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Abstract: Methods to learn informative representations of road networks constitute an important
prerequisite to solve multiple traffic analysis tasks with data-driven models. Most existing studies
are only developed from a topology structure or traffic attribute perspective, and the resulting
representations are biased and cannot fully capture the complex traffic flow patterns that are attributed
to human mobility in road networks. Moreover, real-world road networks usually contain millions of
segments, which poses a great challenge regarding the memory usage and computational efficiency of
existing methods. Consequently, we proposed a novel multiview representation learning framework
for large-scale urban road networks to simultaneously preserve topological and human mobility
information. First, the road network was modeled as a multigraph, and a multiview random walk
method was developed to capture the structure function of the road network from a topology-aware
graph and vehicle transfer pattern from a mobility-aware graph. In this process, a large-scale road
network organization method was established to improve the random walk algorithm efficiency.
Finally, word2vec was applied to learn representations based on sequences that were generated by
the multiview random walk. In the experiment, two real-world datasets were used to demonstrate
the superior performance of our framework through a comparative analysis.

Keywords: road network; representation learning; human mobility; intelligent transportation systems

1. Introduction

As the most basic computing unit of traffic analysis in intelligent transportation
systems (ITSs) [1], urban road networks comprising various road segments play a vital role
in multiple analysis tasks, such as traffic flow prediction [2] and travel time estimation [3].
In industry, a high-quality road network is also indispensable for location-based service
(LBS) provision. For example, digital maps (e.g., Google Maps and Baidu Maps) utilize road
networks to support navigation or recommendation [4]. However, it is a challenging issue
to embed a road network, which is represented as a complex graph structure, into common
data-driven methods, such as support vector machines and artificial neural networks [5].
Hence, learning low-dimensional vector representations of road segments is critical for
data-driven traffic analysis.

An urban road network is a complex traffic system that reflects the connections among
various regions from different perspectives, including topological structures and human
mobility patterns. Compared to general graph structure data, the road network scale is
significantly larger. For example, the number of road segments reaches tens of millions in
some large cities. The above properties suggest that informative representations of road
networks should be both topology and mobility aware. In addition, the representation
method should be adapted to the calculation of large-scale data.

Topology awareness indicates that the latent space of representation should preserve
the topological neighborhood of road segments [6]. Specifically, if two road segments are
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topologically close, then their representation vectors are also close in latent space. This
property is a special case of Tobler’s first law of geography [7] in topological space. In the
real world, if two road segments are topologically adjacent, their geographic and physical
configurations (e.g., road class, speed limit, and land use type) should be similar. Hence,
in the latent space of topology-aware representations, most road segments are usually
connected, but those that are topologically adjacent are more notably connected than those
that are further away in the topological structure of the road network. As illustrated in
Figure 1a, road segments Á, Â, Ã and Ä are the topological neighborhoods of road segment
À, so their connections are stronger in latent space (Figure 1b).
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Mobility awareness indicates that the latent space of representations should preserve
the human mobility pattern within the urban road network [8]. This perspective is mo-
tivated by the way a person sequentially visits locations through several road segments
with distinctive purposes, and we analyzed the underlying connections within its context,
defined as the set of road segments along a trajectory [9]. As shown in Figure 1a, if most
vehicles travel from road segments À to É via path {À→Ä→Å→Ç→É}, the traffic configu-
ration (e.g., speed, volume, and congestion) in each road segment along this path is similar.
This similarity usually decays along the path direction (Figure 1b). This property can be
likened to Tobler’s first law of geography regarding human mobility patterns. Compared
to topology-aware representations, mobility-aware representations are more complex and
informative but are often overlooked in existing research [2].

Due to the scale of real-world urban road networks, even if topology and mobility
awareness aspects can be coupled via a sound objective, objective optimization for very
large networks remains challenging [10]. This challenge is mainly reflected in two aspects.
One aspect entails the improvement in both the inference effectiveness and efficiency,
and the other aspect considers how to efficiently organize, index and compute large-
scale networks in the process of embedding. The former aspect has been previously
studied [10,11], but the latter aspect is yet to be resolved.

In this paper, we implement a novel multiview representation learning framework
for large-scale urban road networks that simultaneously preserves topological and human
mobility information. First, we design a large-scale road network organization method
considering the random walk process. This method includes optimal partitioning, sub-
graph repair and walk index determination. Then, two matrices and two random walk
mechanisms from two perspectives, i.e., topology and mobility awareness, are constructed
for sequence generation. Based on the above approach, word2vec [12] is utilized to generate
final vector representations of all road segments in latent space.
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The contributions of this research are as follows:

• We propose a new random walk method to capture the structure function of the
road network from a topology-aware graph and the vehicle transfer pattern from a
mobility-aware graph.

• We design a new road network data-organization algorithm, including optimal seg-
mentation, subgraph repair, and walk index calculation to optimize our representation
framework for lossless random walks in large-scale road networks.

