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Abstract: Although robotic vision systems offer a promising technology solution for rapid and
reconfigurable in-process 3D inspection of complex and large parts in contemporary manufacturing,
measurement accuracy poses a challenge for its wide deployment. One of the key issues in adopting
a robotic vision system is to understand the extent of its measurement errors which are directly
correlated with the calibration process. In this paper, a possible source of practical and inherent
measurement uncertainties involved in the calibration process of a robotic vision system are discussed.
The system considered in this work consists of an image sensor mounted on an industrial robot
manipulator with six degrees of freedom. Based on a series of experimental tests and computer
simulations, the paper gives a comprehensive performance comparison of different calibration
approaches and shows the impact of measurement uncertainties on the calibration process. It has
been found from the error sensitivity analysis that minor uncertainties in the calibration process can
significantly affect the accuracy of the robotic vision system. Further investigations suggest that
inducing errors in image calibration patterns can have an adverse effect on the hand–eye calibration
process compared to the angular errors in the robot joints.

Keywords: robotic vision system; inspection and measurement; calibration uncertainty; camera
calibration; hand–eye calibration

1. Introduction
Robotic vision systems offer a promising technology solution for rapid inspection of

complex scenarios such as industrial assessment, underwater inspection, remote sensing,
and more. However, the reliability of system based solutions to real-world problem is
substantially limited due to existence of measurement errors, hence creating a challenge for
vision systems in taking accurate decisions [1].

The measurement accuracy of an object with the help of an image sensor mounted
on a multi-axis-robot substantially depends on precise estimation of three geometrical
transformation matrices, namely matrix A, which represents the transformation from the
robot wrist (flange) coordinate frame to the robot world coordinate frame (base coordinate),
matrix B, which represents the transformation from the object coordinate frame to the
camera coordinate frame, and matrix X, which represents the transformation from the
flange coordinate frame to the camera coordinate frame.

To estimate matrix A, the kinematics model of the robot needs to be developed first
and then its kinematic parameters are to be estimated with the help of robot calibration
methods. In order to estimate the kinematic parameters, several calibration methods have
been introduced in the literature, examples include, circle point analysis method [2], arm
signature identification method [3], screw axis identification method [4], etc. On the other
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hand, estimating matrix B with the help of camera calibration is a common practice and
well documented in the computer vision community [5–9]. In the calibration process, the
camera mounted on the robot flange captures images of a calibration board (checkerboard)
from a number of different positions and orientations. A simple yet effective algorithm
suggested by Zhang [7] is adopted in this work, which is briefly discussed in Section 2.2.

To investigate the major sources of measurement uncertainties and its overall impact
on a common robotic vision system, a practical setup constituting of a camera, a six-axis
robotic arm and a calibration object is used. The system calibration requires accurate
estimation of the relative position and orientation of the camera with respect to the flange,
with the help of existing hand–eye calibration algorithms [10–15].

The practical setup used in this paper to calibrate the robotic vision system is illus-
trated in Figure 1. The developed robotic vision system follows the classical approach
to estimating all the three transformation matrices required in this experiment. That is,
the camera mounted on the flange of the robotic arm is navigated from position i to j to
capture images of the calibration object. Note that A and B are transformation matrices that
can be easily known by recording the pose of the flange relative to its base for η number
of positions and capturing images of the calibration object from the same η positions,
respectively. To calculate unknown matrix X by solving system equation AX = XB, the
minimum value of η should not be less than three [10].

Figure 1. Classical framework for evaluating unknown matrix X for a robotic vision system. The
image sensor mounted on flange of multi-axis robot is navigated from position i to j.

In Figure 1, let P be a transformation matrix that defines the transformation of coordi-
nates from the hand coordinates (flange of the robot) to the robot world coordinates (robot
base). The matrix P of dimension 4× 4 can be defined as:

P =

[
RP TP
0 1,

]
(1)

where RP is a 3× 3 rotation matrix, and TP is a 3× 1 translation vector. Let the matrix P be
known for positions i and j, then matrix A can be estimated using the following expression:

A = P−1
j Pi. (2)
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Similarly, let Q be a transformation matrix that defines the transformation of coor-
dinates from the object coordinates to the camera coordinates. The matrix Q is again of
dimension 4× 4, which is defined below.

