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Abstract: Metaheuristic and heuristic methods have many tunable parameters, and choosing their
values can increase their ability to deal with hard optimization problems. Automated approaches for
finding good parameter settings have attracted significant research and development efforts in the
last few years. Because parameter tuning became commonly utilized in industry and research and
there is a significant advancement in this area, a comprehensive review is an important requirement.
Although there is very wide literature about algorithm configuration problems, a detailed survey
analysis has not been conducted yet to the best of our knowledge. In this paper, we will briefly
explain the automatic algorithm configuration problem and then survey the automated methods
developed to handle this problem. After explaining the logic of these methods, we also argued about
their main advantages and disadvantages to help researchers or practitioners select the best possible
method for their specific problem. Moreover, some recommendations and possible future directions
for this topic are provided as a conclusion.
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1. Introduction

In recent years, due to the progress in modern sciences and technologies, there has
been a fast increase in the size and difficulty of real-world continuous optimization prob-
lems (i.e., resource allocation, facility location, scheduling, vehicle routing, etc.). In many
situations, these optimization problems must be considered a black-box problem, because
there is not an obvious mathematical description of the problem, or in other words, because
these problems are regarded as NP-hard; for obtaining optimal solutions using efficient
algorithms, a lot of computing effort is required [1].

A metaheuristic can be defined as “a generic algorithmic template that can be used
for finding high-quality solutions for a wide range of hard combinatorial optimization
problems” by Birattari and Kacprzyk [2] and can be described as “higher level” heuristics.
This topic is well studied and studies proved that metaheuristics (such as memetic algo-
rithm, particle swarm optimization, or artificial bee colonies) offer near-optimal solutions to
many types of optimization problems. The main differences between these algorithms are
sourced from their searching patterns [3]. They can be used in a large number of research
domains such as: telecommunications, machine learning, vehicle routing, etc.

Nevertheless, these metaheuristics have numerous specific parameters and design
alternatives that considerably affect the efficiency and effectiveness of their performance.
Additionally, these parameters need to be tuned to achieve the best performance of the
algorithms. Although the selection of the best performing values for free algorithm param-
eters (we refer to this problem as “parameter tuning” or “algorithm configuration”) is a
challenging and tedious task, it can lead to an effective and good performing version of
these algorithms. These algorithmic parameters are classified into two categories: categori-
cal parameters (e.g., crossover operators in genetic algorithms) and numerical parameters
(e.g., number of ants for ant colony optimization) [4].
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Offline parameter tuning and online parameter tuning (or parameter control) ap-
proaches for choosing the best parameter values for optimization algorithms are suggested
in the literature [5]. Parameter control approaches (which can be deterministic, adaptive, or
self-adaptive [5]), first fix the initial parameter values and change them during the tuning
process. However, in offline parameter tuning, parameter values are settled before the
run of the algorithm and do not change during the process. In the scope of this study,
we will use the terms “offline parameter tuning” and “algorithm configuration” with the
same meaning. There is a considerable amount of research about offline parameter tuning
methods that have been successfully applied to metaheuristics. In this study, we will focus
on techniques for offline parameter tuning.

A parameter tuning problem can be defined in a simpler way, that is, given a param-
eterized target algorithm A, a space C of configurations, where each configuration c ε C
specifies values for A’s parameters, a distribution of problem instances I, and a performance
measure m that measures the performance of A, the aim is to find a parameter configuration
of A that provides optimal performance of A on I according to performance measure m [6].
Generally, the performance metric is based on the solution quality achieved within a given
time budget or algorithm speed or variations and combinations of these two [6]. Eiben and
Smit [4] stated that “algorithm robustness” can be used in conjunction with “performance
measure” to assess algorithm quality. Algorithm robustness demonstrates the variance
of algorithm performance across such factors: parameter values, problem instances, and
random seeds [4]. For a formal and detailed definition of the algorithm configuration
process, we refer to [2].

Until recently, the configuration of the parameters of these algorithms was carried
out by the algorithm designer or end-user [7]. Because this ad-hoc, manual process is
often boring and insufficient, automatic methods for finding appropriate parameter values
have become available. These automatic methods lead to important improvements in the
performance of target methods for solving different computationally hard optimization
problems [8]. Because of its importance, a considerable number of automated parameter
tuning techniques have been developed over the past few years, and parameter values
found by these methods showed better results than default values identified based on
human experts. Furthermore, studies have shown that using these algorithm configuration
methods not only assists practitioners in identifying the best-performing parameter sets,
but also in gaining a deeper understanding and analyzing the interaction between the target
algorithm performance, problem instances, and selected parameter values [4]. Moreover, a
successful tuning method will motivate algorithm designers to better parameterize their
algorithms [9].

A comprehensive review of these studies is an important requirement because param-
eter tuning has become commonly utilized in the industry and academic community, and
there has been a significant advancement in this area. Although there is a wide body of lit-
erature about the algorithm configuration problem, a detailed survey analysis has not been
executed yet. This paper aims to give a general overview of the parameter tuning methods
and shortly discuss applications of these offline algorithm configuration techniques. It also
aims to discuss their main advantages and disadvantages to help researchers or practi-
tioners select the best method for their specific problem. We also mentioned comparative
studies of these methods, related research topics with the algorithm configuration problem,
and other studies that consider different aspects of this problem. In the end, we provided
recommendations and possible future directions for this topic.

This article is designed as follows; a brief introduction to the framework of the algo-
rithm configuration problem and different parameter types is provided, and also a survey
about offline algorithm configuration approaches and related works with these methods is
provided. As a conclusion of the paper, we will summarize what has been conducted in
this study, and we will mention open research directions for future work.
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2. Literature Review

In recent years, parameter tuning has become commonly utilized in the industry and
academic community, and there has been a significant advancement in this area. As a result
of this research, there is a wide body of literature about the algorithm configuration problem,
and a comprehensive review is an important requirement. In Bezerra et al. [10], authors
reviewed two main topics, which are: the automatic configuration of multi-objective
optimizers; and research about multi-objective configuration, which aims to optimize
multiple performance metrics simultaneously to evaluate the algorithm performance, such
as algorithm speed or quality of the solution. Hoos [11] provided a review of only three
parameter tuning methods for metaheuristics and gave information about the applications
of these methods.

Algorithm configuration methods have been classified in many different ways in
the literature. Eiben and Smit [4] is the most detailed survey, in which they constructed
three different taxonomies to distinguish and categorize algorithm configuration tech-
niques. In their study, the parameter tuning methods are divided into four categories,
such as: meta-EAs, sampling methods, screening, and model-based methods. In [12],
they classified tuning methods as tuning by analogy, hand-made tuning, hybrid tuning,
experimental design-based tuning, and search-based tuning. Huang et al. [13] conducted
a review of automatic algorithm configuration techniques and classified these methods
as simple generate-evaluate techniques, iterative generate-evaluate techniques, and high-
level generate-evaluate techniques based on the structure of these configuration methods.
Schede et al. [14] provided classification schemes for algorithm configuration problems
and for algorithm configurators. Additionally, they summarized the related literature on
these topics.

In this paper, we will use a more general distinction of automated parameter tuning
methods made in the literature: model-free and model-based tuning approaches (see [6])
with some modifications. We will describe racing methods and traditional experimental
design-based methods as separate categories. In this paper, we examined the developed
automatic algorithm configuration methods concerning this categorization. Additionally,
for explaining each method (especially for widely used methods, due to the space limita-
tion), we used some criteria such as search strategy, parameter type, expected output, stop
criterion, and configuration objective (multi or single). Additionally, we also mentioned
whether these methods use surrogate models or not.

Figure 1 demonstrates the classification of algorithm configuration methods and an
overview of the most widely used automated algorithm configuration methods in each class.

Figure 1. An illustration of the classification of automated algorithm configuration methods.
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2.1. Model-Free Algorithm Configuration Methods

Model-free methods are generally based on heuristic rules, and choices for parameter
vectors to be investigated are often selected by randomness or experimental design tech-
niques. Although they are faster in execution than model-based tuners, they have very
limited extrapolation potential. Research on this topic started in the early 1990s [15,16] and
has lately been gaining momentum. Meta-EAs and ParamILS are in the scope of model-free
algorithm configuration methods.

