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Abstract: Video application is a research hotspot in cooperative vehicle-infrastructure systems
(CVIS) which is greatly related to traffic safety and the quality of user experience. Dealing with
large datasets of feedback from complex environments is a challenge when using traditional video
application approaches. However, the in-depth structure of deep learning has the ability to deal
with high-dimensional data sets, which shows better performance in video application problems.
Therefore, the research value and significance of video applications over CVIS can be better reflected
through deep learning. Firstly, the research status of traditional video application methods and deep
learning methods over CVIS were introduced; the existing video application methods based on deep
learning were classified according to generative and discriminative deep architecture. Then, we
summarized the main methods of deep learning and deep reinforcement learning algorithms for
video applications over CVIS, and made a comparative study of their performances. Finally, the
challenges and development trends of deep learning in the field were explored and discussed.

Keywords: video application; CVIS; deep learning; generative and discriminative deep architecture;
deep reinforcement learning

1. Introduction

In recent years, with the rise of the social vehicle ownership rate, the needs of traffic
safety and quality of user experience (QOE) are increasing. Intelligent transportation sys-
tems (ITS) are expected to relieve traffic pressure and prevent traffic jams through video
target detection, video-assisted driving and wireless resource management. The proposal
of CVIS can greatly alleviate the pressure of network overheads in ITS. Vehicles equipped
with wireless communication units and sensing units are used as mobile nodes, and their
communication modes include vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and
vehicle-to-roadside (V2R) [1] modes. Video applications over CVIS is one of the impor-
tant parts of ITS. These were divided into video transmission, video content distribution
and video target detection, which can effectively grasp road conditions, improve driving
safety and provide users with popular video streams to improve the QOE. However, this
attention-worthy problem ensures the accuracy of target detection, the low delay of video
transmission and the high quality of video streams in a CVIS with the characteristics of a
dynamic network topology, small transmission radius and time-varying channel.

As one of the current popular research fields, deep learning was first proposed by
Hinton in 2006 [2]. It shows excellent performance in dealing with large amounts of data
and high computational complexity. Through the nonlinear transformation of a multi-
layer network structure, shallow features are combined to extract deep abstract features
and realize the distributed representation of data. Because of its shallow structure, the
traditional algorithm has difficulty obtaining the essential features from high-dimensional
datasets in complex traffic environments. Researchers have applied deep learning to solve
this problem, because of the advantage of the deep network structure, which can extract
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the essential features of high-dimensional datasets. This paper summarized the research
of deep learning in the field of video applications over CVIS in recent years, compared
and analyzed the existing research methods, and discussed the current challenges and
prospects for the future of video applications over CVIS based on deep learning.

This paper summarized the main research methods in the field of video applications
over CVIS, and classified them based on the characteristics of their research methods, as
shown in Figure 1.
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Figure 1. Video application methods over CVIS.

The rest of this paper is organized as follows. Section 2 analyzes the advantages and
disadvantages of traditional methods for solving video application problems in vehicle–
road coordination systems. Section 3 focuses on addressing the current challenges faced
by video applications through deep learning. Section 4 expounds the solution of video
application problems in complex CVIS through deep reinforcement learning. Section 5
presents the datasets and model performance evaluation metrics. Section 6 discusses
potential future trends in the field.

2. Traditional Video Application Methods over CVIS

Video applications play a very important role in vehicle driving assistance, vehicle
safety applications and entertainment applications. Due to the intelligence of the roadside
infrastructure in CVIS, it is equipped with information storage units, computing units, etc.,
which can interact with vehicles in real time, and greatly promotes the development of
video applications. In recent years, many researchers have conducted in-depth research
on the use of video applications over CVIS and have proposed a considerable number of
video transmission methods and video target detection methods.
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Modern video coding standards can be divided into the following categories:
H.264/AVC, H.264/SVC, H.265/HEVC, AVS2 and AV1 [3–5]. At present, the encoder
optimization algorithm based on the H.26X standard is widely studied, and it can reduce
the video freeze time and computational complexity under the condition of ensuring video
quality in complex CVIS environments. The extensible modulation (s-mod) scheme pro-
posed by Lin et al. [6] ensures the performance while significantly reducing the complexity
of the encoder optimization algorithm. Belyaev et al. [7] reduced the computational com-
plexity through unequal packet loss protection and rate control algorithms for scalable
video coding. Zhang et al. [8] proposed a video layering scheme based on the H.265/SVC
standard to improve the average offload traffic.

Forward error correction (FEC) is widely used in video coding, and can increase the
credibility of data communication. Generally speaking, it causes a waste of channel resources
when the receiver has no right to request retransmission in unidirectional communication
after an error occurs in the transmission data. FEC is an error control mode which encodes
according to an algorithm set in advance, before the data transmission, and adds redundant
code information with its own characteristics. When an error occurs in the data transmission,
the receiver decodes the received data stream according to the corresponding algorithm and
determines the resulting error code to correct it. Ali et al. [9] used RaptorQ code as an FEC
scheme to reduce data packet loss and improve transmission performance. Sofiane et al. [10]
proposed an enhanced adaptive sub-packet forward error correction (EASP-FEC) video stream
transmission scheme which aims to improve the quality of video transmissions over CVIS. To
minimize video distortion, Zhu et al. [11] proposed an adaptive truncation hybrid automatic
repeat request (ATHARQ) algorithm to find hierarchical video packet scheduling for interlayer
forward error correction (IL-FEC) coding.

Resources can be divided into network resources and cache resources based on dif-
ferent standards. According to the different forms of resources, the means of resource
allocation and scheduling will be different.

The cluster methods allocate video resources to vehicles with the same demand
characteristics. Aiming to minimize video interruption probability, Jetendra et al. [12]
showed a video resource decision scheme based on a cluster coverage and fast handoff
mobile IP system (COMIP). Yaacoub et al. [13] divided mobile vehicles into cooperation
clusters to improve the quality of service (QOS) and quality of experience (QOE), and
proposed a V2V cooperative communication method.

The main joint DSRC/LTE communication method is that vehicles are allocated
a corresponding communication channel according to different needs. Ben et al. [14]
proposed a hybrid communication method, based on DSRC/LTE, which improves the
overall reliability of communication. Xiaoman et al. [15] proposed a service-aware wireless
access technology (RAT) selection algorithm to improve performance.