Q =

[
RQ TQ
0 1,

]
(3)

where RQ is a 3× 3 rotation matrix, and TQ is a 3× 1 translation vector. Let the matrix Q be
known for positions i and j by capturing images at both positions and performing extrinsic
camera calibration, then matrix B can be estimated using:

B = QjQ−1
i . (4)

Although various robotic vision systems have been proposed for implementation
of in-process 3D measurement with the advantages of flexibility and reconfigurability,
the level of measurement uncertainties caused by system calibration errors has not been
fully investigated. It is worthy to note that developing a robotic vision system for 3D
assessment is a challenging task because all the three calibration processes involved in
the system are prone to inaccuracies in evaluation of transformation matrices. It is well
expected that inaccuracy in estimating matrices A and B can significantly impact the
hand–eye calibration process. In this paper, the analyses focuses on propagation of errors
from matrices A and B to matrix X. The theoretical and experimental investigations have
revealed that due to difference in evaluation of transformation matrices A and B, errors in
matrix B predominately impacts the overall calibration process.

Remainder of the paper is arranged as follows: Section 2 gives an overview of the
experimental setup and possible sources of measurement uncertainties for hand–eye cal-
ibration based on the kinematic model of a six-axis KUKA robot manipulator. Section 3
presents some results on impact of measurement uncertainties on the calibration process.
Section 4 demonstrates a case study for measuring the dimension of 3D parts. Finally, the
paper is concluded in Section 5.

2. Experimental Setup and Measurement Uncertainties
The robotic vision system illustrated in Figure 1 comprises of a six degrees of freedom

(DOF) robot, i.e., KUKA Agilus KR6 R900 sixx robot, a 3CCD Jai camera that is mounted on
the flange of the robot, and an calibration object in the form of 63 squares (7× 9) checker-
board. The specifications of Jai camera are given in Table 1. The accuracy of the robotic
vision system depends on the multiple factors, examples include kinematic errors, resolu-
tion of the camera, accuracy of parameters determined during camera calibration, accuracy
of image processing algorithms used to detect objects etc. [16]. The types of calibrations
involved in developing a robotic vision system and possible cause of uncertainties in
each step are discussed below. Further, the feasible ways to overcome the effect of such
uncertainties are also reported in each sub-section.

Table 1. Specifications of 3CCD Jai camera.

Specification Quantitative Value

Resolution 1392 × 1040
Pixel size 4.65 µm

Frame rate 20.8 fps
Focal length 12 mm
Sensor size 1/2′′

Minimum working distance 150 mm

2.1. Robot Base to Flange Calibration
Robot calibration has been studied for more than three decades which brings compen-

sation to the inaccuracy of robots. Although the technique of robot making has improved
considerately during these years, the theory of robot calibration remains the same. It re-
quires a mathematical model to be tailored to the individual robot which is to be calibrated.
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This is a software model of the robot and is then applied to robot paths which replaces its
nominal physical model.

To calibrate and test a robot, it should be performed using high-end measurement
equipment such as a laser tracker. Two types of parameters are commonly used for assessing
the performance of an industrial robot: repeatability and accuracy. Modern robots can
achieve a reasonably good repeatability, for example, a small robot of 5 kg payload typically
has the repeatability of 0.02–0.03 mm. To improve the absolute accuracy of a robot the
calibration is carried out in four steps:

1. Determination of a mathematical model of the robot geometry and motion (kinematics
and dynamics);

2. Measurement of the position and orientation of the robot end-effector (flange);
3. Identification of a relationship of the measurements and robot joint positions;
4. Modification of software control commands to compensate for the determined model.