2.1.1. Meta-EAs

We previously mentioned the difficulties of finding good parameter values (including
conditional and categorical parameters) for heuristics and metaheuristics. This is a complex
stochastic black-box mixed-variables optimization problem due to interacting variables,
nonlinear objective function, multiple local optima, lack of analytic solvers, and noise [4].
Ironically, in this type of problem, heuristic optimization algorithms are effective solvers
and can find good parameter settings [13].

Because of this reason, using any type of evolutionary method to configure the pa-
rameters of another evolutionary algorithm is a natural opinion. They are called Meta
EAs because their activity can be considered meta optimization. Mercer and Sampson [17],
and Grefenstette [18] are the first study that aimed to use an Evolutionary Algorithm for
optimizing metaheuristics. After these studies, research continued and several studies were
conducted about meta-GAs. For details of studies on Meta-GA and critiques about the use
of meta algorithms for investigating the best parameter vectors, readers are suggested to
see [19].

One advantage of meta-EAs is that they can be terminated at any point of the tuning
process and give a solution at that point. However, they are not suitable for large parameter
spaces, because they can provide sustainable solutions only after a large number of evalua-
tions of candidate configurations [13]. Additionally, most of the meta-EAs (i.e., CMA-ES
and REVAC) cannot deal with the categorical parameters [13].

GGA

Ansótegui et al. [9] proposed a naturally parallel gender-based genetic algorithm
(GGA). Because genetic algorithms are inherently parallel, racing them against each other
makes evaluating competitive individuals (the most time-consuming part of algorithm
configuration) easier. In other terms, a tournament-based selection mechanism is used
for testing the competitive population. They introduced the gender separation method to
reduce the high evaluation cost for the genetic algorithm and apply different selection pres-
sure to both genders. Additionally, new candidate configurations are generated by using
different sub-populations and a specialized cross-over operator. GGA terminates when the
runtime limit is achieved or when the average performance of the population is not further
improved [14]. According to their report, parallel evaluation of configurations supports
the configuration goal of minimizing algorithm run-time while producing an insignificant
loss in performance. For the improvement of this study, they recommend selecting the
most important component(s) of GGA for its performance. It can deal with both discrete
and continuous parameters and give one best parameter configuration as an output. The
GGA method is widely used in tuning literature, for example, in tuning solvers in SAT and
mixed-integer programming [20], Max-SAT [21], and machine reassignment [22].

GGA is extended to GGA++ by using surrogate models with population-based ap-
proaches in the study [23]. In GGA++, instead of using random recombination, they
developed specialized surrogate models based on random forests and combined them with
a genetic algorithm for finding the most promising offspring. After the experiments, model-
based GGA outperformed other configurators such as GGA and SMAC for tuning two SAT
solvers. Ansótegui et al. [24] suggested a Python tool that implements a distributed version
of the GGA, PyDGGA, which maximizes the usage of parallel resources by simulating
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future generations of the genetic algorithm even before the current generation is completely
finished [24].

REVAC

Nannen and Eiben [25,26], suggested Relevance Estimation and Value Calibration
of parameters (REVAC), and enhanced meta-EAs, to tune numerical parameters of opti-
mization algorithms (continuous and categorical parameters needs to be discretized). The
REVAC approach is based on EDA (Estimation of Distribution Algorithm [27]). Revac
starts with the “M” configurations and at each iteration, the oldest configuration is changed
with a newly created child parameter vector with the aid of multi-parent crossover and a
mutation transformation. Information theory is used to estimate the expected performance
when parameter values are chosen from a probability distribution (parameter relevance)
instead of predicting the algorithm performance for different parameter configurations. For
each tunable parameter, it gives one best value and one interval of values. It stops when the
assessed number of execution is achieved. According to the Shannon entropy measurement
of these distributions, a parameter that shows low entropy (which means the parameter
value range is narrow) is considered more relevant to the algorithm performance. For a
detailed discussion about REVAC’s procedures details such as probability distributions and
entropy, [28] is a good guide. In [19], a comparison of REVAC and Meta-GA was executed,
and REVAC found better performing and robust configurations than those configured
manually and by the meta-GA.

Nannen et al. [29] executed a study about the effects of different design choices that
underline the cost of tuning. The REVAC method was further enhanced in the study of
Smit and Eiben [30] by using an advanced technique of aggregating the performance of
multiple runs. Another extension of REVAC was introduced by Smit and Eiben [31] to
find widely applicable parameter values. According to the no-free-lunch theorem [32], a
parameter configuration that performs well on one kind of problem can perform worse on
the other kind. Smit and Eiben [31] executed the study in order to find good parameter
values of a simple genetic algorithm for more than one widely used test function with
REVAC tuning. So, they compared their generalist EA (whose parameters are tuned
for a set of test functions) with a benchmark EA (whose parameter values are chosen
by ‘common wisdom’) and with a specialist EA (which is a parameter set that shows
good performance on one specific type of problem). The term “generalist” is used to
demonstrate parameter values that perform well on a whole possible set of test problems,
and this is infeasible according to the no-free-lunch theorem. Therefore, their claims
turned out to be that generalist parameter values perform well on the previously defined
set of test functions. They described this complete system in MOBAT [33] (available at
http://mobat.sourceforge.net, (accessed on 10 June 2022)). Results of the experiment
demonstrated that REVAC is also able to find good parameter vectors for a set of test
problems (not only for a single problem), which are different from the suggested values
by common wisdom. They underline that the best generalist will always be linked with
the definition of the generalist. Furthermore, this experiment demonstrated that several
runs per parameter vector are critical, where excessive runs have high computational costs
and too few runs lead to inaccurately estimated utility and inaccurate results. Additionally,
they mentioned specific problems raised in a generalist configuration process based on
the difference in difficulty levels of problems in the test suites, which cause a hidden bias.
They suggested using a method from multi-objective optimization, aiming to establish the
Pareto front to overcome these problems.

Multi-Objective META-EAs

As algorithm configuration procedures improved, researchers focused on the multi-
objective algorithm configuration problem instead of optimizing a single performance
objective, because in many cases, multiple competing performance objectives have impor-
tance for algorithm configuration problem, such as running time, memory consumption,

http://mobat.sourceforge.net
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solution quality, etc. A multi-objective automatic algorithm configuration problem also
aims to explore the trade-offs between multiple performance objectives (the initial studies
on this topic are [34–37]). We will summarize the multi-objective algorithm configuration
methods that take inspiration from multi-objective evolutionary algorithms (MOEAs) in
this section.

As mentioned in the study [31], when more than one problem or performance metric
is used, an easier method is to aggregate them into one measure for optimizing all of them.
However, according to the results of this study, such an approach leads to several problems.
An alternative method to aggregation is regarding each performance measure and test
function in the test set as one objective [38], which means creating a parameter Pareto front
(non-dominated parameter sets, satisfying more than one objective).

In the method of Dréo [39], they used multiple performance measures (algorithm
speed and algorithm accuracy) of four different algorithms at the same time without
specifying weights for those two objectives beforehand. However, they handle only one
parameter at a time, and the test suite is a unique problem. They used the multiple runs
(fixed number) and averaged them to estimate the utility. A multi-objective optimization
algorithm, NSGA-II, has been used as a tuner. Although using performance fronts is
costly, their results prove that it is very suitable for the parameter configuration problem
of metaheuristics.