The multipath transmission method means allocating video sub-resources to different
links for transmission. Xie et al. [16] proposed a multipath solution based on a disjoint
algorithm to increase the transmission rate and reduce the delay. Aliyu et al. [17] proposed
an interference-aware multipath video streaming (I-MVS) framework which aims to reduce
packet error rate.

A method to reduce transmission cost, backhaul burden and transmission delay is
named video cache transmission. It mainly caches the video to the roadside unit (RSU), and
then the RSU transmits the video stream to the user. Guo et al. [18] proposed a dual-time-
scale dynamic cache scheme to reduce the backhaul burden and improve video quality.
Liu et al. [19] proposed a cache-based cooperative video transmission scheme in cellular
networks which improves the QOE. Zhikai et al. [20] proposed an active video content
caching (RCC) scheme to minimize transmission delay. Sun et al. [21] designed cache
placement and short-term transfer strategies for long-term-aware transmission to improve
the QOE.

Video target detection is mentioned to solve such problems as predicting a traffic situa-
tion, tracking a trajectory and identifying vehicle types, so as to improve traffic convenience
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and driving safety. Ravi et al. [22] collected target parameters through video graphics detec-
tion, and predicted vehicle delay, which is defined as the extra time the vehicle spends at an
intersection, by using support vector machine (SVM) and artificial neural network (ANN)
algorithms. Comparing the two algorithms, it was concluded that ANN is the best-fitting
model for estimating the delay of signalized intersections. Olayode et al. [23] obtained
datasets from traffic data equipment, such as cameras, at seven road intersections of the
most congested roads in South Africa, and developed an ANN model that divides these
data sets into thirteen inputs and one output. The results showed that the accuracy of the
ANN prediction method is effective.

The traditional video transmission method can show good performance in a simple
CVIS environment. However, the algorithm of the traditional method converges slowly,
and the model optimization is more difficult, due to more interference and the large data
scale in complex environments.

3. Video Application Based on Deep Learning Algorithm

CVIS has the characteristics of a dynamic topology and a time-varying channel state.
The traditional video application methods can not accurately analyze and extract the
deep features of traffic data. The computational complexity of the traditional method is
significantly improved, resulting in dimensional disaster [24] when the dimension of the
dataset is high. By taking into account relatively few variables, the traditional methods
can not reflect the real traffic characteristics of the CVIS environment. In addition, the
traditional method’s model is relatively simple, and it is easy to find the local optimal
solution. However, deep learning can deal with these problems very well.

Deep learning is an important branch of machine learning, which originates from the
study of artificial neural networks and is a further deepening of the basis of traditional neu-
ral networks. Shallow networks, such as most classification and regression algorithms, are
limited to showing good performance in dealing with complex high-dimensional problems
when the sample size is not large enough and the computing power is weak. On the other
hand, deep learning mainly completes the complex function approximation through a deep
nonlinear network structure, and can extract an abstract distributed representation of its
essential features from a small number of samples [25,26]. Hinton et al. [2] proposed a fast
learning algorithm based on a deep belief network (DBN) which is mainly divided into
two steps: firstly, unsupervised learning is used to pre-train the constrained Boltzmann
machine (RBM) network at each layer, and then supervised learning is used to fine-tune
the whole DBN. This model reduces the difficulty of deep structure optimization, so the
development and application of deep learning are paid increased attention by researchers.
Because of the differences in the structure and training methods, deep learning can be
divided into the following three categories:

1. Generative deep architecture: this architecture can be described as a model for gen-
erating data which belongs to a probability model. Through the joint probability
distribution of the observed data and the corresponding categories, the feature set of
the generated data contains the high-order correlation features of the input dataset,
which is more like an unsupervised learning method;

2. Discriminant deep architecture: this architecture classifies patterns through its own
discriminant ability, which estimates a posteriori probability through the conditional
probability distribution of the observed data, similar to a kind of supervised learning;

3. Mixed deep architecture: this architecture combines the advantages of generative and
discriminative deep architecture, and has excellent expression ability and discrimi-
nant ability.

Based on the above three architectures, the advantages of algorithms in the field
of video application over CVIS were summarized, respectively. At present, most of the
research methods in the field are based on the generative and discriminant models, and
the research on the hybrid model is still lacking. In addition, deep reinforcement learning
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also promotes the further development of deep learning, so this paper also summarized
the research in this field.

3.1. Generative Deep Architecture

DBN is a probability generation model which is obtained by a multi-RBM stack and
layer-by-layer greedy training. RBM is a shallow neural network model based on energy.
Its structure, shown in Figure 2, consists of a visible layer and a hidden layer. The nodes
between layers belong to two-way connections, while the nodes within layers do not
produce connections. The visible layer, also known as the input layer, is used to describe
data features. The hidden layer will not send and receive signals through the outside; its
function is to extract the abstract dependency relationship between data features so that it
can be better linearized.
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Figure 2. RBM structure schematic diagram.

Because of the structure of multi-layer neural networks, deep neural networks lead to
some problems, such as a low learning efficiency, a high dataset sample size and a difficulty
with parameter selection. However, DBN can deal with the above problems well by its
novel training methods, so deep learning has been widely studied and applied.

The existing routing and caching strategies in vehicular networks cannot effectively
cope with time-varying network conditions; thus, Zhang et al. [27] proposed an intelligent
routing algorithm based on DBN (IRA) which aims to provide high-quality video streaming
services in vehicular networks. Its model structure is shown in Figure 3. In order to discover
the deep abstract relationship between the order of requesting video content and the time
spent requesting video content, the DBN-based learning model [28] optimizes itself through
back propagation regret after layer-by-layer pre-training (regret is defined as the difference
between the predicted results and the actual results). Simulation results show that IRA
achieves better network performance than other algorithms in terms of lookup data delay
and cache hit rate.
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3.2. Discriminant Deep Architecture

The models proposed by researchers based on the discriminant deep architecture
include convolutional neural networks (CNNs) and cyclic neural networks (RNNs) in the
field of video applications over CVIS.