Among the aforementioned four steps, the determination of the robot model (step 1)
and the identification process (step 3) are the most challenging. A complete calibration
model should contain corrections of the geometric parameters (also referred as kinematic
parameters), and necessary dynamics parameters, e.g., stiffness. A correction for the un-
known error could be an offset or a linear approximation. In this section, applying the well
known Denavit and Hartenberg (D–H) coordinate system to KUKA robot manipulator [17],
the offset values associated with the parameters of KUKA robot are described.

The D–H coordinate system is helpful in estimating the kinematics of the robot de-
scribing the relative position of the flange with respect to its base. The robot kinematics
description is a geometric transformation, where the parameters of kinematics describe
the motion of the robot manipulator without the consideration of forces and torques. The
generic form of the convention for link l of the robot manipulator illustrated in Figure 2
can be described as follows:

Tl
l−1 = Rz,θl tz,dl

tx,al Rx,αl =
cos(θl) −sin(θl)cos(αl) sin(θl)sin(αl) alcos(θl)
sin(θl) cos(θl)cos(αl) −cos(θl)sin(αl) alsin(θl)

0 sin(αl) cos(αl) dl
0 0 0 1

. (5)

Figure 2. D–H coordinate system of link l of robot.

Note that the link transformation Tl
l−1 contains two basic rotations and two transla-

tions, specifically Rz,θl is a rotation around z-axis by θl degrees; tz,dl
is a translation along

z-axis by dl distance; tx,al is a translation along x-axis by al distance; and Rx,αl is a rotation
around x-axis by αl degrees. The KUKA robot manipulator used in this study has six links
(joints), therefore its overall kinematics transformation is described using six transformation
matrices. Ideally the relationship between each successive joints l − 1 and l or contiguous
link in the form of transformation matrix Tl

l−1 for KUKA robot is given below.
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T1
0 =


cos(θ1) 0 sin(θ1) a1cos(θ1)
sin(θ1) 0 −cos(θ1) a1sin(θ1)

0 1 0 0
0 0 0 1

 (6)

T2
1 =


cos(θ2) −sin(θ2) 0 a2cos(θ2)
sin(θ2) cos(θ2) 0 a2sin(θ2)

0 1 0 0
0 0 0 1

 (7)

T3
2 =


cos(θ3 − π/2) 0 sin(θ3 − π/2) a3cos(θ3 − π/2)
sin(θ3 − π/2) 0 −cos(θ3 − π/2) a3sin(θ3 − π/2)

0 1 0 0
0 0 0 1

 (8)

T4
3 =


cos(θ4) 0 −sin(θ4) 0
sin(θ4) 0 cos(θ4) 0

0 −1 0 d4
0 0 0 1

 (9)

T5
4 =


cos(θ5) 0 sin(θ5) 0
sin(θ5) 0 −cos(θ5) 0

0 1 0 0
0 0 0 1

 (10)

T6
5 =


cos(θ6) −sin(θ6) 0 0
sin(θ6) cos(θ6) 0 0

0 0 1 d6
0 0 0 1

, (11)

where θr ∀r ∈ [1, 6] are the six axis specific angles of the KUKA robot, a1 = 25, a2 = 455,
a3 = 35, d4 = −420, and d6 = −80. The total transformation matrix Ttotal from base to flange
can be estimated by simply multiplying all the transformation matrices, that is,

Ttotal = T1
0 × T2

1 × T3
2 × T4

3 × T5
4 × T6

5 . (12)

The result of this calibration is a transformation matrix, which describes the movement
of the robot’s flange with respects to its base from position i to j in the form of 4× 4 matrix
comprising of sub-matrix RP and vector TP. Note that the above kinematics model does
not accurately define the movement of industrial robots because such robots are inherently
not accurate compared to CNC machines. Robot paths suffer from inaccuracies introduced
from the way multiple robot axes linked together. The manipulator arm is also prone to
dynamic uncertainties as a result of its speed of travel, payload, backlashes, impact forces
applied to the robot end-effector from the part etc.

The identification of a relationship of the measurements and robot joint positions is
essentially an inverse displacement problem (IDP). This is the core part of robot calibration
and can be solved analytically or numerically. An analytical solution is the direct inverse
solution and should be used whenever possible. A numeric solution relies on iterative
solutions at a cost of computation time but it generally copes well with complex equations.
In this work, we have opted latter technique to estimate the offset values associated with
the robot parameters. The offset values (∆) associated with our KUKA robot is defined in
Table 2.