• We conduct extensive experiments involving two real-world urban road networks. The
experimental results of the estimated time of arrival (ETA) task verify the effectiveness
and efficiency of the proposed framework.

The remainder of this paper is organized as follows: Section 2 summarizes related
works. Section 3 introduces the details of our proposed multiview representation learning
framework. Section 4 presents the experimental results for two real-world urban road
networks. Section 5 provides an attribution analysis of the experimental results. Finally, we
conclude our work in Section 6.

2. Related Works and Motivations
2.1. Related Works

Most existing studies of road network representation can be divided into two cate-
gories. One category involves topological information encoding via classical general-network
representation learning methods. The other category includes encoding various geospatial
properties and transportation elements of road segments through various methods.

Recently, with the rapid development of deep learning [13], neural network-based
representation learning methods [6,10,11,14] have achieved great success in natural lan-
guage processing (NLP) [15], computer vision (CV) [16], etc. These works assumed that
nearby nodes in a network tend to yield close representation vectors in latent space. Thus,
the nodes are typically utilized to learn topological information of road networks. Deep-
Walk [14] first introduced the word2vec [12] framework based on NLP to generate network
representations by sampling nodes via a random walk procedure. To capture the diver-
sity of connectivity patterns that are observed in networks, Node2vec [6] follows the
general framework of DeepWalk but embeds a parameterized random walk, which con-
trols the node-sampling process based on the breadth-first search (BFS) and depth-first
search (DFS) strategies. Considering the weakness of random walk-based methods for
learning multiscale network information, LINE [10] samples nodes according to multiple
connectivity considerations, rather than via the random walk method, and optimizes a
carefully designed objective function to capture first- and second-order similarities. These
topology-aware representation methods perform well in general networks, such as social or
citation networks. However, due to the complex traffic dependency and traffic properties of
urban road networks, these methods typically perform poorly in traffic downstream tasks
(e.g., traffic flow prediction and travel time estimation) [2,17]. As shown in Figure 2, the
connections between each topologically adjacent road segment are homogeneous in terms
of topology awareness, but due to the different driving rules under various road properties,
these connections are likely heterogeneous in the real world. For instance, segments À,
Ç, È and Ä are all one-way roads with only one allowable driving direction; thus, the
connection {À-Ç-È-Ä} is unidirectional. Furthermore, due to the passing prohibition in
segment Æ and the inability to turn left in segment È, the underlying relationships {Æ-À},
{Æ-Ç} and {È-Ã} should be disconnected in latent space, even though these segments are
connected in topological space.



Appl. Sci. 2022, 12, 6301 4 of 18
Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 20 

 

 

Figure 2. Example of a real-world road network with complex traffic dependency and traffic prop-

erties. 

To address this issue, researchers have focused on the geospatial properties and 

transportation elements of road segments, rather than on the topological structure. They 

have developed a series of methods [1,5,18–20]. Wang et al. [1,19] noted the shortcomings 

of topology-based methods in characterizing road property information and established 

the IRN2vec and RN2vec models. IRN2vec learns representations using the geographic 

location, intersection tag, and N-way type [19], while RN2vec learns representations using 

the shortest path [1]. Wu et al. [18] focused on multilevel properties (i.e., functional zones, 

structural regions, and road segments) to develop a hierarchical road-network represen-

tation model (HRNR). The experiment indicated that these models significantly outper-

formed topology-based models. Although these works could preserve the inherent prop-

erties of road segments, they still ignored the heterogeneity of connections among road 

segments in latent space. As illustrated in Figure 2, the two road segments of ② and ⑥ 

exhibit the same properties. However, the traffic volume in segment ② is larger than that 

in segment ⑥ due to the school that is located next to segment ②. Therefore, more vehi-

cles are transferred from other segments to segment ② than to segment ⑥, which indi-

cates the underlying heterogeneity of connections in latent space. 

In addition, the scale of most existing representation methods cannot be adapted to 

real-world urban road networks, which usually contain tens of millions of nodes [21]. Alt-

hough LINE developed an edge-sampling algorithm to improve the effectiveness and ef-

ficiency of general network representation [10], this model cannot capture the character-

istics of road networks. 

2.2. Motivations 

Based on the above analysis, none of the representation methods based on a single or 

limited number of properties (e.g., topology and function) can fully preserve the underly-

ing complex connection relationships between road segments in latent space. To resolve 

this issue, we tend to think in terms of implicit modeling rather than explicit modeling. 

