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Abstract: This research presents a new method based on a combined temporal convolutional neural
network and long-short term memory neural network for the real-time assessment of short-term
voltage stability to keep the electric grid in a secure state. The assessment includes both the voltage
instability (stable state or unstable state) and the fault-induced delayed voltage recovery phenomenon
subjected to disturbance. The trained model uses the time series post-disturbance bus voltage
trajectories as the input in order to predict the stability state of the power system in a computationally
efficient manner. The proposed method also utilizes a transfer learning approach that acclimates to
the pre-trained model using only a few labeled samples, which assesses voltage instability under
unseen network topology change conditions. Finally, the performance evaluated on the IEEE 9 Bus
and New England 39 Bus test systems shows that the proposed method gives superior accuracy with
higher efficacy and thus is suitable for online application.

Keywords: fault-induced delayed voltage recovery; long short-term memory; observation time
window; short-term voltage stability; temporal convolutional neural network; transfer learning

1. Introduction

Short-term voltage stability (STVS) is one of the major constraints that must be con-
sidered in order to keep today’s power supply safe and reliable. The ability of the power
system to maintain the steady equilibrium state of its bus voltage subjected to large dis-
turbance within a short period is termed as STVS. The time frame of interest for STVS is
about only a few seconds subjected to large disturbance [1]. Short-term voltage instability
is caused by the dynamics of induction motor load, electronically controlled load, HVDC
link power regulation, and inverter-interfaced renewable generators [2,3]. In recent times,
there has been a huge interest in understanding the impact of integration of different re-
newable energy resources (RESs) such as photovoltaic generation (PVG) and wind turbine
generation (WTG) on different aspects of power systems such as small-signal, transient,
and voltage stability [4–7]. The integration of RESs affects the dynamics of power systems
and has a detrimental impact on the STVS of the power system. Short-term voltage instabil-
ity causes catastrophic power system outages all around the world [8,9]. The online STVS
assessment and its accompanying preventive strategy are effective countermeasures against
short-term voltage instability in the post-disturbance state [2]. Thus, this work focuses
on earlier assessment of STVS considering the impact of RESs so that the power system
operator can make a quick decision to ensure the overall stability of the power system.

The goal of the STVS assessment is to look into the dynamic voltage performance sub-
ject to large disturbance. The problems related to STVS are the fast voltage collapse,
sustained low voltage without recovery, and fault-induced delayed voltage recovery
(FIDVR) [10]. Furthermore, an FIDVR event many lead to the tripping of the under-voltage

Appl. Sci. 2021, 12, 6333. https://doi.org/10.3390/app12136333 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136333
https://doi.org/10.3390/app12136333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3104-2310
https://orcid.org/0000-0003-3563-0355
https://doi.org/10.3390/app12136333
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136333?type=check_update&version=1


Appl. Sci. 2021, 12, 6333 2 of 22

load-shedding devices and tripping of wind turbines due to low voltage ride-through capa-
bility in a wind-integrated system. The traditional power system model-based approach of
STVS assessment using time domain simulation (TDS) increases the computational time,
making it unsuitable for online application. However, the real-time data of bus voltage
samples can be available at the control centers using a wide area measurement system
(WAMS) and phasor measurement units (PMUs), making the real-time STVS assessment
feasible [11,12]. Recently, most of the research concentrates on the traditional machine
learning algorithms for online assessment of STVS assessment using the voltage samples
available using PMUs [10,13,14]. These algorithms, on the other hand, neglect the spec-
tral and temporal structure of the data, omitting some of the most important features
throughout the learning process, resulting in skewed outcomes.

Deep learning algorithms have recently been used to learn high-level features from
data, alleviating the need for domain expertise, and a separate feature extraction technique,
which are required in a traditional machine learning approach. In addition, deep learning
algorithms works well on prediction the time series data compared to machine learning
algorithms [15,16]. Furthermore, deep learning algorithms such as the convolutional neural
network (CNN), the long short-term memory (LSTM) neural network, and the combined
graph convolutional network and long short-term memory (GCN-LSTM) have been devel-
oped to address the problem related to short-term voltage instability [17–19]. Apart from
this, the deep learning algorithms such as a bi-directional gated recurrent unit with an
attention mechanism [20] and spatial–temporal graph convolutional network (STGCN) [21]
which can learn temporal features and spatial–temporal features, respectively, from the time
series data are used to predict the short-term voltage instability state of the power system.
However, these studies are confined to predicting the voltage instability state: stable or
unstable. They continue to overlook the possibility of an FIDVR phenomena that still
exists on power systems subjected to disturbance. As a result, a complete method capable
of assessing both the voltage instability mode and the FIDVR phenomenon concurrently
within the short observation time window (OTW) is required.

Conventionally, machine learning algorithms and deep learning algorithms for the
assessment of voltage stability require the manual labeling of a large number of data
samples, which is computationally expensive and time consuming [17–19,22,23]. When the
network topology changes, most of the machine learning and deep learning algorithms
fail in prediction, requiring frequent model updates with large data sets, which is time
consuming and infeasible for online application [24,25]. Recently, many research studies
have been conducted based on transfer learning (TL) where the same model trained to
solve one particular task can be utilized to solve another but related task with few labeled
samples [26–29]. However, none of the studies in the literature found so far have utilized
the deep learning-based transfer learning concept for the assessment of STVS for the
N-1 contingency cases using a single learning model. As a result, developing an STVS
assessment approach that can acclimate to the new environment using a small set of labeled
data sample is critical.

