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Abstract: One of the foundational and key means of optimizing network service in the field of net-

work security is traffic identification. Various data transmission encryption technologies have been 

widely employed in recent years. Wrongdoers usually bypass the defense of network security facil-

ities through VPN to carry out network intrusion and malicious attacks. The existing encrypted 

traffic identification system faces a severe problem as a result of this phenomenon. Previous en-

crypted traffic identification methods suffer from feature redundancy, data class imbalance, and 

low identification rate. To address these three problems, this paper proposes a VPN-encrypted traf-

fic identification method based on ensemble learning. Firstly, aiming at the problem of feature re-

dundancy in VPN-encrypted traffic features, a method of selecting encrypted traffic features based 

on mRMR is proposed; secondly, aiming at the problem of data class imbalance, improving the 

Xgboost identification model by using the focal loss function for the data class imbalance problem; 

Finally, in order to improve the identification rate of VPN-encrypted traffic identification methods, 

an ensemble learning model parameter optimization method based on optimal Bayesian is pro-

posed. Experiments revealed that our proposed VPN-encrypted traffic identification method pro-

duced more desirable VPN-encrypted traffic identification outcomes. Meanwhile, using two en-

crypted traffic datasets, eight common identification algorithms are compared, and the method ap-

pears to be more accurate in identifying encrypted traffic. 

Keywords: VPN-encrypted traffic identification; ensemble learning; Xgbooost; feature selection; 

Bayesian optimization 

 

1. Introduction 

1.1. Background 

For a long time, network security has been a concern [1,2]. Network security plays a 

key role in maintaining the security, economic development, and social stability of each 

country [3–5]. In the field of network security, traffic identification is one of the basic and 

key technologies for optimizing network services [6,7]. It divides traffic into multiple pri-

orities or multiple service classes, which represents the first step in detecting abnormal 

network activity. In recent years, various data transmission encryption technologies are 

widely used. Criminals often need to transmit specific data packets during network in-

trusions and malicious attacks. Anomalous traffic is often identified and intercepted by 

firewalls and intrusion detection systems [8], and a virtual private network (VPN) is a 
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technique for bypassing these network security defenses [9]. They use the encryption fea-

tures of VPN to evade the detection of network security facilities [10]. Encrypted traffic 

identification poses a great challenge to the current traffic identification technology, and 

makes it an important part of traffic identification [11,12]. Therefore, the identification of 

VPN-encrypted traffic is of great significance for detecting malicious network behaviors 

and maintaining network security. In the past research on traffic identification technology, 

the research on encrypted traffic identification has made some progress [13–15]. 

According to different identification depths, encrypted traffic can be divided into two 

types. The first type is to divide the known encrypted traffic into various application 

types, such as chat applications, video streaming applications, web applications, etc. The 

second type is to classify the encrypted traffic into a specific network application and se-

lect the appropriate identification method according to the depth of identification. Cur-

rent traffic identification methods generally include three classes: first, traffic identifica-

tion methods based on port numbers; second, traffic identification methods based on deep 

packet inspection (DPI); and third, traffic identification methods based on machine learn-

ing. However, the first two methods require byte-level matching of traffic data for en-

crypted traffic identification. Because the encrypted traffic is encapsulated by the protocol, 

it cannot be identified at the byte level. At the same time, machine learning algorithms are 

widely used in the field of encrypted traffic identification due to their intelligence and 

efficiency. 

At present, machine learning methods have been widely used in many fields, and 

there are many applications for encrypted traffic identification in network security. Ma-

chine learning can solve the difficulty of identifying encrypted traffic by using classifiers 

[16]. However, traditional machine learning may not achieve satisfactory performance 

when dealing with unbalanced or noisy complex data [17,18]. The reason is that it is diffi-

cult to capture the multiple characteristics and infrastructure of the data. Among machine 

learning, Ensemble learning can integrate data fusion, data modeling, and data mining 

into a unified framework. Ensemble learning models can handle data with high-dimen-

sional features and solve the feature redundancy problem. Ensemble learning also sup-

ports the use of loss functions, which are robust to anomalous data [19]. Therefore, this 

paper intends to use an ensemble learning framework to identify VPN-encrypted traffic 

and solve the previous problem of difficult encrypted traffic identification. It has positive 

significance for detecting malicious network behaviors and maintaining network security. 

In response to the above problems, this paper proposes a VPN-encrypted traffic iden-

tification model based on an ensemble learning model, which mainly includes: 

(1) Regarding the problem of redundancy of VPN-encrypted traffic data features, this 

paper proposes a method for selecting encrypted traffic features based on mRMR. The 

correlation coefficient between the Time-Related VPN-encrypted traffic features is calcu-

lated, and the importance ranking is outputted. Then, redundant features are eliminated, 

and to obtain the optimal set of Time-Related VPN-encrypted traffic features. 

(2) For the imbalance of VPN-encrypted traffic data classes, this paper proposes 

Xgboost-encrypted traffic identification model based on Focal Loss. The Focal Loss func-

tion is designed on based on the cross-entropy loss function to improve the Xgboost 

model. This can change the calculation weight of VPN traffic samples, and realize the 

processing of data imbalance between VPN-encrypted traffic data classes. 

(3) For the problem of the low identification rate of the Xgboost model for encrypted 

traffic identification, a Bayesian-based parameter optimization method for VPN-en-

crypted traffic identification model is proposed. The method enables to solve the problem 

of the low identification rate of VPN-encrypted traffic identification model and achieve 

the accuracy optimization of this model. 

The rest of this article is structured as follows. Section 2 introduces the theoretical 

basis of the realization of the VPN-encrypted traffic identification model; Section 3 per-

forms mathematical modeling of the proposed research method and analyzes the experi-

mental performance of the proposed method; Section 4 gives the conclusion of this article. 
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1.2. Related Works 

Encrypted traffic identification plays a vital role in combating illegal information 

theft and hacker attacks, and protecting sensitive data. Generally, traffic identification 

methods can be divided into the following three classes. 

(1) The research of traffic identification based on port number. literature [20,21] 

screened different port flows by checking the port number of the data packet, and listed 

them, to know which protocols are used in the flow. Port identification technology can 

only identify TCP-type and UDP-type packets. When service traffic is transmitted using 

dynamic ports or unknown ports, some packets such as ICMP messages and other traffic 

that do not have port numbers cannot be identified. Traffic identification methods based 

on port numbers are difficult to identify all traffic with a certain method. Each method 

has its own advantages and disadvantages and is suitable for specific protocols or appli-

cations. At the same time, the method has a low identification rate for encrypted traffic, 

so it is less practical. Port identification technology uses the port number of IP traffic to 

complete the identification process, and the traffic needs to be TCP-type and UDP-type 

packets. The method is not very applicable to the problem of identifying VPN-encrypted 

traffic. 