Furthermore, it can be observed that human mobility within the road network is the com-

prehensive product of the complex traffic system, which can reflect the various properties 

of road segments. Hence, we provide a new perspective of informative road network rep-

resentation: topology and mobility awareness. Based on this perspective, a novel mul-

tiview representation learning framework for large-scale road networks is proposed. 
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To address this issue, researchers have focused on the geospatial properties and
transportation elements of road segments, rather than on the topological structure. They
have developed a series of methods [1,5,18–20]. Wang et al. [1,19] noted the shortcomings
of topology-based methods in characterizing road property information and established
the IRN2vec and RN2vec models. IRN2vec learns representations using the geographic
location, intersection tag, and N-way type [19], while RN2vec learns representations using
the shortest path [1]. Wu et al. [18] focused on multilevel properties (i.e., functional
zones, structural regions, and road segments) to develop a hierarchical road-network
representation model (HRNR). The experiment indicated that these models significantly
outperformed topology-based models. Although these works could preserve the inherent
properties of road segments, they still ignored the heterogeneity of connections among
road segments in latent space. As illustrated in Figure 2, the two road segments of Á and Å

exhibit the same properties. However, the traffic volume in segment Á is larger than that in
segment Å due to the school that is located next to segment Á. Therefore, more vehicles
are transferred from other segments to segment Á than to segment Å, which indicates the
underlying heterogeneity of connections in latent space.

In addition, the scale of most existing representation methods cannot be adapted to real-
world urban road networks, which usually contain tens of millions of nodes [21]. Although
LINE developed an edge-sampling algorithm to improve the effectiveness and efficiency
of general network representation [10], this model cannot capture the characteristics of
road networks.

2.2. Motivations

Based on the above analysis, none of the representation methods based on a single or
limited number of properties (e.g., topology and function) can fully preserve the underly-
ing complex connection relationships between road segments in latent space. To resolve
this issue, we tend to think in terms of implicit modeling rather than explicit modeling.
Furthermore, it can be observed that human mobility within the road network is the com-
prehensive product of the complex traffic system, which can reflect the various properties
of road segments. Hence, we provide a new perspective of informative road network repre-
sentation: topology and mobility awareness. Based on this perspective, a novel multiview
representation learning framework for large-scale road networks is proposed.
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3. Methodology
3.1. Preliminaries

Considering that the two structures (i.e., topology- and mobility-aware representa-
tions) of the same road network must be formulated simultaneously, we denote a road
network as a multigraph G =

(
V, E =

{
E(P), E(M)

}
, for W =

{
W(P), W(M)

})
, which

comprises a topology-aware graph G(P) =
{

V, E(P), W(P)
}

and mobility-aware graph

G(M) =
{

V, E(M), W(M)
}

. The vertex set V = {vi = [xi, yi], i ∈[1, N]} contains all the
road segments vi in the network, and N is the number of road segments. Note that to
describe the process of data organization and indexing in the following section more
clearly, each road segment vi records its corresponding geographic coordinates [xi, yi].
Multi-edge eij, for i, j ∈ [1, N] denotes the multiview connections (i.e., topological connec-

tion e(P)
ij and mobility connection e(M)

ij ) between road segments vi and vj. Multiweight
set W =

{
w
(
eij
)
, for i, j ∈ [1, N]

}
denotes the multiview weights of the corresponding

multi-edge set E.
As an example, road segments À–É in Figure 1a comprise the vertex set V, while the

purple and orange color blocks in Figure 1b indicate the multiple nodes that are connected
to v1, and the transparency of the arrow colors reflects the corresponding multiple weights.

Given a large-scale road network G = (V, E, W), the problem of representation learn-
ing aims to learn a function ( fG : V → Rd ) that projects each vertex v ∈ V into a low-
dimensional space Rd, where d � |V|. In the space Rd, both the topological and human
mobility information are preserved.

3.2. Large-Scale Road Network Organization

To effectively optimize the calculation efficiency and memory usage of the random
walk algorithm for large-scale urban road networks, we develop a data organization
method that is inspired by the Fast Newman concept [22]. The method comprises three
steps: optimal partition, subgraph repair, and walk index calculation.

Optimal partitioning aims to partition the complete multigraph G into Ns independent
subgraphs, which satisfy V(i) ⊆ V and V(1) ∩ V(2) ∩ . . . ∩ V(Ns) = ∅. To ensure the
quality of the subgraphs, we can define the partition process as an optimization problem
with objective function Q:

{G(1), G(2), . . . , G(Ns)} = argmax Q, (1)

The optimal graph partition result of this task should satisfy the following two properties:

• The complexity of each subgraph G(i) should be approximately uniformly distributed.

• The subgraphs should meet the needs of parallel computing and lossless random walks.
• Hence, we can define the objective function Q as:

Q =
1

2N
CT
[

W − 1
2N

(W1)(W1)T
]

C, (2)

where matrix C =
[
cij
]
∈ RN×Ns denotes the subgraph to which each node belongs.

For instance, if vi ∈ G(j), then cij = 1; otherwise, cij = 0. 1 ∈ RN×Ns is a vector of
all of them. When the objective function is maximized, the partition result is optimal.
Under the optimal partition, the nodes within a single subgraph are the most compact,
and the nodes between multiple subgraphs are the sparsest.