Additionally, Smit et al. [38] extended the study of [39] to a multi-function optimiza-
tion problem, where each fitness function in the problem set represents one objective (so
the number of objectives is the same as the number of fitness functions). They introduced
the Multi-Function Evolutionary Tuning Algorithm (M-FETA), which is based on a Multi-
Objective Evolutionary Algorithm (MOEA) method and can approximate the parameter
Pareto front. The parameter Pareto set includes non-dominated parameter vectors, which
means that all other parameter vectors perform significantly worse. In such configuration
problems, the utility of parameter vectors is defined by the performance of the algorithm
(with these parameter values) on a collection of functions. Because heuristic optimization
algorithms are stochastic, the performance of a parameter configuration can only be es-
timated due to the noise in the results. A common way of improving these estimates is
by repeating the measurement. However, it means doing more executions, and so it is a
costly way of gaining more confidence. M-FETA has a special technique for assessing the
quality of candidate parameter vectors. In their technique, the number of expensive tests is
reduced (or confidence improved) by judging the utilities of neighboring parameter vectors
evaluated before. Their results showed that Pareto fronts allow for the investigation of in-
teractions between parameter stings, fitness functions, and the optimization algorithm [38].
When compared to the single objective meta-EA, these approaches provide an important
added value.

Following the same idea, BONESA [40] is suggested as an iterative model-based
approach to find a robust parameter set for multiple test instances. According to their
experimental results, their method can provide a good estimation of the utility values
of parameters and collects a lot of useful information on EA robustness. Moreover, they
developed a tool for analyzing and giving insight into EAs (available at https://sourceforge.
net/projects/tuning/ (accessed on 10 June 2022)).

As a recent example of meta-EA, Ugolotti and Cagnoni [41], proposed EMOPaT (Evo-
lutionary Multi-Objective Parameter Tuning), which uses a multi-objective optimization
algorithm (NSGA-II [42]) for parameter configuration of differential evolution (DE) and
particle swarm optimization (PSO) algorithms. The best parameter configuration for a
given problem is selected based on a multi-objective approach, which aims to maximize
the algorithm performance for a given problem set. They also summarized algorithm con-
figuration studies that used meta-EAs. Ugolotti et al. [43] evaluated EMOPaT on different
functions and showed that it cannot only find good parameter vectors for the training
problems but also extracts new parameter vectors that demonstrate good performance on
unseen test problems from those results.

https://sourceforge.net/projects/tuning/
https://sourceforge.net/projects/tuning/
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Dymond et al. [44] suggested the tMOPSO (tuning multi-objective particle swarm
optimization) method for tuning an algorithm based on a bi-objective performance mea-
sure, which is the best objective function value found and the number of objective function
evaluations (OFEs). Dymond et al. [45] suggested MOTA, a many-objective tuning algo-
rithm, particularly for configuring a stochastic optimization algorithm based on multiple
performance measures. Experimental results of the configuration process showed the
effectiveness of MOTA for many-objective tuning.

2.1.2. ParamILS

ParamILS, another model-free method, suggested by [46] and improved by [47], is an
iterated local search algorithm, which is influenced by the hand-made algorithm configura-
tion methods. The ParamILS process begins with a default parameter value generally based
on user experience with randomly chosen r configurations from the dedicated configuration
space, and the performance of the algorithm is improved iteratively by searching in its
neighborhood, which can be described as changing only one parameter. In other words,
an iterative first-improvement algorithm is a local search procedure of ParamILS. These
selected (r + 1) configurations are evaluated and the local search process is initialized with
the best performing configuration. The ParamILS builds a chain of local optima by iterating
the following steps. Starting from the initial solution, it performs s random perturbation to
avoid local optima, which are implemented via changing the values of a few parameters
to randomly chosen values. Then a local search process is performed and a comparison
is executed between the newly obtained candidate configuration and the previous best
one to decide whether to keep or reject the new one. According to this comparison, if an
improvement on the best solution is observed, the new one is selected as the best configu-
ration. Additionally, ParamILS also includes a diversification mechanism with a re-start
probability (pr). After each local search, ParamILS is restarted using a random initial
configuration. It stops when the allowed number of executions or time limit is achieved
and, it gives one best performing configuration as an output. In their empirical study, for
all tuning scenarios, parameter configurations found by ParamILS always demonstrated
better performance than the default parameter values and the CALIBRA system [48].

Two different versions of ParamILS (available at http://www.cs.ubc.ca/labs/beta/
Projects/ParamILS/ (accessed on 10 June 2022)) are suggested, such as BasicILS and Fo-
cusedILS. Their differences are in the way of defining one configuration as better than
another one. BasicILS uses a fixed number of random seeds or (problem instance) for
performance comparison among the configurations, while FocusedILS uses the dominance
concept. Essentially, one configuration dominates the other (i.e., c1 dominates c2 configura-
tion) if and only if the mean performance of the algorithm with c1 on m1 seed is better than
c2 on m2 seeds when m1 > m2. In other terms, when FocusedILS finds that configuration c1
performs better than c2, it executes additional runs (by increasing the number of seeds or
instances to be solved) to prove that ‘c1 dominates c2’. Moreover, although over-tuning and
over-confidence problems were already argued by [2], the first statistical arguments and
experimental results are given in this study. For details of these problems and a detailed
definition of a better mechanism, we refer to the original paper [46].

ParamILS method is improved by introducing a new “adaptive capping” mechanism [47].
The results of their experiments showed that adaptive capping accelerates both BasicILS
and FocusedILS and can find well-performing parameter settings of complex and highly
parameterized algorithms such as the commercial optimization tool CPLEX (available at
http://www.ibm.com/software/integration/optimization/cplex-optimizer/ (accessed
on 10 June 2022)). The idea behind adaptive capping is to avoid redundant runs of the
target algorithm by developing bounds on the performance measure to be optimized.
Cáceres and Stützle [49] investigated variable neighborhood search mechanisms instead
of the local search phase of ParamILS (one-exchange neighborhood), and they obtained
promising results.

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
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Further to this, multi-objective extensions of BasicILS and FocusedILS are introduced
in [37]. MO-ParamILS uses a multi-objective iterated local search procedure. In this ex-
tended method, a non-dominated configuration set is modified iteratively. Additionally, this
property differs from the single objective ParamILS. They used MO-ParamILS to demon-
strate trade-offs between solution quality and running time performance measures, and
secondly between memory usage and running time. Experiments demonstrated that both
are effective tools for bi-objective configuration cases, but MO-FocusedILS outperformed
MO-BasicILS. For future research, they offer to apply the multi-objective configuration to
multi-objective algorithms, which are difficult to configure and to develop multi-objective
extensions of other automatic configurators. In the next study, Blot et al. In [50], they
applied the MO-ParamILS to configure a multi-objective local search algorithm applied
to bi-objective permutation flow shop problems. They extended their experimental study
in [51] by considering the bi-objective TSP problem and also considering large instance
sets. In [52], the authors discussed the effect of correlation between optimization objectives
on algorithm configuration for multi-objective algorithms, and their results proved that
the performance of these algorithm configuration methods is not affected by the degree
of correlation between objectives. However, the correlation between objectives and the
problem set size affects the best performing configuration.

One aspect of ParamILS is that it can configure only categorical parameters; otherwise,
it requires discretizing numerical parameters. This can be considered a disadvantage of
ParamILS, but different configuration problems, such as [53,54], demonstrate that this is
not a major obstacle to the performance of ParamILS. In the above, we provided a basic
overview of applications of ParamILS, but for details of other ParamILS applications, we
refer to [11,47].

We summarized the main advantages and disadvantages of commonly used model-
free algorithm configuration methods in Table 1. It must be stated that the advantages and
disadvantages of the offline tuning methods that we summarized in Tables 1–3 are related
to their specific underlying principles (such as the elimination method or search space) and
their specific assumptions. While these advantages and disadvantages are method-specific
and in different domains, we cannot present them in a correlation between the different
methods. This could only be performed under very restricted pre-defined criteria, but in
this case, it does not reflect the total contribution or limitations of the mentioned methods.

Table 1. A summary of the advantages and disadvantages of widely-used model-free algorithm
configuration methods.

Methods Advantages Disadvantages

RAVAC++

• Using the entropy value of a parameter is very
precious because it demonstrates how much tuning
effort each parameter requires [28].

• REVAC gives an interval for parameter values as a
final report, and it can be an advantage only when
this interval is narrow [55].

• REVAC is enforced with racing and sharpening
methods, and hence it can efficiently handle the
stochasticity of the utility values and can be used
for examining the cost of tuning and also
examining the relevance and sensitivity of the
parameters [29].

