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Abstract: An improved homotopy analysis method (IHAM) is proposed to solve the nonlinear differ-
ential equation, especially for the case when nonlinearity is strong in this paper. As an application,
the method was used to derive explicit solutions to the rotation angle of a cantilever beam under
point load at the free end. Compared with the traditional homotopy method, the derivation includes
two steps. A new nonlinear differential equation is firstly constructed based on the current nonlinear
differential equation of the rotation angle and the auxiliary quadratic nonlinear differential equation.
In the second step, a high-order non-linear iterative homotopy differential equation is established
based on the new non-linear differential equation and the auxiliary linear differential equation. The
analytical solution to the rotation angle is then derived by solving this high-order homotopy equation.
In addition, the convergence range can be extended significantly by the homotopy–Páde approxi-
mation. Compared with the traditional homotopy analysis method, the current improved method
not only speeds up the convergence of the solution, but also enlarges the convergence range. For the
large deflection problem of beams, the new solution for the rotation angle is more approachable to
the engineering designers than the implicit exact solution by the Euler–Bernoulli law. It should have
significant practical applications in the design of long bridges or high-rise buildings to minimize the
potential error due to the extreme length of the beam-like structures.

Keywords: improved homotopy analysis method; strong nonlinearity; large deformation of cantilever
beam; convergence range; homotopy-Páde approximation

1. Introduction

In the past two decades, large-deformation beam structures have been widely ap-
plied in long-span bridges [1,2], high-rise buildings [3,4], aerospace, and multi-flexible
robots. With the rapid development of very high-performance steel and sophisticated
bridge structures, the increasing number of bridge constructions across rivers and seas are
developing trendily towards longer, higher, and lighter structures. The span or height of
the structure is increasing continually, and the structural configuration is becoming more
and more sophisticated to cater for more stringently esthetic and functional demands. On
the other hand, available analytical solutions to this special form of structure do not predict
its performance explicitly with its implicit integral, which raises potential uncertainties
in the deformations, especially when extreme large span is concerned. Therefore, it is
imperative to establish more sophisticated theories and methods for the high structural
nonlinearity in beam-like structures with extreme lengths.

The perturbation method [5–8] is one of the most prevailing analytic tools for non-
linear problems. It has played significant roles in the development of modern science and
engineering as it footprints itself in revealing many important properties and interesting
phenomena of non-linear problems. The perturbation technique is based on the existence
of a small parameter, which is called a perturbation quantity. Though the perturbation
quantity is a cornerstone of perturbation techniques, it also poses restrictions on the practical
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application of the perturbation techniques. It is not possible that each non-linear problem
contains such a perturbation quantity, wherein the existence of perturbation quantities
may not necessarily ensue a satisfactory result. For example, both the straightforward
perturbation method and the singular perturbation technique fail to formulate effective
theoretical drag solutions to a sphere in a uniform stream [9,10]. This is mainly because
that, like other analytic methods, perturbation techniques cannot effectively control the
convergence of approximation series and adjust convergence regions when necessary.

The unfavorable dependence of perturbation techniques on small parameters might
be circumvented by introducing an artificial small parameter. In 1892, in consideration of
the equation

dx
dt

= A(t)x (1)

where A(t) is a time periodic matrix, Lyapunov [11] introduced an artificial parameter m.
Thus, Equation (1) becomes

dx
dt

= mA(t)x (2)

The power series expansion is then calculated over a range of the value of m for the
solutions. In many cases, Lyapunov proved that the series converge when m = 1, and
thus, the final expression can be identified with m = 1. The above approach is called
Lyapunov’s artificial small parameter method [11]. The further development of this approach
was registered by the δ-expansion method by Karmishin et al. [12]. On the other hand, both the
artificial parameter method and the δ-expansion method fail to provide a principal to identify
the domain and specify the artificial parameter or δ. Similar to perturbation techniques, both
the artificial small parameter and the δ-expansion methods do not control effectively the
convergence of approximation series and adjust convergence regions when necessary.

To circumvent the aforementioned improficiencies, the idea of an artificial parameter
is generalized by homotopy [13]. The homotopy is a fundamental concept in topology [14]
that can be traced back to Jules Henri Poincaré (1854~1912), a French mathematician.
Based on homotopy, two methods have been developed. One of these derivants, the
homotopy continuation method, dates back to the 1930s [15–18] and is a global convergent
numerical method mainly for nonlinear algebraic equations. The other is the homotopy
analysis method (HAM) proposed in the 1990s by Shijun Liao [19,20], which is an analytic
approximation method with guarantees convergence mainly for nonlinear differential
equations. The homotopy analysis method has been successfully applied to various types
of ordinary differential equations and partial differential equations.

One of the successful applications of the homotopy analysis method [21,22] was
fulfilled by introducing an auxiliary parameter ћ to construct a new general form of
homotopy. Unlike other analytic techniques, this homotopy analysis method always serves
a family of analytic results at any given order of approximation. Generally, the homotopy
analysis method has the following advantages:

i. It is valid even if a given non-linear problem does not contain any small perturbation
parameters at all;

ii. It controls effectively the convergence of approximation series and adjusts conver-
gence regions when necessary;

iii. It efficiently approximates a non-linear problem by choosing different sets of
base functions.

As a proficient technique to solve strong nonlinear equations, HAM has been successfully
employed to solve various types of nonlinear problems over the past two decades [23–33]. For
example, the homotopy analysis method has been applied to solve nonlinear eigenvalue
problems [19] and various nonlinear evolution equations [34–39].

The large deflection problem of beams is governed by the Euler–Bernoulli law. To de-
rive elastic large deflections, the equivalent load, deflection, and longitudinal displacement
can be expressed by analytic elliptic integrals with end point rotation angles as param-
eters [40]. For the cantilever beam under concentrated force, the solution to this elastic
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problem contains elliptic integrals, which is not explicit or straightforward for practical
application [41–43]. The homotopy analysis method (HAM) was used to obtain the solution
for the large deformation of a cantilever beam made of axially functionally graded mate-
rial [44] and a nonlinear beam subjected to a coplanar terminal load consisting of a moment,
an axial compressive force, and a transverse force [45]. Closed-form series solutions for
the static deflection of anisotropic composite beams resting on elastic foundations were
obtained by both the homotopy analysis method (HAM) and iterative HAM (iHAM) [46].
The iterative homotopy analysis method (iHAM) was used to obtain analytical solutions
for the arbitrary large deflection of geometrically exact beams subjected to distributed
and tip loads based on follower and conservative loading scenarios [47]. Wang et al. [48]
derived an explicit solution to the large deformation of a cantilever beam under point load
at the free end with HAM. However, their homotopy analysis method had the problem
of slow convergence because it used iterative solutions of linear differential equations to
approximate the exact solution to strong non-linear differential equations. In addition,
explicit solutions to vertical and horizontal displacements were not given.

