and collect the logs from each microservice, logs were structured via the 

logstash logback encoder, which provides log back encoder and appenders to log in 
logstash’s JSON format [27]. In addition, Loki [28] was used for performing log aggrega-
tion. For observability, Grafana [29], which is an open-source web interface, was de-
ployed. For the experiment, there is a need to push the logs to the log aggregation server 
from each microservice; thus, the Promtail tool [30] was deployed for retrieving the spec-
ified local logs to the Loki instance as it has strong integration with the Loki. 

5.1.2. Experiment Results 
Two scenarios were designed for validating the systems, one with no exception oc-

curring and the other with an exception occurring during the payment. 
1. Experiment 1: Testing the Baseline Standard System (version 1: Utilizing the 

standard saga pattern) with Scenario 1 
Once the orchestrator module captures a “buy-event”, the event workflow will be 

tackled by the corresponding microservices. The Warehouse-Service starts to fetch the 
specified number of goods at the first step, as shown in Figure 7. As shown in the “log-
ger_name” field, this operation was handled in the main database. After that, the Order-
Service initializes the order. The payment validation then will be handled via the Billing-
Service. In the case of validation failure, the workflow will be terminated and the order 
will be marked as “FAILED”. Since this scenario represents the case with zero error, the 
validation will be completed successfully. In the third step, the Billing-Service collects the 
specified payment (Figure 7 shows the steps performed from 1 to 4). The Shipping-Service 
then dispatches the delivery based on the customer’s request. Figure 8 shows that the cus-
tomer selects “boat” as a delivery means. In the last step, the Order-Service completes the 
order and updates the required information, including the order status, the shipping id, 
the amount, and the order status. 
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Figure 7. Steps 1–4 in version 1 (deploying standard saga pattern). 
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Figure 8. Steps 5, 6 in version 1 (deploying standard saga pattern). 

2. Experiment 1: Testing the improved System (version 2: Utilizing the enhanced saga 
pattern) with Scenario 1 
Step 1 and Step 2 performed by version 2 are almost the same as version 1 as only 

the Warehouse-Service and the Billing-Service apply the proposed approach. Note that as 
shown in (Figure 9), data access was handled by Redis, the memory cache server, instead 
of the main database. In other words, no transactions on the main database are needed at 
these steps. Step 3 is shown in Figure 9, where validating the payment is transferred from 
the main database to the memory cache server. Step 4: After the validation is completed 
successfully, the Billing-Service collects the payment and updates the specified fields at 
the memory cache serve. Steps 5 and 6 are the same as version 1 except that the orches-
trator module publishes the completion event to the corresponding message queue mid-
dleware. 

Once the Warehouse-Service and Billing-Service consume the “completion-event” 
message, they will perform the specified transaction to the main database, respectively. 
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The update operation has already moved to the memory cache server in both the Ware-
house-Service and the Billing-Service. It will perform the relevant transactions to the main 
database as long as they get the completion event message. 

 

 
Figure 9. The Steps performed by version 2 (deploying enhanced saga pattern). 
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3. Experiment 2: Testing the Baseline Standard System (version 1: Deploying stand-
ard saga pattern) with Scenario 2 
The event workflow of an e-commerce microservices-based system with a payment 

exception is shown in Figure 10. This workflow will be deployed to test both versions of 
the system. 

 
Figure 10. The event workflow of the application with a payment error scenario. 

Figure 11 shows the steps performed by the standard version that applies the stand-
ard saga pattern. The first and the second steps fetch goods and initialize the order. Step 
3 shows that a large amount is given that the customer cannot afford so payment valida-
tion failure will occur. As an exception occurs, rollbacks will be executed at step 4, the 
Warehouse-Service reverts the fetched goods. After rolling back the fetched goods, the 
Order-Service completes the order and marks it as failed. 
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Figure 11. The Steps performed by version 1 (deploying standard saga pattern) when an exception 
has occurred. 

4. Experiment 2: Testing the improved System (version 2: Deploying the enhanced 
saga pattern) with Scenario 2 
Figure 12 shows the steps performed by version 2 that applies the proposed enhanced 

saga pattern. In the first and second steps, the goods will be fetched and the order will be 
initialized. Step 3 shows that a large amount is given that the customer cannot afford so 
payment validation failure will occur. A “failure-event” will be published to the message 
queue middleware instead of performing the rollbacks to the main database. In the last 
two steps, it can be observed that the timestamp of both logs is almost the same which 
means the system sent the failure event and completed the order at the same time. Figure 
12 shows that the Warehouse-Service compensates for the fetched goods via the memory 
cache server, with zero change to the original main database. The logs indicate that the 
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improved proposed approach can handle the exception and never perform the rollbacks 
operation to the main database when errors occur. 