The objective of this research is to resolve the research gaps mentioned above. It is an
extension of our previous study [30] which further proposes the combined temporal convo-
lutional neural network and long short-term memory neural network for the assessment
of STVS considering the impact of RESs. The following are the primary contributions of
this work:

1. Proposal of an approach for real-time STVS assessment, including both voltage in-
stability and FIDVR pheomenon based on a deep learning algorithm combining a
temporal convolutional neural network and a long short-term memory neural network
(TempCNN-LSTM). The proposed TempCNN-LSTM model can extract spatiotempo-
ral STVS features from the data samples available through PMUs.

2. The performance of the proposed approach in assessing STVS is compared with other
deep learning models and conventional machine learning models under different
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conditions such as PMUs measurement error, missing PMUs data, and different
observation time windows.

3. The proposed approach also uses a transfer learning technique for the assessment
of STVS that can adapt to the new environment (N-1 contingency case) with a few
labeled data samples.

Section 2 describes the theoretical background about the procedure of STVS assessment.
The detailed explanation about the proposed TempCNN-LSTM model is given in Section 3.
Subsequently, results and discussion for different case studies are presented in Section 4.
Finally, the conclusions of this study are summarized in Section 5.

2. Methodology

A general approach of STVS assessment is shown in Figure 1. The training data set
is formed by running TDS using power system simulation software. The deep learning
model is trained using the samples available through TDS. The trained deep learning
model is implemented in the control center for online application. The WAMS transfers the
measured data available from PMUs at the remote location to the power system control
centers. Then, the trained deep learning model at the control center predicts the STVS state
of the power system based on the real-time data available from PMUs. Finally, the operator
at the control station can monitor the STVS stability state subjected to large disturbance
and make an appropriate control decision.
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Figure 1. A general approach of real-time STVS assessment.
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2.1. Short-Term Voltage Stability Assessment

Figure 2 depicts the structure for implementing the deep learning-based method
for STVS assessment. It consists of three stages: database generation, offline training,
and online implementation. To represent the possible operating condition of the practical
power system, different simulation conditions are run, and the data set is generated.
The input are the post-disturbance bus voltage trajectories obtained for the particular
operating condition obtained within the OTW. The output are the labeled samples generated
with the bus voltage trajectories within the simulation period obtained using TDS. Here,
the deep learning model (TempCNN-LSTM) is trained to map the input–output relationship
between bus voltage trajectories and the corresponding STVS state of the power system
subjected to disturbance. The overall process of the proposed method for the real-time STVS
is shown in Figure 3. Finally, at the online implementation stage, the trained deep learning
model at the control station predicts the STVS (stable, stable-with FIDVR phenomenon, and
unstable) state based on the available samples of post-fault bus voltage trajectories from
PMUs without the prior knowledge of which fault occurred in the power system. As a
result, preventive measures can be implemented quickly while maintaining the system’s
overall stability.
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generation)

• Simulation time 
• Power Flow
• Fault type
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• Fault Location
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Figure 2. Proposed framework for STVS assessment.

Figure 3. Proposed method for real-time STVS.
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In this study, apart from the TempCNN-LSTM model, other deep learning algorithms
such as TempCNN and LSTM and machine learning algorithms such as support vector
machine (SVM) and decision tree (DT) are used for model formation. In addition, for the
N-1 contingency case, a few labeled data samples are generated to update the trained
model in case of a network topology change condition using the transfer learning approach
as shown in Figure 2 . Finally, the re-trained model is then implemented at the control
center to predict the STVS status of the power system.

2.2. Short-Term Voltage Stability Assessment along with Fault-Induced Delayed Voltage Recovery

A large number of data samples are generated by running the comprehensive TDS for
a broad range of loading situations, fault locations, and different load dynamics to reflect
the practical operating conditions of the power system. The post-fault voltage trajectories
samples are obtained for different operating scenarios, and the corresponding labeled
samples for each STVS category are evaluated. The database structure is shown in the
Table 1. Here, N denotes the number of samples, Nb represents the number of buses in
a power system, Vt1 represents the post-fault voltage magnitude at fault clearing time
tc, and Vt denotes the post-fault voltage magnitude at the end of the simulation period
T. In this study, the simulation time of 5 s is taken for the analysis of STVS assessment.
In a database, the input are the post-fault voltage trajectories of each bus over the OTW
and the output are the STVS state (stable, unstable, and stable-with FIDVR phenomenon).
The FIDVR phenomenon occurs when system voltages remain abnormally low for several
seconds after a fault is cleared. The primary cause of these incidents is due to the installation
of induction motor loads, which causes a high reactive power demand in the post-fault
phase [31]. The FIDVR phenomena is assessed in this study by calculating the transient
voltage severity index (TVSI) as [32]:

