
Citation: Cândido, P.G.L.; Silva, J.A.;

Faria, E.R.; Naldi, M.C. Optimization

Algorithms for Scalable Stream Batch

Clustering with k Estimation. Appl.

Sci. 2022, 12, 6464. https://doi.org/

10.3390/app12136464

Academic Editor: Federico Divina

Received: 30 May 2022

Accepted: 21 June 2022

Published: 25 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Optimization Algorithms for Scalable Stream Batch Clustering
with k Estimation
Paulo Gustavo Lopes Cândido 1 , Jonathan Andrade Silva 2 , Elaine Ribeiro Faria 3

and Murilo Coelho Naldi 4,*

1 Department of Informatics, Federal University of Viçosa, Viçosa 35690-000, MG, Brazil;
pcandido.m@gmail.com

2 Faculty of Computer Science, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
jonathan.andrade@ufms.br

3 Faculty of Computer Science, Federal University of Uberlândia, Uberlânida 38408-100, MG, Brazil;
elaine@ufu.br

4 Department of Computer Science, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
* Correspondence: naldi@ufscar.br

Abstract: The increasing volume and velocity of the continuously generated data (data stream)
challenge machine learning algorithms, which must evolve to fit real-world problems. The data
stream clustering algorithms face issues such as the rapidly increasing volume of the data, the variety
of the number of clusters, and their shapes. The present work aims to improve the accuracy of
sequential clustering batches of data streams for scenarios in which clusters evolve dynamically and
continuously, automatically estimating their number. In order to achieve this goal, three evolutionary
algorithms are presented, along with three novel algorithms designed to deal with clusters of normal
distribution based on goodness-of-fit tests in the context of scalable batch stream clustering with
automatic estimation of the number of clusters. All of them are developed on top of MapReduce,
Discretized-Stream models, and the most recent MPC frameworks to provide scalability, reliability,
resilience, and flexibility. The proposed algorithms are experimentally compared with state-of-the-
art methods and present the best results for accuracy for normally distributed data sets, reaching
their goal.

Keywords: machine learning; clustering; data stream; massive parallel computation

1. Introduction

New technologies combined with widespread access have supported the exponential
increase in continuously generated data and challenging machine learning techniques
such as data clustering. Although clustering algorithms are well known for batch data,
the traditional centralized and even some distributed approaches for clustering data streams
may not be able to deal with this increasing data volume due to the limitations of scaling
up such systems. On the other hand, scaling-out systems are a feasible alternative to
handle rapidly increasing amounts of data, being successfully applied over batch data and
data streams.

Data streams are ordered sequences of objects with non-stationary data distribution [1].
The clustering of this type of data must address specific challenges [2,3]: (i) continuously
generated data, (ii) unbounded data, (iii) evolving data, represented by phenomena such as
changes in clusters (concept drift) and the emergence of new clusters (concept evolution [4]),
and (iv) variable number and size of clusters over the stream, which means that clusters
can appear, disappear, merge, and split.

The automatic estimation of the number of clusters (k) from data is a well-known
problem in the clustering task since k is often unknown in real scenarios. Moreover, as the
number of clusters in data streams may vary over time, static prior-defined values may not

Appl. Sci. 2022, 12, 6464. https://doi.org/10.3390/app12136464 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136464
https://doi.org/10.3390/app12136464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7680-3967
https://orcid.org/0000-0002-8274-2707
https://orcid.org/0000-0001-5242-9026
https://orcid.org/0000-0002-3107-8236
https://doi.org/10.3390/app12136464
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136464?type=check_update&version=1

Appl. Sci. 2022, 12, 6464 2 of 22

be feasible. There are, in the literature, several approaches to estimate the number of clusters
for static (non-incremental) data sets, including approaches for numeric attributes [5] and
for categorial data [6]. Moreover, the dynamic estimation of k increases the quality of the
model in data streams and allows the algorithm to handle evolving data [3].

The classical algorithms for clustering data streams can address the challenges of
unbounded size and the continuous data generation by avoiding expensive random access,
giving way to single and linear scans [3]. However, in real-world scenarios, the volume
and velocity of the continuously generated data overcome the limitations of a centralized
system [2], i.e., the time spent to process a single data point can be superior to the arrival
of new data points. Big data techniques are successfully applied to data stream clustering
algorithms [7,8], allowing data processing distribution and the scaling of learning tasks for
large and incremental volumes of data.