3.2.1. CNN

The model output of a CNN [29,30] has no feedback connection with itself, so it is a
kind of feed-forward deep network. It consists of an input layer, a convolution layer, a
pooling layer, a full connection layer and an output layer.

The input layer is used mainly to preprocess the original data, to reduce the impact of
differences. As the most important layer of a CNN, the convolutional layer is composed
of multiple feature graphs, each of which is composed of multiple neural nodes. The
convolution kernel is a weight matrix: the convolution effect of convolution kernels of
different sizes will be different when the extraction target is the same. The convolutional
layer extracts the specific features of all nodes on the feature graph through the sliding
convolution kernel, and the sliding step is expressed as the length of a sliding of the
convolution kernel. Each neural node in the convolution layer is locally connected with
the feature graph of the corresponding input layer through a set of weights [26]; then, its
local weighting sum is mapped by a nonlinear function to obtain the data output of the
convolution layer. Importantly, its weights are shared when extracting feature data on
the same feature graph. The pooling layer is the output layer of the convolution layer,
which is also composed of multiple feature graphs, and each feature graph corresponds to
the convolution layer one by one. Average pooling and maximum pooling are common
methods in this condition which can reduce the resolution of the feature surface while
ensuring that the feature data will not be affected by spatial changes [31], reduce the
dimension of the feature data by removing redundant information and prevent over-fitting
to a certain extent. The purpose of pooling is to reduce the computational complexity. The
connection layer’s purpose is to integrate local information with category distinctions, after
alternating multiple convolutional and pooling layers [32].

It becomes very difficult to deal with the problem of image distortion when encoun-
tering bad weather such as heavy fog and rainy nights. Image quality assessment [33] is
mainly used to predict the perceptual quality of digital images, and CNN models are found
to be robust to distortion [34]. Varga, Domonkos [35] proposed a depth-based no-reference
image-quality assessment architecture that incorporates multiple CNN models, which
effectively evaluates image quality by considering multiple image quality scores from
different CNN models. This architecture was confirmed in experimental tests.

Chen et al. [36] described a new method, based on deep learning, which removes
multiple error sources in sensor signals such as cameras at the same time in the laboratory
environment. By correctly identifying the classified signal, the CNN algorithm is developed,
which essentially eliminates the sensor error source. In order to test the efficiency of the
algorithm, the results are compared with the traditional six-bit static test, the rate test and
other methods. An accuracy of 80% is achieved in correctly identifying accelerometer and
gyroscope signals.

Kumar et al. [37] introduced a case study of a CNN-based solution using camera video
data for real-time open-air off-street intelligent parking management. Experiments were
carried out on real-time 24 h data from the input camera video source installed in the
parking lot of IIT Hyderabad (IITH). The experimental results show that this scheme can
improve parking performance.

Jeon et al. [38] proposed a scene representation method, that is, a multi-channel
occupation grid graph (OGM) to describe the whole traffic scene. The deep learning
architecture of the OGM is used to predict the future traffic scene. By using this 2D traffic
scene representation, the future prediction can be modeled as a video processing problem
in which the future time series image series needs to be predicted. In order to predict the
future traffic scene according to the past traffic scene, a deep learning architecture using



Appl. Sci. 2022, 12, 6283 7 of 23

a CNN and long-term short-term memory network is proposed. In the case of highly
conflicting traffic, the future prediction accuracy can be as high as 90%, and the prediction
range is 3 s by using the proposed deep learning framework.

Akilan et al. [39] proposed a multi-view perceptual field codec convolutional neural
network (MvRF-CNN) model, which contributes mainly to the use of multiple views of
convolution kernels with residual feature fusions in the early, middle and later stages of
the codec (EnDEC) architecture. The model is still effective in complex traffic environments
(dynamic background, camera jitter, night video, bad weather, etc.).

Shobha et al. [40] proposed a deep learning adaptive active network subdivision
model for vehicle division. The proposed solution includes three stages: subtraction based
on an adaptive background model, active network subnet using a CNN and optimization
using an extended topology active network (ETAN) to extract data from the CNN results.
Adaptive background modeling is based on the adaptive gain function, which is composed
of pixels of frames in the video. The gain function can compensate for the shadow and
lighting problems that affect the vehicle division. The deep learning-assisted topology
active network deformable model can provide higher partition accuracy in the presence of
occlusion, cluttered background and traffic density changes.

Ma et al. [41] proposed an intelligent collaborative visual perception system for net-
worked vehicles. The driving video is collected from the vehicle and transmitted to the
cloud for visual perception using a CNN. In order to receive and process multiple vehicle
videos synchronously, several data pipeline CNN frameworks are developed; their frame
structures are shown in Figure 4. Considering the bandwidth consumption and transmis-
sion delay, the resolution adaptive strategy and frame rate control strategy are designed,
and IPv6 routing is used to transmit between the vehicle and the cloud. The system helps
drivers to make better and safer decisions by enhancing their perception.
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Guo et al. [42] combined video compression sensing (CVS) with a CNN, and proposed
a correlation analysis model in the measurement domain called CVS-CNN. They used CNN
instead of the pseudo-inverse transformation of the measurement matrix, and established
the correlation between the measured values of the blocks to be estimated and the measured
values of adjacent non-overlapping blocks, which can analyze the time correlation of video
frames in the measurement domain. The processing speed, accuracy and robustness are
obviously better than similar video frame correlation analysis methods.

Jeong et al. [43] proposed an intrusion detection method based on feature generation
and CNN for the first time to detect attacks on audio and video transmission protocol
(AVTP) streams in a network based on automobile Ethernet. In order to evaluate the
intrusion detection system, a physical test platform based on BroadR-Reach and captured
real AVTP packets was built.
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Madhumitha et al. [44] proposed a new heuristic unimodal method based on a vision
system to estimate the collision priority of vehicles on the road. Priority is estimated from
the point of view that it may be equipped with a vision-based driver assistance system or
the self-driving vehicle itself. Consider crowdsourced videos from YouTube about vehicle
collisions captured by vehicle onboard cameras: in order to detect the moving vehicle in
the video, the pre-training object detection model and tracking algorithm based on CNN
are used.