(2) The DPI-based traffic identification method. The literature [22,23] adopts DPI 

technology. The method requires packet-by-packet unpacking and matching and compar-

ing with the backend database, and is more accurate in identifying specific application 

types in the traffic. However, the identification system based on DPI technology needs to 

keep up with the generation of new protocols and new applications and continuously 

upgrade the background application database, otherwise, it will not be able to identify 

effectively. The feature sequence in the data packet is manually extracted and the feature 

library is formed. With the increase in the type and quantity of traffic, the maintenance 

cost of the feature library continues to increase. At the same time, if the data packet is 

unknown or encrypted for transmission, it is difficult to identify its specific application 

using DPI identification technology. 

(3) The study of machine learning methods for traffic identification is divided into 

supervised identification and unsupervised identification. 

Literature [24–26] uses unsupervised identification methods. The goal of unsuper-

vised learning is to reveal the inherent characteristics and laws of data through the learn-

ing of unlabeled samples. There is no clear identification purpose when identifying en-

crypted traffic, and known data information cannot be fully utilized. At the same time, it 

is difficult to quantify identification. Supervised learning is used to identify VPN-en-

crypted traffic, it can make full use of data information for learning, and it can evaluate 

the identification results. 

In the aspect of supervised identification: the literature [27–30] discusses the identi-

fication methods of different supervised learning algorithms for encrypted traffic, includ-

ing SVM, C4.5 decision tree, and other methods. It is necessary to perform in-depth ex-

ploratory data analysis on the dataset, and then conduct a simple dimensionality reduc-

tion process. Finally, the optimal set of features suitable for the corresponding algorithm 

is selected. The performance of this method depends on the artificially designed features 

and the private information in the traffic. When the feature selection has insufficient con-

sideration, it will affect the accuracy of the identification.  

Supervised identification can identify encrypted traffic, but various classifiers have 

different advantages and disadvantages. For example, they have high deviations or too 

large variances, which leads to weak robustness. Multiple supervised learning algorithms 

can be an ensemble and balanced for VPN encryption. The use of ensemble learning for 

the research of encrypted traffic identification, compared with the traditional machine 

learning supervised identification method, adds a lot of nonlinear transformations and 

does not need to do complex feature engineering and feature transformation, which can 

greatly improve the VPN-encrypted traffic identification results. 
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In the supervised learning methods, the ensemble learning algorithms have more 

linear transformations. It combines multiple weak classifiers to build a strong classifier 

for ensemble voting and can obtain a higher identification rate. The ensemble learning 

method is to first generate multiple learners through certain rules, then use a certain inte-

gration strategy to combine, and finally comprehensively judge and output the final re-

sult. Literature [31–33] all use ensemble learning methods. The Xgboost used in this article 

is an ensemble learning framework. The method is an excellent implementation of boost-

ing tree, using the CART regression tree as the basic learner. The tree model complexity 

is added as a regular term to the optimization objective, and a good balance is found be-

tween the loss function and the regular term. Xgboost is a type of serially generated en-

semble learning, its next learner is related to the previous learner. Finally, after obtaining 

many learners, the sum is obtained to obtain the final learning result.  

Xgboost framework sorts the data in advance and stores it in block form. It is easy to 

parallel computing and optimize the architecture, thus it is suitable for the identification 

of encrypted traffic. However, the traditional Xgboost framework still has some problems 

in identifying encrypted traffic. There is a problem with the redundancy of encrypted traf-

fic data features due to the high correlation between the original data features. The data 

classes of encrypted traffic are unbalanced, and the accuracy of the Xgboost model for 

VPN-encrypted traffic identification needs further improvement. Therefore, this paper 

proposes to use a VPN-encrypted traffic identification method with an improved Xgboost 

model. 

2. Methodology 

This article firstly performs a series of preprocessing on the VPN-encrypted traffic 

data to obtain a new encrypted traffic data collection. Next, the features of the VPN-en-

crypted traffic dataset can represent each other, i.e., the correlation between features and 

features is high. This results in redundancy in encrypted traffic data features. The first-

order incremental search method is used to analyze the correlation between Time-Related 

VPN-encrypted traffic features, and calculate the correlation coefficient between features 

and their importance ranking. Then, mRMR feature selection is performed on VPN-en-

crypted traffic to eliminate irrelevant or redundant features and obtain the optimal Time-

Related VPN-encrypted traffic feature subset. Then, it is necessary to focus on unbalanced 

VPN traffic samples that are difficult to classify. The Focal Loss function is designed based 

on the cross-entropy loss function to improve the Xgboost model, and the calculation 

weight of VPN traffic samples is changed. It is necessary to obtain the VPN-encrypted 

traffic identification model based on FL_XGB, which realizes the processing of data im-

balance between data classes. Eventually, the objective function of a given optimization is 

combined with Bayesian optimization to implement a global parameter search strategy. 

the posterior distribution of the objective function is updated by continuously adding 

sample points to find the optimal value of the objective function of the combined param-

eters. The optimized global optimal parameter combinations are imported into the FL-

XGB model for training. It can solve the problem of the low identification rate of the VPN-

encrypted traffic identification model, and finally output the identification results. 

The general framework of the FL_XGB-VPN-encrypted traffic identification model is 

shown in Figure 1. 
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Figure 1. FL_XGB-VPN-encrypted traffic identification model general framework. 

2.1. Time-Related mRMR Feature Selection 

The mRMR-based feature selection method for VPN-encrypted traffic belongs to the 

class of filtered feature selection methods. The method uses many trade-offs between rel-

evance and redundancy. Additionally, it uses mutual information as the calculation crite-

rion to measure the redundancy between features and the relevance between features and 

classes. Thus, the relevance between features and classes is maximized and the redun-

dancy between features and features is minimized and achieves feature selection. The 

maximum correlation means that the features with the highest correlation to the model 

are selected, and the higher the correlation is, the better the encrypted traffic can be iden-

tified. At the same time, the method can simplify the model and shorten the training time 

of the model. The mRMR feature selection method uses mutual information as a measure 

of the correlation between features and features as well as between features and classes. 