MapReduce [9] is a scalable programming model to handle big data sets. It consists
of two functions, map and reduce, which are executed in parallel over the data set, divided
through the nodes of a distributed system. The MapReduce ecosystem ensures coordination,
replication, fault tolerance, and other essential aspects to distribute work through unreliable
hardware [9] reliably. MapReduce has been successfully applied to data clustering [10],
but it was not initially designed for data streams since its functions require access to the
whole data set. To handle data streams, Discretized-Stream (DS) [11] was proposed as
an extension of MapReduce. It consists of ordered sequences of batches built from short
time intervals of the data stream, called micro-batches. Instead of processing objects one
by one, MapReduce buffers and processes a set of objects at once over its reliable and
resilient ecosystem.

Despite the effort to address the clustering of the high amount of evolving data, this
is still a challenging task that involves (i) attending to the data streams’ assumptions;
(ii) automatically estimating the number of clusters that evolves dynamically, and (iii)
using scalable models (such as MapReduce) to deal with the high volume of continuously
generated data. Figure 1 shows the three main sub-fields used by the proposed work to
address data clustering: MapReduce, data streams, and estimation of k . Although several
approaches have been developed to address the intersections between two of these sub-
fields (see areas d, e, and f in Figure 1), the interception among these three sub-fields is
not well explored. The works proposed in [12,13] have addressed the intersection among
the three sub-fields (see Figure 1, area x) in order to estimate the number of clusters
in a data stream clustering using the MapReduce model. In [12], the micro-batching
approach was shown to be a feasible alternative for linear and sequential data scans that
limits processing scalability, while [13] introduced a batch stream approach able to take
advantage of MapReduce’s parallel processing.

Figure 1. Relationship between the main data clustering sub-fields: estimation of the number of
clusters k (a), data stream (b), and MapReduce (c).

The clustering algorithms proposed in [13] were shown to be feasible and efficient
when clustering hyperspherical-distributed data streams, but they have not been experi-

Appl. Sci. 2022, 12, 6464 3 of 22

mented with against normally distributed high-speed data streams. Although the clustering
algorithms proposed in [13] were shown to be feasible under the assumption of spherical
clusters, the problem is that the k-means algorithm could merge or split clusters, producing
inaccurate results [14] when considering Gaussian-distributed clusters, especially when the
data present a high variability. Over this observed problem, the present work shows that
an algorithm designed to handle clusters with normal distribution can have better accuracy,
even in high-speed data streams and distributed systems. Therefore, this work extends
the work presented in [13], with the primary goal to cluster distributed batch streams of
clusters with a dynamic estimation of their number in a scalable framework. Despite its
imminent importance, it is a poorly explored sub-field considering the increasing data
generation rates. In [14], for example, the authors highlight the need for a variety of algo-
rithms combined with MapReduce for clustering data streams. The new contributions of
the present paper are as follows: (i) we revisit and extend three evolutionary algorithms
capable of automatically estimating the current number of clusters of a data stream, (ii) we
propose three novel algorithms, based on data projection and goodness-of-fit hypotheses,
for clustering batches of streamed data, and (iii) we present a new and improved set of
experiments in a variety of application scenarios, allowing us to compare and analyze all
presented algorithms.

This paper is organized as follows: we present work related to our proposal in Section 2.
Section 4 introduces the proposed algorithms. Experimental tests and result analysis are
given in Section 5. The conclusions of this work are presented in Section 6.

2. Related Work

Our work involves three sub-fields of partitional and fuzzy clustering, as shown in
Figure 1: (i) dynamic estimation of the number of clusters, (ii) scalable and distributed
data clustering, and (iii) data stream clustering. Although several works approach one of
these sub-fields, few works combine two, and fewer combine them all. Here, we present
state-of-the-art algorithms that consider these three sub-fields separately and the few works
that combine them.

The k-means algorithm [15] is one of the ten most influential algorithms for machine
learning [16]. It is a local search of polynomial complexity that consists of seeding a set
of centroids and adjusting them until convergence or another stop criterion is achieved.
Despite its simplicity and low complexity, the algorithm has two main limitations: the
sensibility to the initialization of the seeds and a prefixed number of clusters (k) that must
be previously defined. Several algorithms focused on overcoming these limitations for
static and centralized data sets [17–19], but few for data stream clustering. The k-means
algorithm inspires most of the algorithms presented here.

G-means [20] is a clustering algorithm that estimates the number of Gaussian-shaped
clusters in data sets. It consists of splitting the clusters from the last iteration that does not
fit the null hypothesis of normality. This hypothesis is tested over the cluster’s data points
projected over a one-dimensional vector, which is defined by two centroids resulting from
k-means with k = 2. Using k-means in this step is an alternative to principal component
analysis with a lower computational cost. The algorithm applies the Anderson–Darling
(AD) test to assess normality over the projected data, which reduces the computational
complexity, thus making the algorithm faster [20]. The clusters are split until all of them
achieve normal distribution. Additional stopping criteria may be adopted, e.g., a maximum
value for k. G-means has been used to cluster centralized and distributed data [10], but it
was not applied over data streams. In this work, novel algorithms based on G-means are
proposed to cluster scalable amounts of data streams in a distributed way.