While performing robot base to flange calibration, the overall accuracy of the robot
plays an important role. The KUKA robotic arm considered in this experiment has pose
repeatability radius of±0.03 mm [18], which can be assumed as one form of kinematic error.
One of the reasons for such kinematic error is due to ageing of mechanical components,
which creates a difference in the movement reported by the sensor with respect to the actual
arm movement. Some non-kinematic errors that may also impact the calibration process
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are mechanical backlash, temperature effects on mechanical components etc. In order to
assure that the KUKA robotic arm considered in this work is free from both kinematic
and non-kinematic errors, the inverse kinematic is used to evaluate the joint angles which
achieves a desired position and orientation of the flange relative to the base frame.

Table 2. Parameter values of KUKA robot with offset (∆).

Kuka Link α◦ ± ∆α◦ a ± ∆a (mm) θ◦ ± ∆θ◦ d ± ∆d (mm)

1 90 − 0.013 25 + 0.009 θ1 + 0 0
2 0 + 0.005 455 + 0.447 θ2 + 0.005 0 + 0.010
3 90 + 0.008 35 + 0.172 θ3 − 89.990 0
4 −90 + 0.041 0 − 0.104 θ4 − 0.083 −420 − 0.341
5 90 − 0.001 0 + 0.081 θ5 + 0.038 0 + 0.056
6 0 0 θ6 + 0 −80 + 0

2.2. Camera to Object Calibration
Consider a 3D point P, represented by homogeneous coordinates (x, y, z, 1)T , and

its corresponding 2D image projection point p represented by homogeneous coordinates
(α, β, 1)T . Assuming a pinhole camera model the mapping between 3D point and the
corresponding 2D image point can be defined as:

s[α, β, 1]T = M · [x, y, z, 1]T (13)

=

m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34

 · [x, y, z, 1]T (14)

= K[RQ|TQ] · [x, y, z, 1]T , (15)

where s is a scaling factor, M is the camera projection matrix of dimension 4× 3, K is 3× 3
camera intrinsic matrix, and [RQ|TQ] is a 3× 4 extrinsic camera matrix, with the first three
columns RQ representing rotation and the last column TQ representing translation, relating
object coordinate frame to the camera coordinate frame.

Finally the 2D image point coordinates α and β are calculated as:

α =
m11x + m12y + m13z + m14

m31x + m32y + m33z + m34
(16)

β =
m21x + m22y + m23z + m24

m31x + m32y + m33z + m34
. (17)

To find the matrices K, RQ and vector TQ, a camera calibration is required [7]. For that
process a known 3D points in the object coordinate frame (e.g., checkerboard pattern) and
their corresponding 2D image points are often used.

While performing this type of calibration, various factors can influence its accuracy,
examples include: camera resolution, sensor noise, inaccurate feature point, instability
of camera mounting device, accuracy of the numerical technique used etc. One of the
most feasible way to estimate the uncertainty associated with this type of calibration is
to evaluate the re-projection errors for each image. A re-projection error is known as
a quantitative measure of accuracy, which can be evaluated by estimating the distance
between a feature point detected in a calibration object (checkerboard), and a corresponding
world point projected into the same image. Ideally the value of re-projection error should
be close to zero.
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2.3. Flange to Camera Calibration
The estimation of unknown matrix X from equation AX = XB is also known as

hand–eye calibration. The system equation can be formulated in two components, namely,
orientational and positional components, which are defined below:[

RA tA
0 1

][
RX tX
0 1

]
=

[
RX tX
0 1

][
RB tB
0 1

]
(18)[

RARX RAtX + tA
0 1

]
=

[
RXRB RXtB + tX

0 1

]
(19)

Using the above expression the respective orientational and positional components
can be defined as:

RARX = RXRB (20)
RAtX + tA = RXtB + tX . (21)