In this paper, an improved homotopy analysis method (IHAM) is proposed to solve
strong nonlinear differential equation, and as an application, it is used to obtain an explicit
solution to the rotation angle for the large deformation of a cantilever beam under point
load at the free end. In another parallel paper, this improved homotopy analysis method is
applied to derive the explicit solutions for vertical and horizontal displacements of large
deformations of cantilever beams.

2. Improved Homotopy Analysis Method
2.1. Formulations

The proposed homotopy analysis method (IHAM) is essentially different from the
HAM in view of construction methods.

HAM constructs a high-order nonlinear iterative homotopy differential equation
using selected linear differential equation and the original non-linear differential equation,
whereas IHAM formulates a high-order nonlinear iterative homotopy differential equation
with the selected linear differential equation, the selected simple non-linear differential
equation, and the original non-linear differential equation. Table 1 lists the formulation
steps of IHAM and HAM for comparison.

Table 1. Improved homotopy analysis method vs. homotopy analysis method.

HAM IHAM

Original N (ξ) = 0 and
Auxiliary L(ξ) = 0

⇒ High orderH(ξ; q) = 0

1© Original N (ξ) = 0
and Auxiliary N0(ξ) = 0
⇒ New N (ξ; q) = 0

2© New N (ξ; q) = 0 and
Auxiliary L(ξ) = 0

⇒ High orderH(ξ; q) = 0

Notes: N—nonlinear operator, L—lonear operator,N0—auxiliary nonlinear operator,N—new nonlinear operator,
H—homotopy operator, ξ—independent variable, q—embedded parameter.

To approximate the exact solution, differences also rise from their respective approach-
ing paths. HAM approximates the exact solution of the original non-linear differential
equation by iterating with linear differential equation. Whereas IHAM uses linear differen-
tial equation and simple non-linear differential equation to iterate in approximating the
exact solution to the original non-linear differential equation. Thus, the convergence rate of
IHAM is much higher than that of HAM. IHAM not only accelerates the convergence rate,
but also enlarges the convergence range in solving strong nonlinear problems.
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In this study, a boundary value problem is considered for second order nonlinear
differential equations, as can be seen in the following form

N [w(ξ)] = 0 : w′′ (ξ) + f [w(ξ)] = 0, ξ ∈ [0, 1] (3)

Here f (w) is a derivable function with the initial values of fw(0) = c0, f ′w(0) = c1, and
1
2! f ′′w(0) = c2. In compliance with the boundary conditions, we have

w(0) = 0, w′(1) = 0 (4)

It is worth noting that the prerequisite of any small or large perturbation parameters
in Equation (3) is dismissed. Thus, the proposed approach is general.

Linearizing Equation (4) yields

L[w(ξ)] = 0 : w′′ (ξ) + c0 + c1w(ξ) = 0, ξ ∈ [0, 1] : (5)

with the concomitant boundary conditions

w(0) = 0, w′(1) = 0 (6)

The auxiliary nonlinear operator is chosen as

N0[w(ξ)] = 0 : w′′ (ξ) + c0 + c1w(ξ) + c2εw2(ξ) = 0, ξ ∈ [0, 1] : (7)

wherein δ ∈ [0, 1].

2.2. Traditional Homotopy Analysis Method
2.2.1. Zero-Order Deformation Equation

For comparison, nonlinear boundary value Equations (3) and (4) are solved firstly by
HAM. When w(ξ) is expanded into a power series of elementary functions in terms of ξ,
we have

w(ξ) =
+∞

∑
k=1

akξk (8)

where ak is elementary coefficient. Equation (8) serves as the approximation solution to the
current problem.

With reference to the boundary condition in Equations (4) and (8), leads to

w0(ξ) =
a1

2
(2− ξ)ξ (9)

which will be specified as an initial guess solution for w(ξ).
The homotopy analysis method is based on assumptive continuous mapping of

w(ξ)→ Ψ(ξ, q) . When the embedded variable q increases from 0 to 1, Ψ(ξ, q) changes
from the initial guess solution w0(ξ) to the exact solution w(ξ). According to the
Equations (3) and (8), the below auxiliary linear operator is selected

L[Ψ(ξ, q)] =
∂2Ψ(ξ, q)

∂ξ2 (10)

It satisfies
L(C1 + C2ξ) = 0 (11)

where C1 and C2 are coefficients. From Equation (3), the following nonlinear operator is specified

N[Ψ(ξ, q)] =
d2Ψ(ξ, q)

dξ2 + f [qΨ(ξ, q)] + c1(1− q)Ψ(ξ, q) (12)
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Denoting a non-zero auxiliary parameter as ћ, a more general form of homotopy is
then constructed as

H[Ψ(ξ, q)] = (1− q)L[Ψ(ξ, q)− w0(ξ)]− qћN[Ψ(ξ, q)] (13)

Setting [Ψ(ξ, q)] = 0, a family of equations are derived as follows

(1− q)L[Ψ(ξ, q)− w0(ξ)] = qћN[Ψ(ξ, q)] (14)

Equation (14) is subject to the boundary conditions

Ψ(0, q) = 0, Ψ′(1, q) = 0 (15)

where q ∈ [0, 1] is an embedded parameter.
When q = 0, Equations (14) and (15) yield

Ψ(ξ, 0) = w0(ξ) (16)

When q = 1, Equations (14) and (15) are exactly the same as Equations (3) and (4)
provided that

Ψ(ξ, 1) = w(ξ) (17)

Therefore, as the embedded parameter q increases from 0 to 1, Ψ(ξ, q) evolves from
the initial guess w0(ξ) to the solution w(ξ). For brevity, Equations (14) and (15) are defined
as zero-order deformation equations.

Assume that Ψ(ξ, q) is analytic in the domain of q ∈ [0, 1], so that the deformation
derivatives exist:

w[n]
0 (ξ) =

∂Ψn(ξ, q)
∂qn |q=0 (18)

Ψ(ξ, q) can then be expanded in the Maclaurin series of q as follows:

Ψ(ξ, q) = w0(ξ) +
+∞

∑
n=1

wn(ξ)qn (19)

where

wn(ξ) =
1
n!