TVSI =
∑Nb

k=1 ∑To
t=tcr

TVDIk,t

Nb × (To − tcr)
(1)

where Nb is the number of buses in the test system, To is the voltage recovery time frame,
and tcr is the fault clearing time. The transient voltage deviation index (TVDI) is calculated
as follows [32]:

TVDIk,t =

{ |Vk,t−Vk,0|
Vk,0

, |Vk,t−Vk,0|
Vk,0

≥ α∀t ∈ [tcr, To]

0, otherwise
(2)

where Vk,t at time t and Vk,0 are the post-fault and the pre-fault voltage magnitude of bus
k, respectively. The threshold of permissible voltage deviation magnitude is α = 90% [32],
which is frequently employed in industrial criteria. Here, TVSI is used to evaluate the
overall system’s voltage stability; a lower value indicates that the system is less susceptible
to the FIDVR phenomena. Figure 4 shows a thorough illustration of the STVS phenomena
and the labeling process for each sample. If all of the bus voltage trajectories are maintained
at or above the pre-fault voltage for a settling time more than 3 s during the full simulation
time, the samples are designated as stable [18,33,34]. On the other hand, samples are classi-
fied as unstable if the bus voltage trajectories fall below the pre-fault voltage magnitude.
For example, if all the bus voltage trajectories of the power system are maintained above
0.9 p.u. at the settling time and over the simulation period, then the power system is in the
STVS stable state. If all the bus voltage trajectories fall below 0.9 p.u. or a sustained low
voltage without recovery over the simulation interval has occurred, then the power system
is in the STVS unstable state. Furthermore, the STVS stable samples are classified into two
labels, i.e, stable and stable-with FIDVR phenomenon. The system prone to FIDVR phe-
nomenon is evaluated based on the TVSI. If the TVSI value is greater than 4 [32], it means
that the power system is in the state of FIDVR phenomenon subjected to the disturbance.
Then, the stable samples are labeled as stable-with FIDVR phenomenon. Similarly, all the
samples at different operating scenarios are classified as unstable, stable, and stable-with
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FIDVR phenomenon, and we labeled each category as 0, 1 and 2, respectively. Overall, all of
the samples are represented by their assigned labels, resulting in a multi-class classification
problem for STVS evaluation.
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Figure 4. STVS evaluation and labeling process.

Table 1. STVS assessment database structure.

No. of Samples Bus ID
Input Data (p.u.)

Output (STVS Class)
Vt1 Vt2 . . . Vt

1
1 0.45 0.47 . . . 0.65
. . . . . . . . . . . . . . . 0 (Unstable)
Nb 0.67 0.71 . . . 0.87

2
1 0.78 0.81 . . . 0.97
. . . . . . . . . . . . . . . 1 (Stable)
Nb 0.82 0.87 . . . 0.98

. . . . . . . . . . . . . . . . . . . . .

N
1 0.72 0.75 . . . 0.96
. . . . . . . . . . . . . . . 2 (Stable-with FIDVR)
Nb 0.62 0.68 . . . 0.97
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3. Framework of Proposed Temporal Convolutional Neural Network-Long Short-Term
Memeory Neural Network

The deep learning model, TempCNN-LSTM, is used for the time series classifica-
tion (TSC) task. On a data set D, the task of a TSC is to show the relationship between
the inputs and the output labels provided by the probability distribution. In a data set
D = ((V1, Y1), (V2, Y2), . . . , (VN , YN)) with N number of samples, it is a set of pairs (VNb , Yk),
where VNb represents the time series voltage trajectories of Nb number of power system
buses throughout the OTW length Tl and Yk represents the system’s STVS state, with Yk
matching to a one-hot label vector. The framework of the proposed TempCNN-LSTM
model for the assessment of STVS is shown in Figure 5. To begin, all the PMUs measure-
ment data are collected and pre-processed to reveal the spatiotemporal patterns hidden
within the data. The architecture of proposed framework of the TempCNN-LSTM module
consists of two deep learning models: the TempCNN and LSTM modules. The TempCNN
module extracts and learns spatial information from the data, while the LSTM module
handles temporal features. Here, a time-distribute operation is used to combine these mod-
els. Then, the TempCNN-LSTM module predicts the existing STVS of the power system
after the disturbance. Even with a short period of post-fault voltage trajectories data, the
proposed module can anticipate the future condition of a power system. Eventually, a
prompt decision can be made to retain the stability state of the system. The combination
of deep learning modules TempCNN and LSTM modules are discussed briefly in the
preceding section.
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TempCNN Module

TempCNN Module
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Operator
Monitor 
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Figure 5. Framework of proposed TempCNN-LSTM model.

3.1. Temporal Convolutional Neural Network

The TempCNN architecture composed of the input layer, two convolution layers,
one pooling layer, fully connected layer, and an output layer, as shown in Figure 6, is
implemented for TSC task. The spatial and temporal patterns in a raw time series data
can be extracted using TempCNN implementing one-dimensional (1-D) filter providing
spectro-temporal guidance [15]. When compared to other traditional classification methods,
the amount of pre-processing required is significantly less for TempCNN. The following
equation represents a general way of applying convolution for the center time stamp t [35]:

Ht = g(w×Vt− l
2 :t+ l

2
+ bo), ∀t ∈ [1, T] (3)

where H denotes the result of convolution on a time series V of length T, w denotes the
weights of filter with length l, and g is the non-linear activation function. Here, rectified
linear unit (ReLU) function is used for non-linear mapping, and the same convolutional
filter value is used for each time stamp to extract the prominent features from the time
series data. The pooling layer is used for down sampling the length of input time series
data. After the convolution and pooling operation, the original time series is represented
by the series of feature maps in a fully connected layer represented by the vectorization
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layer in Figure 6. Finally, the extracted features from the fully connected layers are input to
the LSTM module in a time-distributed manner.