To solve the optimization problem and obtain the optimal subgraph partition result, a
bottom-up step-by-step iterative optimization strategy is adopted here. The specific steps
are as follows:
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1. First, all the nodes are treated as independent subgraphs, representing the results of
first-step partition {G(1), G(2), . . . , G(Ns)}1, and the objective function Q1 is calcu-
lated in the first step.

2. Then, two random subgraphs G(i) and G(j) are merged that satisfy (∃emn = 1,
vm ∈ G(i), vn ∈ G(j)) based on the previous partition result, and the objective func-
tion Qt(i, j) is calculated after the corresponding merge operation in this step.

3. The subgraph set corresponding to the maximization of Qt(i, j) is selected as the
result of this partition step {G(1), G(2), . . . , G(N − 1)}t, and the objective function is
updated to Qt+1 = max

i,j
Qt(i, j).

4. The above two steps are repeated. When the number of partition steps reaches
N, the partition result {G(1), G(2), . . . , G(Ns − k + 1)}k is selected, where k satisfies
k = argmax

k
Qk, k ∈ [0, 1], as the optimal subgraph partition result.

After the optimal partition is obtained, to ensure that the random walk process between
subgraphs can perfectly simulate the information of the complete road network, it is neces-
sary to perform a subgraph repair of the partition results {G(1), G(2), . . . , G(Ns − k + 1)}k.

NG
k (v) is defined as the topological k-order neighborhood set of node v in graph G.

Based on the topology of the complete multigraph G, all nodes in all subgraphs are filtered.
Specifically, if NG

k (vi) 6= NG(j)
k (vi), node set Vpatch(j) = NG

k (vi)− NG(j)
k (vi) is then added

as a patch to subgraph G(j), and a new subgraph Ĝ(j) is formed.
Furthermore, to improve the efficiency of the path query operation in the random

walk process, we coupled the topology and geospatial relationship of nodes to establish
the fast inter- and intrasubgraph indexes. Specifically, for each original subgraph G(i),
we established the intrasubgraph index based on the corresponding submulti-edge E(i).
For each node in the set of patches

{
Vpatch(1), Vpatch(2), . . . , Vpatch(Ns)

}
, we established

the R-tree index [23] based on geospatial coordinates as the intersubgraph index. In the
random walk process, suppose the current node vnow is located in subgraph Ĝ(t). If vnow
satisfies the conditions of vnow ∈ Ĝ(t) and vnow ∈ G(t), then the next node vnext is queried
by the intrasubgraph index. If vnow satisfies the conditions of vnow ∈ Ĝ(t) and vnow /∈ G(t),
then the next node vnext is queried by the intersubgraph index.

Consider the road network G example in Figure 3a as an example. First, we can
partition G into two subgraphs G(1) and G(2) (Figure 3b). Then, we can repair these
subgraphs to form new subgraphs Ĝ(1) and Ĝ(2) via the Vpatch(1) and Vpatch(2) patches
(Figure 3c). Finally, we can establish the intra- and intersubgraph indexes according to the
different nodes (Figure 3d).
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3.3. Multiview Random Walk

To effectively realize more comprehensive and credible representations of urban
road networks, this paper uses Markov and topological matrices to model the vehicle
transfer pattern (mobility awareness) and structure function of the road network (topology
awareness). Based on this approach, a multiview random walk method is proposed.

Regarding the vehicle transfer pattern, we use the vehicle trajectory to model the
mobility edge E(M) in multigraph G and assign the weight W(M) of edge E(M) through
the Markov transition matrix. Therefore, the driving path of the vehicle between the road
segments is first modeled as a Markov chain:

M[(v1 → v2 → . . .→ vi−1)→ vi] = M[vi−1 → vi], (3)

Notably, the road segment that is reached by the vehicle in the next step is only
determined by the road segment that is passed in the previous step. Therefore, there is a
transition probability between these two road segments to potentially control the driving
pattern of the vehicle within the road network. The combination of this probability is a N
by N matrix and becomes the Markov transition matrix M =

[
mij
]
∈ RN×N .

To calculate the Markov transition matrix M from massive vehicle trajectories, γij is
defined as the number of vehicles traveling from segments vi to vj in the vehicle trajectory
data, and the N by N matrix Γ =

[
γij
]
∈ RN×N can be obtained.