Wang et al. [45] proposed a robust hierarchical deep learning for promoting congestion
detection. In this method, a deep network is designed for hierarchical semantic feature
extraction. Different from the traditional deep regression network, which usually uses the
mean square error directly as the loss function, robust metric learning is used to train the
network effectively. On this basis, multiple networks are combined together to further
improve the generalization ability. Extensive experiments have been carried out and it is
proved that the proposed model is effective.

A region-based CNN algorithm (RCNN) was proposed by Girshick et al. in 2014 [46].
The author applies a CNN to the field of target detection for the first time. The algorithm is
mainly composed of four parts: candidate region generation, feature extraction, category
judgment and location refinement. Because of its excellent performance, RCNN is widely
used in the field of video applications over CVIS.

Priyadharshini et al. [47] proposed an RCNN algorithm to deal with the aggregation
of vehicle data from real-time video streams which improves the detection accuracy by
3.5% compared with a CNN. Kamran et al. [48] prepared datasets containing real data
(taken from military performance videos) and toy data (downloaded from YouTube videos).
The datasets were divided into three main types: military vehicles, non-military vehicles
and other non-vehicle objects. In order to analyze the adequacy of the prepared datasets,
we use algorithms such as RCNN target detection to distinguish between military and
non-military vehicles. The experimental results show that using the customized/prepared
datasets to train the deep architecture can identify seven kinds of military vehicles and four
kinds of non-military vehicles.

You Only Look Once (YOLO) was proposed by Joseph et al. in 2015 [49]. YOLO is a
target detection algorithm based on CNN, which means that target features can be detected
only once. Because of this feature, YOLO is favored by researchers in the field of real-
time video target detection. Seal et al. [50] devoted themselves to developing benchmark
applications for real-time traffic incident identification and related traffic management using
real-time congestion-aware navigation of intelligent vehicles with video feeds, proposing
an algorithm framework based on YOLO for identifying and classifying traffic events,
such as traffic accidents and congestion and building a fog layer between edge nodes and
clouds to make distributed computing (servers) and provide storage closer to edge nodes.
Experiments show that the total latency or response time of the YOLO-based fog–cloud
platform is lower than that of the pure cloud platform.

Pham et al. [51] proposed a target detection framework based on YOLO to detect and
track a large number of highly mobile vehicles, which is also considered as the region
of interest (ROI) in vehicle optical camera communication (OCC) systems. The author
tested the method on a rainy night on a Korean highway to analyze the effectiveness of this
method in the vehicle OCC system. Humberto et al. [52] proposed a real-time statistical
algorithm framework for YOLO vehicle classification based on edge AI. Experiments show
that the algorithm is helpful to provide timely traffic information.

Song et al. [53] aimed to use real-time traffic data collected by traffic surveillance video
and image recognition to explore the relationship between the spatio-temporal pattern of
vehicle types and numbers in different urban functional areas and the emission of traffic-
related air pollutants. Video-based YOLO detection technology is used to analyze the data,
and air pollution is quantified by pollutant emission coefficient.

Sreekumar et al. [54] proposed a deep learning model based on YOLOv2, and applied
the model to traffic detection scenarios. In order to reduce the network burden and eliminate
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the deployment of the backbone of the network at the intersection, it is recommended that
the traffic video data be processed at the edge of the network without transmitting big data
back to the cloud. In order to improve the frame rate of edge processing, this paper further
proposed a depth object tracking algorithm based on an adaptive multimodal model which
is robust to object occlusion and changing lighting conditions.

Huang et al. [55] aimed to develop an efficient system that can meet the needs of video
analysis based on dynamic content and expand to large-scale traffic camera video data. The
proposed system used a YOLO-based deep learning method to identify objects in video
data. This information was then processed and analyzed by the analysis layer implemented
using Spark and Hive. Compared with the traditional method, the accuracy of this system
can reach more than 80%.

3.2.2. RNN

There is a correlation between the data when the data has sequence characteristics
and the accurate feature representation cannot be obtained by analyzing and extracting
features from a single data. In order to solve this problem, the RNN was proposed by
Pineda et al. [56]. When an RNN is faced with time series data, according to its special
network structure, the information of the previous time can be mapped non-linearly to the
next time, and the dependency relationship in the data is maintained, which gives RNN
the ability to remember and process the previous data information so that it can extract
features from the sequence data. For RNN, its weight parameters are shared during a
training process.

After follow-up practice, it is found that it is difficult for RNN to deal with long-term
and long-distance dependence problems, which often lead to RNN gradient disappearance
or gradient explosion [57]. The long-term short-term memory (LSTM) model proposed
by Hochreiter et al. [58] can deal with the above problems well. The structure of LSTM is
relatively complex, and its memory unit includes three kinds of gating units: the forgetting
gate, the input gate and the output gate. The forgetting gate can filter the historical data
and discard the information that feels useless in the historical information, the input
gate can control the storage of part of the current data into the memory unit and part of
the stored information in the output control memory unit is output at the current time.
Because of the above features, LSTM can better store useful information and plays an
important role in solving the problems of long-term and long-distance dependence. As a
further study of LSTM, gated cyclic unit neural networks (GRUs) couple the input gate
and the forgetting gate into a gated unit, which means the reduction of parameters and the
reduction of computational complexity. Therefore, compared with LSTM, GRU has better
training efficiency.

Adita et al. [59] designed a sequence-to-sequence deep learning model called DeepChan-
nel that is based on a codec. It can predict the change of wireless signal strength in the future
according to the past signal strength data. This article considers two different versions of
DeepChannel; the first and second versions use LSTM and GRU as their basic unit structures,
respectively. Different from the previous work of designing models for specific network
settings, DeepChannel has strong adaptability and can predict future channel conditions for
different networks, sampling rates, mobility modes and communication standards.