In the obtained feature set, there are large differences between features and correlations 

with the target variables. Using the mRMR algorithm for feature selection, a streamlined 

subset of features with good identification can be obtained, and the optimal number of 

features can also be determined. The mRMR feature selection method has the framework 

shown in Figure 2. 
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Figure 2. Framework of the mRMR feature selection method. 

The mRMR algorithm is a filtered feature selection method. The method weighs rel-

evance and redundancy differently. Additionally, uses mutual information as a computa-

tional criterion to measure the redundancy between features and the relevance between 

features and class variables. Performs feature selection by maximizing the relevance of 

features to class variables and minimizing the redundancy between features. The maxi-

mum relevance principle refers to the selection of features that have the greatest relevance 

to the mode. The greater the relevance, the greater the problem-solving capability of the 

trained model. The specific steps of the mRMR algorithm for feature selection of VPN-

encrypted traffic are as follows. 

First, the feature set S is initialized to be empty, and the input training dataset con-

tains the feature set F and the class set C. For data containing N-dimensional features, the 

sorted feature list is obtained by a cyclic process of N iterations. In each iteration, one 

feature is selected. This feature has the maximum relevance to the target variable com-

pared to other features while having the minimum redundancy with other features that 

have been selected.  

Mutual information [34] is a measure of information in information theory. It reflects 

the amount of information contained in a random variable with respect to other variables 

Y. Assuming that the marginal probability density function of variable X is �(�), the mar-

ginal probability density function of variable Y is �(�), and their joint probability density 

function is calculated to be �(�, �), the value of mutual information is calculated as shown 

in Equation (1). 

�(�, �) = � � �(�, �) ���
�(�, �)

�(�)�(�)
�∈��∈�

 (1)

Assume that F is the set containing N-dimensional features and S is the set containing 

the selected features. For each feature F� in the feature set to be selected, the correlation 

between the feature set F composed of all features and the sample class set C is calculated. 
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The correlation between the feature �� to be selected and the class set C is �(��, �). D in-

dicates the relevance of the feature to be selected to the class, and the larger the D the 

higher the relevance of the feature to the class. The correlation D is calculated as shown in 

Equation (2). 

� =
1

|�|
� �(��, �)

��∈�

 (2)

To calculate the redundancy among the features to be selected, the redundancy of all 

the features in the set F is the average of the mutual information values between feature 

�� and feature ��, and the redundancy is calculated as shown in Equation (3). 

� =
1

|�|�
� �(��, ��)

��,��∈�

 (3)

In Equation (3), �(��, ��) indicates the mutual information value of the ith feature and 

the jth feature. the larger R indicates the higher redundancy between the two features. 

Find the formula of the criterion that fits the maximum correlation and minimum redun-

dancy between features and types in F. The features � in the feature set F that meet the 

criteria of maximum correlation between features and classes and minimum redundancy 

between features are selected and stored in the feature set S. D denotes the maximum 

correlation between features and classes, and R denotes the minimum redundancy be-

tween features. 

� = ��� {� − �} (4)

The algorithm is judged whether the stopping condition is satisfied, that is, whether 

the feature set F-S is empty or whether the set S is the same as the set F contained elements. 

If so, the loop is skipped, otherwise, the relevance and redundancy calculation steps are 

repeated. At the end of the loop, the set � = [��, ��, . . . , ��] is obtained in descending order 

of feature importance. finally, the features in the set � = [��, ��, . . . , ��] are selected using 

the feature-by-feature selection method to obtain the optimal feature subset ��. 

The feature selection method using mRMR reduces the redundancy between features 

and features while ensuring the maximum correlation between features and classes. The 

method can solve the problem of feature redundancy existing in the original data. 

2.2. VPN-Encrypted Traffic FL-XGB Identification Model 

In the problem of VPN-encrypted traffic identification, various types of training data 

are not evenly distributed. Among them, classes with more data account for a larger pro-

portion of the dataset, and classes with fewer data have a smaller proportion in the da-

taset. The reason is that the usage frequency of different applications is different, and the 

amount of traffic data generated is different. Thus, the amount of data between different 

classes is quite different, and there is a problem of imbalance in the amount of data be-

tween data classes. Therefore, this article proposes a custom-defined Focal Loss Xgboost 

ensemble learning model for the imbalance of encrypted traffic classes. 

2.2.1. Overview of the Basic Xgboost Model 

Xgboost model has high operational efficiency and prediction accuracy compared 

with other methods in the field of machine learning and data mining. Xgboost is an im-

proved gradient boosting learning (GDBT) framework, which is a boosting method. 

Xgboost adds regularizations such as leaf node weights and depth of the tree to the cost 

function. The regularization term controls the complexity of the model and prevents over-

fitting. Xgboost has the advantages of being fast, effective, capable of handling large-scale 

data, and supporting custom loss functions. Classification and regression tree (CART) is 

a widely used decision tree learning method [35]. Xgboost model consists of CART trees, 

and its parameters are present in each CART. The determination of the tree structure is to 
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select the optimal split node with the information gain rate as the split criterion. The 

greedy algorithm is used to enumerate all nodes, the information gain of each node before 

and after the split is calculated, and the node with the greatest information gain is selected. 

Essentially it is to do two loops. The first loop is implemented for each feature's split point, 

and then the gain is calculated, whereas the best split point for the feature is selected. 

Among them, the split gain uses the difference in the change of the objective function after 

the split. The second loop object is to select the feature with the highest gain for all fea-

tures.  

The idea of using iterative operations to set some weak learners into a strong learner 

to achieve accurate identification. The results of the Xgboost model after t iterations is 

shown in Equation (5). 

���
(�)

= ���
(���)

+��(��)  (5)

In Equation (5), ���
(�)

 is the identification result of sample i after the tth iteration, 

���
(���)

 is the identification result of sample i after the (t−1)th iteration, and ��(��) is the 

model identification result of the tth tree. At this point, the objective function �(�)  of 

Xgboost is shown in Equation (6). 

�(�) = � �

�

���

���, ���
(���)

+��(��)� + �(��) (6)

In Equation (6), ��  is the true value of the ith sample, �(��) is the regularization 

term of the function, and ∑ ��
��� ���, ���

(���)
+��(��)� is the loss function of the model. ���

(���)
 

is known, the model has to learn only the tth tree ��, and then the error function is sub-

jected to a second-order Taylor expansion at ���
(���)

 as shown in Equation (7). 