Channels

  Input 
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Convolution 
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Layer

Vectorization 
Layer

1

Time

LSTM
Module

Channels

  Input 
Layer

Convolution 
Layer

Pooling 
Layer

Vectorization 
Layer

1

Time

LSTM
Module

Figure 6. Temporal convolutional neural network architecture.

3.2. Long Short-Term Memory Neural Network

An LSTM is adapted for processing the sequential input data. Unlike the recurrent
neural network (RNN), LSTM can capture long-term dependencies in time series data with
the help of an internal state memory cell [36]. This makes the network learn features of
significance. The overall architecture of the LSTM module is shown in Figure 7, which
consists of an input gate, forget gate, candidate gate and the output gate. The detail
mechanism and operation of the LSTM block can be found in [16,37]. For time series
data, an LSTM network may be created by constructing a sequence of many LSTM blocks.
The high temporal correlation of the extracted features is handled by the LSTM module.
The output vector from the preceding TempCNN module is the input to the LSTM module.
In this scenario, the time-distributed technique is employed to reuse the same TempCNN
module throughout all input slices. The LSTM layer is used to analyze the input time
sequence, learning an implicit correlation between each temporal slice. Furthermore,
the output layer has k neurons, corresponding to k class labels. The output layer, which
consists of the SoftMax operation, is completely linked to the feature layer. It takes the
input time series’ data of voltage trajectories and generates a probability distribution across
the data set’s class label. Finally, to train and learn the parameters of the TempCNN-LSTM
model, a feed-forward pass followed by backpropagation is applied to minimize the cost
function. Here, for a multi-class classification problem, a categorical cross-entropy loss
function is used. The Adaptive Moment Estimation (Adam) optimization algorithm [38] is
used for training the data set and updating the weights parameters.
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Figure 7. LSTM architecture.

3.3. Transfer Learning

In this subsection, the transfer learning approach as shown in Figure 8 is implemented
to predict the STVS state in case of a network topology change condition. In transfer
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learning, the same model trained to solve the STVS state for the source domain (base
case) can be utilized to solve the similar task in the target domain (N-1 contingency case)
with few labeled data samples. Here, the deep learning model is trained for the base
case transfer knowledge to predict the STVS state in case of a network topology change
condition, minimizing the categorical cross-entropy loss function. This approach eliminates
the need for a large amount of data samples, which are required for training a deep learning
model in case of a network topology change condition. Finally, the re-trained deep learning
model at the control center can predict the STVS state of the power system.

Figure 8. Transfer learning process.

3.4. Performance Evaluation

Accuracy is used commonly to evaluate the performance of the deep learning and
machine learning models for the assessment of STVS [10,14,18]. It is calculated from the
confusion matrix in Table 2 using Equation (4).

Table 2. Confusion matrix.

Reference Class
Predicted Class

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Accuracy(%) =
TP + TN

TP + FN + FP + TN
× 100 (4)

Precision(%) =
TP

TP + FP
× 100 (5)

Recall(%) =
TP

TP + FN
× 100 (6)

F1-score = 2× Precision× Recall
Precision + Recall

(7)

For uneven distribution of the class labels, the classification accuracy alone might be
deceiving. As a result, the confusion matrix as shown in Table 2, which may summarize
performance with an unequal class distribution, is also evaluated in this research. For im-
balance classification, precision, recall and F1-score measures provide an alternative to
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classification accuracy. The precision indicates how many positive class predictions are in
the positive class. The recall measures how many positive class predictions were made
out of all positive class predictions in the data set. Finally, the F1-score provides a single
score that balances both the concerns of precision and recall in one number. The greater the
F1-score, the better the classifier’s performance. TP, TN, FP, and FN with regard to class
instability can be described as follows: the number of samples properly categorized as
unstable is TP; the number of samples correctly classified as stable and stable-with FIDVR
is TN; the number of samples misclassified as stable and stable-with FIDVR is FN; and
the number of samples mistakenly classified as unstable is FP. Furthermore, the perfor-
mances of these models were compared using the precision Equation (5), recall Equation (6),
and F1-score Equation (7).