The hand–eye calibration technique is broadly classified in two different categories,
that is, either the rotation and translation parts of the matrix X are evaluated either individ-
ually or in combined form. In the former category, Shui–Ahmad [10] and Tsai–Lenz [11]
have estimated the rotation matrix and translation vector individually using a least squares
fitting algorithm. The least square fitting algorithms are fast and simple, but might result
in an inaccurate solution [19]. For estimating the rotation matrix of X, the concept of
quaternions has been used by Zhuang et al. [20], while Chou–Kamel [21] has simplified
the expression by linearising the equation (XB = 0) before estimating the solution using
singular value decomposition. Horaud–Dornaika [12] has formulated the rotation ma-
trix with quaternions and conducted a non-linear optimisation on rotation matrix and
translation vector.

In the latter category, Remy et al. [13] have proposed a formulation in which the
number of unknown parameters remains constant and constrained this condition over
complete data set. Andreff et al. [14] estimated the solution of system equation by using
the Kronecker product on reformulated linear system. Zhuang–Shiu [22] have applied
non-linear optimisation for both rotation matrix and translation vector and introduced
the possibility to disregard the orientation of camera for parameter estimation. A similar
approach has been presented by Fassi–Legnani [23]. Park–Martin [24] also conducted a
similar nonlinear optimisation with the help of the lie group theory. To estimate the relative
position and orientation between the reference frames and robot link, Lu–Chou [25] has
combined the kinematic equations of rotation and translation into two simple and well
structured linear systems.

The major possible sources of uncertainty in hand–eye calibration is erroneous es-
timation of matrices A and B. It is well known that the robotic vision systems are not
completely free from errors, which make hand–eye calibration process more challenging.
The hand–eye calibration algorithms discussed above perform ideally under error-free
theoretical setups, but might fail to deliver the same performance for practical setups.

3. Results and Discussion
To estimate the theoretical performance of existing hand–eye calibration algorithms,

the matrix B is estimated by moving the camera mounted flange of KUKA robot to a
number of different positions, and an image of the calibration object is captured from each
position. Further, the theoretical value of X is assumed, and the equation AX = XB is
used to estimate matrix A for each flange navigation from position i to j. The purpose of
opting for a theoretical robotic vision setup is to estimate the impact of systematic error
on hand–eye calibration algorithms. The theoretical setup is also helpful in comparing
the role of uncertainties in matrices A and B on estimating matrix X. In this section, the
impact of measurement uncertainties on theoretical and practical robotic vision systems
are thoroughly discussed.
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3.1. Error Sensitivity Analysis of Theoretical Setup
The same setup as illustrated in Figure 1 is used to calibrate the theoretical robotic

vision system. Let the camera mounted on the flange of the robotic arm be navigated from
position i to j and at each position an image of the calibration object is captured. Then a
classical camera calibration method is used to estimate matrix Q for each position. The
navigation of the camera mounted robot flange from position i to j (refer Figure 1) can be
expressed by the following system equation.

PiXQi = PjXQj. (22)

In Equation (22), the values of Qi and Qj are known with the help of the camera
calibration approach suggested by Zhang [7]. Assuming the theoretical value of matrices X
(denoted as X′), matrix Pj can be estimated from Pi by using the system equation defined
in Equation (23).

Pj = (PiX′Qi)(X′Qj)
−1. (23)

After obtaining all the required matrices, the matrices A and B of the theoretical
robotic vision system can be evaluated from Equations (2) and (4). The main objective for
theoretical estimation of X is to analyse the performance of hand–eye calibration algorithms
under systematic errors. The advantage of opting theoretical setup is that the matrix X = X′

is accurately known and can be used as the reference matrix while performing uncertainty
analyses by adding systematic errors on matrices A and B.