• One of the weaknesses of REVAC, it is
required to choose a random value from the
returned interval for the parameter and it
may be an inappropriate value.
Additionally, so, performance differences
between individual configurations cannot
be demonstrated exactly.

• Another drawback of the Revac is that it
cannot tune categorical parameters [13,28].



Appl. Sci. 2022, 12, 6316 9 of 26

Table 1. Cont.

Methods Advantages Disadvantages

GGA++

• GGA++ is among the most competitive and robust
tuners suggested.

• The main advances of GGA++ are its tree-based
representation and used operators that can handle
any type of parameters (both numerical and
categorical parameters without discretization)
simply [56].

• Racing, sharpening, and capping methods are
provided with it [56].

• GGA++ uses an adaptive capping mechanism like
ParamILS, and it combines it with a parallelization
mechanism to use multiple processing units
efficiently [56].

• GGA++ could not deal with the complex
parameter types (such as conditional
parameters) that can occur in some
solvers [56].

ParamILS

• It is a sophisticated method and can be used for
tuning various algorithms, even if they have many
parameters (categorical and numerical), and
always demonstrated a very good performance in
the vast majority of cases studied [47].

• FocusedILS can effectively deal with the
over-turning and over-confidence problem [46].

• The main advances of this method are using racing,
sharpening, and capping. Adaptive capping can
seriously accelerate the elimination process of poor
performing configurations, so increase its
performance [47].

• Because ParamILS is based on stochastic
local search, the selected random seed can
affect its performance.

• Major drawback of ParamILS is that it can
only deal with discrete parameters and so it
can be uninformative in terms of alternative
parameter vectors and the parameter’s
space structure. Furthermore, it is difficult
to analyze interactions between parameters,
specific instances, and parameter
configuration correlations [14,47].

• Capping mechanism cannot be efficient
when the performance criterion is solution
quality [13].

2.2. Racing Methods
2.2.1. F-Race

Birittari et al. [57] introduced an automatic racing procedure for automatic algorithm
configuration problem based on the methods from the machine learning literature for
model selection [58,59] and Friedman’s nonparametric two-way analysis of variance by
ranks [60]. The main difference between the racing methods and the system selection
methods is that the racing methods deal with a larger set of competing systems when
compared with the system selection methods.

This procedure aims to find the best-performing parameter vector of a target algorithm
from a finite configuration set by eliminating bad-performing ones whenever they are
proven to be poor statistically, and the procedure is iterated over the remaining ones. The
F-Race process starts with performing n runs for each configuration to acquire sufficient
data before elimination. Obtained data are recorded for each parameter configuration. At
each iteration, a problem instance is randomly selected for the performance comparison
of candidate parameter configurations. After evaluating configurations on every instance,
costs (or utilities) of each are added to the stored values. After each iteration, Friedman’s
two-way analysis of variance by ranks, a nonparametric statistical test, is used to control if
there are significant differences among the configurations. If the null hypothesis is rejected
with a significance level, it can be inferred that at least one parameter configuration is better
than at least one other parameter configuration. After that situation, a pairwise comparison
between parameter configurations is performed. Statistically poor configurations are
discarded from the candidate’s configuration set. The termination condition is either a
remaining one parameter vector or reaching a previously defined time budget, and it gives
a best performing configuration set as an output. A block design based on different problem
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instances (one instance considered as a block) is applied by F-Race. The null hypothesis of
the Friedman test claims that all possible rankings of the parameter vectors within each
block are equal.

Some limitations of this method are that discretization is needed when tuning continu-
ous parameters, and another important limitation of F-Race (available at https://cran.r-
project.org/src/contrib/Archive/race/ (accessed on 10 June 2022)) is that at the beginning
of the process, all configurations have to be evaluated. Because of this limitation, pub-
lished experiments with F-Race have evaluated a maximum of 1200 configurations. The
advantages of this method are that the elimination of worse configurations accelerates the
procedure and leads to a more reliable evaluation of the promising ones. Additionally, an
adaptation of blocking design to general racing methods is the first in the nonparametric
test. This method fills the gap between the Hoeffding race [59], which is a nonparametric
test, and BRACE [59], which considers a blocking design.

2.2.2. I/F-Race

To overcome the stated limitation of F-Race method, Balaprakash et al. [61] have
developed Sampling and Iterative F-Race, which are based on the previously developed
F-Race method. Although this F-race can deal with large configuration spaces, it handles
only numerical parameters. Birattari et al. [62] extended this work to handle categorical
parameters. For the extension of I/F-Race, they discuss design issues such as the number
of iterations, the number of candidate configurations, the computational budget for each
iteration, the termination procedure, and how to generate candidate configurations. The
computational budget is distributed equally over these iterations and a different sampling
strategy is suggested. As a conclusion of these discussions, they proposed a different
version of the iterated F-Race algorithm and defined an extended iterated F-Race based
on the procedure suggested by [61]. According to their experimental results, I/F-Race
demonstrated better results in each experiment than F-Race, which uses a full factorial
design, F-Race (FFD), and F-Race (RSD). F-Race is one of the most widely used algorithm
configuration methods in many different application areas. For a survey of studies that
used F-Race in different areas, we refer to the paper [62].

2.2.3. Irace

López-Ibáñez et al. [7] described the irace package, which implements the improved
and extended version of the iterated F-race. They introduced recent extensions such as a
restart mechanism, the use of truncated sampling distributions, and an elitist racing that
tests parameter vectors on a problem set whose size is increased in every iteration of irace.
Finally, they experimentally evaluated this recent version of irace on two configuration
cases. It has been underlined that the parameter sampling method and the statistical
assessment of the performance of different configurations have vital importance for guiding
the iterated racing procedures to find the better configurations. Zhang et al. [63] is one of the
recent studies that use irace to configure the newly designed multi-objective evolutionary
algorithm. For an overview of the various and wide range of applications of the irace
package (available at https://iridia.ulb.ac.be/irace/ (accessed on 10 June 2022)) in different
studies, we refer to [7].

The irace was developed for optimizing the obtained solution quality for a defined
running time. However, when used to optimize the running time, irace cannot perform
as well as other configuration approaches. The reason is that it spends too much time
evaluating poor configurations. Cáceres et al. [64] aimed to improve the performance of
the irace method for running time minimization objective, and they added an adaptive
capping method to the irace as ParamILS uses. Additionally, the suggested new irace uses
a new technique, dominance elimination, which rejects poorly performing configurations.
They showed that these improvements over irace lead to a high-performing irace that is
competitive with state-of-the-art algorithm configuration methods (ParamILS and SMAC)

https://cran.r-project.org/src/contrib/Archive/race/
https://cran.r-project.org/src/contrib/Archive/race/
https://iridia.ulb.ac.be/irace/
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whose objective is minimizing the running time. They also deeply analyzed the behavior
of irace and compared different methods of integrating adaptive capping.

Cáceres, Bischl, and Stützle [65] investigated the use of random forests models, a
common improvement technique for search methods when evaluations are computationally
hard, as surrogates in irace. The usage of the random forest model is different from that
used in SMAC and more similar to the use in GGA++.

2.2.4. HORA

Barbosa et al. [66] proposed an algorithm configuration method (HORA) based on
combining the racing procedure with the design of experiments (DOE) techniques. Al-
though this method is similar to F-Race, new candidate configurations are created based on
the neighborhoods of good parameter vectors, and DOE is used to create the initial config-
uration set. It can deal with small search spaces and adaptive capping is not performed
during races [14]. Four parameters of the genetic algorithm and simulated annealing
algorithms are tuned with this method. For the problem layer, the traveling salesman
problem (TSP) and the scheduling problem to minimize the total weighted tardiness in a
single machine (TWTP) problem are used. According to results obtained from experiments,
the target algorithms’ performance is improved with tuning HORA, and although their
method is promising and fast, more studies must be executed to confirm its effectiveness.

2.3. Design of Experiment Based Methods

Many optimization algorithms, such as metaheuristics or commercial solvers, like
the CPLEX solver with 76 parameters [54], contain a large set of parameters. In these
situations, decreasing parameter search space is needed to efficiently apply automated
tuning procedures. One way of achieving this reduction is decomposing the parameters
into disjoint partitions and configuring these parameters one by one.