Yang et al. [60] proposed a unified driver behavior modeling system for multi-scale
behavior recognition. The driver behavior recognition system aims to identify the physical
and mental state of the driver simultaneously based on the deep encoder–decoder frame-
work. The model learns to recognize three different time scales of driver behavior: mirror
examination and facial expression state, as well as two psychological behaviors, including
intention and emotion. The encoder module is based on CNN and is used to capture spatial
information from the input video stream. Then, several decoders for different driver state
estimations are proposed using RNN based on full connection (FC) and LSTM. The model
framework is shown in Figure 5.
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4. Video Application Based on Deep Reinforcement Learning Algorithm

Deep reinforcement learning is a combination of deep learning and reinforcement
learning. With deep learning [26], through a gradual, layer-by-layer process, low-level data
input is transformed into high-level abstract feature representations through nonlinear
transformations, and deep learning pays more attention to the perception and expression of
environmental feedback datasets. Reinforcement learning [61] obtains the optimal strategy
to maximize the cumulative reward through the interaction between the agent and the envi-
ronment. It focuses more on the strategies to deal with the problems through autonomous
feedback learning. Deep reinforcement learning converts high-dimensional datasets of en-
vironmental feedback into abstract state features with the help of deep learning. Then, the
optimal strategy is obtained with the help of reinforcement learning autonomous learning,
which is used to solve the strategy problem in a complex environment.

In the video application environment over CVIS, the complexity of the environment
is influenced by traffic flow, the speed of the vehicle, wireless channel resources, signal
strength and so on. The environmental state space is often high-dimensional, and traditional
reinforcement learning algorithms have difficulty dealing with high-dimensional state space
and continuous action space. With the performance of deep learning in high-dimensional
data input processing, the above problems can be easily solved. Therefore, deep reinforce-
ment learning has gradually become the most-covered direction of researchers in the field
of video transmission under CVIS. According to the solution strategies based on different
methods and numbers of agents, they are divided into the following three categories:

1. Deep reinforcement learning algorithm based on value function: the algorithm mainly
evaluates the Q-value generated by all actions, selects the action according to the
Q-value and obtains the optimal strategy indirectly through the value function;

2. Policy gradient algorithm: the algorithm parameterizes the strategy, uses the weight
parameters of the depth neural network to represent the strategy, optimizes the
strategy through the gradient method and constantly modifies the parameters and
gradually obtains the optimal strategy. The policy gradient algorithm is an algorithm
to solve the optimal policy directly;

3. Multi-agent deep reinforcement learning: multiple agents choose the corresponding
actions according to the current environment, establish different reward functions
according to the relationship between agents and solve the optimal strategy.
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Through the above three ways, this paper divided and classified the video application
algorithms over CVIS based on deep reinforcement learning, and its characteristics and
advantages were summarized.

4.1. Deep Reinforcement Learning Algorithm Based on Value Function

After the Deep Q-Network (DQN) was first proposed by Mnih et al. [62] in 2013, deep
reinforcement learning has attracted increased attention. With the deepening of video trans-
mission research over CVIS, DQN is widely used to solve video business-related problems.

Because of the large dimension of state space, the Q-value of traditional reinforcement
learning is difficult to predict. The deep neural network can extract eigenvalues through
multiple network layers to reduce the dimension, so DQN approximately represents the
Q-value function through the deep convolutional network (DNN). The evaluated Q-value
function may be unstable and deviated. The target network and the experience playback
mechanism proposed by Mnih et al. [63] solve this issue.

In order to improve the revenue of RSU operators, Ahmed et al. [64] proposed a
scenario in which vehicles covered by an RSU cache off-the-shelf content (video streams,
etc.) to the RSU, and the RSU then provides services for newly arrived vehicles, which
is defined as an MDP. The author defined the environmental state as the vehicle location
information, the request content and the available content information, defined the action as
whether or not to distribute the content and defined the reward as the available income. The
DQN algorithm is used to solve the MDP problem; the structure of the DQN algorithm is
shown in Figure 6. First, observe the state space: DNN extracts the abstract representation
through the state space, RSU selects the action to execute and the environment gives
feedback (the vehicle delivery cost). The DQN model proposed by the author is superior to
other methods in terms of total income, cost and service rate.
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Atallah et al. [65] solve the security and QOS problems of green, balanced, linked and
efficient vehicle networks. Using the DQN model, the completion request rate is increased
by 10–25%, the average request delay is reduced by 10–15% and the total network life is
increased by 5–65%.

Nassar et al. [66] developed a network slicing model based on the fog node (FN) cluster
coordinated with the edge controller (EC) to solve the resource allocation problem. The
author described the problem as an MDP, and the state space is defined as the resource block
information, the action is defined as whether the edge controller sends the resource block to
the corresponding FN cluster for processing and the reward is defined as the key performance
indicator (KPI). Through DQN, self-adaptive learning is the best slicing strategy to maximize
KPI, so as to achieve efficient resource allocation.

Pan et al. [67] proposed an asynchronous federated DQN-based and URLLC-aware
computation offloading algorithm (ASTEROID) to maximize throughput under long-term
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URLLC constraints. In this paper, a URLLC constraint model, based on extreme value theory,
is established. Secondly, Lyapunov is used to optimize the decomposition of task unloading
and computing resource allocation. Finally, an asynchronous federated DQN (AF-DQN)
algorithm is proposed to solve the problem of vehicle-side task unloading. Its state space is
defined as the backlog of information in actual and virtual queues, the action is defined as
whether the task is unloaded and the reward is defined as the throughput. Simulation results
show that ASTEROID achieves excellent throughput and URLLC performance.

Sun et al. [68] proposed a novel slicing framework and optimization solution based
on dynamic reinforcement learning for efficient resource allocation in virtual networks
with D2D-based V2V communication. The goal is to balance resource utilization and
QOS satisfaction across multiple slices. The problem is described as an MDP whose
state space is defined as the QOS satisfaction, resource utilization and the number of
resource blocks occupied by each slice; the action is defined as the proportion of resources
allocated to the slice and the reward is defined as the composition of resource utilization
and QOS satisfaction. The optimal strategy is obtained by using the DQN model, and the
performance results of the resource utilization, QOS satisfaction and throughput are given.

Tan et al. [69] studied joint communication, caching and computing design issues to
achieve excellent operation and cost efficiency for in-vehicle networks. Because of the high
complexity of CVIS, the author used the multi-time scale framework [70] to develop deep
reinforcement learning to reduce the complexity. The multi-time scale framework consists
of two models. The model for each cycle is called the large time scale DQN model, and the
model for selecting the action decision for each time slot is called the small time scale DQN
model. Numerical results are given to prove its performance gain.