One of the main drawbacks of G-means, pointed out by [19], is the overestimation of k
depending on the data set distribution. Data projection implies information loss, and split
clusters based on a projection may produce low-quality partitions. PG-means [19] was
proposed to overcome this drawback. Instead of a single projection, several projections are
performed to analyze different views of the multi-dimensional space. Moreover, the whole

Appl. Sci. 2022, 12, 6464 4 of 22

data set is tested against the learned clusters (current model) using a goodness-of-fit test,
instead of testing each cluster against the Gaussian distribution. If the null hypothesis
is rejected, new prototypes are chosen, and new models are refined by the expectation-
maximization (EM) algorithm. The authors showed that PG-means is more accurate than
G-means, mainly in non-hyperspherical clustered data sets. PG-means can cluster data sets
and estimate the number of clusters in a centralized way, but no distributed version has
been presented in the literature. Moreover, PG-means was designed to cluster data sets
structured in batches and cannot handle data streams. The present work also presents a
novel algorithm based on PG-means to handle scalable data streams.

F-EAC [17] is an evolutionary algorithm able to overcome both limitations of k-
means. It builds several partition candidates (as the population), evolves them with
mutation operators, which increases and decreases the number of clusters, and improves
each individual with k-means. When the stop criterion is reached, the fittest model (ac-
cording to a relative quality index) produced during the evolutionary search is returned.
Furthermore, the random initialization of the population and the mutations promote di-
versity and various clustering solutions, which are improved through evolutionary search.
F-EAC has already been used to cluster scalable batch data sets, data streams, and even
scalable data streams, as described below.

The SF-EAC [10] is a scalable version of F-EAC. It makes use of distributed compu-
tation to process scalable static data sets. The MapReduce programming model [9] is a
scalable and reliable way to access and process data. Two main steps of SF-EAC need access
to the data set: the intensification step by k-means, and the evaluation of the solutions
based on the simplified silhouette index (SS) [21]. The scalable version of k-means maps
each data point to its closest centroid and adjusts the centroid positions (the average of
mapped data points) in a reduce job. The scalable SS version calculates the index value for
each data point in a map job, while a reduce job summarizes the index score for each cluster
and partition. Although SF-EAC can cluster scalable amounts of batch data and estimate k,
it was not designed to handle data streams directly. In this work, two algorithms based on
SF-EAC are presented to cluster scalable data streams, using the algorithm to estimate the
current number of clusters.

CluStream [22] is designed to cluster data streams. It consists of two phases, online
and offline. During the online phase, the algorithm summarizes the data in a micro-cluster
structure. The algorithm keeps the micro-clusters updated as the new data points arrive
incrementally. The offline phase clusters the micro-clusters instead of the raw data points
since the micro-clusters summarize and represent the data points during the macro-cluster.
Although CluStream is not designed for scalable data systems, nor can it dynamically
estimate the number of clusters, it inspired all the proposed algorithms.

FEAC-Stream [23] is a centralized data stream clustering algorithm inspired by F-EAC.
After building the first clustering model using F-EAC over the initial buffer of data points,
the algorithm keeps the model updated. This is done by inserting incrementally into
the model each data object received from the data stream, according to its similarity to
the existing clusters. The algorithm monitors the partition quality and detects when a
significant change occurs. When detected, the F-EAC estimates the number of clusters and
obtains a new partition. As a centralized algorithm, FEAC-Stream cannot handle scalable
or distributed data streams, although its incremental update processing inspired some of
our proposed algorithms.

Inspired by FEAC-Stream, FEACS-ISS [12] was designed to cluster data streams with
a dynamic estimation of k and scalability. It keeps the model updated by inserting the
received data points incrementally in the closest cluster, while the data points lie within its
SS boundary. Such a boundary is defined as the lowest SS value of an object already in the
cluster, which must be inferior or equal to the SS value of the arriving data point. Otherwise,
the incremental update of the model stops, and a full clustering process (using SF-EAC)
is executed over the buffered data. FEACS-ISS was one of the pioneering algorithms to
approach the scalable clustering of a data stream and the estimation of the number of

Appl. Sci. 2022, 12, 6464 5 of 22

clusters. However, it is an adaptation of a non-scalable algorithm and has sequential steps
characterized as bottlenecks for processing data streams. The algorithms presented in the
present work use the batch stream approach to overcome such bottlenecks.

In summary, the clustering task is still challenging despite the vast body of knowl-
edge in this task for batch scenarios and, more recently, in data streams. Most of the
approaches described here are focused on the intersection between two of the three
main sub-fields related to the clustering task (estimate the k, MapReduce, and data
streams). Recent works such as [12,13] have addressed the intersection of these three
sub-fields, proposing scalable algorithms based on centralized data stream algorithms.
However, although these works have achieved good results in clustering hyperspherical
data, they have not experimented against normally distributed high-speed data streams.