One of the most practical ways to introduce errors in matrix A is to systematically
perturb the angles of robotic manipulator. After each additive uncertainty, the erroneous
transformation matrix P̂ is evaluated with the help of the kinematics model. Similar
approach is to be applied for matrix B, that is, the systematic error is introduced on
perfectly detected calibration pattern in the images. After introducing a systematic error
each time, the camera calibration algorithm is used to estimate erroneous matrix Q̂. Now
the expression defined in Equation (22) is modified to:

P̂iXQ̂i = P̂jXQ̂j (24)

Solving this system equation gives

P̂−1
j P̂iX = XQ̂jQ̂−1

i (25)

ÂX = XB̂, (26)

where erroneous matrix Â defines a cumulative form of kinematic and non-kinematic errors
discussed in Section 2.1, while erroneous matrix B̂ defines the cumulative accuracy error
discussed in Section 2.2. Transformation matrix X is unknown and need to be estimated
with the help of hand–eye calibration algorithms for different robot positions (η). Note that
to estimate X, the value of η should not be less than three, hence we have opted η = 4 and
η = 5 in this study.

After introducing systematic errors in transformation matrices P and Q, the system
equation is solved using three popular hand–eye calibration methods. The first two
methods belong to the first computation category based on the individual estimation
of rotation matrix and translation vector [11,12], and the other belonging to the second
computation category based on combined estimation [14].

Note that uncertainties in the angles of the robot manipulator are obtained by introduc-
ing δA error in all the six joint angles (θ’s) of the robot in the form of normally distributed
random numbers (N(µA, σA)) simulating noise, where µA (in degrees) ranges between
[−1, 1] with step-size of 10−1 and σA = 0.05µA. Similarly, the uncertainty in the calibration
pattern is obtained by introducing δB error in all the detected image corner points (αi, βi)
in the form of normally distributed random numbers lying within the window size of [0, 5]
having unity step-size. The concept of error introduction in one of the detected corner point
is illustrated in Figure 3, which can cause due to usage of low resolution camera.
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Figure 3. Introduction of error δB in one of the perfectly detected image point (αi, βi). Adding a noise
of |γ| pixel on image point (αi, βi) will result into region of δB = γ. The error in B can be estimated
by evaluating area (in µm2) of the uncertain region using pixel size value from Table 1.

The norms of errors associated with estimation of matrix X using Â and B̂ are given by:

UR =
∑n

i=1 ∑o
k=1 ||RX′ − R̂Xi,k ||F

n× o
(27)

UT =
∑n

i=1 ∑o
k=1 ||TX′ − T̂Xi,k ||E

n× o
(28)

where n (=56) represents different combinations of flange positions, o (=1000) is simulation
runs for normally distributed noise, || · ||F is Frobenius norm and || · ||E is Euclidean norm
(in mm) obtained by solving system equation ÂX = XB̂. RX′ and TX′ are the rotation
matrix and translation vector of theoretical X′, while R̂X and T̂X are the rotation matrix and
translation vector of transformation matrix X obtained after introducing uncertainty in the
system. Ideally the value of UR and UT are zero, when both errors δA and δB are zero.

Figure 4 illustrates the impact of measurement uncertainties on estimating matrix X
from the system equation using three different hand–eye calibration algorithms, where
change in the colour from navy-blue to red represents increasing errors in estimated
transformation matrix X accurately. Figure 4a–f show the sensitivity of three hand–eye
calibration methods to uncertainty in both matrices A and B. The uncertainties in matrix A
is introduced by adding normally distributed noise to all the six axes present in the robot
kinematics model, while uncertainty in matrix B is introduced by adding noise to all the
perfectly detected calibration points in the image.

Based on three hand–eye calibration algorithms, the observations suggest that inaccu-
racies in matrices A and B have adverse impact on correct estimation of X, especially for
the case of smaller η as shown in Figure 4. It is seen that when δA 6= 0 and δB = 0, Horaud–
Dornaika and Tsai–Lenz methods are able to estimate RX accurately, while Andreff et al.
method is not able to find the true value of RX and the magnitude of error function UR
increases as δA increases. This observation suggests that both methods belonging to the
first computation category of hand–eye calibration algorithm are expected to estimate more
accurate value of RX .