�(�) ≅ �[����, ���
(���)

� + ����(��) +
1

2
ℎ���

�(��)]

�

���

+ �(��) (7)

In Equation (7), �� = ��(���)�(��, ���
(���)

) is the first derivative of the loss function, and 

ℎ� = �
�(���)
� �(��, ���

(���)
) is the second derivative of the loss function. Then, after removing 

the constant term from the formula, the result is obtained as shown in Equation (8). 

��（�） = �[����(��) +
1

2
ℎ���

�(��)]

�

���

+ �(��) (8)

Xgboost ensemble learning model, when dealing with the problem of data imbalance, 

usually requires the use of operations such as active acquisition or sampling to balance 

the data. However, the operation changes the distribution of the original dataset. In this 

paper, we take advantage of Xgboost’s support for custom loss functions and modify the 

loss function based on the cross-entropy loss function. On this basis, we solve the problem 

of VPN-encrypted traffic data imbalance without changing the distribution of the original 

dataset. 

2.2.2. FL-XGB-VPN-Encrypted Traffic Identification Model 

The basic Xgboost ensemble learning model suffers from data imbalance when iden-

tifying VPN-encrypted traffic data. Various types of training data are not evenly distrib-

uted. Among them, classes with more data will take up a larger proportion of the dataset, 

whereas classes with less data will have a smaller proportion of the dataset. To solve the 

problem, the Xgboost model is improved with the Focal Loss function based on the cross-

entropy loss function. The method can solve the problem of imbalance in the number of 

difficult and easy samples identified during the training process. Focal Loss is proposed 

in target detection to solve the problem of imbalance of difficult and easy samples. A par-

ametric balancing factor � is added in front of the cross-entropy loss function to balance 
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the unequal proportions of difficult and easy samples. The parameter � adjusts the rate 

at which the weight of simple samples decreases. When � is 0, it is the cross-entropy loss 

function. When � increases, the influence of the factor also increases. The Focal Loss func-

tion is shown in Figure 3. 

 

Figure 3. Focal Loss function diagram. 

The framework of the FL-XGB-VPN-encrypted traffic identification model is shown 

in Figure 4. 
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Figure 4. The framework of the FL_XGB model. 

The basic principle of the FL-XGB-VPN-encrypted traffic identification algorithm is 

as follows. 

First, the training set � = {(��, ��), (��, ��), … , (��, ��)} start training the model ini-

tializes t trees, and when t = 1, initialize the sample class label predicted value ��. XGBoost 

is a boosted tree model, where an initial tree predicts a value, then gets the deviation of 

that value from the actual value, and then adds a tree to learn the deviation. The objective 

function is a combination of the loss function and penalty function. One part is to calculate 

the difference between the predicted and true values, and the other part is the regulariza-

tion term �(��). The objective function is ��� = �� + �(��), and the Focal Loss function 

with weight � is shown in Equation (9). 

�� = −（α������）+ (1 − ��)���(1 − �) (9)
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In Equation (9), � is the focus parameter for focusing on hard-to-identify samples. i 

is the number of training samples and � is the prediction probability of the label. When 

� = 2 and � is close to 1, the value of (1 − �)� will be close to 0, and the more accurate 

the prediction is. When �� is close to 0, (1 − �)� will be close to 1, and the more inaccu-

rate the prediction is. In summary, easily identifiable samples will have smaller weights 

and hard-to-identify samples will have larger weights. 

The first derivative �� and the second derivative ℎ� of the Focal Loss function are 

shown in Equation (10). 

�� = −(�� + (−1)���)�[(�� − �) + �(1 − �� − �) + ���(1 − �� − (−1)���)] (10)

Before deriving Equation (10), make: 

�

�� = (�� + (−1)���)�

�� = (�� − �)
�� = �(1 − �� − �)

�� = ���(1 − �� − (−1)���)

 (11)

ℎ� = −[�(�� + (−1)���)����(1 − �)(�� + �� + ��) + ��(−�(1 − �) − γ�(1 − �)�� −
1

1 − ��(−1)���
�(1 − �))] (12)

According to �� and ℎ�, the tth tree ��(��) is trained. 

The tth tree ��(��) together with the previous t−1 trees ���
(���)

 form the strong learner 

���
(�)

= ���
(���)

+��(��). ���
(�)

 is used to predict the samples in dataset D and obtains the da-

taset class label predictions ��. The training set is fed into the strong learner ���
(�)

, i.e., the 

FL-XGB model, to obtain the identification results. 

The pseudo-code of the method is shown in Algorithm 1. 

Algorithm 1: FL-XGB-VPN-Encrypted Traffic Identification Algorithm 

Input：Train Set � = {(��, ��), (��, ��), … , (��, ��)} 

Output：Index value of Accuracy、Precision、Recall and F1-Score  

Begin 

1.   For t=1 to n do 

2.      If  t == 1: 

3.      Then, initialize sample class label identification values ��.  

4.      Based on the ��, Input actual class label Y and predicted value ��, calculate �� ��� ℎ�. 

5.      according to �� and ℎ� training ��(��) 

6.      Strong Learner ���
(�)

= ���
(���)

+��(��)  

7.      Use ���
(�)

 training sample obtains identification values �� 

8.  End for 

9.  The train set is fed into ���
(�)

, i.e., the FL-XGB model, to obtain the values of each index.  

End 

When identifying VPN-encrypted traffic, there is the problem of uneven distribution 

of all types of data, i.e., the data class imbalance problem. To address this problem, this 

paper uses the Focal Loss function to improve the Xgboost traffic identification model. 

The loss of easily identifiable samples is reduced by modifying parameter a, and the loss 

of samples received is broadened. This method achieves to retain the loss values of the 

hard-to-identify samples while reducing the loss values of the easy-to-identify samples. 

We use the FL-XGB-encrypted traffic identification model to solve the problem of imbal-

ance between the number of hard-to-identify and easy-to-identify samples during model 

training. 
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2.3. Optimization of FL-XGB-VPN-Encrypted Traffic Identification Model 

The problem of low identification rate still exists when using the FL-XGB model for 

VPN-encrypted traffic. The accuracy of the FL-XGB identification model for VPN-en-

crypted traffic is affected by parameters, and parameter optimization is needed in combi-

nation with parameter search strategies. Bayesian optimization is used to update the pos-

terior distribution of the objective function by continuously adding sample points. 