Design of experiments (DOE) [67] is another method for decomposing parameter
space. Design of experiments techniques have been widely used to manually determine the
best parameter setting of metaheuristics [68–74]. We will give a brief overview of the main
studies that use the design of experiment-based techniques for the selection of parameter
values of optimization algorithms.

Coy et al. [75] suggested a widely applicable and effective method for optimizing con-
tinuous parameters. Their approach consists of a full factorial design and a gradient descent
method. They evaluated their approach to two new vehicle routing heuristics for solving dif-
ferent capacity and route-length constrained vehicle routing problems. The inconvenience of
their methods is that it approximates the response surface linearly and does not investigate
the relationship between instances, parameter vector, and algorithm performance.

Adenso-Diaz and Laguna [48] proposed the CALIBRA system that starts with Taguchi’s
fractional factorial design and then applies a local search procedure. In the beginning, CAL-
IBRA tests each parameter vector with two levels of the full factorial design per parameter.
Then, at each iteration of the applied local search procedure, it iteratively approximates
regions of promising parameter configuration in the configuration space. The local search
procedure evaluates nine configurations around the existing best-performing configuration.
This process is terminated when local optimum criteria have been reached. A local search
procedure can be executed more than one time if the computational budget remains to
obtain a more local optimal parameter configuration. The experiment is executed on six
existing heuristic-based methods. Although the results of the experiment demonstrated
that CALIBRA is a useful tool for the algorithm configuration problem, there are some
limitations, such as it can only handle five numeric and ordinal parameters, it does not guar-
antee optimality, and the local search procedure cannot operate the effects of interactions
between parameters.

Akbaripour and Masehian [3] proposed an approach for algorithm configuration
based on a combination of design of experiments (DOE), signal to noise (S/N) ratio, Shan-
non entropy, and VIKOR methods. Their approach aims to optimize four goals: solution
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quality, several fitness function evaluations, minimizing the algorithm’s runtime, and
variance of these objectives. According to the results of their experiment, the suggested ap-
proach improved the average number of iterations, average running time, and algorithm’s
solution quality.

Dobslaw [76] suggests a parameter tuning technique, which is a combination of
design of experiments and artificial neural networks (ANN). Their methodology consists
of four phases: problem description, training, parameter retrieval, and execution. The
first phase includes a computer-readable representation of the process (problem, quality
measure, and target algorithm). In the first part of the training phase, an automated
design of experimental procedure is applied to a finite training set of problem instances for
improving the initial values of the parameter. Later, the outcomes of the first part are used
for training an artificial neural network in order to suggest near-optimal initial parameters
for any given problem instance. In the third phase, ANN is used as a predictor to receive
promising initial parameter sets for any given problem. As a final stage, the algorithm is
executed with the suggested values from phase three. They tuned the standard PSO 2007
metaheuristic for solving the traveling salesman problem (TSP). The proposed parameter
tuning methodology can be used to solve any configuration problem.

Pham [77] proposed an algorithm configuration method that combines factorial design
and fuzzy logic, aiming to compromise conflicting demands such as convergence speed,
robustness, and versatility (applicability to many different problems) for the dynamic
optimization of chemical processes by a highly parameterized evolutionary algorithm.
Their approach starts with a factorial experiment, and then average parameter levels for
the best and worst runs in each problem are determined. Then, considering those levels,
efficient and robust performed settings are found for each parameter by using a fuzzy logic
method. Their method is suggested for tuning only algorithms that have a large number
of parameters.

Applications of factorial experimental design showed that, although it is useful in
the beginning phase of the process, one drawback is that when the number of parameters
increases, the required number of runs also exponentially increases [78]. Gunawan et al. [79]
suggested a different decomposition method to reduce the parameter space by dividing
(can be performed either manually or automatically) the parameters into several disjoint
categories. They used Resolution IV Design [80] for the distinction of main effects and
interactions of parameters. After decomposition, they applied the configuration method
proposed by Gunawan and Lau [78] for each of the parameters. The tuned simulated
annealing algorithm with their approach outperforms basic ParamILS and leads to a
significant improvement in annual cost savings.

In Table 2, we mentioned the main advantages and disadvantages of irace and CALI-
BRA methods.

Table 2. A brief summary of advantages and disadvantages of irace and CALIBRA algorithm
configuration methods.

Methods Advantages Disadvantages

IRACE

• Although irace is primarily developed for
solution quality calibration, they added an
adaptive capping technique and the resulting
version of irace also achieves competitive
results for the tuning target of run-time
minimization [64].

• The major advantage of this method is coping
with multiple instances and with all parameter
types [65].

• Furthermore, racing and sharpening ad-hoc
methods are used with irace [64,65].

• For a small tuning budget of irace, the obtained
configuration may not perform better than a
configuration selected randomly [13].

• One important deficiency of the irace is not taking
into account instance-configuration correlation and
interactions among parameters [7].

• Developed elitist strategy often converges to the
good parameter set quickly, and this causes
decreases in search of new alternative
configurations [7].
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Table 2. Cont.

Methods Advantages Disadvantages

CALIBRA

• Because CALIBRA uses both the experimental
designs and local search, it can quickly
approximate the promising region [13].

• It is expected that, when parameter values of
the tuned algorithm have a major effect on its
performance, the results of the CALIBRA
process will be more satisfactory [48].

• There are two limitations of CALIBRA, one of it
can only tune five parameters, and it is not
informative about the interaction effect of
parameters, so it can be more efficient when the
parameter interactions are negligible [13].

2.4. Model-Based Methods

As we mentioned above, the algorithm configuration problem can be regarded as a
specific version of black-box optimization, and so black-box optimization methods can be
used for tackling this problem. Model-based optimization methods developed for black-box
optimization build a response surface model to model the relation between the algorithm
performance and its parameter values and then use this model for the configuration of the
target algorithm. Sequential model-based optimization (SMBO) builds a model and uses
it for selecting configurations worth further investigation iteratively. The most important
difference between model-based tuners from the model-free tuning methods is the usage
of response surface methods to determine configurations that will be tested. For details of
the SMBO procedure, we refer to [6].

The most notable of the SMBO procedures is the efficient global optimization (EGO)
algorithm suggested by [81] that combines the design and analysis of computer experiments
(DACE) model, suggested by [82], the expected improvement criterion (see [6]) and a branch
and bound method for intensification of the most promising areas. EGO is only capable of
dealing with deterministic algorithms or simulations.

There are three extensions of the EGO algorithm. The first of these extensions, the
sequential kriging optimization (SKO) algorithm, is suggested by Huang et al. [83]. SKO
adds a noise function to the DACE model and accepts the observation noise is normally
distributed, which leads to the use of EGO for handling stochastic algorithms. Secondly,
Williams et al. [84] suggested another extension that uses a Gaussian process model to
optimize marginal performance across a set of “environmental conditions”. Their method
is expensive and can only be used for optimizing mean performance for a set of the
problem instance.

2.4.1. SPO, SPO+, and TB-SPO

The last extension of the EGO algorithm is the sequential parameter optimization (SPO)
suggested by Bartz-Beielstein et al. [85]. The SPO procedure starts with defining design
point sets (initial configuration) by using Latin Hypercube Sampling (LHS) (available at
https://cran.r-project.org/web/packages/lhs/index.html (accessed on 10 June 2022)) such
as SKO. To select m design points, the parameter value interval must be divided into m
equal intervals, and then a random number is chosen in each interval. The performance of
each parameter vector is determined after a number of executions due to the stochasticity
of algorithms, and the best-performing point is selected as the initial solution. Then, a
stochastic Gaussian model is constructed to represent the relation between the design points
and the results and to estimate the algorithm performance. Then new design points that
will be used in the proceeding iterations are selected and tested through the intensification
mechanism. These new design points consist of the best points found so far and a set
of expected good designs (which have the highest expected improvement) according to
a model created in previous stages. This model is updated after each iteration based
on the best found configuration and is used in the subsequent iteration. The process
terminates when the stopping criterion has been reached, and gives one best performing
configuration as a result. They evaluated the SPO method in three different cases and

https://cran.r-project.org/web/packages/lhs/index.html
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all three scenarios; parameter vectors tuned by SPO increased the performance of the
algorithm. They summarized some drawbacks of SPO, such as that it is constrained to
decimal and integer values, so it needs the specification of some parameter values.