 

 
Figure 12. The Steps performed by version 2 (deploying enhanced saga pattern) when an exception 
has occurred. 
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6. System Evaluation 
This section illustrates the system performance based on two-evaluation metrics: (1) 

the number of requests that can be handled in a specified duration in order to compare 
the throughput of both versions; (2) the consumed time in a scenario with errors occur-
ring. The response time will be measured to specify the time taken by both approaches for 
processing. For testing the performance, the k6 [31] tool was utilized. This tool is consid-
ered a powerful load-testing tool globally as it provides an approachable scripting API 
and a flexible configuration. The following configurations were set in the tool. 
• VUs: The number of the virtual users (VUs) to run the specified script concurrently; 
• Iterations: The fixed number of iterations that specify the script, usually works to-

gether with VUs; 
• Duration: The string which specifies the total duration time to run the testing script. 

Performance Analysis 
1. Throughput: Number of requests that are handled in a specified duration 

In this experiment, the duration was set to 1 min and 3 min. The VUs were set to 1, 
10, 15, 50, 100, and 150. Moreover, there is a one-second sleep between every iteration. 

• Throughput Results: 1 min duration 
The results of the throughput for 1 min duration are shown in Figures 13–18. As 

shown in the figures, the average values of the throughput for version 1 with (1 VU/10 
VUs/15 VUs/50 VUs/100 VUs/150 VUs) are 297.5, 592.8, 781.5, 2400, 3170, and 4378 respec-
tively, where the average of throughput for version 2 with (1 VU/10 VUs/15 VUs/50 
VUs/100 VUs/150 VUs) are 299.5, 596.4, 887.3, 2928, 4442, and 6393 respectively. Results 
indicate that the system “version 2” that utilizes the proposed approach (enhances saga 
pattern) achieves better throughput. Although the duration of this experiment is short, 
the difference between the two versions can still be observed. 

 
Figure 13. Load Testing—1 virtual user with 1 min duration. 
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Figure 14. Load Testing—10 virtual users with 1 min duration. 

 
Figure 15. Load Testing—15 virtual users with 1 min duration. 
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Figure 16. Load Testing—50 virtual users with 1 min duration. 

 
Figure 17. Load Testing—100 virtual users with 1 min duration. 
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Figure 18. Load Testing—150 virtual users with 1 min duration. 

• Throughput Results: 3 min duration 
The results of a 3 min duration are shown in Figures 19–24. The average of the 

throughput for version 1 with (1 VU/10 VUs/15 VUs/50 VUs/100 VUs/150 VUs) are 889.4, 
1779.3, 2526.1, 3485, 4530.5, and 6252, where the means of the throughput for version 2 
with the same number of VUs are 890.7, 1780.8, 2669.5, 4182, 6342 and 9128 respectively. 

Results show that both approaches are well performed with 1 virtual user and 10 
virtual users. However, there is a significant difference when 15 virtual users were con-
figured, as the mean value of the completed orders in version 1 is 2526.1 in 3 min, while 
version 2 completes on average 2669.5 orders in 3 min. Results show that the system that 
employs the proposed approach achieves better throughput. Note that, there were no fail-
ures that occurred with the two experiments performed. 

The main factor behind achieving better throughput by the enhanced saga pattern is 
reducing the hard-disk operations. The proposed approach decreases access to the main 
database by utilizing the quota cache. To do that, the quota cache, which is implemented 
by Redis, is applied to the microservices that require validation (i.e., in the workflow 
above the Warehouse-Service and the Billing-Service). All CRUD operations are shifted to 
the memory cache server instead of the main database. Accessing the main database oc-
curs only to perform database commit when all transactions are completed successfully. 

Additionally, the proposed approach applies Redis as an in-memory cache server 
which plays a significant role in enhancing the performance. Redis is extremely fast as it 
preserves data in the primary memory (in-memory) instead of the secondary memory. 
Thus, data access latency is decreased. Moreover, via Redis, the read and write operations 
are extremely fast which in turn allows the system to deliver sub-millisecond response 
times that enables more requests to be handled in one second. As a result, increasing the 
throughput of the system. In contrast, the standard saga pattern stores data in the second-
ary memory; as a result, read and write operations will be much slower. Thus, it affects 
the throughput of the system. 

Moreover, the message queue middleware, implemented by Kafka, plays a key role 
in improving the overall throughput. In our proposal, Kafka allows the communication 
between the microservices by supporting the sent and received messages between them. 