The Bayesian optimization algorithm is based on Bayes’ theorem, which is expressed 

as shown in Equation (13). 

�(�|��:�) =
�(��:�|�)�(�)

�(��:�)
 (13)

In Equation (13), �  is the unknown objective function, ��:� = {( �� , �� ),(  �� , 

��),…,(��, ��)} is the set of evaluated points, �� is the decision vector, �� = �(��) + � is the 

observed value, �  is the observed error, �(��:�|�)  is the likelihood distribution of y, 

�(��:�) is the marginalized � marginal likelihood distribution, �(�) is the prior proba-

bility of �, and �(�|��:�) is the posterior probability of �. After correcting the prior prob-

ability by the set of evaluated points, the posterior probability distribution is the confi-

dence level of the parameters in the unknown objective function or parametric model. The 

Bayesian optimization algorithm uses a probabilistic agent model to fit the true objective 

function, and selects the next evaluation point based on the acquisition function. The com-

monly used probabilistic agent models include the Beta-Bernoulli model, linear model, 

Gaussian process, random forest, etc. Among them, Gaussian process is highly flexible, 

scalable and analyzable, it is the most widely used probabilistic agent model in Bayesian 

optimization. The Gaussian process is a paradigmization of the multivariate Gaussian 

probability distribution, consisting of a mean function and a semi-positive definite covar-

iance function, as shown in Equation (14). 

�~��(�
�
(�), �(�, �,)) (14)

In Equation (14), ��(�) is the mean function and �(�, �,) is the covariance function. 

When fitting discrete data (��, ��) using a Gaussian process, ��(�) is usually set to 0 and 

�(�, �,) is usually used as a Matern covariance function, as shown in Equation (15). 

�(�, �,) = ��
�[1 + √5

�

��
+

5

3
(

�

��
)�]�

�√�
�
��  (15)

In Equation (15), � is the Euler distance of � and �,, �� is the characteristic devia-

tion, �� is the characteristic length. �� and �� will change automatically as the Gaussian 

process is fitted, the initial value of �� is the standard deviation of ��, and the initial value 

of �� is the standard deviation of �� divided by √2. The Bayesian optimization method 

is an acquisition function based on a strategy of lifting probability and lifting amount, as 

shown in Equation (16). 

��(�; �1:�) = �
��∗ − ��(�)�∅ �

�∗ − ��(�)

��(�)
� + ��(�)∅ �

�∗ − ��(�)

��(�)
� , ��(�) > 0

0,                                      ��(�) = 0

 (16)

In Equation (16), ��(�; ��:�) is the acquisition function, �∗  is the current optimal 

function value, ∅(�) is the standard normal distribution cumulative density function. 

��(�) and ��(�) are the mean and variance, respectively. In this paper, the acquisition 

function is selected based on the confidence interval strategy, and comparison of the max-

imum of the confidence interval. The location of the next extreme value point of the con-

fidence interval is shown in Equation (17). 

���� = ��� �����(�) + ����(�) (17)
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In Equation (17), �� denotes the constant used to determine the equilibrium explo-

ration and exploitation, and ���� is the objective function value. The framework of the 

VPN-encrypted traffic identification model based on Bayesian optimization is shown in 

Figure 5. 

Initialize FL_XGB model and parameter 
set P

Begin

Is the number of 
iterations  reached n?

Optimal parameter values

Optimal parameter values are input to 
the model to update the FL_XGB model

Output model evaluation value

No
Yes

Input dataset D

Randomly generated 
initialization points

Dividing the data set into train set 
and test set

Switch the randomly generated 
initialization point to the parameter 

to be adjusted for FL_XGB

Perform a Gaussian process, construct the 
acquisition function, and determine the next 

take point 
Calculate the evaluation value of the 
model at the new value point

 Select optimal parameter values

End

n+1X

n+1f

nf  

Figure 5. Optimization algorithm framework for encrypted traffic identification model. 

The algorithm improvement steps for optimizing the FL-XGB model using the Bayes-

ian approach are as follows: 

(1). Initialize the FL-XGB model, and choose the FL-XGB model as the training target. 

The objective function � is the average evaluation value of the identification model. 

The set of input parameters � and the range of parameter values and the objective 

function �. Randomly set 6 parameters to be optimized, and determine the number 

of iterations of the algorithm n = 6; 

(2). Update the mean ��(�) and variance ��(�) of the prior �(�|�) based on the cur-

rent training data �, and calculate the value of the acquisition function based on the 

mean and variance of �(�|�); 

(3). Determination of the next parameter taking point ���� = ��� �����(�) + ����(�) 

according to the extreme value of the acquisition function; 

(4). Calculate the model evaluation value �� using the new parameter values in the FL-

XGB model; 

(5). Find the optimal parameter value by the model evaluation value in step (4); 

(6). Determine whether the number of iterations reaches n; 

(7). When the maximum number of set iterations is reached, the parameter optimization 

process stops. Output a combination of parameter values with the highest evaluation 

value; 
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(8). Otherwise, continue with step 2 Bayesian optimization parameters until the termina-

tion condition is met; 

(9). The optimal combination of parameters obtained in step (7) is input into the FL-XGB 

model to obtain the optimal identification model. The final identification result of the 

output model, i.e., the evaluation value. The final identification result of the model, 

i.e., the evaluation value ����, is output. 

In this paper, seven variables of the model are optimized based on the Bayesian op-

timization algorithm. The probabilistic agent model is selected as a Gaussian process 

model, and the acquisition function is constructed through a strategy based on the prob-

ability of lifting and the amount of lifting. Then, find the optimal value of the objective 

function of the combined parameters. The objective function is combined with a Bayesian 

global parameter search strategy to continuously add sample points to update the poste-

rior distribution of the objective function. The global optimal parameter combination is 

input into the FL-XGB model for training. We found that the FL-XGB-VPN-encrypted traf-

fic identification model optimized by the Bayesian optimization method can directly im-

prove the identification rate of the model by optimizing the parameters. At the same time, 

the method has the advantages of fewer iterations and faster speed. 

3. Example Analysis 

3.1. Data Sources 

This paper is based on the ISCX VPN-NonVPN dataset [27], which is the time flow 

feature data. The dataset has 14 kinds of traffic data, including 7 kinds of conventional 

encrypted traffic and 7 kinds of VPN-encrypted traffic. This dataset has become a common 

dataset for current research. In this paper, the Scenario A2 folder data of the ISCX VPN-

NonVPN dataset is identified and researched. It contains 7 kinds of VPN-encrypted traf-

fic. After integrating the stream data at different times, the final ensemble data is 37,028. 