∂nΨ(ξ, q)
∂qn

∣∣∣∣
q=0

(20)

It is worth mentioning that the auxiliary parameter ћ in Equation (14) determines the
convergence regions. Assuming that ћ is properly chosen, so that all of these Maclaurin
series are convergent at q = 1. Thus, at q = 1 Equation (17) gives

w(ξ) = w0(ξ) +
+∞

∑
n=1

wn(ξ) (21)

Equation (21) bridges the initial guess solution w0(ξ) to the exact solution w(ξ). The
result for the nth-order approximation is given by:

w(ξ) ≈ w0(ξ) +
n

∑
m=1

wm(ξ) (22)

2.2.2. High-Order Deformation Equation

Define a vector
wn = {w0(ξ), w1(ξ), w2(ξ), . . . , wn(ξ)} (23)
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Differentiating Equations (15) and (16) n times with respect to q and then setting q = 0
and dividing them by n! gives the governing equation of wn(ξ),

L[wn(ξ)− χnwn−1(ξ)] = ћRn(ξ, q) (24)

in conjunction with the boundary conditions

wn(0) = 0, w′n(1) = 0 (25)

where

Rn =
1

(n− 1)!
∂n−1N[Ψ(ξ, q), q]

∂qn−1

∣∣∣∣
q=0

(26)

and

χn =

{
0, n ≤ 1
1, n > 1

(27)

The right-hand side of Equation (24) can be derived by symbolic calculation software such
as Maple, MATLAB, etc. Thereafter, the linear high-order deformation Equations (24) and (25)
are solved.

2.3. Improved Homotopy Analysis Method
2.3.1. Construction of a New Nonlinear Homotopy Differential Equation

Using the original differential Equation (3) and the selected differential Equation (7),
the nonlinear operator is defined as:

N
[
Ψ(ξ, q)

]
= d2Ψ(ξ,q)

dξ2 + f
[
q ·Ψ(ξ, q)

]
+ c1(1− q)Ψ(ξ, q)

+c2ε
(
1− q2)Ψ2

(ξ, q)
(28)

The improved homotopy analysis method replaces the nonlinear operator N in
Equation (12) with the new nonlinear operator N in Equation (28).

When ε = 0, the new nonlinear operator N in Equation (28) degenerates to the
nonlinear operator N in Equation (12).

When q = 1, the new nonlinear differential equations N = 0 becomes the original
differential Equation (3) for N = 0.

When q = 0, the nonlinear differential equations N = 0 is the simple differential
Equation (7) for N = 0.

2.3.2. Construction of High-Order Homotopy Equation

With the new nonlinear operator N in Equation (28) and the selected linear operator
L in Equation (10), the homotopy operator is defined as follows,

H
[
Ψ(ξ, q)

]
= (1− q)L

[
Ψ(ξ, q)− w0(ξ)

]
− qћN

[
Ψ(ξ, q)

]
(29)

The improved homotopy analysis method replaces the homotopy operator H in
Equation (13) with the new homotopy operatorH in Equation (29).

When ε = 0, the new homotopy operator H in Equation (29) degenerates to the
homotopy operatorH in Equation (13).

With definition of a vector

wn = {w0(ξ), w1(ξ), w2(ξ), · · · , wn(ξ)} (30)

a new homotopy equation of high order is similarly constructed

L[wn(ξ)− χnwn−1(ξ)] = ћRn(wn−1, ξ) (31)
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in conjunction with the boundary conditions

w(0) = 0, w′(1) = 0 (32)

where

Rn(wn−1, ξ) =
1

(n− 1)!
∂n−1N

[
Ψ(ξ, q)

]
∂qn−1

∣∣∣∣∣
q=0

(33)

and

χn =

{
0, n ≤ 1
1, n > 1

(34)

The improved homotopy analysis method replaces the homotopy Equation (14) with
the new homotopy Equation (31) for high-order problem.

To solve Equations (31) and (32), the result of nth-order approximation are given by

w(ξ) ≈ w0(ξ) +
n

∑
m=1

wm(ξ) (35)

2.3.3. Convergence Theorem

Theorem 1 (Convergence Theorem). If the series

w0(ξ) +
+∞

∑
n=1

wn(ξ) (36)

converges, where wn(ξ) satisfies the high-order deformation Equations (31) and (32), and the
definitions in Equations (33) and (34) are true, it is the solution to Equations (3) and (4).

The above assumption is then proved as below.
Letting

S(ξ) = w0(ξ) +
+∞

∑
n=1

wn(ξ) (37)

being the convergent series, a necessary condition for the series to converge is:

lim
n→+∞

wn(ξ) = 0 (38)

From Equations (31), (34) and (38), we have

ћ
+∞
∑

n=1
Rn(wn−1, ξ)

=
+∞
∑

n=1
L[wn(ξ)− χnwn−1(ξ)]

= L
{

+∞
∑

n=1
[wn(ξ)− χnwn−1(ξ)]

}
= L[w1 + (w2 − w1) + (w3 − w2) + . . . + (wn − wn−1) + . . .]

= L
[

lim
n→+∞

wn(ξ)

]
= 0

Because ћ 6= 0, so
+∞

∑
n=1

Rn(wn−1, ξ) = 0 (39)
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From Equation (33)

+∞

∑
n=1

Rn(wn−1, ξ) =
+∞

∑
n=1

1
(n− 1)!

∂n−1N
[
Ψ(ξ, q)

]
∂qn−1

∣∣∣∣∣
q−0

= 0 (40)

Generally, Ψ(ξ, q) does not satisfy the original nonlinear Equation (3). Letting

δ(ξ, q) = N
[
Ψ(ξ, q)

]
(41)

represents the residual error of Equation (3), then

δ(ξ, q) = 0

corresponds to the exact solution of Equation (3). According to the above definition, the
McLaughlin series of residual error δ(ξ; q) with respect to the embedded variable q is:

+∞

∑
n=0

qn

n!
∂nδ(ξ, q)

∂qn

∣∣∣∣∣
q=0

=
+∞

∑
n=0

qn

n!
∂nN

[
Ψ(ξ, q)

]
∂qn

∣∣∣∣∣
q=0

(42)

According to Equation (40), when q = 1, Equation (42) becomes:

δ(ξ, 1) =
+∞

∑
n=0

1
n!

∂nδ(ξ, q)
∂qn

∣∣∣∣∣
q−0

= 0 (43)

According to the definition of δ(ξ; q), when q = 1, Equation (43) is the exact solution
to the original Equation (3). Therefore, as long as the below series:

| w0(ξ) +
+∞

∑
n=1

wn(ξ)

converges, there exists a solution to the original Equation (3).

Theorem 2. If the series in Equation (36) converges, where wn(ξ) satisfies the high-order deformation
Equations (31) and (32), and the definitions in Equations (33) and (34) are true, there is:

+∞

∑
n=1

Rn(wn−1, ξ) = 0 (44)

This theorem is self-explanatory with reference to Equation (40).
According to Theorems 1 and 2, only the initial guessing solution w0(ξ), auxiliary

parameter ћ, auxiliary linear operator L, and auxiliary nonlinear operator N to ensure the
convergence of series in Equation (36) should be derived.