On the other hand, when δA = 0 and δB 6= 0, then none of the methods are able
to estimate TX accurately. However, out of the three hand–eye calibration methods, the
performance of the Horaud–Dornaika and Tsai–Lenz methods are better than the Andreff
et al. method. One of the reasons behind such difference in the performance of two
computation categories of the methods is an additive effect of propagated errors from
rotation matrix to translation vector in the Andreff et al. method. Further, the Andreff et al.
method evaluates matrix X by linearising the system equation. Although linearising the
system equation can reduce the complexity of the system and can estimate matrix X in
lesser time, such process is expected to reduce the useful constraints of the equation which
can result in a wrong estimation of the solution.
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(a) Impact of uncertainty on estimating RX (b) Impact of uncertainty on estimating TX

(c) Impact of uncertainty on estimating RX (d) Impact of uncertainty on estimating TX

(e) Impact of uncertainty on estimating RX (f) Impact of uncertainty on estimating TX

Figure 4. Error norms associated with rotation matrix and translation vector estimated using:
(a,b) Horaud–Dornaika method; (c,d) Tsai–Lenz method; (e,f) Andreff et al. method. The mesh
plot represents error values for η = 4, while solid surface plot represents error values for η = 5.

A close observation of Figure 4a–f reveals that introducing a minimal error of δB = 1
has significantly impacted the accurate estimation of RX and TX . Note that δB = 1 resembles
an area of 3× 3 pixel block, which is coming out to be 194.6 µm2, where each pixel size
is 4.65 µm (refer Table 1). Hence, it can be asserted that introducing angular errors in the
robot joints impacted the hand–eye calibration process, but the magnitude of error is not
significantly large. On the other hand, inducing errors in image pixel estimation (such as in
the case of low resolution camera setup) has significantly affected the hand–eye calibration
process. Nevertheless, such error can be significantly reduced by increasing the number
of image captures at different robot positions, as evidenced by the differences between
the mesh plot for η = 4 and the solid surface for η = 5 in Figure 4 for all three methods.
Note that when the errors in both matrices A and B are zero, then all the three hand–eye
calibration algorithms are able to estimate the correct value of X.
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3.2. Error Sensitivity Analysis of Practical Setup
The theoretical study of error sensitivity analysis is extended to the practical setup as

illustrated in Figure 1. Dissimilar to the theoretical setup, the true value of X is unknown,
which needs to be estimated with the help of hand–eye calibration algorithms. The norms
of errors associated with estimation of matrix X with the help of practically estimated A
and B are given by:

UR =
∑n

i=1 ∑o
k=1 ||RX − R̂Xi,k ||F

n× o
(29)

UT =
∑n

i=1 ∑o
k=1 ||TX − T̂Xi,k ||E

n× o
, (30)

where n (=56) represents different combinations of flange positions, o (=1000) represents
simulation runs for normally distributed noise, || · ||F is Frobenius norm and || · ||E is
Euclidean norm obtained by solving system equations AX = XB and ÂX = XB̂. RX
and TX are the rotation matrix and translation vector of X when no systematic error is
introduced in the system equation i.e., when both δA = 0 and δB = 0, while R̂X and T̂X are
the rotation matrix and translation vector obtained after solving uncertain system equation
ÂX = XB̂.

Figure 5 shows the uncertainties in rotation and translation of transformation X ob-
tained by solving the system equation using the same three hand–eye calibration algorithms.
The change in the colour from navy-blue to yellow represents increasing deviation of RX
and TX from R̂X and T̂X respectively. A quick glance of Figure 5 suggests good similari-
ties in the overall behaviour with respect to that of the theoretical setup (refer Figure 4).
A respective comparison of Figures 4a–d and 5a–d for δB = 0 reveals that, for the practical
setup, the hand–eye calibration methods are relatively sensitive to uncertainty and resulted
into high magnitudes of errors.

A similar trend can be observed for Andreff et al. method from Figures 4e,f and 5e,f,
with much higher magnitudes of errors in the practical setup. One of the reasons behind
such sensitive behaviour is pre-existence of errors in the image pattern estimation, which
has impacted the hand–eye calibration process. It can be asserted that Horaud–Dornaika
method performs way better than other methods in over-riding the robotic and camera
errors in the calibration process.