Each file contains 23 time-related feature columns. The traffic classes and corresponding 

application content in the dataset are shown in Table 1, and the time-related features and 

their descriptions are shown in Table 2. 

Table 1. The traffic classes and traffic content. 

Traffic Content 

Browsing Firefox and Chrome 

Email SMPTS, POP3S and IMAPS 

Chat ICQ, AIM, Skype, Facebook and Hangouts 

Streaming Vimero and Youtube 

File Transfer Skype, FTPS and SFTP 

VoIP Facebook, Skype, and Hangouts 

P2P Utorrent and Transmission 

Table 2. The time-related features and their descriptions. 

Feature Description 

Duration The duration of the flow. 

FIAT 
Forward Inter Arrival Time, the time between two packets sent forward 

direction (mean, min, max, std). 

BIAT 
Backward Inter Arrival Time, the time between two packets sent back-

ward (mean, min, max, std). 

Flow-IAT 
Flow Inter Arrival Time, is the time between two packets sent in either 

direction (mean, min, max, std). 

Active 
The amount of time a flow was active before going idle (mean, min, max, 

std). 
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Idle 
The amount of time a flow was idle before becoming active (mean, min, 

max, std). 

FB-psec Flow Bytes per second. 

FP-psec Flow packets per second. 

The dataset is generated by capturing traffic with Wireshark and tcpdump. This pro-

cess uses an external VPN service provider and connects to the VPN using OpenVPN. In 

order to generate SFTP and FTPS traffic, an external service provider and Filezilla are used 

as clients. Filters are used to only capture data packets with source or destination IP, that 

is, the address of the local client. The capture path of VPN-encrypted traffic is shown in 

Figure 6. 

Internet

FirewallVPN Proxy

PC

Laptop

PAD

Other Device

PDA

File Transfer

Chat

Browing

Streaming

Email

VOIP

P2P

Pipeline

Encrypted traffic 
Data Set

Catch

 

Figure 6. Encrypted traffic capture path. 

3.2. Experimental Analysis and Verification 

3.2.1. Time-Related mRMR Feature Selection 

The use of the time-related mRMR feature selection method facilitates the removal of 

redundant and irrelevant features and enhances the model's understanding between fea-

tures and feature values. Unimportant features are deleted according to their importance, 

and the importance of data features is shown in Table 3 and Figure 7. 

Table 3. The importance of data features. 

Feature Number Feature Name Importance Ordering 

0 duration NUMERIC 18 

1 total_fiat NUMERIC 23 

2 total_biat NUMERIC 15 

3 min_fiat NUMERIC 16 

4 min_biat NUMERIC 14 

5 max_fiat NUMERIC 21 

6 max_biat NUMERIC 3 

7 mean_fiat NUMERIC 19 

8 mean_biat NUMERIC 20 

9 flowPktsPerSecond NUMERIC 8 

10 flowBytesPerSecond NUMERIC 2 

11 min_flowiat NUMERIC 11 

12 max_flowiat NUMERIC 7 
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13 mean_flowiat NUMERIC 17 

14 std_flowiat NUMERIC 22 

15 min_active NUMERIC 5 

16 mean_active NUMERIC 9 

17 max_active NUMERIC 12 

18 std_active NUMERIC 13 

19 min_idle NUMERIC 4 

20 mean_idle NUMERIC 6 

21 max_idle NUMERIC 10 

22 std_idle NUMERIC 1 

 

Figure 7. Importance of data features. 

After the ranking of feature importance is obtained, feature selection needs to be per-

formed. Too much or too little feature selection can have an impact on the accuracy of the 

model. Therefore, several different numbers of features n are chosen and passed through 

several Experiments. The effect of different n values on the Accuracy value of the model 

is compared each time, and the best number of features n is selected from them. The effect 

of the features number on the accuracy of the model is shown in Table 4 and Figure 8. 

Table 4. The effect of the features number on the accuracy of the model. 

The Number of  

Features 
Accuracy 

Removed Feature 

Number 
Removed Feature Name 

23 0.9617 Non Non 

22 0.9630 1 total_fiat NUMERIC 

21 0.9633 14 std_flowiat NUMERIC 

20 0.9636 5 max_fiat NUMERIC 

19 0.9623 8 mean_biat NUMERIC 

18 0.9614 7 mean_fiat NUMERIC 

17 0.9610 0 duration NUMERIC 

16 0.9636 13 mean_flowiat NUMERIC 

15 0.9503 3 min_fiat NUMERIC 

14 0.9488 2 total_biat NUMERIC 

13 0.9376 4 min_biat NUMERIC 

12 0.9380 18 std_active NUMERIC 

11 0.9388 17 max_active NUMERIC 
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10 0.9312 11 min_flowiat NUMERIC 

9 0.9312 21 max_idle NUMERIC 

8 0.9313 16 mean_active NUMERIC 

7 0.9150 9 flowPktsPerSecond NUMERIC 

6 0.8794 12 max_flowiat NUMERIC 

5 0.8772 20 mean_idle NUMERIC 

4 0.8658 15 min_active NUMERIC 

3 0.8514 19 min_idle NUMERIC 

2 0.7038 6 max_biat NUMERIC 

1 0.4016 10 flowBytesPerSecond NUMERIC 

0 0 22 std_idle NUMERIC 

 

Figure 8. Effect of number of features on model accuracy. 

From the experimental results, when the number of features is n = 20, the accuracy 

obtained by using xgboost is the highest. At the same time, the feature redundancy is the 

lowest. Therefore, the feature number n is selected as 20 in this paper. According to Table 

4, the selected features are the top 20 comprehensively ranked features. We verify the im-

portance of the top 20 features of the composite ranking, as shown in Figure 9. 

 

Figure 9. Importance of data features. 
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The encrypted traffic data features before mRMR feature selection are selected to 

generate a heat map about the correlation coefficients between different features. We ver-

ify the correlation of encrypted traffic features before and after feature selection, as shown 

in Figures 10 and 11. 

 

Figure 10. Heat map of coefficient correlation before feature selection. 

 

Figure 11. Coefficient correlation heat map after feature selection. 