3. Explicit Solution to Rotation Angle for Large Deformation of Cantilever Beams
by IHAM
3.1. Problem Description

We consider the large deformation of a cantilever beam under point load at the free
end as shown in Figure 1. The bending equation of a uniform cross-section beam with a
large deformation is: [40,41]

dθ

ds
=

F
EI

(l − x) (45)
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Figure 1. Large deformation of beam under point load at free end.

It complies to the boundary conditions:

θ(0) = 0, θ′(L) = 0, (46)

where s is the arc-coordinate of the neutral axis of the beam, x is the horizontal coordinate
from the fixed end, L stands for the length of the beam, F denotes the point load at the
free end, EI specifies the bending stiffness of the beam, θ represents the rotation angle of
cross-section of the beam, and l specifies the unknown horizontal distance of two ends.
Differentiating the equation with respect to S and then using the dimensionless variables
ξ = S/L, the original Equation (45) becomes

θ′′ + α cos θ = 0 (47)

in compliance to boundary conditions of

θ(0) = 0, θ′(1) = 0, (48)

The prime in Equations (47) and (48) denotes differentiation with respect to ξ, and

α =
FL2

EI
(49)

The rotation angle of cross-section plane at the free end is denoted by θb = θ(1).
For infinitesimal deformation, the below linear equation will be sufficient

θ′′ + α = 0 (50)

which is subjected to the boundary conditions

θ(0) = 0, θ′(1) = 0, (51)

The corresponding solution is:

θ(ξ) =
α

2
(2− ξ)ξ (52)

which gives the linear result of ration angle at the free end for ξ = 1

θb =
α

2
(53)
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3.2. Zero Order Deformation Equation

The nonlinear boundary value Equations (47) and (48) are then solved by IHAM to
derive a explicit formula for θb. To start with, θ(ξ) is expanded into the power series of ξ:

θ(ξ) =
+∞

∑
k=1

akξk (54)

Equation (52) is then identified as an initial guess. Accordingly, the initial guess of
θ(ξ) is expressed as:

θ0(ξ) =
α

2
(2− ξ)ξ (55)

For simplicity, the below simplest auxiliary nonlinear differential equation is chosen

θ′′ + α
(

1− ε

2!
θ2
)
= 0 (56)

which is subjected to the boundary conditions

θ(0) = 0, θ′(1) = 0, (57)

where ε is the correction coefficient of the convergent region, and ε ∈ [0, 1].
When ε = 0, Equation (56) becomes the linear Equation (50). When ε = 1,

Equation (56) becomes:

θ′′ + α

(
1− 1

2!
θ2
)
= 0 (58)

In fact, the approximating second-order Taylor expansion for the cosine function in
Equation (47) can be written as:

cos θ ≈ 1− 1
2!

θ2

According to the original Equation (47) and the equivalent Equation (56), we define
one nonlinear operator as:

[ψ(ξ, q), q, ε] =
d2ψ(ξ, q)

dξ2 + α cos[q · ψ(ξ, q)]− αε

2!

(
1− q2

)
[ψ(ξ, q)]2 (59)

where q ∈ [0, 1] is an embedded parameter, ψ(ξ, q) is a function dependent on ξ and q, ε is
a control parameter for the convergent region, and ε ∈ [0, 1].

When q = 0, there is:

N[ψ(ξ, 0), 0, ε] =
d2ψ(ξ, 0)

dξ2 + α− αε

2!
[ψ(ξ, 0)]2

If q = 1, we have

N[ψ(ξ, 1), 1, ε] =
d2ψ(ξ, 1)

dξ2 + α cos[ψ(ξ, 1)]

Letting

L[ψ(ξ, q)] =
∂2ψ(ξ, q)

∂ξ2 (60)

Being an auxiliary linear operator, and ћ ∈ [−1, 0) denotes a nonzero auxiliary param-
eter (convergence–control parameter), a homotopy is then constructed as:

H[ψ(ξ; q), q] = (1− q)L[ψ(ξ, q)− θ0(ξ)]− qhN[ψ(ξ, q), q, ε] (61)
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When q = 0, we have

H[ψ(ξ, 0), 0] = L[ψ(ξ, q)− θ0(ξ)]

If q = 1, Equation (61) becomes:

H[ψ(ξ, 1), 1]= −hN[ψ(ξ, 1), 1, ε] = −h

{
d2ψ(ξ, 1)

dξ2 + α cos[ψ(ξ, 1)]

}

Thus, by enforcing
ψ(0, q) = 0, ψ′ξ(1, q) = 0

We have a family of equations:

(1− q)L[ψ(ξ; q)− θ0(ξ)] = qћ∇[ψ(ξ; q), q, ε] (62)

which are subjected to the boundary conditions of:

ψ(0, q) = 0, ψ′ξ(1, q) = 0 (63)

The prime in Equation (63) denotes differentiation with respect to ξ.
When q = 0, Equation (62) incurs:

ψ(ξ, 0) = θ0(ξ) (64)

When q = 1, Equations (62) and (63) are equivalent to the original Equations (47) and
(48), provided that:

ψ(ξ, 1) = θ(ξ) (65)

Thus, as q increases from 0 to 1, ψ(ξ, q) evolves from the known initial guess θ0(ξ) to
the solution θ(ξ) in Equations (47) and (48).

By expanding ψ(ξ; q) into a Taylor series of the embedded parameter q and using
Equation (64), we have:

ψ(ξ; q) = θ0(ξ) +
+∞

∑
n=1

θn(ξ)qn (66)

where

θn =
1
n!

∂nψ(ξ; q)
∂qn

∣∣∣∣
q=0

Assuming that ћ and ε are properly chosen so that the series Equation (66) are conver-
gent at q = 1, according to Equation (65), we have the series:

θ(ξ) = θ0(ξ) +
+∞

∑
n=1

θn(ξ) (67)

And the governing equations of θn(ξ) can then be deduced from the zero-order
deformation Equations (62) and (63).

3.3. High-Order Deformation Equations

Substituting Equation (66) into Equation (62) and differentiating Equation (62) n times
with respect to the embedded parameter q, dividing it by n!, and then setting q = 0, we
have the nth-order deformation equations as follows

L[θn(ξ)− χnθn−1(ξ)] = ћRn(θ0, θ1, · · · , θn−1) (68)
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Equation (68) is subjected to the boundary conditions:

θπ(0) = 0, θ′π(1) = 0, (69)

where

Rn =
1

(n− 1)!
∂n−1N [ψ(ξ; q), q, ε]

∂qn−1

∣∣∣∣
q=0

(70)

and

χn =

{
0, n ≤ 1
1, n > 1

(71)

Combining Equations (59) and (70), we have:

R1 = θ
′′
0 (ξ) + α− 1

2
εαθ2

0(ξ) (72a)

R2 = θ1
′′ (ξ)− αεθ0(ξ)θ1(ξ) (72b)

R3 = θ
′′
2 (ξ)−

1
2

αθ2
0(ξ) +

1
2

αεθ2
0(ξ)−

1
2

αεθ1
2(ξ)− αεθ0(ξ)θ2(ξ) (72c)

R4 = θ3
′′ (ξ)− αθ0(ξ)θ1(ξ) + αεθ0(ξ)θ1(ξ)− αεθ1(ξ)θ2(ξ)− αεθ0(ξ)θ3(ξ) (72d)

R5 = θ
′′
4 (ξ)− αθ0(ξ)θ2(ξ)− 1

2 αθ1
2(ξ) + α

24 θ4
0(ξ) + αεθ0(ξ)θ2(ξ)

−αεθ1(ξ)θ3(ξ)− αεθ0(ξ)θ4(ξ) +
1
2 αεθ1

2(ξ)− 1
2 αεθ2

2(ξ)
(72e)

The right-hand side of Rn can then be calculated with symbolic calculation soft-
ware such as Maple, MATLAB and so on. Thereafter, the linear high-order deformation
Equations (68) and (69) are solved.