4. Simulation Result and Discussion
4.1. Test System

This study uses IEEE 9 Bus and New England 39 Bus test systems, as shown in
Figures 9 and 10, respectively, for the STVS assessment. The IEEE 9 Bus test system consists
of three generators, three loads, six lines, and three transformers. The detailed parameters
of this test system can be found in [39]. The New England 39 Bus test system consists of
10 generators, 19 loads, 34 lines, and 12 transformers. The detailed parameters of this test
system can be found in [40]. The nations that are leading the way in renewable energy
typically have a penetration rate of 20–30% [41]. For this reason, the RESs considered in this
study are PVG and WTG, which are assumed to supply 25% of the total electrical demand
of the test system. The data and model for RESs are taken from [42,43]. For the IEEE 9 Bus
test system, each solar and wind farm of 39 MVA are connected to bus 8. Similarly, for the
New England 39 Bus test system, the size of the solar and wind farm at bus 6, 15 and 18
are 297, 263, and 202 MVA, respectively. This study uses the built-in wind farm model
and PVG model available in DIgSILENT power factory software [44]. TDS in DIgSILENT
power factory software were used to create the data set. To examine the performance of
various deep learning and machine learning models, the Keras module with TensorFlow
backend in Python is utilized. All the calculations are completed on a PC with an AMD
Ryzen 5 2600 Six-Core processor running at 3.40 GHz and 16 GB of RAM.

G2

2

G3

G1

WTG 

PVG 

4 6 9 3
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Figure 9. IEEE 9 Bus System.
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Figure 10. New England 39 Bus System.

4.2. Data Generation

To gather voltage magnitude data, the TDS is conducted in IEEE 9 Bus and New
England 39 Bus test systems utilizing DIgSILENT power factory software, which considers
multiple contingencies under various operating settings. The simulation should capture all
the system’s behavior and as many different operating situations as feasible to represent
the practical operation condition of the power system. For this, the loading of each bus
is varied between 0.8 and 1.2 of its power rating. Similarly, to simulate the uncertainty
of RESs, the power generation from the solar and wind farm is varied based on their
probability distributions as given in [42,43]. The complex load model in DIgSILENT power
factory software, which represents the combination of various load component (static and
dynamic loads) is considered for simulation. Here, the complex load model is adapted to
represent the dynamics of induction motor loads, which is the primary driving factor for
the short-term voltage instability in a power system. The three phase short-circuit faults are
assumed to occur at each transmission line. The faults last for 0.1 s and are cleared without
the loss of power system elements in this study. The configuration of the data set generation
that can resemble the overall operation condition of the power system is outlined in Table 3.
For each operating scenario, the simulation is run for 5 s to correctly label the STVS state
of the power system. For the IEEE 9 Bus system, a total of 19,450 labeled samples are
generated under this condition. Similarly, 20,500 labeled samples are generated for the
New England 39 Bus system. To monitor the STVS status of the system, all post-fault
voltage samples of time 0.25 s are retrieved from voltage trajectories that resemble the OTW.
In this study, the OTW length of 0.25 s is assumed to resemble the longest possible time
for the protective device (such as the under-voltage load shedding device) to respond to
the post-disturbance condition. The number of sampling points is calculated as the ratio of
OTW length to the sampling per time step. Here, the sampling time of 0.01 s is taken, so in
total, there are 25 sampling points which resembles the post-fault voltage magnitude at
each time step. Therefore, the raw data are an input matrix of size 25× 9 for each sample
for the IEEE 9 Bus and 25× 39 for the New England 39 Bus systems. Each sample has
25 input time series of voltage magnitude and nine variables for the IEEE 9 Bus test system.
Similarly, the samples in the New England 39 Bus system have 25 input time series of



Appl. Sci. 2021, 12, 6333 12 of 22

voltage trajectories and 39 variables representing each bus. Finally, 80% of the data set was
randomly selected for training, while 20% was used for validation and testing in this study.

Table 3. Configuration of data set generation on test systems.

Load level ±20% of initial loading
Fault lines All the transmission lines
Load model Complex load model in DIgSILENT
Load dynamics 0–80% of induction motor load
Fault locations 0–80% of all fault lines
Fault type Three-phase bolted fault
Fault duration 0.1 s
Simulation time 5 s
Length of OTW 0.25 s of post fault voltage trajectories
Sampling per time step 0.01 s