To maximize the long-term sum ratio of all vehicles, Wang et al. [71] proposed a hybrid
architecture which consists of centralized decision making and distributed resource sharing
(C-Decision scheme). Each vehicle uses a deep neural network to compress its observed
information, and then feeds it back to the central decision-making unit. The centralized
decision-making unit uses DQN to allocate resources, and then sends the decision results
to all vehicles. In order to promote distributed resource sharing, the author proposed a
distributed decision and spectrum sharing architecture (D-Decision scheme) for each V2V
link. Simulation results show that the proposed C-Decision and D-Decision schemes can
achieve near-optimal performance and are robust to feedback interval variation, input
noise and feedback noise.

Zhang et al. [72] studied the federated optimization of transmission mode selection
and resource allocation for cellular V2X communication. The problem is expressed as an
MDP whose state space is defined as the receiving interference power, the resource block
neighbor information of the previous subframe, the channel gain, the current load and
the remaining time to meet the delay threshold; the actions are defined as the resource
block allocation, communication mode selection and transmission power level; the rewards
are defined as the sum of the total capacity benefits, the unmet capacity penalties and the
effects of reliability and delay requirements. A decentralized algorithm based on DQN is
proposed to maximize the total capacity of vehicles to infrastructure users and to meet the
delay and reliability requirements of V2V communication.

Hasselt et al. [73] proposed a deep double Q-network on the premise of an in-depth
study of the double Q-learning algorithm. The traditional DQN may overestimate the
Q-value, but DDQN reduced the overestimation by improving the training algorithm,
so as to obtain a more accurate Q-value and optimize the performance of the model.
Wang et al. [74] proposed a competitive network structure as a network model of DQN;
its structure is shown in Figure 7. The competitive network structure divided the abstract
features extracted by DNN into two places, in which the state value function represents
the value of the environment itself, and its value does not change according to the action
choice, while the action dominance function represents the additional reward value after
the execution of the selected action. When the two are combined, the Q-value is generated
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for each action. The duel DQN improves the prediction accuracy of the value function by
improving the structure of the model.
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In order to improve the performance of vehicle network, He et al. [75] proposed an
integrated framework which can realize the dynamic allocation of network, cache and
computing resources. The resource allocation strategy of the framework is described as
a joint optimization problem. Because the state space is very complex, the traditional
DQN algorithm has difficulty effectively approximating the Q-value function to obtain the
optimal strategy. The author combined the deep double Q-network (DDQN) and the duel
DQN algorithm to find the optimal strategy to solve the above problems. The effectiveness
of the proposed scheme is proved by the simulation results of different system parameters.

Malektaji et al. [76] considered an edge content delivery network with vehicle nodes,
and proposed using the DDQN model to solve the problem of content migration. The DQN
model defined the state space as the priority information of the content and the delivery
status of the content, the actions are defined as migrating, caching and deleting content
and the reward is defined as the access delay. This model reduces content access latency by
70% compared with traditional policies.

Aiming to minimize the user cost, Nan et al. [77] studied the user-centered content
delivery problem with service delay constraints in vehicle networking. The optimal content
delivery strategy problem is modeled as an MDP which defines the state space as service
time, vehicle location information, content cache status and signal strength; the action is
defined as whether the vehicle obtains content delivery from the RSU or cloud and the cost
is defined as the cost paid by the vehicle for content. The DDQN algorithm is proposed to
solve the above problems, and can achieve the best performance while minimizing the cost.

4.2. Policy Gradient Algorithm

The complexity of the DQN seeks out the optimal policy by estimating that the Q-value
indirectly increases exponentially when the dimension of continuous or discrete action
space is large, so some researchers have focused on solving the optimal strategy directly.
The stochastic policy gradient algorithm was proposed in 1999, which parameterizes
the policy and updates the policy parameters by calculating the policy gradient. The
deterministic policy gradient (DPG) algorithm, on the basis of a random policy gradient,
was proposed in 2014. However, because all kinds of policy gradient algorithms need a
large number of datasets to provide training—otherwise they will fall into the local optimal
situation—the problem can be well solved by the combination of an AC algorithm and a
policy gradient. The AC algorithm framework is shown in Figure 8. The AC algorithm
is based on the idea of time difference (TD). The policy network is an actor who selects
the action according to the environment state. The value function network is a critic who
evaluates the action through the value function and generates the time difference error
signal to update the improved policy network and the value function network.
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Lillicrap et al. [78] combined a deep neural network with DPG for the first time in
2016, and proposed a deep deterministic policy gradient (DDPG) algorithm based on an
AC framework, which makes up for the deficiency that DRL is unable to find the optimal
strategy when it comes to continuous action spaces.

To minimize the content delivery latency, Dai et al. [79] designed an optimized vehicle
edge caching and content delivery strategy using DRL. Edge caching and content delivery
problems are described as MDPs; the state space is defined as an adjacent vehicle set, link
transmission rate, cached content information and vehicle driving direction; the actions
are defined as whether content is cached, the request content ratio and the bandwidth
allocation; and the reward is defined as the content delivery delay. The DDPG algorithm is
proposed to solve the above problems. Compared with the two benchmark solutions, the
numerical results show the effectiveness of the proposed DDPG-based algorithm.

Fang et al. [80] aimed to maximize video quality while reducing delay and rate
switching in traffic fog computing (VFC) systems by jointly optimizing vehicle scheduling,
rate selection, computing and spectrum resource allocation. Considering the dynamic
characteristics of the vehicle network and the available computing/spectrum resources, the
problem is modeled as an MDP. Due to the action space of an MDP being a mixture of multi-
dimensional continuous variables and discrete variables, this study uses a soft-ACDRL
algorithm to solve the MDP problem, and its algorithm structure is shown in Figure 9.
Lyu et al. [81] proposed a dual-scale DRL framework based on a soft-ACDRL algorithm
to solve the problem of joint communication, computing and cache resource allocation,
reducing costs and improving user satisfaction as a result.