The solutions by IHAM contain the auxiliary parameter ε about nonlinear operator
N0 and the auxiliary parameter ћ about linear operator L, which control the convergence
region and the rate of the IHAM solution series.

4. Calculation Results

For simplicity, the rotation angle with dimension one is defined as:

Θb =
θb

π/2
(73)

It is important to ensure a series to be convergent in a sufficiently large region. Gener-
ally, the convergence region and the rate of the series are governed by the basic function
approaching the solution. Unlike traditional analytic methods, the improved homotopy
analysis method accommodates variable basic functions to approximate the solution of
a given nonlinear problem. Therefore, the series of solutions that converge in the whole
region of independent variables of physical significance can be obtained with IHAM. It
is worth noting that the form of solution expression is crucial to the convergence of the
problem since it specifies the initial guess solution θ0(ξ) and auxiliary linear operator L. It
would be helpful to put forward the so-called solution expression principle: the initial guess
solution θ0(ξ) and the solution θ1(ξ), θ2(ξ), . . . of the high-order deformation equation
should not violate the solution expression.

Provided that the initial guess solution θ0(ξ) and the auxiliary linear operator L are
chosen, the homotopy analysis method still affords flexibility in identifying the value
of the auxiliary parameter ћ. Superior to all the traditional analytical methods, HAM
always offers a series of solutions with auxiliary parameter ћ. The auxiliary parameter
ћ dominates the convergence region and rate of the series of solutions. By selecting an
appropriate ћ value, the convergence region and the rate of the series of solutions can be
effectively controlled.

Similar to the auxiliary parameter ћ, even if the initial guessing solution θ0(ξ), auxiliary
linear operator L and auxiliary parameter ћ are specified, again IHAM is flexible with the
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value of auxiliary parameter ε. Different from the original HAM, the IHAM gets a series of
solutions with the variable auxiliary parameter ε, which also affects the convergence region
and rate of the series of solutions. By selecting the appropriate ε value, the convergence
region and the rate of the series of solutions will be effectively adjusted.

Therefore, superior to the traditional analytical methods, the improved homotopy
analysis method efficiently controls the convergence region and the rate of the series of
solutions by adjusting the auxiliary parameters ћ and ε.

4.1. Exact Solution to Rotation Angle

From Equation (47), the transcendental equation solved θb is as follows
√

α = K(µ)− F(φ, µ) (74)

where

F(φ, µ) =
∫ φ

0

dt√
1− µ2 sin2 t

(75a)

K(µ) =
∫ π/2

0

dt√
1− µ2 sin2 t

(75b)

F(φ, µ) is the first type of elliptic integral and K(µ) is the first complete elliptic integral. Therein

φ = arcsin
1√
2µ

(76)

µ =

√
1 + sin θb

2
(77)

According to Equations (53) and (73), the linear solution to the rotation angle at the
free end with dimension 1 is:

Θb =
α

π
(78)

It can be verified that the convergent region of the linear solution (78) is as follows if
the relative error ∆ ≤ 1% is required.

α ∈ [0, 0.33], Θb ∈ [0, 0.11], (79)

4.2. Effect of Auxiliary Parameter ε on Convergence

It is expected that the improved homotopy analysis method derives a family of series
solutions with the variable auxiliary parameter ε. The efficiency of the IHAM lies in the
appropriate identification for the value of ε to ensure a convergent solution promptly in a
sufficiently large region.

The parameters in nonlinear problems could contain physical connotations, such as
the angular frequency of nonlinear vibration, the wall friction of viscous flow, etc. These
parameters are usually correlated to the auxiliary parameter ε. Therefore, the curve of these
physical quantities can be drawn with respect to ε by regarding the auxiliary parameter ε
as an independent variable. For example, below Θb is a physical quantity

Θb = Θ(ξ, ε)|ξ−1 (80)

If Θb is a function of, ε, Θb − ε can be identified. According to Theorem 1 or Theorem 2,
all convergent series of Θb given by different values of ε converge to the exact solution.
If the solutions are unique, they should all converge to the same value. Therefore, there
is a horizontal segment in the Θb − ε curve to imply the converge region of ε represented
by Rε. For simplicity, such a curve is called a ε curve, and the corresponding region Rε

is the effective region of ε. Obviously, if the value of ε falls in the valid region, the series
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solution will converge without fail. Even though Θb does not make any physical sense,
the corresponding ε curve can still be attempted. The more ε curves that are drawn, the
more specific value of ε will be identified. If the initial guess solution θ0(ξ), auxiliary
linear operator L and the auxiliary parameter ћ are given, the effective region of ε for
different physical quantities is usually almost the same. But so far this speculation has not
been proved mathematically. In many cases, ε curves of physical quantities, such as the
aforementioned Θb − ε curve, can be applied to identify a suitable ε value to ensure that
the series solutions Θ(ξ) converge in the space of the whole physical context. Therefore, it
can be stated that the ε curve provides an effective way to study the influence of auxiliary
parameter ε on the convergence region and rate for the series solutions.

By comparing the original Equation (47) with the auxiliary Equation (56), the following
equation can be obtained:

cos θ = 1− ε

2!
θ2 (81)

Substituting θ = π
2 into the Equation (81) leads to

0 = 1− ε

2!

(π

2

)2
(82)

By solving the above equations, the optimal convergence parameter in the overall
regions is derived as:

ε =
8

π2 (83)

When n = 1, the 1st-order approximation of θb by IHAM is calculated by:

θb = 0.5α + 0.045833ћεα3 (84)

For example, the 1st-order approximation of Θb with ћ = −1, ε = 8/π2, is

Θb = 0.31831α− 0.023651α3 (85)

In the case of n = 1, ћ = −1, when ε = 0, ε = 1, and ε = 8/π2 respectively, the
1st-order Θ[n=1]

b by IHAM and the exact solution Θb are compared in Table 2.