Based on the above, the Markov transition matrix M can be calculated with Equation (6)
via the maximum likelihood:

M = diag(Γ1)−1Γ, (4)

Then, we can assign M to the weight matrix of the mobility edge E(M), i.e., W(M) = M.
Graph G(M) =

{
V, E(M), W(M)

}
describes the interaction among the road segments in

multigraph G from the perspective of human mobility.
Regarding the topology structure of the road network, we can construct the adjacency

matrix Θ =
[
θij
]
∈ RN×N via the physical connections in the road network. Specifically,

for eij ∈ E(P), θij =1; otherwise, θij =0. Based on this equation, the topological transition
matrix can be calculated as:

P = diag(Θ1)−1Θ, (5)

Then, we can assign P to the weight matrix of the mobility edge E(P), i.e., W(P) = P.
Graph G(P) =

{
V, E(P), W(P)

}
describes the interaction among the road segments in the

multigraph G from the perspective of the topology.
Furthermore, to learn representations from two views of road network information,

we can define an adjustment matrix W(Π) ∈ RN×N to control the participation of two
matrices (W(M) and W(P)) in the random walk process:

Π = W(P) �W(Π) × η + W(M) � (1−W(Π))× (1− η), (6)

where � denotes the Hadamard product operation and η ∈ [0, 1] is the hyperparameter.
Based on Equation (6), the process of a multiview random walk on multigraph G can be
expressed as follows: giving a start road segment vt1, for all road segments and corre-
sponding probabilities in Π, the alias sampling algorithm [24] is used to randomly sample
the road segment vt2 of the next walk. It can be found that the adjustment matrices W(Π)

and η control the coupling mode and participation ratio of human mobility and topology
information in the random walk process. Specifically, choosing (vt1, vt2) as the current
sequence that is generated by a random walk after step t2 as an example, element wt2,j of
W(Π) can be calculated through the three hyperparameters of p, q, and r:
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wt2,j =


1
q vj = vt1

1
p vj /∈ NG

1 (vt1) and vj ∈ NG
1 (vt2)

1
r vj ∈ NG

1 (vt1) and vj ∈ NG
1 (vt2)

, (7)

In Equation (7), the hyperparameters p, q, and r control the weight of the next walk
between the different nodes (Figure 4a). When the q and r values are large, W(Π) is
more inclined to facilitate convergence of the walk process to depth-first traversal on the
graph (Figure 4b). When the q and r values are small, W(Π) is more inclined to facilitate
convergence of the walk process to breadth-first traversal on the graph (Figure 4c). Inspired
by this finding, we can model the walk process on multigraph G via synthesis of the
following two parts by setting the parameters q and r to appropriate values, i.e., (1) breadth-
first traversal on graph G(P), which extracts topology information of the road network;
(2) depth-first traversal on graph G(M), which extracts human mobility information of the
road network. As shown in Figure 4a,b, the resulting sequence of breadth-first traversal can
capture more global and local structural features of the road network, while the resulting
sequence of depth-first traversal tends to capture path features from origin to destination
under road network constraints.
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Note that since multigraph G is partitioned into many subgraphs {Ĝ(1),Ĝ(2)...,Ĝ(Ns)},
matrix Π is actually stored and calculated in the form of block matrices {Π

[
Ĝ(1)

]
,Π
[
Ĝ(2)

]
...,

Π
[
Ĝ(Ns)

]
}, where Π

[
Ĝ(i)

]
denotes the part of matrix Π that contains nodes in subgraph

Ĝ(i). At each node vi, for i ∈ [1, N], in multigraph G, we choose vi as the start node to
generate R sequences with length L via the above multiview random walk process, where
R and L are hyperparameters. The details of the multiview random walk process are
outlined in Appendix A. After the multiview random walk process, N × R× L sequences
that contain topology and human mobility information are generated.

3.4. Learning Representations

The goal of this section is to learn a function, i.e., fG : V → Rd , to generate informative
road network representations that are both topology and mobility aware. Here, we are
inspired by the idea of word2vec [12] to obtain the project function fG based on random
walk sequences. Specifically, we can define the objective function fO as follows:

fO =
1

N × R× L ∑R
k=1 ∑N

i=1 ∑L
l=1 log ∏l+nei

j=l−nei P
(

fG(seq(i)(k) j)
∣∣∣ fG(seq(i)(k) l)

)
, (8)

Equation (8) indicates the likelihood of a predictor using a node seq(i)(k) l to predict
its neighbors seq(i)(k) j, j ∈ [l − nei, l + nei] in the sequence. nei is the hyperparameter
denoting the size of the neighborhood. We can optimize this neighborhood-preserving
likelihood objective function fO to choose the best fG value via the stochastic gradient
descent (SGD) method with negative sampling [25].

In this way, the learned representations of road networks exhibit the following proper-
ties: À if two road segments are topologically close, then their representation vectors are
close in latent space; Á if two road segments are frequently visited sequentially during
human mobility, then the distance between their representation vectors is also small in
latent space.