When the absolute value of Pearson's correlation coefficient is close to 0, the correla-

tion between features is low, whereas the correlation between features close to 1.0 is 

higher. The mRMR feature selection removes feature numbers 1 and 14, respectively. It 

can be seen from Figure 11 that the correlation between feature numbers 1 and 2 is 0.9, 

and the correlation between feature numbers 14 and 13 is 0.9. Both pairs of features have 

a high correlation, which proves the feasibility of the mRMR feature selection results. The 
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correlation between features of the encrypted traffic data after mRMR feature selection is 

lower than the correlation between features before going through this experiment. So 

mRMR feature selection on this dataset can make the redundancy between features re-

duced while ensuring the maximum correlation between features and classes. This 

method also solves the problem of feature redundancy that exists in the original data. 

3.2.2. Construction and Optimization of FL-XGB-VPN-Encrypted Traffic Identification 

Model 

In the VPN-encrypted traffic identification problem, the training data of each class is 

not uniformly distributed. The classes with more data have a large proportion in the da-

taset, whereas the classes with less data will have a smaller proportion in the dataset. The 

reason is that different applications use different frequencies and generate different 

amounts of traffic data. Therefore, the amount of data varies greatly between different 

classes, and there is a problem of unbalanced data volume between data classes. Statistic 

on VPN-encrypted traffic data is shown in Figure 12. 

 

Figure 12. VPN-encrypted traffic data statistics. 

For the class imbalance problem in VPN-encrypted traffic data identification, we use 

the Xgboost ensemble learning model of custom Focal Loss, i.e., the FL-XGB model. The 

introduction of the Focal Loss function solves the problem of difficult-to-identify and 

easy-to-identify samples imbalance when identifying VPN traffic data. The method bal-

ances the problem of uneven proportions of the two samples, thus providing the neces-

sary conditions for overall traffic identification. Among them, Accuracy is 0.9543, Preci-

sion is 0.9522, F1-Score is 0.9503, and Recall is 0.9496. Therefore, the FL-XGB model ob-

tained by using Focal Loss to improve Xgboost can better deal with the problem of imbal-

ance between different types of data. The confusion matrix and precision–recall curve are 

shown in Figure 13. 
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(a) Confusion Matrix (b) Precision–Recall Curve 

Figure 13. Confusion Matrix and Precision–Recall Curve. 

Each column of the confusion matrix represents the identified class, and the total 

number of each column indicates the number of data identified as that class. Each row 

represents the actual class of the data, and the total amount of data in each row indicate 

the number of data instances in that class. From the confusion matrix in Figure 13a, the 

value in each column indicates the number of actual data identified as the class. For ex-

ample, 460 in the first column of the first row means that 460 instances belonging to class 

0 are identified as class 0. Similarly, the 8 in the second column of the first row indicates 

that there are 8 class 0 that are incorrectly identified as class 1. From the precision–recall 

curves in Figure 13b, it can be seen that the precision–recall rate for class 0 is 0.998, for 

class 1 is 0.843, for class 2 is 0.918, for class 3 is 0.921, for class 4 is 0.893, for class 5 is 0.981, 

and for class 6 is 0.998. The average precision–recall rate is 0.963. 

To compare the performance of the Focal Loss function in the FL-XGB model pro-

posed in this paper and the cross-entropy loss function in the original data, the compari-

son results of the two functions are given in Table 5 and Figure 14. It can be seen that the 

Xgboost model with the improved Focal Loss function has better performance than the 

original cross-entropy loss function. The � in the Focal Loss function adjusts the rate of 

weight reduction in 

 easily identifiable samples. It is equivalent to using the standard cross-entropy loss 

function when γ = 0. When γ = 2, the model can effectively reduce the weight of easily 

identifiable samples and increase the weight of the difficult identifiable samples. The 

model focuses more on the identification of difficult samples, resulting in higher Accu-

racy, Precision, F1-Score, and Recall. Among them, higher Precision performance indi-

cates that the number of correctly identified samples is higher in total and the model has 

better sample identification ability. 

Table 5. Cross entropy and Focal Loss function performance. 

 Cross Entropy Focal Loss(� = 2) 

Accuracy 0.8852 0.9543 

Precision 0.9045 0.9522 

F1-Score 0.9062 0.9509 

Recall 0.9097 0.9496 
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Figure 14. Performance Comparison of Cross-Entropy and Focal Loss Functions. 

In this paper, we optimize the parameters to change the descriptive power of the 

model, to reduce the error of the model and increase the identification rate of the model 

for VPN-encrypted traffic. The parameters min_child_weight, gamma, max_depth, Eta, 

subsample, and colsample_bytree are optimized to improve the identification rate of the 

FL_XGB model for encrypted traffic. The optimal combination of parameter values for the 

FL-XGB model is searched using Bayesian optimization, and the set of parameters of the 

FL-XGB model and its optimal search range are shown in Table 6. 

Table 6. Parameters and their value ranges. 

Parameter Name Value Ranges 

Max_depth (1, 15) 

Eta (0, 1) 

Min_child_weight (0.1, 20) 

Gamma (0, 20) 

Subsample (0, 1) 

colsample_bytree (0, 1) 

By Bayesian optimization algorithm, the maximum depth of the tree Max_depth is 

10, the learning rate Eta is 0.3, the minimum leaf weight Min_child_weight is 4, the mini-

mum loss function descent value Gamma is 7.7, Subsample is 0.5, and the feature sam-

pling ratio colsample_bytree is 0.2 after the optimization. The optimal combination of pa-

rameters after optimization is shown in Table 7. 

Table 7. The optimal combination of parameters. 

Parameter Name Value  

Max_depth 10 

Eta 0.3 

Min_child_weight 4 

Gamma 7.7 

Subsample 0.5 

colsample_bytree 0.2 

0.85

0.9

0.95

1
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The optimal set of parameters obtained from Bayesian optimization is input into the 

FL-XGB model to obtain the ROC curve of the model. The area of the ROC curve indicates 

its characteristics. When the area enclosed by the ROC curve is 0.5 for random classifica-

tion, the identification ability of the model is 0. The closer the area is to 1 indicates that the 

identification ability of the FL-XGB model is stronger. From Figure 15, the area of the ROC 

curve is close to 1, indicating that the FL-XGB model has a strong identification effect on 

VPN-encrypted traffic. 

 

Figure 15. ROC curve. 