Table 2. First-order numerical solutions Θ[n=1]
b by IHAM vs. exact solutions Θb.

α
Exact

Solution ε = 0 (HAM [48]) ε = 8/π2 (IHAM) ε = 0 (IHAM)

Θb Θb ∆ Θb ∆ Θb ∆

0 0 0 0 0 0 0 0

0.1 0.031802 0.031831 0.0916% 0.031807 0.0172% 0.031802 0.000178%

0.2 0.063430 0.063662 0.365% 0.063473 0.0669% 0.063429 0.00284%

0.3 0.094719 0.095493 0.817% 0.094854 0.143% 0.094705 0.0143%

0.4 0.12551 0.12732 1.44% 0.12581 0.237% 0.12546 0.0446%

0.5 0.15567 0.15915 2.24% 0.15620 0.336% 0.15551 0.107%

0.6 0.18509 0.19099 3.19% 0.18588 0.426% 0.18468 0.219%

0.7 0.21366 0.22282 4.29% 0.21470 0.488% 0.21281 0.399%

0.8 0.24132 0.25465 5.52% 0.24254 0.505% 0.23971 0.667%

0.9 0.26801 0.28648 6.89% 0.26924 0.458% 0.26521 1.05%
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Table 2. Cont.

α
Exact

Solution ε = 0 (HAM [48]) ε = 8/π2 (IHAM) ε = 0 (IHAM)

Θb Θb ∆ Θb ∆ Θb ∆

1.0 0.29371 0.31831 8.38% 0.29466 0.324% 0.28913 1.56%

1.1 0.31839 0.35014 9.97% 0.31866 0.0857% 0.31130 2.22%

1.2 0.34206 0.38197 11.7% 0.34110 0.279% 0.33155 3.07%

1.3 0.36473 0.41380 13.5% 0.36184 0.791% 0.34970 4.12%

1.4 0.38641 0.44563 15.3% 0.38074 1.47% 0.36557 5.39%

1.5 0.40714 0.47746 17.3% 0.39764 2.33% 0.37899 6.92%

1.6 0.42685 0.50930 19.2% 0.41242 3.40% 0.38978 8.71%

1.7 0.44587 0.54113 21.4% 0.42493 4.70% 0.39777 10.8%

1.8 0.46394 0.57296 23.5% 0.43502 6.23% 0.40279 13.2%

1.9 0.48120 0.60479 25.7% 0.44257 8.03% 0.40465 15.9%

2 0.49768 0.63662 27.9% 0.44741 10.1% 0.40319 19.0%

∞ 1 1 0 1 0 1 0

When the relative error ∆ ≤ 1%, the convergent region is:

α ∈ [0, 1.3], Θb ∈ [0, 0.36] (86)

From Table 2, when ε = 0 the convergence region of Θb is iteratively calculated to be
0 < α ≤ 0.3. When ε = 8/π2, the convergence region of Θb is 0 < α ≤ 1.3. It can be stated
that the improved homotopy analysis method expands the convergence region by 333% for
this specific case.

In the case of n = 1, ћ = −1, the 1st-order solution Θ[n−1]
b to rotation angle at the

free end versus the point force by the improved homotopy analysis method, and the
exact solution Θb are compared in Figure 2, from which the optimal control parameter of
the convergence region for the improved homotopy analysis method is identified to be
ε = 8/π2.

Figure 2. Rotation angle at free end vs. point force for different ε.
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From Table 2, the series solutions to rotation angle converge to the exact solution and
the relative error is less than 1% for 0 < α ≤ 0.3 when ε increases from 0 to 1. Thus, when
0 < α ≤ 0.3, the effective region of ε is specified to be Rs = [0, 1].

4.3. Effect of Auxiliary Parameter ћ on Convergence

When n = 3, ε = 8/π2, the 3rd-order approximation of θb by IHAM is:

θb = 0.5α +
(

0.12014ћ+ 0.11145ћ2 + 0.037151ћ3
)

α3

+
(

0.016031ћ2 + 0.010687ћ3
)

α5 + 9.5862× 10−4ћ3α7
(87)

From Equation (87), the 3rd-order approximation of Θb with ћ = −1/2 is calculated as:

Θb = 0.31831α− 2.3458× 10−2α3 + 1.7010× 10−3α5 − 7.6284× 10−5α7 (88)

When the relative error ∆ ≤ 1%, the convergent region of the 3rd-order approximation
by IHAM is:

α ∈ [0, 2.0], Θb ∈ [0, 0.49], (89)

In the case of n = 3, ε = 8/π2, when ћ = −0.6, ћ = −0.4 and ћ = −0.5 respectively,
the 3rd-order Θ[n=3]

b by IHAM are compared and with the exact solution in Table 3.

Table 3. Third-order solutions Θ[n=3]
b by IHAM with different ћ and fixed ε = 8/π2.

α
Exact

Solution ћ = −0.6 ћ = −0.5 ћ = −0.4

Θb Θb ∆ Θb ∆ Θb ∆

0 0 0 0 0 0 0 0

0.2 0.063430 0.063459 0.0452% 0.063475 0.0702% 0.063496 0.104%

0.4 0.12551 0.12572 0.163% 0.12584 0.261% 0.12601 0.395%

0.6 0.18509 0.18566 0.306% 0.18605 0.518% 0.18660 0.814%

0.8 0.24132 0.24231 0.411% 0.24318 0.771% 0.24441 1.28%

1.0 0.29371 0.29493 0.416% 0.29648 0.943% 0.29871 1.71%

1.2 0.34206 0.34300 0.275% 0.34539 0.975% 0.34895 2.01%

1.4 0.38641 0.38626 0.0408% 0.38961 0.827% 0.39472 2.14%

1.6 0.42685 0.42461 0.547% 0.42900 0.479% 0.43580 2.07%

1.8 0.46394 0.45810 1.26% 0.46362 0.0691% 0.47216 1.77%

2.0 0.49768 0.48666 2.21% 0.49362 0.815% 0.50391 1.25%

2.2 0.52847 0.50998 3.50% 0.51913 1.77% 0.53127 0.530%

2.4 0.55661 0.52714 5.29% 0.54011 2.96% 0.55449 0.382%

2.6 0.58237 0.53627 7.92% 0.55613 4.51% 0.57375 1.48%

2.8 0.60600 0.53404 11.9% 0.56612 6.58% 0.58908 2.79%

3 0.62772 0.51507 17.9% 0.56805 9.50% 0.60016 4.39%

∞ 1 1 0 1 0 1 0

By IHAM with only three calculation iterations, the convergence region of Θb is
derived to be 0 < α ≤ 0.6, 0 < α ≤ 2.0, and 0 < α ≤ 1.6 when ћ = −0.4, ћ = −0.5, and
ћ = −0.6, respectively. It is observed from Table 3 that the convergence region expands
by 233% when ћ = −0.4 changes to ћ = −0.5, whereas it expands by 25% when ћ = −0.6
changes to ћ = −0.5.
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In the case of n = 3, ε = 8/π2, the 3rd-order solution Θ[n=3]
b to the rotation angle at

the free end by IHAM vs. the point force curve is compared to the exact solutions Θb in
Figure 3. It can be stated that the improved homotopy analysis method has the optimal
control parameters ћ for the convergence rate for an arbitrary nth-order approximation
solution. For example, when n = 3, the optimal control parameter is identified to be
ћ = −0.5.