4. Experiments with a Real-World Dataset
4.1. Real-World Dataset

Two real-world datasets (i.e., the Shenzhen and Xi’an datasets) are used in this study
to illustrate the effectiveness and superiority of the proposed representation learning frame-
work. Each dataset comprises an urban road network and GPS trajectories. To recognize
the fine-grained traffic information of road networks, we divide roads according to inter-
sections and specific distances to form several small-road segments as the basic research
units of our representation learning process. Thereafter, the ST-matching algorithm [26] is
utilized to match GPS points to the corresponding road segments. Details of the datasets
are provided in Tables 1 and 2, respectively.

Table 1. Statistics of the two road network datasets.

Dataset Number of
Intersections

Number of
Segments Avg. Length Avg. GPS

Points

Shenzhen 44,124 8,651,005 61.33 m 1171.45
Xi’an 299 1607 111.20 m 9987.55

Table 2. Statistics of trajectories of two datasets.

Dataset Number of
GPS Points

Number of
Trajectories

Avg. Travel
Time

Avg.
Segments

Number of
Drivers

Shenzhen 743,830,968 1,048,576 834.14 s 86.98 80,887
Xi’an 16,050,000 527,155 315.61 s 12.35 20,199
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The Shenzhen dataset is a large-scale dataset that comprises over a million road
segments. This dataset is used to demonstrate the effectiveness of the proposed method in
improving the memory usage and computational efficiency. The Xi’an dataset is a small-
scale dataset, and the Shenzhen dataset is used to verify the accuracy advantage of the
proposed method in downstream traffic tasks. The study areas of the two datasets and
their corresponding road networks are shown in Figure 5.
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4.2. Baselines and Downstream Traffic Tasks for Performance Evaluation

According to the categories of related works, we introduce baselines that are retrieved
from general-network representation learning methods and geospatial property-based
representation learning methods, as follows:

DeepWalk [14] embeds road segments in latent space via random walks based on
only the topology structure of the road network.

Node2vec [6] is derived from DeepWalk. Node2vec designs a biased random walk
procedure to capture the diversity of connectivity patterns. In road network representation,
compared to DeepWalk, this method can learn richer topological features.

Road2vec [5] learns road segment representations from transportation elements. This
method converts transportation elements into several NLP terms and utilizes the word2vec
method to generate segment representations. In accuracy verification with traffic forecasting
as the downstream task, this method provides great advantages over traditional methods.

To demonstrate the effectiveness of the proposed method, we choose a downstream
traffic task that is highly dependent on the quality of the input features to assess the
performance of these models with different representation inputs that are generated by
DeepWalk, Node2Vec, Road2Vec and our method. The estimated time of arrival (ETA) as a
basic service in intelligent transportation systems is widely deployed in various ride-hailing
mobile apps [27]. Recently, outstanding ETA models are route-based models achieving high-
precision estimation results by aggregating information of each road segment that is passed
by vehicles [27–30]. Existing works note that the quality of road segment representation
is crucial for accurate ETA estimation [3,4]. Therefore, we select several ETA models (i.e.,
GRU [31], GRU + ANN, DeepTTE [30], and WDR [28]) combined with road network
representations that are retrieved from baseline methods and our framework to verify the
advantage of the proposed representation learning framework.

In a performance evaluation, we use three metrics, i.e., the mean absolute percentage
error (MAPE), root-mean-square error (RMSE), and mean average error (MAE):

MAPE(ŷi, yi) =
100%

NT

NT
∑
i

∣∣∣ ŷi−yi
yi

∣∣∣ (9)

RMSE(ŷi, yi) =

√√√√ 1
NT

NT

∑
i=1

(ŷi − yi)
2 (10)
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MAE(ŷi, yi) =
1

NT

NT

∑
i=1
|ŷi − yi| (11)

where NT is the number of trips for which the ETA is needed, and ŷi and yi denote the
model output and ground truth, respectively.

4.3. Experimental Settings

We implement our framework and all baseline methods on one machine with an
NVIDIA RTX2080Ti GPU with 64 GB of raw memory and 16 CPU cores with the PyTorch
library [32]. The hyperparameters η, d, nei, R, and N are set to 0.5, 12, 5, 10, and 30,
respectively. During the training phase, we use the mini-batch gradient descent approach
to optimize these parameters. Specifically, the learning rate and batch size are set to 0.001
and 341, respectively.