The asynchronous advantage ACDRL algorithm (A3C) was proposed by Mnih [82].
Because of its multi-core CPU and multi-threading technology, the A3C algorithm makes
multiple agents collect experience samples at the same time, and the correlation between
samples is very low. It adopts the training mode of on-policy, and replaces the experience
playback mechanism in the ACDRL algorithm by multi-line parallel and asynchronous
updating parameters. The researchers have proved that the iterative speed of the algorithm
is obviously better than that of the ACDRL algorithm. Jiang et al. [83] proposed a video
analysis framework that integrates multi-access edge computing and blockchain technology
into IoAV to maximize the throughput of blockchain systems and reduce the latency of
MEC systems. The joint optimization problem is modeled as a Markov decision process
(MDP) and is solved by the A3C algorithm based on DRL. Khan et al. [84] studied the
correlation between vehicles and RSUs in millimeter wave (mmWave) communication
networks. Their aim was to maximize the data transmission rate per vehicle user (VUE)
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while ensuring that all VUE rates were not lower than the minimum rate and had a low
signaling overhead. The association problem is expressed as an MDP, and a low-complexity
algorithm based on A3CDRL, which is similar to the solution of the proposed optimization
problem, is proposed.
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As researching the DDPG algorithm is becoming an increasingly popular task, a large
number of researchers have applied this algorithm to the field of video transmission over
CVIS. This paper summarizes the research methods based on DDPG in Table 1.

4.3. Multi-Agent Deep Reinforcement Learning

The DDPG algorithm becomes helpless when faced with more than one agent.
Tampuu et al. [85] proposed a DRL model of cooperation and competition among multi-
agents, in which each agent is trained by independent DQN algorithm, and rewards are
designed according to the goal of each agent. According to the different return functions
designed, multi-agent deep reinforcement learning can be divided into three ways: com-
plete cooperation, complete competition and mutual cooperation and competition. When
the environment of video transmission over CVIS is so complex that a single agent cannot
solve the problems, multi-agent DRL enters the attention of researchers.

Zhu et al. [86] proposed a computing offload scheme, based on multi-agent DRL, which
minimizes the total task processing delay in the long run. In order to evaluate the performance
of the proposed unloading scheme, a large number of simulations were carried out. Simulation
results verify the effectiveness and superiority of the proposed scheme.

Amine et al. [87] studied the problem of service migration in MEC-enabled vehi-
cle networks to minimize the total service delay and migration costs. In order to ob-
tain an effective solution, it is modeled as a multi-agent MDP and solved by the deep
Q-learning (DQL) algorithm. Simulation results show that the proposed scheme achieves
near-optimal performance.



Appl. Sci. 2022, 12, 6283 16 of 23

Table 1. Video application methods over CVIS based on DDPG.

Author State Action Reward Research Content

Chen [88]

Unload target, computing
resource information, available
bandwidth and vehicle location

information.

Whether to uninstall
target and computing

resources and available
bandwidth allocation.

Task completion utility.

Intelligent allocation of
edge computing

resources and
channel resources.

Dai [89]

Communication rate, energy
consumption, driving direction,

content delivery delay and
storage capacity.

Match cache pair. System utility.

Implement
blockchain-enabling

content cache security
and privacy protection.

Kwon [90]
Preloaded video size, cache
occupancy, average video

quality and location information.

Power allocation and
cache allocation.

Quality change, packet
loss and video
interruption.

Millimeter wave-based
station power control

and active buffer
allocation method.

Lan [91] Computing and
caching capabilities.

Calculate the uninstall
and service

caching policy.

Task processing delay
and energy

consumption.

Optimization of joint
computing offload and

service cache.

Yun [92]

Location information,
transmission queue status,

receiving area status, number of
blocks and average quality.

Whether to unload,
unload quantity and

block quality.

Quality enhancement,
avoiding packet loss

and video freeze.

Video streaming
transmission scheme

for mobile-aware
vehicle network.

Zhang [93]
Video data transmission status,
local view set status and vehicle

association status with RSU.

A combination of the
view set and

memory allocation.

Download cost, data
loss and video

freeze cost.

Active caching of
multi-view 3D video in

5G network.

Kumar et al. [94] used deep learning technology to predict the movement pattern of
vehicles. An architecture composed of a centralized decision-making unit and distributed
channel allocation is proposed to maximize the spectrum efficiency of all related vehicles.
In order to achieve the above goals, the authors used DQN and A2C technology and further
integrated LSTM [58] into DQN and A2C technology. The performance of the proposed
scheme is verified by simulation.

In order to solve the problem of the abnormal growth of computational complexity
and the explosive growth of state space and action space in multitasking and multi-agent
(MTMA) environments, Xu et al. [95] used a value decomposition mechanism (VDM) to
decompose complex value functions into several small blocks, and then calculated each sub-
function separately. The proposed paradigm can greatly accelerate the learning speed and
help significantly in a smaller state and action space, but will not degrade the performance.
Simulation results showed the effectiveness of the proposed mechanism.

5. Datasets and Model Performance Evaluation Metrics

Most video datasets are collected through realistic means. Generally speaking, the
dataset is divided into a training set, a validation set and a test set. Specifically, in the train-
ing phase, the model parameters are trained and tuned using the training and validation
sets, while the test set is used in the final testing phase. The performance evaluation metrics
can more intuitively observe the advantages and disadvantages of the model. According to
different optimization standards, it was divided into three types of performance evaluation
indicators and listed the performance advantages of some distinct methods in video appli-
cations over CVIS based on deep learning. In this section, we summarize existing datasets
and performance evaluation metrics for video applications.

5.1. Datasets

The full name of NGSIM is Next Generation Simulation, which is a data collection project
initiated by the Federal Highway Administration that includes data on construction, vehicle
trajectory prediction, driver intent recognition, automatic driving decision planning, etc. By
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applying image processing algorithms to recorded traffic flow videos, Jeon et al. [38] construct
a trajectory database of 18 variables related to vehicle state, and test the performance of its
proposed deep learning architecture for predicting future traffic scenarios.

The COCO dataset contains 80 different object categories, and this dataset is used
mainly for object detection, segmentation, etc. Seal et al. [50] used 2 CNN architectures
to classify data: YOLOv3.11 (for 11 classes related to traffic congestion) for traffic object
recognition; and YOLOv3.6 (for 6 classes related to traffic events).