Figure 3. Rotation angle at free end vs. point force when ћ takes different values.

4.4. Comparison between IHAM and HAM

The 30th-order approximation of θb with n = 3, ћ = −0.5 by HAM [44] can be
calculated as:

θb = 0.5α− 4.3435× 10−2α3 + 6.8359× 10−3α5 − 1.0902× 10−3α7

+1.4940× 10−4α9 − 1.6286× 10−5α11 + 1.3403× 10−6α13

−7.9070× 10−8α15 + 3.1288× 10−9α17 − 7.5167× 10−11α19

+9.2764× 10−13α21 − 4.2676× 10−15α23 + 3.4351× 10−18α25

−4.9207× 10−23α27 + 1.4045× 10−32α29

(90)

When the relative error ∆ ≤ 1%, the convergent regions of the 30th-order approxima-
tion by HAM [44] are:

α ∈ [0, 4.3], Θb ∈ [0, 0.74], (91)

The 30th-order approximation of θb with ε = 8/π2, ћ = −2.25 by IHAM is

θb = 0.5α− 4.1947× 10−2α3 + 6.3195× 10−3α5 − 1.0049× 10−3

+1.4774× 10−4α9 − 1.9106× 10−5α11 + 2.1234× 10−6α3

−2.0002× 10−7α5 + 1.5807× 10−8α77 − 1.0388× 10−9α9

+5.619× 10−11α21 − 2.5035× 10−12α23 + 9.0941× 10−14α3

−2.7016× 10−15α27 + 6.5971× 10−17α2 − 1.3356× 10−18α31

+2.2653× 10−20α33 − 3.2538× 10−22α35 + 3.9973× 10−24α37

−4.2352× 10−26α39 + 3.8950× 10−8α41 − 3.1220× 10−30α43

+2.1842× 10−22α45 − 1.3318× 10−34α47 + 7.0399× 10−37α49

−3.1913× 10−39α51 + 1.2180× 10−41α3 − 3.7894× 10−4α55

+9.0212× 10−47α5 − 1.4440× 10−98α59 + 1.3901× 10−53α61

(92)

When the relative error ∆ ≤ 1%, the convergent regions of the 30th-order approxima-
tion by IHAM are:

α ∈ [0, 1.3], Θb ∈ [0, 0.36], (93)
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Table 4 compares the 30th-order solutions by IHAM and HAM, from which it can be
seen that the improved homotopy analysis method extends the convergence region from
α ∈ [0, 1.3] by the homotopy analysis method to ћ = −0.5.

Table 4. Thirtieth-order solutions Θ[n=30]
b by IHAM and HAM.

α
Exact

Solution

ε = 0
ћ = −1/10

(HAM [48])

ε = 8/π2

ћ = −2/25
(IHAM)

Θb Θb ∆ Θb ∆

0 0 0 0 0 0

0.3 0.094719 0.094757 0.0403% 0.094782 0.0664%

0.6 0.18509 0.18533 0.131% 0.18551 0.229%

0.9 0.26801 0.34295 0.217% 0.26911 0.411%

1.2 0.34206 0.29440 0.262% 0.29507 0.554%

1.5 0.40714 0.40824 0.268% 0.40974 0.637%

1.8 0.46394 0.46512 0.253% 0.46705 0.670%

2.1 0.51342 0.51462 0.233% 0.51685 0.668%

2.4 0.55661 0.55780 0.214% 0.56021 0.647%

2.7 0.59444 0.59563 0.200% 0.59809 0.615%

3 0.62772 0.62892 0.191% 0.63134 0.577%

3.3 0.65714 0.65838 0.189% 0.66067 0.538%

3.6 0.68327 0.68494 0.244% 0.68669 0.500%

3.9 0.70659 0.71070 0.584% 0.70987 0.464%

4.2 0.72749 0.73465 0.985% 0.73053 0.418%

4.5 0.74630 0.70350 5.73% 0.74859 0.307%

4.8 0.76329 0.28076 63.2% 0.76402 0.0959%

5.1 0.77870 — — 0.78403 0.684%

5.4 0.79272 — — 0.84973 7.19%

5.7 0.80552 — — — —

6 0.81723 — — — —

∞ 1 1 0 1 0

4.5. Homotopy–Páde Approximation

With application of the homotopy–Páde acceleration technique [26], the convergence
region can be substantially enlarged. For example, when ћ = −30, ε = 0, ћ = −1/10, the
Pade[11, 11] homotopy–Páde approximation of θb in Equation (92) by HAM [44] can be
written as:

θb =
α

2
f (α)
g(α)

(94a)

where
f (α) = 1 + 0.19449α2 + 3.2631× 10−2α4 + 2.2845× 10−3α6

+1.8114× 10−4α8 + 1.3556× 10−6α10 (94b)

g(α) = 1 + 0.28136α2 + 4.3400× 10−2α4 + 4.3884× 10−3α6

+2.8367× 104α8 + 9.1351× 10−6α10 (94c)
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When the relative error ∆ ≤ 1%, the convergent regions of the Pade[11, 11] homotopy–
Páde approximation by HAM [44] are:

α ∈ [0, 4.8], Θb ∈ [0, 0.76], (95)

When n = 30, ε = 8/π2, ћ = −2/25, the Pade[15, 15] homotopy–Páde approximation
of θb in Equation (92) by IHAM is:

θb =
α

2
f (α)
g(α)

(96a)

where

f (α) = 1& + 0.27701α2 + 4.9969× 10−2α4 + 5.2892× 10−3α6 + 4.6124× 10−4α8 + 2.2630× 10−5α10

+8.9473× 10−7α12 + 6.2843× 10−9α14 (96b)

g(α) = 1 + &0.36091α2 + 6.7608× 10−2α4 + 8.4095× 10−3α6 + 7.4211× 10−4α8 + 4.6051× 10−5α10

+1.8474× 10−6α12 + 3.6726× 10−8α14 (96c)

When the relative error ∆ ≤ 1%, the convergent region of the Pade[15, 15] homotopy–
Páde approximation by IHAM are:

α ∈ [0, 7.6], Θb ∈ [0, 0.87], (97)

Table 5 compares the 30th homotopy–Páde approximation solutions by IHAM and
HAM. From Table 5, the improved homotopy analysis method extends the convergence
region from α ∈ [0, 4.8], to Θb ∈ [0, 0.76] for the homotopy–Páde approximate solution
against the original homotopy analysis method [44], which is a 58% extension.