3.2.3. Performance Analysis and Comparison of FL-XGB-Encrypted Traffic Identification 

Model 

We use Support Vector Machine (SVM), Gradient Boosting Decision Tree (GDBT), 

Naive_Bayes (NB), Logistic Regression (LR), K-nearest neighbor (KNN), Adaptive Boost-

ing (Adaboost), Linear Discriminant Analysis (LDA), FL_XGB a total of 8 algorithms to 

identify the VPN traffic data, and then the four metrics Accuracy, Precision, Recall, F1-

Score are output. The identification results are shown in Table 8. 

Table 8. Identification results of different algorithms. 

Algorithm ACC Precision F1-Score Recall 

SVM 0.5169 0.5374 0.3361 0.3271 

GDBT 0.8666 0.8626 0.8521 0.8475 

NB 0.3093 0.3685 0.2691 0.3379 

LR 0.4548 0.3489 0.2977 0.3126 

KNN 0.8575 0.8553 0.8433 0.8416 

Adaboost 0.5408 0.5224 0.4545 0.4913 

LDA 0.4623 0.4153 0.2841 0.2892 

FL-XGB 0.9743 0.9722 0.9703 0.9796 

The performance comparison results of each algorithm under the indicators of Accu-

racy, Precision, F1-Score, and Recall are shown in Figure 16. 
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(a) Accuracy (b) Precision 

 

(c) F1-Score  (d) Recall 

Figure 16. Performance comparison chart of different algorithms. 

From Figure 16, it can be seen that the FL-XGB-VPN-encrypted traffic identification 

method based on Time-Related mRMR feature selection, FL-XGB traffic identification 

model construction, and optimization proposed in this paper achieves an identification 

rate of more than 97%. 

In VPN-encrypted traffic identification, the model improves the accuracy by 8.21% 

over the traditional Xgboost identification model. In addition, the feature selection stage 

of the FL-XGB-VPN-encrypted traffic identification model preserves the attributes of the 

original features while ensuring the dimensionality reduction effect. The method main-

tains key features of the data and provides a basis for analyzing key features of VPN-

encrypted traffic. In the parameter optimization stage of the identification model, our ap-

proach avoids large-scale searches while allowing the model to converge quickly to the 

optimal solution. It can be seen that the FL-XGB-VPN-encrypted traffic identification 

model has high identification ability and promotion ability. 

Based on the above results, to verify the universality of the FL-XGB-encrypted traffic 

identification model, another dataset is used for verification. On the ISCXTor2016 [36] da-

taset, compare the identification performance of the FL-XGB-encrypted traffic identifica-

tion model with a total of 8 algorithms including SVM, GDBT, Naive_Bayes, LR, KNN, 

Adaboost, LDA, and C4.5 for Tor-encrypted traffic data. The four indicators of Accuracy, 

Precision, Recall, and F1-Score of the 10S feature data of the dataset Scenario-B file are 

shown in Table 9. 

Table 9. Identification results of different algorithms on the ISCXTor2016 dataset. 

Algorithm Accuracy Precision F1-Score Recall 

SVM 0.6824 0.5169 0.3671 0.5333 

GDBT 0.739 0.6278 0.644 0.6949 

NB 0.6911 0.5228 0.5441 0.6001 

LR 0.5966 0.4398 0.4498 0.4667 

KNN 0.7023 0.6775 0.6962 0.6618 

Adaboost 0.7079 0.6911 0.5884 0.6321 

LDA 0.6824 0.6778 0.69 0.6333 
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C4.5 0.762 0.7827 0.7969 0.8333 

FL-XGB 0.996 0.9959 0.9963 0.9967 

The performance comparison of the FL-XGB-encrypted traffic identification model 

with other eight algorithms for four metrics, namely Accuracy, Precision, F1-Score, and 

Recall, is shown in Figure 17. Each performance of the FL-XGB-encrypted traffic identifi-

cation model reaches above 0.995. As shown in Table 9, the average Accuracy value of 

other machine learning algorithms is 0.6955, the average Precision value is 0.6171, the av-

erage F1-Score value is 0.5971, and the average Recall value is 0.6319. The FL-XGB-en-

crypted traffic identification model has an average improvement of 30.05% in Accuracy 

value, 37.88% in Precision value, 39.92% in F1-Score value, and 36.47% in Recall value 

compared to the other 8 algorithms. Precision, F1-Score, and Recall are important indica-

tors of the precision, false positives, and stability of the model performance. Therefore, 

the FL-XGB-encrypted traffic identification model has higher accuracy and more stable 

model performance in identifying Tor-encrypted traffic data compared to the other eight 

algorithms. In summary, the FL-XGB-encrypted traffic identification model is also appli-

cable to the encrypted traffic identification of the dataset ISCXTor2016. The FL-XGB-en-

crypted traffic identification model has high universality for the identification of en-

crypted traffic and can effectively solve the problem of low accuracy of VPN-encrypted 

traffic identification. 

 

Figure 17. Comparison of different algorithms on the ISCXTor2016 dataset. 

4. Conclusions 

This paper proposes a VPN-encrypted traffic identification method based on ensem-

ble learning to achieve accurate identification of encrypted traffic. Firstly, a VPN-en-

crypted traffic feature selection method is proposed. We perform VPN-encrypted traffic 

mRMR feature selection for the redundant features that exist in Time-Related VPN-en-

crypted traffic to obtain the optimal Time-Related VPN-encrypted traffic feature set. Sec-

ondly, a VPN-encrypted traffic identification model based on ensemble learning is pro-

posed to address the imbalance of data class. Finally, anoptimization method of the VPN-

encrypted traffic identification model is proposed to solve the problem of the low identi-

fication rate of the previous VPN-encrypted traffic ensemble learning model. In summary, 

the average identification rate of the FL-XGB-VPN-encrypted traffic identification method 
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proposed in this paper reaches more than 97% for VPN-encrypted traffic. Meanwhile, we 

also validate the FL-XGB-encrypted traffic identification method proposed in this paper 

on other encrypted traffic data. The experimental results show that the FL-XGB-encrypted 

traffic identification method proposed in this paper also has a high identification rate for 

other encrypted traffic data. This indicates that the set of methods proposed in this paper 

has high universality in encrypted traffic identification. Therefore, the FL-XGB-VPN-en-

crypted traffic identification model proposed in this paper can efficiently identify mali-

cious network encryption. The method helps to improve the network service quality and 

also has certain practical value to maintain network security. 
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