(a) Impact of uncertainty on estimating RX (b) Impact of uncertainty on estimating TX

Figure 5. Cont.
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(c) Impact of uncertainty on estimating RX (d) Impact of uncertainty on estimating TX

(e) Impact of uncertainty on estimating RX (f) Impact of uncertainty on estimating TX

Figure 5. Error norms associated with rotation matrix and translation vector estimated using:
(a,b) Horaud–Dornaika method; (c,d) Tsai–Lenz method; (e,f) Andreff et al. method.

4. Case Study: Measuring Dimension of 3D Parts
In this section, a 3D printed car part is considered for estimating its dimension through

a robotic vision system under variable camera settings. The objective behind choosing
different camera resolutions is to observe the proposed proposition in real world scenario
which can replicate error in image pixels by capturing low resolution image.

Figure 6a shows an image of a car door with a planner edge-to-edge dimension of
2.37× 0.98 m2 that has been captured from the top-left position occupying whole frame of a
door in the image. Note that in Figure 6a, 42 colourful circular stickers of 1 cm diameter are
affixed at the different door locations, which is helpful in estimating the error propagation
as the pixel error increases.

To predict the door size and diameter of stickers, initially the image is manually
extracted from its background and is then merged with a respective depth image, which
is shown in Figure 6c. Note that in the depth image, the gray shaded region indicates
the variation in the distance of the camera sensor from the local door regions. The darker
the depth image, the farther the camera sensor is; hence more chances for uncertainty in
pixel estimation as compared to light gray regions. Further, the variation in the shades of
gray in the door region also indicates the existence of the combination of rotational and
translational variation. Such variations are very common in industrial settings where large
objects are inspected in the production belt.
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(a) (b)

(c)
Figure 6. Image of 3D printed car door captured under different camera resolution, i.e., 1392 × 1040,
1044× 780, and 696× 520. (a) Original image, (b) Manually extracted image, (c) Respective depth image.

Figure 7 illustrates the diameter of all stickers captured under three different camera
resolution i.e., 1392× 1040, 1044× 780, and 696× 520. A falling trend in Figure 7 indicates
that as the resolution of camera decreases the capability of estimating accurate size of object
also decreases. It can be noted that as the resolution is dropped to 25% from its original
value, the average error in estimating diameter of sticker also dropped by 21%. Further, a
relation between sticker diameter estimation and distance of sticker can be established in a
similar way under all three resolution settings, i.e., as the distance from sensor to object
increases, the error in estimating sticker diameter decreases. Similarly, the dimension of
door estimated using three camera settings, i.e., 1392× 1040, 1044× 780, and 696× 520 is
coming out to be, 2.36× 0.98 m2, 2.33× 0.96 m2, and 2.31× 0.95 m2, respectively.

Figure 7. Variation in estimation of sticker diameter under different camera settings.
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5. Conclusions
In this paper, the impact of measurement uncertainties on estimating the exact solution

of the robotic vision system has been investigated. The solution of a system equation
AX = XB has been evaluated using three different types of approaches, of which two
approaches are based on the individual estimation of the rotation matrix and translation
vector, whilst the other one is based on combined estimation. Investigations have revealed
that introducing angular errors in the robot joints has less significantly impacted the hand–
eye calibration process compared to the error in image pixel estimation. The simulation
results also suggest that the solution estimated by the Horaud–Dornaika method is best
followed by the Tsai–Lenz method, which are comparatively less affected by robot rotation
and translation uncertainties than the Andreff et al. method. The reason behind such
difference in the performance of two computation categories of the methods is an additive
effect of propagated errors from the rotation matrix to the translation vector in the Andreff
et al. method. Further, the Andreff et al. method evaluates matrix X by linearising the
system equation, which is expected to reduce the useful constraints of the equation and
result in poor estimation of the solution. Hence, out of all of them, the Horaud–Dornaika
method should be considered for more accurate hand–eye calibration of practical robotic
vision systems.
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