After researching the key design components of the SPO algorithm, such as choosing
the initial design, whether to fit models to raw or log-transformed performance data, the
expected improvement criterion, and the intensification criterion, Hutter et al. [86] sug-
gested an improved version called SPO+. In the first part of the study, they compared SPO
and SKO, and SPO showed better performance than SKO. For details on the SKO method
and implementation differences between the SKO and SPO methods, we refer to [86]. Then
they investigated key design components of the SPO method, and, consequently, after
evaluating these four, they showed that the log-transformation and the intensification
criterion essentially affect its performance. Then they compared the performance of SPO
and SPO+ to the ParamILS and demonstrated that SPO+ demonstrated better performance
in their experiment.

Bartz-Beielstein et al. [87] used random permutation tests to decide whether a candi-
date configuration must be tested again in the next iteration as often as the current best
configuration or it can be eliminated fairly. Additionally, they gave recommendations for
an adequate budget allocation for SPO. Furthermore, their study analyzed the interaction
between global and local search in sequential tuning procedures. Lasarczyk [88] applied
Chen’s optimal computing budget allocation (OCBA) [89] to the SPO Toolbox (SPOT). The
SPOT package is implemented in the R programming language and it can be achieved on
the website [90]. Some example implementations of this package are [91–93].

Hutter et al. [94] suggested the TB-SPO, which considers both the varying amount
of time required for different algorithm runs and the complexity of model building and
evaluation. TB-SPO is the first model-based optimization procedure for parameter tuning
with a user-defined time budget. They used their resulting procedure (dubbed-TB-SPO)
for configuring a local search solver, and it was demonstrated that the suggested intensifi-
cation mechanism reduces time spent on the parameter tuning process and shows better
performance than the other state-of-the-art methods. They are planning to improve this
method to handle categorical parameters and handle multiple instances in the future.

2.4.2. SMAC

Later, Hutter et al. [6] generalized the components of the time-bounded-SPO procedure
to overcome two important restrictions of it. They used a new intensification mechanism; a
different response surface model based on the weighted Hamming distance. Additionally,
they used random forests for dealing with categorical parameters and multiple instances,
as well as a novel selection method for the most promising parameter vector in a large
parameter space [6]. They defined two sequential model-based optimization methods for
parameter tuning problem; the simple model-free Random Online Adaptive Racing (ROAR)
method and the Sequential Model-based Algorithm Configuration (SMAC) method. SMAC
starts with an initial configuration set and evaluates its performance on the instance. Then it
fits a predictive model (gaussian processes or random forests) of performance based on this
information. After that, a new candidate configuration that maximizes an expected positive
improvement function is investigated by a multi-start search process. The performance
score of this obtained new configuration is determined and this configuration is added to
the archive. Subsequently, this process is repeated. The evaluation method of the obtained
configuration on the target test problem is similar to that used in FocusedILS, and the
incumbent (currently best) configuration is also evaluated on more test problems. The
stopping criteria for this evaluation process can be, i.e., run time limit, etc.

They compared the performance of SMAC, ROAR, TB-SPO, GGA, and FOCUSEDILS
for different configuration scenarios, aiming to optimize the run time of target algorithms.
According to the results of their experiments, SMAC demonstrated a state-of-the-art perfor-
mance. The proposed SMAC (sequential modeling algorithm configuration) method demon-
strated promising performance in a variety of research areas, including continuous black-box



Appl. Sci. 2022, 12, 6316 15 of 26

optimization [95,96], machine learning [97], configuring CPLEX solvers for decentralized
energy system optimization [98], and tuning inexact solvers parameters [99]. Furthermore,
AutoFolio [100] used SMAC for automated tuning of algorithm selection methods.

Hutter et al. [8] further extended SMAC by using two different parallel computing
methods to decrease the total amount of time required by the automatic algorithm con-
figuration process. The first one is a multiple independent run of the algorithm. Another
method of parallelizing the algorithm is distributing the target algorithm runs over multi-
ple cores, which GGA and FocusedILS inherently use. They showed the effectiveness of
parallelization with multiple independent runs for popular algorithm configuration meth-
ods, PARAMILS and SMAC. Then they applied fine-grained parallelism to SMAC (called
D-SMAC). According to the results of the experiment, D-SMAC outperformed independent
parallel runs. For full details about SMAC, we refer to the SMAC user manual [101], and
Python (available at https://github.com/automl/SMAC3 (accessed on 10 June 2022) and
Java implementations ((http://www.cs.ubc.ca/labs/beta/Projects/SMAC/ (accessed on
10 June 2022)) are available online.

2.4.3. Meta-Tuner

Trindade et al. [102] proposed a model-based tuning method, Metatuner, which is
based on the sequential optimization of perturbed regression models. Their experimental
results proved that this method finds competitive algorithm configurations when compared
with the results of Iterated Racing, SMAC, and ParamILS methods in different problem
scenarios and gives information about the interaction between parameters and the relevance
of each parameter. However, in the final, they discussed this method’s drawbacks, such as
the number of parameters that can be tuned, and other issues for advancing and improving
their method.

We summarized the main advantages and disadvantages of widely used model-based
algorithm configuration methods in Table 3.

Table 3. A brief summary of main advantages and disadvantages of widely used model-based
algorithm configuration methods.

Methods Advantages Disadvantages

SPO+

• Their intensification mechanism reduces the
total required time of the parameter tuning
process; and their new prediction models
show much better performance than the
previous model [14,86].

• Although there are considerable improvements in
SMBO-based methods, all of them still have three
key restrictions, first one is, that it can handle only
numerical parameters; it can only configure the
algorithm for a single test problem. Moreover, it has
not been an early terminating procedure for
poor-performing parameter configurations [6].

SMAC

• SMAC can search the full configuration space
which means it does not require discretized
parameter space like PARAMILS [6].

• SMAC overcomes two limitations of other
SMBO methods, one of them is handling
numerical and categorical parameters and
can be used for multiple problem instances
that show different features [6].

• SMAC considers the instance features and
parameter interactions.

• Performance prediction model used in SMAC
also considers the model’s
variance/uncertainty in its predictions and
this leads to an improvement of the model
itself [6,13].

• As a disadvantage, SMAC can only use to optimize
the runtime of the algorithm and it cannot deal with
all instance types, such as NP-hard problems [10].

https://github.com/automl/SMAC3
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
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3. Comparative Studies

There are some studies conducted to compare the performance of automatic algo-
rithm configuration methods. These comparative studies are scarce in the literature, and
Bezerra [103] summarized the reasons as follows: such a representative study requires a
set of different benchmark problems and algorithms; it must consider different cases, such
as different performance metrics to be optimized; multi- and per-instance setups; bench-
marks comprising different parameter types. Additionally, the computational cost of such
a study is the most significant difficulty that researchers may face. In this section, we will
summarize a few comparative studies of automatic algorithm configuration techniques.

Montero et al. [12] described and compared four automated algorithm configuration
procedures: F-Race, Revac, ParamILS, SPO, and the blind random search (BRS) method.
Additionally, they analyzed their advantages and disadvantages in terms of quality of
results, the effort required, information delivered, usability, user-friendliness, and behavior
in different scenarios. A standard genetic algorithm (SGA) used for solving classical
continuous test functions was used for the evaluation of these tuning methods. They
discussed the requirements of each method, summarized the main global conclusions
from their study, and established some guidelines for users that can help to select the
most suitable configuration method. For details of the numerical results, we refer to the
original paper.