Table 5. Thirtieth homotopy–Páde approximation solutions Θ[P]
b by IHAM and HAM.

α
Exact

Solution

ε = 0
(HAM [48])
Pade[11,11]

ε = 8/π2

(IHAM)
Pade[15,15]

Θb Θb ∆ Θb ∆

0 0 0 0 0 0

0.5 0.15567 0.15583 0.0991% 0.15594 0.173%

1 0.29371 0.29440 0.237% 0.29507 0.463%

1.5 0.40714 0.40824 0.268% 0.40974 0.639%

2 0.49768 0.49887 0.239% 0.50102 0.671%

2.5 0.56977 0.57095 0.206% 0.57340 0.637%

3 0.62772 0.62875 0.165% 0.63134 0.577%

3.5 0.67489 0.67527 0.0565% 0.67834 0.511%

4 0.71380 0.71244 0.192% 0.71700 0.448%

4.5 0.74630 0.74176 0.608% 0.74920 0.389%

5 0.77373 0.76472 1.16% 0.77639 0.344%

5.5 0.79711 0.78279 1.80% 0.79971 0.326%

6 0.81723 0.79728 2.44% 0.82010 0.351%

6.5 0.83466 0.80932 3.04% 0.83834 0.441%

7 0.84986 0.81979 3.53% 0.85507 0.613%
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Table 5. Cont.

α
Exact

Solution

ε = 0
(HAM [48])
Pade[11,11]

ε = 8/π2

(IHAM)
Pade[15,15]

Θb Θb ∆ Θb ∆

7.5 0.86321 0.82935 3.92% 0.87080 0.879%

8 0.87499 0.83850 4.17% 0.88594 1.25%

8.5 0.88544 0.84758 4.27% 0.90079 1.73%

9 0.89475 0.85684 4.24% 0.91557 2.33%

9.5 0.90307 0.86644 4.06% 0.93046 3.03%

10 0.91055 0.87648 3.74% 0.94558 3.85%

∞ 1 1 0 1 0

Figure 4 compares the 30th-order iteration solution with the exact solution, from which
the followings can be observed:

• Discrepancy between the linear solution and the exact solution is very large;
• Thirtieth-order solution by IHAM with ε = 8/π2 approaches the exact solution much

closer than the 30th-order solution does by HAM with ε = 0;
• The convergence region and rate have been substantially improved by homotopy-

Páde approximation;
• And again the Páde approximation solution Pade[15, 15] by IHAM is closer to the

exact solution than is the Páde approximation solution Pade[11, 11] by HAM.

Figure 4. Thirieth solution to rotation angle at the free end vs. point force.

5. Discussion about the Relative Errors

In this section, the three iterations of α = 2.0 are taken as an example to discuss the
effect of the control parameters ε and ћ on the relative errors.

After three iterations, the improved homotopy analysis method is adopted to solve
Equations (68) and (69) whose solution in the following form, is the approximate of the
original Equations (47) and (48)
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θb = 0.5α + 0.045833ћα3 + 0.091667εћα3 + 0.13750εћ2α3

+0.045833εћ3α3 + 0.024400ε2ћ2α5 + 0.016267ε2ћ3α5 + 0.0018000ε3ћ3α7 (98)

When α = 2.0, Equation (98) becomes:

θb = 1 + 0.36667ћ+ 0.73333εћ+ 1.1000εћ2 + 0.36667εћ3 + 0.78079ε2ћ2

+0.52053ε2ћ3 + 0.23040ε3ћ3 (99)

When α = 2.0, the exact solution to the ration angle at the free end is Θb = 0.49768.
When ћ = −0.45, Equation (99) becomes:

θb = 0.83500− 0.14066ε + 0.11068ε2 − 0.020995ε3 (100)

According to Equation (100), the relative error curve with variable control parameter ε
is a cubic curve. When the relative error is less than one percent, the convergence interval
is Rε = [0.5, 1], which is the effective region of ε. Figure 5 depicts the relative errors curve
∆Θ − ε of original Equation (47) when, α = 2.0, ћ = −0.45.

Figure 5. Relative errors curve ∆Θ − ε of original Equation (47) when α = 2.0, ћ = −0.45.

From Figure 5, the relative error is the minimum when ε = 8/π2.
When ε = 8/π2, Equation (99) becomes:

θb = 1 + 0.96108ћ+ 1.4046ћ2 + 0.76191ћ3 (101)

According to Equation (101), the relative error curve with variable control parameter
ћ is also cubic. When the relative error is less than one percent, the convergence interval
is Rt = [−0.52,−0.4], which is the effective region of ћ. Figure 6 shows the relative errors
curve ∆Θ − ε of original Equation (47) when α = 20, ε = 8/π2.

Figure 6. Relative errors curve ∆Θ − ћ of original Equation (47) when α = 20, ε = 8/π2.
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From Figure 6, the relative error is the minimum when ћ = −0.45.

6. Conclusions

The advance of the currently proposed IHAM from its prototype lies in the intro-
duction of a nonlinear differential equation when constructing the homotopy equation.
The solution by the homotopy nonlinear differential equation can approximate the exact
solution of strong nonlinear differential equation at a higher convergence rate than the
solution by the linear differential equation used in traditional homotopy analysis does.

As an application, the explicit solutions to the rotation angle for a large deformation
of a cantilever beam under a point load at the free end are derived by IHAM. Current
solutions with different parameters match well with the exact solutions from elliptical
integrals. They are explicit to be simple and straightforward compared to the implicit exact
solution from the elliptical integrals that are required to solve a transcendental equation.
It can be stated that the current solution is easy to calculate with the explicit polynomial
expressions, which facilitates practical engineering applications with low requirements on
the calculation and computation.

By comparing the exact solution to the rotation angle of a large deformation of a
cantilever beam, the effectiveness of the IHAM in solving strong nonlinear differential
equations is demonstrated. The current improved homotopy analysis method has great
superiority over the traditional homotopy analysis method in view of the rate and region of
convergence, and the error of the solution by IHAM against the exact solution is reduced.

In another parallel study, the analytical expressions of vertical and horizontal dis-
placements of the large deformation cantilever beam are deduced using the improved
homotopy analysis method. It has been published in another paper: “EXPLICIT SOLU-
TION TO LARGE DEFORMATION OF CANTILEVER BEAM BY IMPROVED HOMOTOPY
ANALYSIS METHOD II: VERTICAL AND HORIZONTAL DISPLACEMENTS”.
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