0.00

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

1 2 3 4 5 6 7 8 9 10

Nu
m

be
r o

f O
rd

er
s

150 VUs with 1 min duration

Baseline Proposed Method



Appl. Sci. 2022, 12, 6242 21 of 26 
 

It also handles the failure and the completion events. Kafka enhances the performance as 
it is capable of handling thousands of messages per second. The amount of time it takes 
for a record that is produced to Kafka to be fetched by the consumer is short. Thus, more 
records will be fetched and the throughput will be improved. 

 
Figure 19. Load Testing—1 virtual user with 3 min duration. 

 
Figure 20. Load Testing—10 virtual users with 3 min duration. 
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Figure 21. Load Testing—15 virtual users with 3 min duration. 

 
Figure 22. Load Testing—50 virtual users with 3 min duration. 

 
Figure 23. Load Testing—100 virtual users with 3 min duration. 
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Figure 24. Load Testing—150 virtual users with 3 min duration. 

2. Response-time “Consumed time in a scenario with failure events” 
Three scenarios were tested with different error rates. Each scenario contains two 

kinds of error: The Warehouse-Service occurs error when goods are fetched, the Billing-
Service causes an error when processing the payment. Moreover, the proportion of the 
Warehouse-Service error to the Billing-Service error is 9:1. Besides, 1 k requests were sent 
without any sleep time to the message queue middleware. Test results are listed below. 
Figure 25 shows the consumed time when 
• 10% error rate in 1000 requests (900 successful orders); 
• 9% Warehouse-Service fetch goods occur error; 
• 1% Billing-Service payment failed. 

 
Figure 25. Load Testing—with 10% error. 

Figure 26 shows the consumed time when 
• 40% error rate in 1000 requests (600 successful orders); 
• 36% Warehouse-Service fetch goods occur error; 
• 4% Billing-Service payment failed. 
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Figure 26. Load Testing—with 40% error. 

Figure 27 shows the consumed time when 
• 70% error rate in 1000 requests (300 successful orders); 
• 63% Warehouse-Service fetch goods occur error; 
• 17% Billing-Service payment failed. 

 
Figure 27. Load Testing—with 70% error. 

Figures 25–27 show that version 2 which applies the proposed enhanced saga pattern 
consumes less time than version 1 which utilizes the baseline standard saga pattern even 
in the scenario with errors. The reason behind this is employing the cache operations in-
stead of the database operation generally enhances the performance and reduces the la-
tency time. According to the proposal, CRUD operations are moved to the memory cache 
server to enhance the performance instead of the main database, and a commit to the main 
database occurs only when all requests are successful. In the case of error, no hard-disk 
operations are performed, there is only a need to revert the change in the memory cache. 
In the case where an error occurs, the compensation request will be sent to the correspond-
ing message queue middleware. 

In the standard saga pattern, updating data will be accomplished on the main data-
base directly. In the case of an error, the compensation transaction will be run to rollback 
the changes, and the new update requires accessing the main database one more time. In 
contrast, with the enhanced version, the CRUD operations are moved to the cache level 
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instead of the main database level. This will not cause a wrong database commit or up-
date. The compensation request will be sent to the corresponding message queue middle-
ware in the case of an error. As a result, with the enhanced saga pattern, database commit 
will only be performed when the transaction is completely successful. 

Results demonstrated that transferring the main database’s CRUD operations to the 
memory cache server would provide benefits and resolve the read isolation issue, further 
achieving better performance. 

7. Conclusions and Future Work 
This paper proposes an improved approach to resolve the missing read-isolation 

property in the saga pattern. The proposal integrates the standard saga with the quota 
cache and the eventual commit sync service. The importance of this research comes from 
the ability of the proposed approach in handling the lack of read-isolation of the saga 
pattern by moving some transactions from the database layer to the memory layer. Ac-
cording to the proposal, CRUD (create, read, update, and delete) tasks will be handled via 
quota cache (i.e., the memory cache server) instead of the main database. This will never 
cause a wrong commit to the main database. If a microservice fails to be completed, the 
other microservices will run compensation transactions to rollback the changes which af-
fect only the cache level. Database commit will be postponed and handled via the message 
queue middleware at the end of the workflow when all transactions are completed suc-
cessfully to achieve eventual consistency. 

For demonstration, a lightweight microservices-based e-commerce system was im-
plemented to compare the standard baseline version of the saga pattern with the proposed 
enhanced version. Several experiments were conducted for validation and evaluation. Re-
sults demonstrate that the proposed approach has the capability of resolving the lack of 
read-isolation in the saga pattern. Results also indicate that the proposed approach 
achieves better performance than the standard baseline version not only in typical cases 
but also in the scenario that needs to handle exceptions as employing the cache operations 
instead of the database operation enhances the performance and reduces the latency time. 
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