4.4. Efficiency Evaluation of Large-Scale Road Network Organization

Before the performance evaluation of the downstream traffic task, we first illustrate
the efficiency evaluation results of the proposed large-scale road network organization
method in the multiview random walk process. With the use of a large-scale dataset, i.e.,
the Shenzhen dataset, as an example, the memory usage distribution of the subgraphs
is shown in Figure 6a. Compared to the theoretical memory usage of 375 GB without
optimal partitioning, our method significantly reduces the memory burden by optimal
partitioning. Specifically, only approximately 1/60 of the theoretical memory usage is
needed to perform the calculations. In addition, another advantage of our road network
organization is that it is easy to parallelize the multiview random walk process via the
partitioned subgraphs, thereby improving the computational time efficiency. As shown in
Figure 6b, the computation speed exponentially increases with the number of processes.
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4.5. Performance Evaluation in Downstream Traffic Tasks

The goal of road network representation is to embed the road network into data-driven
methods to better solve downstream traffic tasks. Here, we evaluate the performance in
the ETA determination task, which uses road network representations that are retrieved
from different methods. As reported in Table 3, the bolded and underlined numbers
indicate the best performance among all the methods and among the baseline methods,
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respectively. In general, our framework provides significant advantages on the two datasets,
especially the MAPE metric, and our framework leads overall. Considering the error that
is attributed to the different ETA method structures, we select several ETA methods (i.e.,
GRU, GRU + DNN, DeepTTE, and WDR) for evaluation. Although some baseline methods
perform better in rare cases, our framework consistently maintained a high accuracy under
the different ETA methods. This demonstrates that accuracy improvement is a benefit
of our representation learning framework, not of the unique structure of the different
ETA methods.

Table 3. Results of the baseline methods and our framework in the ETA determination task on the
two datasets.

ETA Methods Dataset
DeepWalk Node2Vec Road2Vec Our Framework

MAPE/RMSE/MAE MAPE/RMSE/MAE MAPE/RMSE/MAE MAPE/RMSE/MAE

GRU
Shenzhen 15.26/168.74/112.31 15.58/172.03/106.45 14.70/162.88/115.85 14.59/158.97/113.785

Xi’an 3.53/119.48/102.50 5.36/104.47/90.05 3.20/77.11/68.95 2.76/54.31/43.76

GRU + DNN
Shenzhen 13.93/151.95/106.78 13.89/151.80/110.84 13.71/154.30/108.06 13.66/154.13/106.51

Xi’an 2.69/48.88/44.26 2.05/31.39/27.71 2.39/28.62/22.04 1.87/23.96/19.42

DeepTTE Shenzhen 13.92/159.96/112.31 13.84/152.24/106.45 13.82/155.28/108.0 13.54/152.20/106.34
Xi’an 14.22/154.02/133.50 12.52/88.35/71.43 13.39/91.25/70.96 12.13/86.54/68.03

WDR
Shenzhen 13.53/148.29/104.07 13.49/151.53/105.71 13.50/149.52/104.53 13.46/147.84/103.92

Xi’an 3.67/35.80/26.65 4.16/55.31/46.14 5.10/50.48/37.86 3.51/49.93/38.07

5. Analysis and Discussions
5.1. Information Evaluation of the Representations

The information evaluation comprises two parts. One part aims to verify that the walk
process on the partitioned subgraphs is information lossless, and the other part strives to
verify that the representations produced by our framework can contain more information
than that contained in the representation produced by baseline methods.

Figure 7 shows two frequency distributions of nodes in three subgraphs via two colors.
The two frequency distributions are calculated from random walk sequences based on
the original and partitioned subgraphs. It is evident that the two frequency distributions
in the different subgraphs are almost the same, which suggests that the proposed road
network organization does not affect the information that is expressed by each node in the
multiview random walk process.
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Furthermore, for each representation vector, there are three distances. One distance
is the cosine distance in latent space, the second distance is the topological distance, and
the third distance is the transition probability in human mobility. If the representation is
topology aware, the smaller the topological distance between road segments, the smaller
the cosine distance is between their corresponding vectors. As illustrated in Figure 8a,
although all the methods can preserve topological information, our framework can preserve
a larger amount. In our framework, the rate of change of the cosine distance with respect
to the topological distance of the road segment is the most obvious and the most uniform.
Additionally, if the representation is mobility aware, the lower the transition probability
between road segments, the larger the cosine distance is between their corresponding
vectors. As shown in Figure 8b, DeepWalk and Node2Vec lack the ability to preserve
human mobility information, while our framework and Road2Vec can distinguish different
transition probabilities in human mobility based on the cosine distance. However, when
the transition probability is high (>0.8), the performance of Road2vec is low, and the
trend of the curve abruptly changes within this interval. Based on the above analysis,
compared to the baseline methods, our framework can preserve both topological and
human mobility information.
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5.2. Effect of Topology and Human Mobility Information

To demonstrate the effectiveness of multiview information learning, we adjust hyper-
parameter η in Equation (9) to control the different proportions of topology and human
mobility information in the representation learning process. The ETA errors (MAPEs)
resulting from the different representations under the various η settings are illustrated
in Figure 9. On the Xi’an dataset, there is a clear trend whereby the ETA error gradually
decreases from only topology aware (η = 1) or only mobility aware (η = 0) to topology
and mobility aware (η near 0.5). On the Shenzhen dataset, the minimum error occurs when
the topology and mobility information are equally embedded (η = 0.5). This indicates the
effectiveness of multiview information learning.
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5.3. Hyperparameter Sensitivity

Next, we determine how different settings of the hyperparameters affect the calculation
performance and calculation efficiency of our framework on the Shenzhen dataset in the
ETA determination task. The hyperparameters include the length L and number R of
sequences that are generated from each starting node, the size of neighborhood nei, and
the dimension of representations d in the learning process. The results of the calculation
performance are shown in Figure 10. The mean and standard deviation values of MAPE
under the different hyperparameter settings consistently remain at a very similar level. This
demonstrates that the different settings of the hyperparameters do not affect the accuracy
of solving downstream tasks based on our representation framework.