4.3. Analysis of Case Studies
4.3.1. Case I: Base Case

The proposed TempCNN-LSTM is used in this case study to categorize all the phe-
nomena that are present in the STVS assessment. The performance of the proposed model
is then compared with other deep learning and conventional machine learning models
for both the test systems. According to the data generation by TDS, the training data set
for the IEEE 9 Bus test system, there are 19,450 labeled samples: 3514 unstable as class 0,
13,401 stable as class 1, and 2535 stable-with FIDVR as class 2. Similarly, for the training
data set for the New England 39 Bus test system, there are 20,500 labeled samples: 4062
unstable as class 0, 12,207 stable as class 1, and 4231 stable-with FIDVR as class 2. All
the analysis in this case is conducted with the assessment time of 0.25 s. For the IEEE
9 Bus system, the TempCNN-LSTM model consists of two convolution layers each with
64 units. The TempCNN-LSTM model for New England 39 Bus, on the other hand, is made
up of two convolution layers, each with 128 units. For both systems, the filter length of
each convolutional layer is set to 3. The learned features are flattened into one long vector
after the convolution step. It then passes through an LSTM layer in a time-distributed
manner. The LSTM model consists of a single layer with 64 and 128 hidden units for the
IEEE 9 Bus system and New England 39 Bus system, respectively, one dense layer and an
output layer classify the STVS state of the system. In each layer of both systems’ models,
the ReLU activation function is used for non-linear mapping. The SoftMax activation in
the output layer gives the probability distribution of each class label, and the class with
the highest probability is selected for the particular input samples. The overall model
configurations for both test systems are shown in Figure 11. The parameter setting for
training the proposed TempCNN-LSTM model is shown in Table 4. The units in the convo-
lutional layers, filter size, hidden units in the LSTM layer, and dense layer are determined
using hyper-parameter optimization using the grid search technique using five-fold cross-
validation. Table 5 shows the performance of the proposed TempCNN-LSTM model for the
prediction of the STVS state of the system in terms of average accuracy, precision, recall,
F1-score, training time and testing time. The results show that the proposed model can
predict the STVS state with the average accuracy of 98.66% and 96.95% for the IEEE 9
Bus system and New England 39 Bus system, respectively, for a multi-class classification
problem. The diagonal of the confusion matrix of the test results, as shown in Figure 12,
includes the correctly classified samples of each label for both test systems. In this study,
the performance of the proposed model is compared with other popular deep learning and
machine learning models such as TempCNN, LSTM, SVM and DT. The result in Table 5
shows that the proposed model outperformed significantly for the multi-class classification
task required for the assessment of STVS. Apart from classification accuracy, the proposed
model outperformed other models with precision of 98.74%, recall of 98.66%, and F1-score
of 98.68% for the IEEE 9 Bus test system with an uneven class distribution of test samples of
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each category. Similarly, for the New England 39 Bus test system, the proposed model gives
a better result with precision of 97.01%, recall of 96.95%, and F1-score 96.97% compared to
other classifiers. The results show that the performances of TempCNN and LSTM classifiers
are comparable with the proposed model having a marginal difference of accuracy of less
than 1%, while the SVM and DT classifiers performed poorly with accuracy less than 93%.
The results show that the DT classifier requires less computational time for both the training
and testing data set compared to other classifiers for both the test systems under study.
Even though the training time required for the proposed model is high, the data processing
time for the test samples is quick enough to meet the criterion for online application.

Table 4. Parameter settings of the proposed TempCNN-LSTM model on test systems.

Parameters Values

Optimizer Adam
Exponential decay rate (β1) 0.9
Exponential decay rate (β2) 0.999
Constant (ε) 10−7

Learning rate 0.001
Batch size 32
Number of epochs 200
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Figure 11. Architecture of the proposed TempCNN-LSTM model employed on test systems.

This approach requires the manual labeling of a large number of data samples, which
is time consuming in practice and may give a biased result with unknown topology
change conditions.
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IEEE 9 Bus test system New England 39 Bus test system

Figure 12. Confusion matrix of test results for the proposed model on test systems.

Table 5. Comparison of performance of proposed model with other deep learning and machine
learning models.

Test System Model
Performance Evaluation

Accuracy Precision Recall F1-Score Training Time Testing Time

IEEE 9 Bus

Proposed 98.66% 98.74% 98.66% 98.68% 8 min 23 s 406 ms
TempCNN 97.87% 97.86% 97.87% 97.85% 5 min 59 s 359 ms
LSTM 97.86% 97.85% 97.86% 97.81% 19 min 59 s 915 ms
SVM 92.87% 95.95% 92.87% 93.73% 1 min 9 s 1.2 s
DT 91.84% 95.42% 91.84% 92.87% 56 s 4.99 ms

New England 39 Bus

Proposed 96.95% 97.01% 96.95% 96.97% 24 min 42 s 658 ms
TempCNN 96.44% 96.55% 96.44% 96.47% 9 min 11 s 325 ms
LSTM 96.37% 96.60% 96.36% 96.42% 22 min 54 s 714 ms
SVM 92.69% 96.82% 92.69% 92.65% 3 min 44 s 1.27 s
DT 91.36% 92.28% 91.36% 91.48% 3 min 3 s 6 ms

4.3.2. Case II: PMUs Measurement Error Case

The data obtained using PMUs in the real world may contain noise which is normally
assumed to be white and Gaussian in nature and thus may lead to taking incorrect action
if not considered [45]. The IEEE standard [46] recommends that the total vector error
should be less than 1% for the correct functioning of PMUs. This scenario analyzes the
impact of the measurement error from PMUs on the prediction capability of the proposed
model. The performance of other deep learning models and machine learning models is
also analyzed here in terms of test accuracy, precision, recall, and F1-score subjected to
the PMUs measurement error. The random noise following the normal distribution with
mean zero and the standard deviation of 1% [47] is added to the original database analyzed
under the base case condition. The results illustrated in Table 6 after the addition of noise
in both the training and test data sets show that the performance of the proposed model
is resilient to the measurement error for both the test systems under study as compared
to Table 5. The result shows that the proposed model can classify the STVS state of the
power system with the accuracy of 97.93%, and 96.66% for the IEEE 9 Bus test system and
New England 39 Bus test system, respectively. It is also found that the performance of all
the classifiers decreases with the addition of PMUs noise, with the DT classifier having
inferior performance compared to other classifiers in terms of accuracy, precision, recall,
and F1-score.

In a practical power system, the PMUs may encounter more severe noise and may
lead to incorrect STVS assessment. However, a similar approach as described in this section
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can be implemented to evaluate the performance of these models in case of severe PMUs
measurement error.