Veček et al. [55] suggested a new algorithm configuration technique that is a combina-
tion of a recently developed method for comparing and ranking evolutionary algorithms
Chess Rating System for Evolutionary Algorithms (CRS4EAs) and meta-evolution methods.
Another important objective of this study is to compare the proposed configuration method
with two other procedures: F-Race and Revac. According to the results of this study, all
three methods have strengths and weaknesses in different domains (which satisfies the
No Free Lunch theorem), and the CRS-Tuning method did not perform worse than the
compared techniques.

Črepinšek et al. [104] proposed MOCRS-Tuning (Multiobjective CRS-Tuning), an
improved version of CRS tuning, to answer the question of “what must be a sufficient
number of problems used in the tuning process to obtain robust enough parameters?” Their
results showed that while finding better configurations is not guaranteed when using a
bigger subset of problem instances, the best parameter values can also be obtained by using
a small problem instance subset. This also essentially reduces the required time for the
tuning process.

Smit and Eiben [105] discussed the most crucial issues about configuring evolutionary
algorithm parameters, and they executed a modest experimental comparison among se-
lected algorithm configuration methods. Their main goal is to demonstrate the feasibility
of using algorithm configuration methods and motivate their usage. They considered three
algorithm configuration methods (meta-EA (CMA-ES algorithm is selected as a meta-EA),
meta-EDA (Revac), and Sequential Parameter Optimization) and discussed their advan-
tages and disadvantages when configuring evolutionary algorithm parameters. Add-ons,
such as racing, sharpening, and a combination of them, are used to increase the search
efficiency of tuning methods. For details of these add-on methods used in the algorithm
configuration literature, we refer to [105,106]. Revac’s performance improved with racing
and sharpening, resulting in Revac++. The performance of EA is tested on the Rastrigin
function. Although their experiment was conducted on one single test function and one
EA, they obtained some interesting conclusions. The most important one is that all of the
tested algorithms significantly outperform the human experience-based parameter values.
With respect to their conclusion, the rank of the tested three methods is different when
regarding different tasks of tuning methods. Finally, based on experimental results, the
best method is CMA-ES when the quality of parameter configuration is the primary goal,
and SPO when detailed information about the parameter space is required.

In Rasku et al. [107], since there is not a comparative study about automatic algorithm
configuration of vehicle routing algorithms, they addressed this problem and compared
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algorithm configuration methods, and searched for the most convenient method for con-
figuring vehicle routing algorithms. They compared and evaluated the capabilities and
robustness of seven parameter tuning techniques for tuning the vehicle routing metaheuris-
tics. They tuned eight metaheuristics for solving two vehicle routing problem variants, and
their performance criteria were the solution quality. In this study, compared parameter tun-
ing techniques are CMA-ES, GGA, I/F-Race, ParamILS, REVAC, SMAC, and URS (uniform
random sampling). They demonstrated the improvement obtained by using automatic
algorithm configuration methods on vehicle route optimization metaheuristics. The results
of their comparison demonstrated that, while some tuning methods perform better in some
parameter tuning cases, there is not a unique method that outperforms the others at all
times. They also argued how to carefully select and use the right configuration method
to improve vehicle routing solver performance. The results of this study can help vehicle
routing problem researchers select the most appropriate configuration technique.

Previously mentioned offline configuration techniques require performing a signifi-
cant number of independent runs of the metaheuristic to obtain meaningful information.
Montero et al. [108] investigated the use of this performance information to discard com-
ponents of a metaheuristic that do not lead to any improvement in its performance, in
their terms “ineffective components”. They experimentally investigated the information
obtained from three parameter tuning methods: ParamILS, F-Race, and Revac. Addition-
ally, experiments showed that ParamILS was the best method for identifying ineffective
components. They also summarized the main differences between these three tuning
methods. For future work, they suggest studying other configuration methods such as
the irace procedure and aiming to discover effective components, not ineffective ones.
Araya and Riff [109] suggested an effective model-free fine-tuning method, NODOM-C, for
detecting ineffective components/strategies of an optimization algorithm to decrease the
target algorithm’s complexity without loss of performance (it does not aim to find the best
parameter values for a target algorithm configuration scenario like other methods).

We listed the comparative studies of automatic algorithm configuration methods in
the Table 4. Because we mentioned some of these studies in the previous sections, we did
not refer to them again in this section.

Table 4. List of papers that compare various algorithm configuration methods.

Compared Methods Tuned Algorithm Target Problem Performance Criteria

irace, ParamILS, SMAC [64] CPLEX, Lingeling, and
Spear Solvers

The instance files for these
scenarios are from the (AClib)

benchmark library.
Algorithm speed

CRS- tuning, F-race,
Revac [55]

Artificial Bee Colony (ABC),
Differential Evolution (DE) Benchmark test functions

Max. number of fitness
evaluations and number of

fitness evaluations they
needed to reach optimum

meta-EA, Revac++ and
SPO [105] Evolutionary Algorithms Rastrigin function Mean Best Utility

meta-GA, Revac [19] Genetic Algorithm Multimodal Landscapes Mean Best Fitness

GGA++, SMAC [23] two SAT solver Industrial SAT instances Algorithm speed

CALIBRA, ParamILS [47] three SAT solvers (SAT4J,
SAPS, GLS+)

for SAT4J and SAPS various
instances from previous SAT

competitions; for GLS+, GRID
instance set used

Algorithm speed

SMAC, TB-SPO, GGA,
ParamILS [6] SAPS, SPEAR, and CPLEX sets of instances from

various domains Algorithm speed
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Table 4. Cont.

Compared Methods Tuned Algorithm Target Problem Performance Criteria

ParamILS, SMAC,
D-SMAC [8] Mixed-integer solver CPLEX MIP benchmark instances Optimality gap

TB- SPO, FocusedILS,
SPO++ [94]

SAPS (dynamic local search
algorithm for (SAT) problem)

quasigroup completion
problem (QCP) and the
graph-coloring problem

minimize the median number
of SAPS search steps required

to solve the instance
and runtime

F-Race, Revac, ParamILS and
SPO [12]

A standard genetic algorithm
(SGA) Benchmark test functions Amount of evaluations to find

the optimum

MetaTuner, Irace, ParamILS
and SMAC [102]

Differential Evolution (DE)
and (SAPS) algorithm

Benchmark test functions and
SAT problem

Mean best fitness for DE and
time-to-convergence

(for SAPS)

ParamILS, I-Race, and
Evoca [110]

SGA, ACOTSP software, and
Spear algorithm

Benchmark test functions,
Randomly selected Euclidean
TSP and SAT-encoded graph

coloring problems.

Number of evaluations to the
optimum for SGA, Distance to

optimum for ACOTSP, and
Algorithm speed for Spear

4. Other Studies

As we mentioned before, automatic algorithm configuration is a very wide research
area, and there are a considerable amount of studies. Although we classified the exact
studies into four main categories, there are some other studies that do not belong to these
categories. Additionally, there are some studies that do not propose a new tuning method
but consider different aspects of the algorithm configuration problem, such as the effect of
transformation of the parameter settings. In this section, we will summarize these studies.

4.1. Other Proposed Algorithm Configuration Methods

In the configuration problems, if all parameters of the target algorithm are only con-
tinuous or integer parameters, a continuous black-box optimizer, such as CMA-ES [111],
BOBYQA [112], or MADS [113], can be used as a parameter tuning approach when com-
bined with an evaluation method (racing or repeated evaluation).

The MADS (mesh-adaptive direct search) method is suggested by Audet and Orban [113]
for the configuration of continuous optimization algorithms, and it is guaranteed to con-
verge to a local optimum of the cost function. Audet et al. [114] extend this method to make
it more configurable and introduce the primary Opal framework. They continued to extend
this Opal framework in their further studies [115,116].

Yuan et al. [117] evaluated continuous optimization algorithms including CMA-ES,
BOBYQA, and MADS algorithms enhanced with uniform random sampling (URS) and
the sampling method used in iterated F-Race (IRS). They found that for a few numbers
of parameters, BOBYQA works best; however, when the number of parameters is large,
CMA-ES is the best working one. After this study, Yuan et al. [118] proposed using a
post-selection method. In the first step, a small number of evaluations per configuration are
evaluated by the numerical optimizers. In the second step, the most promising parameter
values are tested by a racing process. More than one elite configuration can be obtained by
this method. The drawbacks and advantages of this method are discussed in [118] and [13].