As for the calculation efficiency of our framework under the different hyperparameter
settings, we adjust the values of hyperparameters R and L to observe the time-consuming
changes during the random walk process. As shown in Figure 11, in most cases, with the
increase in the two hyperparameter values, the calculation time also increases accordingly.
The hyperparameter R also has a greater impact on computation speed than hyperparame-
ter L. However, due to the large-scale road network organization method in our framework,
we can also observe that the increased computing time that is caused by setting larger
parameters can be completely offset by parallel computing. For instance, when we use six
processes for parallel computing, no matter how large R and L are set, the computational
efficiency is higher than the case of non-parallel computing when the values of R and L are
the smallest. Based on the above analysis, our framework can be more easily deployed in
intelligent transportation systems to serve different traffic analysis tasks.
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6. Conclusions

This paper presents a novel multiview representation learning framework for large-
scale urban road networks that simultaneously preserves topological and human mobility
information. Specifically, a road network organization method is proposed in this paper
to effectively optimize the calculation efficiency and memory usage of the random walk
algorithm for large-scale urban road networks. Based on this concept, we develop a
multiview random walk method to capture the structure function of the road network from
a topology-aware graph and vehicle transfer pattern from a mobility-aware graph. Finally,
we utilize word2vec to generate representations of the road network.

In the experiments, two real-world datasets and the ETA determination task are
utilized to evaluate the performance of our framework. The experimental results indicate
the superiority of the proposed framework over baseline methods in three ways. À The
large-scale road network organization in our framework can effectively reduce the memory
usage of the representation learning process and can improve the computational efficiency
in real-world large-scale road network learning. Á The multiview random walk method in
our framework can preserve both topological and human mobility information, but the
baseline methods can only preserve one of them. Â In the downstream traffic task, the
representations that are generated based on our framework achieve the highest accuracy,
compared to the baseline methods, which shows that our framework has great advantages
in terms of accuracy and efficiency in practical application and deployment.

However, there are also some limitations in our framework: À As an important part of
a complex urban system, the road traffic network is inherently affected by the surrounding
geographical environment, and our framework cannot model such geographical scene
characteristics. Á The relationship between road segments is also dynamic and non-
stationarity in the time dimension, which our method cannot handle. Based on this, in
the future, we will continue to enhance the road network representation framework in the
following ways: first, unstructured knowledge in the human perception of road networks
(e.g., this road is the main road connecting two functional areas) should be considered
to enrich the multiview context. Furthermore, road network representations should be
dynamic over time to identify the different characteristics of different road segments at
various times (e.g., morning and evening peaks).
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Appendix A

Algorithm A1: Multiview Random Walk.

Input:
(a) Matrix Π =

{
Π
[
Ĝ(1)

]
, Π
[
Ĝ(2)

]
. . . , Π

[
Ĝ(Ns)

]}
(b) Hyperparameters R and L
(c) Subgraphs

{
Ĝ(1) , Ĝ(2) . . . , Ĝ(Ns)}

(d) Patches
{

Vpatch(1), Vpatch(2), . . . , Vpatch(Ns) }

Output:
(a) N × R random walk sequences [seq(i)(k)], f or k ∈ [1, R] and i ∈ [1, N]

Variables:
i: index of node in G; k: index of the sequence generated by the random walk process based on the
same start node; l: index of the node in one sequence;
t: index of random walk index; v(t): sampled node in step t.

Method:
1. i = 1, k = 1, l = 1, t = 1, seq(i)(k) = ∅//initialization
2. If i < N then
3. Select vi as the start node
4. If k < R then
5. Set I as v(0) and append vi to seq(i)(k)

6. t→0, l→0
7. For l from 1 to L
8. If v(0) /∈

{
Vpatch(1), Vpatch(2), . . . , Vpatch(Ns) } then

9. Sample the next node v(t) based on Π utilizing the intrasubgraph index
10. Append v(t) to sequence seq(i)(k)

11. Else
12. Sample the next node v(t) based on Π utilizing the intersubgraph index
13. Append v(t) to sequence seq(i)(k)

14. End if
15. t→t + 1
16. End for
17. k→k + 1
18. End if
19. i→ i + 1
20. End if
21. Return [seq(i)(k)], k ∈[1, R], i ∈[1, N]
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