Table 6. Performance evaluation with PMUs measurement error on test systems.

Test System Model
Performance Evaluation

Accuracy Precision Recall F1-Score

IEEE 9 Bus

Proposed 97.93% 97.97% 97.93% 97.94%
TempCNN 97.29% 97.48% 97.29% 97.35%
LSTM 97.19% 97.49% 98.18% 97.26%
SVM 92.75% 95.93% 92.75% 93.64%
DT 88.71% 93.89% 88.71% 90.38%

New England 39 Bus

Proposed 96.66% 96.65% 96.66% 96.65%
TempCNN 95.78% 95.84% 95.78% 95.76%
LSTM 95.02% 95.14% 95.03% 95.06%
SVM 92.48% 92.64% 92.48% 92.44%
DT 87.24% 88.53% 87.24% 87.48%

4.3.3. Case III: Missing PMUs Data Case

Most of the deep learning and machine learning models fail in prediction when
subjected to missing PMUs data, since they require a complete set of features input [48,49].
In a practical power system, the PMUs data become unavailable due to PMUs failure or
due to communication latency [50]. In this case, the robustness of different classification
models to missing PMUs data is analyzed for online application. To simulate the missing
PMUs data for online STVS assessment, a certain portion of the test data set within an
OTW is randomly set to NaN (not a number values). Furthermore, the missing bus voltage
measurements from PMUs are imputed using k nearest neighbor (kNN) algorithms [47].
Finally, the test set with newly imputed values are used for prediction of the STVS state of
the power system using pre-trained models. The STVS state is predicted using 10%, 20%,
30%, 40%, 50%, 60% and 70% of missing data in the test set. The result in Figure 13 shows
that there is less influence in the prediction capability of these models with missing PMUs
data. The proposed model is more tolerant of missing PMUs data, even when 50% of the
data are missing, with an accuracy of more than 97% for both test systems. With merely
imputed values using kNN, the missing data condition appears to have a lower impact
on the overall classifier performance. Evidently, TempCNN and the LSTM classifier still
provide the better accuracy up to 50% of missing data with a marginal difference, while the
SVM and DT classifiers’ prediction accuracy is significantly low compared to the proposed
model for both the test systems.

However, our work is confined to the assumption that the full observability of a grid
is available, and the missing PMUs data can be simply imputed using kNN for online
application. In an actual power system, the network topology may change due to fault,
and PMUs data may not be available from some buses. In this context, the ensemble-
based learning strategy presented in [50] can be applied to handle the issue of network
topology changes.
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Figure 13. Performance with missing PMUs data on test systems.

4.3.4. Case IV: Impact of Assessment Time

In this scenario, the performance of the proposed model is evaluated under different
assessment times. The input data set is generated for different OTW lengths (0.15 s,
0.25 s and 0.35 s). Then, the performance of the proposed model is compared with other
deep learning-based time series classification models (TempCNN and LSTM) and machine
learning models (SVM and DT). The result of both the test systems in Figure 14 demonstrate
that as the OTW duration is increased, all the models’ performance accuracy improves,
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with TempCNN-LSTM having greater accuracy than the TempCNN, LSTM, SVM and DT
models. Increased assessment time results in more accurate STVS evaluations but less time
for remedial response and vice versa. Therefore, there is always a trade-off between the
assessment time and model performance accuracy. However, for an online application,
a reliable assessment time would be with acceptable accuracy. Specifically, if the acceptable
accuracy is assumed to be more than 98%, then for the IEEE 9 Bus system, the proposed
model can deliver the STVS status within the OTW of 0.25 s. However, for the New England
39 Bus system, the proposed model can deliver the STVS status reliably only for the OTW
of 0.35 s. Similarly, TempCNN and LSTM can provide STVS assessment only for the IEEE
9 Bus system with an OTW of 0.35 s, while for the New England 39 Bus test system, it
requires an OTW greater than 0.35 s.

Figure 14. Performance with different OTW lengths on test systems.
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In particular, if reliable accuracy is desired within a short assessment time, then the
trade-off solution for an appropriate setting of OTW can be obtained using optimization
techniques. However, similar approaches have been discussed in the literature [10], and it
is out of scope of our research.