Pushak and Hoos [119] proposed a novel algorithm configuration method, the golden
parameter search algorithm (GPS), which integrates add-ons for algorithm configurators
(such as racing or intensification mechanisms) with an improved golden section search [120].
The GPS method optimizes each parameter semi-independently in parallel and has two as-
sumptions: that numeric parameters are uni-modal and that there are no strong interactions
between most of the parameters.
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4.2. Studies on Different Aspects of the Algorithm Configuration Problem

An important barrier to the improvements in algorithm configuration (AC) is a scarcity
of empirical studies and reproducible experiments. The hyper-parameter optimization
library HPOlib [121] and the algorithm configuration library AClib [122] was developed
to handle this obstacle. However, even with such benchmark libraries available and easy
to use to compare different methods, testing new parameter tuning techniques is hard
because AC benchmarks cannot be easily set up and the evaluation of the AC method’s
performance is computationally expensive.

Eggensperger et al. [123] proposed using surrogate benchmarks that consider overall
important features of the algorithm configuration cases instead of the expensive original
algorithm configuration problem. They generate a new set of eleven surrogate benchmarks,
nine of which are for optimizing running time, and the rest are for optimizing solution
quality. All procedures are publicly available at (http://www.ml4aad.org/algorithm-
analysis/epms/ (accessed on 10 June 2022)). Additionally, these surrogate scenarios can
substantially speed up configurators, and they facilitate the comparison and evaluation of
the performance of algorithm configuration methods.

Anastacio et al. [124] claimed that default parameter settings of optimization algo-
rithms involve important information because default parameter values are commonly
chosen based on deep insights into the algorithm controlled by the parameters, and they
can be used in parameter tuning. They compared state-of-the-art configuration methods
with and without access to meaningful default parameter vectors to explore the impact
of the default configuration on these configuration methods. Their first results showed
that widely used automated algorithm configuration methods moderately use the infor-
mation produced by default parameter settings. Although SMAC rarely benefits from
good defaults, default values are very important for irace. Secondly, they studied whether
the configuration process could benefit from the information provided in the default by
reducing the range of the parameters. They suggested two simple methods, which are
guided by default values, for reducing the ranges of the target algorithm’s parameters.
They improved the performance of automatic configuration methods by decreasing the
range of possible values and, thus, the size of the search space. In particular, their reduction
techniques increase the efficacy of SMAC for 15 out of the 20 configuration scenarios, that
of GGA++ for 7 out of the 9 scenarios, and that of irace for a scenario on which they
previously obtained only minor improvements. They also compared their results with the
recently suggested warm-starting SMAC [125] and they concluded that default-guided
search space reduction provides similar and complementary benefits. Additionally, this
method can be implemented in a wider range of automatic configuration methods in
contrast to warm-starting.

Eggensperger et al. [126] discussed the pitfalls that have been encountered in algorithm
configuration experiments (such as over tuning) and suggested the best ways to discard
these pitfalls by developing a tool called GenericWrapper4AC (available at https://github.
com/automl/ GenericWrapper4AC (accessed on 10 June 2022)). This package provides
an interface between algorithm configuration procedures and target algorithms to obtain
reliable, reproducible, and robust algorithm configuration experiments. At the end of their
study, they gave general recommendations for effective configuration.

In Franzin et al. [127], the authors studied the effect of transformation of the pa-
rameter settings for parameter tuning. They considered five different transformations
of a single parameter and examined their effects under various configuration budgets.
They demonstrated that it is much more important when the configuration budget is low.
Additionally, they also showed how a wrong transformation can be detrimental to the
configuration process.

Algorithm configuration methods themselves are based on many heuristics, and this
leads to a deficiency of theoretical guarantees. Recently, Kleinberg et al. [128] focused on
this problem and developed a general-purpose configuration optimizer called Structured
Procrastination, with guarantees of close to the optimal algorithm configuration within a

http://www.ml4aad.org/algorithm-analysis/epms/
http://www.ml4aad.org/algorithm-analysis/epms/
https://github.com/automl/
https://github.com/automl/
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logarithmic factor of the optimal runtime in a worst-case sense. Moreover, they demon-
strated that the gap between the worst-case runtimes of the existing configurators (SMAC,
ROAR, ParamILS, GGA, irace) and their solution can be large. The main contribution
of their work is that it comes with theoretical guarantees (lower and upper bounds on
the runtime), but no empirical illustration is provided. In [129,130], they proposed a sim-
pler method (LEAPSANDBOUNDS) that improves on [128] by finding an approximately
optimal configuration with better runtime guarantees on a broader class of problems.

In common, the performance of algorithm configuration methods depends on the
definition of parameter search space [131], but Evoca [132] (which is a meta evolutionary
algorithm) has demonstrated that it is not sensitive to the parameter’s search space defini-
tion. Montero and Riff [110] suggested an efficient collaborative approach that associates
the tuning process with a parameter search space definition process and so combines Evoca
with I-Race and ParamILS.

Developed automated parameter configuration methods (ParamILS, GGA, SMAC,
and irace are the most popular ones) have their own parameters that affect their perfor-
mance, and their default values are set manually by their developers. Dang et al. [133]
suggested a meta-tuning process and tested this suggested method on the irace algorithm
configuration method. Experimental results confirmed the importance of those parameters
and also revealed the complex interactions between them. Results also demonstrated
that irace default settings are significantly improved with a confidence level of 99%. In
Dang et al. [134], they extended the study of irace on several aspects (such as surrogate
models used) and they configured 29 important parameters of the SMAC configurator.

5. Concluding Remarks

Although automatic algorithm configuration techniques have been developed and
used for more than a decade, an effective solution to the parameter tuning problem of
highly-parameterized algorithms and commercial solvers has recently become possible.
This success is thanks to methodological advances in recent configuration procedures. We
anticipate that the algorithm configuration topic will be crucial for the development and im-
plementation of metaheuristics and will also be extensively used in industry and academia.

This topic is an abundant research domain, and there are many questions that should
be researched and there are open directions for the future, such as:

• An additional effort is essential to reduce the computational cost of the tuning process.
Developing different performance evaluation techniques and using efficient sampling
methods in the initial phase of the tuning process will facilitate achieving this goal.

• With the fact that different configuration procedures can be successful for various
types of algorithm configuration problems, it is still unclear which algorithm con-
figuration method should be chosen for a specific algorithm configuration scenario.
Montero et al. [12] suggested developing an automatic selection strategy based on the
target algorithm and target problem.

• Additionally, although the open-source codes of these automatic configuration meth-
ods are proposed, they require practitioners to have satisfactory programming knowl-
edge. A well-documented and easily-available toolbox, allowing integration of newly
developed algorithm configuration techniques, is also an important requirement for
end-users and practitioners. There are some toolboxes (such as irace and SPOT) out
there, but their feature richness, documentation, and usability could be improved.

• Studies on developing benchmark libraries (such as AClib), which also enable the
integration of tuning methods, will help the extension of empirical studies in this area.

Until now, a large collection of independent configuration procedures were suggested
and summarized in our paper. However, it is expected that algorithm configuration
methods will be improved in a more structured research area [135]. We anticipate that this
study will be a guide for understanding the general perspective of the studies in this area.

As a final point, in this paper we provided a short introduction to the framework of
the algorithm configuration problem, and also provided a survey about offline algorithm
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configuration approaches and related works with these methods. We used a modified
classification of tuning methods based on the structure of configuration methods, such as
model-free tuning methods, model-based tuning methods, DOE-based tuning methods,
and racing methods. After explaining the logic of these methods, we also argued about
their main advantages and disadvantages to help researchers or practitioners select the best
method for their specific problem. Additionally, then, we mentioned comparative studies
of these methods, related research topics with the algorithm configuration problem, and
other studies that consider different aspects of this problem. We provided a comprehensive
review of automatic algorithm configuration methods for researchers or practitioners.
Moreover, some recommendations and possible future directions for this topic are provided
as a conclusion.
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