Jeong et al. [43] tested its intrusion detection methods on its own carefully created
automotive Ethernet intrusion dataset. The dataset was recorded in the format of a PCAP
file so that it can be viewed using popular programming libraries and packet analyzers.

Shobha et al. [40] tested the performance of the proposed deep learning-assisted ETAN
segmentation on the MIO-TCD dataset. The MIO-TCD dataset is a standard benchmark
dataset for vehicle localization and identification. The dataset has about 500,000 images of
vehicles taken from US roads at different times of the day. From this dataset, we selected
100 images to test the performance of the proposed work.

Ma et al. [41] used VOC2007, VOC2012 and videos captured in real driving scenarios,
which contain 16,551 vehicles, buses, pedestrians, motorcycles and bicycles, to train the model.

5.2. Average Delay

The average delay can effectively reflect whether the video stream can be transmitted
successfully in a limited time. The average delay includes mainly the average transmission
delay, the average queuing delay, the average processing delay and the average propa-
gation delay. When the video file is large, the article will consider primarily the average
transmission delay and the average propagation delay. When the number of files is large,
the article will consider the average queuing delay and the average propagation delay. The
total latency or response time of the deep learning-based fog cloud computing framework
proposed by Seal et al. [50] is reduced by 79.7% compared to cloud platforms. Compared
with the greedy power conservation algorithm [96] (GPC) and the greedy priority departure
algorithm (GPDV), the DQN-based scheduling algorithm proposed by Atallah et al. [65]
reduces the average delay by 10.2% and 21.1%, respectively.

Lan et al. [91] compared the average processing latency of all schemes. In the DDPG and
offload-only schemes, as the computing power of the fog server increased, the delay caused
by task processing decreased. Our proposed scheme reduces latency by approximately 18.8%
compared to the offload-only scheme. This is because the offload-only processing model does
not take into account the impact of service caching on network performance.

5.3. QOE

QOE reflects the gap between the actual situation and user expectations. Compared
with the unicast-based routing algorithm, the cache hit ratio (CHR) of the DBN-based
IRA proposed by Zhang et al. [27] increases by 19%. Compared with the traditional
AC algorithm [61] (TACA), the standard policy gradient-based resource allocation algo-
rithm (SPGRA) and the non-learning scheme [97], the soft-ACDRL algorithm proposed by
Fang et al. [80] converges faster, and the performance improvement related to video quality
is close to 15.2%, 16.5% and 32.5%, respectively.

5.4. Accuracy, Recall, Precision and F-Measure

Accuracy, recall, precision and F-measure are indispensable parts of evaluations of
target detection models, vehicle division models and so on. First, we defined the binary
prediction categories as follows:

1. True Positive (TP): the positive result is predicted to be positive;
2. True Negative (TN): the negative result is predicted to be negative;
3. False Positive (FP): the negative result is predicted to be positive;
4. False Negative (FN): the negative result is predicted to be negative.
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The corresponding operation formula is given as follows:

ACC =
TP + TN

total
(1)

REC =
TP

TP + FN
(2)

PEC =
TP

TP + FP
(3)

F =

(
α2 + 1

)
PEC · REC

α2(PEC + REC)
(4)

where α is the adjustable parameter.
Accuracy is the most common performance evaluation metric; it can describe the

quality of the prediction model. Recall and precision usually need to be considered com-
prehensively, so a comprehensive evaluation metric F-measure is proposed which is the
weighted sum average of the recall and precision, and its value is proportional to the perfor-
mance of the model. In this paper, the performance and characteristics of the representative
methods based on deep learning over CVIS are summarized in Table 2.

Table 2. Performance evaluation and characteristics of representative methods based on deep learning.
Let ‘-’ indicate that the data was not available.

Author Accuracy Recall Precision F-Measure Method

Chen [36] 0.8 - - - DL.
Kumar [37] 0.98 - - 0.87 R-CNN

Priyadharshini [47] 0.964 - - - R-CNN
Huang [55] 0.8 - - - YOLO

Jeon [38] 0.9 - - - CNN and LSTM
Akilan [39] - - - 0.95 MvRF-CNN

Ma [41] - - 0.7364 - CNN
Jeong [43] - 0.9949 - 0.9704 CNN
Seal [50] - - 0.515 - YOLOv3

Kamran [48] - - 0.6279 - R-CNN
Sreekumar [54] - - 0.71 - YOLOv2
Humberto [52] - - 0.579 - YOLOv3

6. Discussion

Up to now, there is little research on solving traditional problems based on deep
learning, and the field of video application over CVIS is still in its infancy. Compared
with the traditional methods, the video application method based on deep learning has
lower average delay, higher QOE and more accurate detection and is more robust to the
complex CVIS environment. Therefore, the use of deep learning algorithms to solve video
business problems over CVIS is worthy of extensive research. The development trend of
this research in the future is discussed as follows:

1. In order to restore the real environment and reflect more real data characteristics when
building a model based on deep learning, it is a problem worthy of in-depth study to
integrate the traffic characteristics such as the high-speed mobility of vehicles and the
short life of channel links;

2. Due to the access environment of workshop communication being open, it will face
the risk of malicious attacks in the CVIS environment [98,99]. Therefore, the security
of vehicle communication needs to be paid enough attention, and it is necessary
to design algorithms based on deep learning to solve network security problems
and avoid video content transmission errors, identity authentication failures and
network intrusion;
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3. When facing large-scale traffic datasets, the model based on deep learning is slightly
insufficient in terms of training speed and precision, so how to improve the training
speed on the premise of ensuring precision is a problem that needs to be paid attention,
so as to improve the training efficiency of the deep learning model;

4. Because of the single training environment, the deep learning algorithm has poor
model transfer in the complex and changeable CVIS environment. Therefore, im-
proving the generalization ability of the deep learning model is also the direction of
optimizing the deep learning algorithm.

To sum up, firstly, we summarized the current video application methods based on
deep learning over CVIS, and then described and analyzed the shortcomings and related
problems in the existing research; finally, we discussed the possible development trends of
this research in the future. From the simulation results of most studies at present, the deep
learning algorithm performs very well compared with the traditional algorithm, which still
has the potential for optimization. Therefore, it can be predicted that solving traditional
problems through deep learning algorithms will become the mainstream trend in video
applications over CVIS.
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