4.3.5. Case V: Transfer Learning for N-1 Contingency Case

In this case, the performance of the proposed TempCNN-LSTM model to the unseen
network topology change condition is analyzed for online application using the transfer
learning approach. The unseen network condition can be the variation in load pattern,
generation, and system topology changes due to contingencies that are not included in
the data set during the training process. Here, we have used the N-1 contingency case to
represent the network topology change condition subjected to disturbance. For the IEEE 9
Bus system, the critical N-1 contingency is the outage of line 3 connected between bus 5
and 8, which has a maximum loading violation. In total, 260 labeled samples are generated
using the data generation configuration as in Table 3 for this test system. Similarly, for the
New England 39 Bus test system, the critical N-1 contingency condition is the outage of
generator 9 located at bus 38, which has a maximum impact for the loading violation at the
transformer connected between bus 6 and 31. The total of 340 labeled samples are generated
using the data generation configuration as in Table 3 for this test system. The prediction
result of the proposed model for the topology change condition is presented in Table 7. Here,
the classification accuracy of the pre-trained model for the unseen N-1 contingency case is
significantly low without transfer learning. However, it can be seen from the table that the
same model using transfer learning can predict the STVS state for the N-1 contingency case
with the accuracy of 98.08% and 97.06% for the IEEE 9 Bus and New England 39 Bus test
systems, respectively, with few numbers of labeled samples. In addition, for the uneven
distribution of the class labels in the test samples, the proposed model gives better results
with precision of 98.17%, recall of 98.08%, and F1-score of 97.78% for the IEEE 9 bus test
system and with precision of 97.16%, recall of 97.06%, and F1-score of 96.59% for the New
England 39 bus test system compared to other classifiers. Similarly, the performance of
TempCNN seems significantly better followed by LSTM, while SVM and DT have poor
performance for both the test systems using the transfer learning approach with few labeled
data samples for the N-1 contingency condition. The computational time required for both
the training and testing reduces significantly compared to Table 5 using the single deep
learning-based transfer learning method; thus, it is suitable for online application.

This case study has only considered a single N-1 contingency to show the application
of transfer learning for the unseen topology change condition with few labeled data samples.
However, if needed, the approach presented in this section can be simply expanded by
creating labeled data samples that account for additional contingencies such as the N-1-1
contingency case.

Table 7. Comparison of performance using proposed transfer learning method for N-1 contin-
gency case.

Model Parameter
IEEE 9 Bus New England 39 Bus

With TL Without TL With TL Without TL

Proposed

Accuracy 98.08% 66.35% 97.06% 58.82%
Precision 98.17% 76.92% 97.16% 69.13%

Recall 98.08% 61.54% 97.06% 58.82%
F1-Score 97.78% 53.15% 96.59% 45.38%

Re-Training Time 9.3 s - 27.2 s -
Testing Time 45.7 ms 59 ms 55 ms 57 ms
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Table 7. Cont.

Model Parameter
IEEE 9 Bus New England 39 Bus

With TL Without TL With TL Without TL

TempCNN

Accuracy 96.15% 76.92% 95.59% 63.73%
Precision 98.07% 87.23% 95.13% 72.66%

Recall 96.15% 76.92% 95.59% 63.72%
F1-Score 96.75% 74.69% 95.28% 56.16%

Re-Training Time 8.39 s - 9.53 s -
Testing Time 48.6 ms 71.5 ms 48 ms 142 ms

LSTM

Accuracy 96.15% 61.54% 94.12% 80.88%
Precision 96.15% 78.71% 94.34% 82.92%

Recall 96.15% 61.54% 94.12% 80.88%
F1-Score 96.15% 55.41% 93.65% 79.88%

Re-Training Time 18.1 s - 26.5 s -
Testing Time 52 ms 188 ms 54 ms 451 ms

SVM

Accuracy 94.23% 59.61% 92.64% 82.35%
Precision 88.84% 79.01% 87.19% 86.20%

Recall 94.23% 59.61% 92.06% 82.35%
F1-Score 91.44% 54.61% 89.83% 81.58%

Re-Training Time 740 ms - 3.54 s -
Testing Time 2 ms 14 ms 7 ms 71 ms

DT

Accuracy 92.31% 46.15% 92.65% 75.00%
Precision 97.98% 84.62% 92.70% 83.65%

Recall 92.31% 46.15% 92.65% 75.00%
F1-Score 95.06% 49.36% 92.57% 74.74%

Re-Training Time 1.41 s - 3.29 s -
Testing Time 1 ms 1 ms 1 ms 2 ms

5. Conclusions

This work proposes a method based on deep learning-based time series classification
algorithm TempCNN-LSTM for the online assessment of STVS of the power system with
RESs. The proposed method can classify the STVS state: stable or unstable or stable-
with FIDVR phenomenon using the post-fault voltage trajectories within a short OTW.
The findings of the study are summarized as follows:

• The performance of the proposed model evaluated in terms of classification accuracy
shows 98.66% accuracy for the IEEE 9 Bus test system and more than 96.95% accuracy
for the New England 39 Bus Test System with efficient computational time for the
online assessment of STVS.

• The proposed model shows the superior performance compared to other deep learning
models (TempCNN and LSTM) and conventional machine learning models (SVM and
DT). The performance of the proposed model in terms of classification accuracy, preci-
son, recall and F1-score is significantly high compared to other classification models.

• The proposed model is more tolerant to the PMUs measurement error/losses and thus
is suitable for online assessment of STVS.

• The accuracy of the proposed model under the variation of different assessment time
shows the superior performance compared to the existing state-of-art deep learning-
based time series classification models (TempCNN and LSTM) and machine learning
models (SVM and DT). Furthermore, for all these models, the accuracy increases with
the increase in the OTW length.

• Using the deep learning-based transfer learning approach, the proposed model can pre-
dict the STVS state of the system under topology change condition (N-1 contingency)
with more than 97% accuracy for both the test systems with few labeled samples. It
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eliminates the need to train different learning models. Furthermore, it reduces the
computational time required for re-training the model for online application.

Our future research will investigate the control measure to mitigate the STVS problem
in the power system using a data-based approach suitable for online application.
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