3. Scalable Evolutionary Clustering Algorithms

The stream clustering algorithms should handle the dynamic nature of streaming data,
in which there is no control over the data arrival order, and the underlying data distribution
can change over time. Such changes can be reflected in data clusters [23]. To illustrate
such changes in Gaussian data distribution over time, assume that we look at the data
stream in six moments represented in Figure 2a–f. Initially, Figure 2a illustrates five data
distributions. After this, a new data distribution appears (which can be gradual or abrupt),
shown in Figure 2b,c. Moreover, some data distributions can disappear, highlighted in red
in Figure 2c,d, or merge with existing ones. Figure 2d,e illustrate two data distributions that
are becoming closer over time, and then they merge, forming one dense data distribution,
as in Figure 2f.

Figure 2. Illustration of changes in data distribution over time. The blue and red spheres around
data highlight such changes, where a new data distribution is emerging in (a–c) (highlighted in blue),
a data distribution disappears in (c,d) (highlighted in red), and two data distributions are merging
over time in (d–f) (highlighted in blue).

Initially introduced in [13], this section presents three evolutionary algorithms de-
veloped and compared in the present study, designed to cluster scalable batch streams
and dynamically estimate the number of clusters. In [12], the algorithms use sequential
and parallel approaches to process data objects one-by-one, respecting the data points’

Appl. Sci. 2022, 12, 6464 6 of 22

sequence, such as traditional data stream clustering algorithms. However, the analysis
of single objects sequentially shows a severe computational bottleneck towards the dis-
tributed processing. In advance of the present work, all the compared algorithms used
the Discretized-Stream (DS) [11] approach to properly handle the data streams in the
MapReduce model, taking full advantage of the distributed computation and scalability
of the framework. In the DS model, the t-th micro-batch Bt consists of an unsorted set
of data points Bt = {xp, xp+1, . . . , xp+q}, where p is the offset of the micro-batch and q is
the size of the micro-batch. A micro-batch Bt can be interpreted as one of six scenarios
illustrated in Figure 2 from a to f. When the micro-batch arrives, it is distributed through
the nodes of the system so that b1 ∪ b2 ∪ . . .∪ bm = Bt, where m is the size of the distributed
system, and bj represents a subset of Bt stored in a node. Note that MapReduce imple-
mentation replicates all the data in a few nodes to ensure reliability and fault tolerance.
Moreover, the time window established by the DS model is the union set of the last micro-
batches W = Bt ∪ Bt−1 ∪ . . . ∪ Bt−|W|, where |W| is the window size. Note that the time
window is not a computational resource limitation but a forgetting mechanism related to
the data evolution [1].

3.1. SESC

Scalable Evolutionary Stream Clustering (SESC) [13] is an evolutionary algorithm able
to cluster batch streams by using the largely widespread data summarization [3]. The al-
gorithm has two main steps, the data summarization (abstraction phase), done over dis-
tributed data, and the data clustering (clustering phase), performed by applying F-EAC
over the summarized data.

The data are summarized as micro-clusters [22], which have four components: n (the
number of data points), ls (the linear sum of the data points), ssq (the sum of squared
data points), and ts (the timestamp of the most recent data point of the micro-cluster).
Given a micro-cluster M formed by a set of data points M = {x1, . . . , xn}, where n is the
number of data points belonging to it, the linear sum of M is given by a vector ls = ∑n

i=1 xi
and its sum of square ssq = ∑n

i=1 x2
i . The representative of a micro-cluster M is given by

its centroid (mean vector from data points of M) m = ls
n . Micro-clusters have two relevant

capabilities: the incrementality, which allows adding a single point i to a micro-cluster j (by
summing up xi with the components of Mj, xi + lsj and (xi)ˆ2 + ssqj), and the additivity,
which allows combining two micro-clusters, simply adding their three first components
(n, ls, and ssq) and taking the maximum ts. An outdated ts (related to the time window)
means that the micro-cluster is no longer updated.

Figure 3 shows an overview of the algorithm. When the t-th micro-batch is received,
the objects are distributed through the nodes by the DS framework. When the accumulated
objects (micro-batch) are delivered to SESC, each node works in a parallel and independent
way to maintain a set of q micro-clusters. After the initial micro-clusters are obtained by
applying k-means in the first portion of data, the received objects (by the node) are inserted
into the micro-cluster model according to the CluStream update method [22]: a data point
xi is inserted into a micro-cluster Mj if the Euclidean distance between xi and the centroid
mj, dist(xi, mj) = ‖xi −mj‖2, is less than the mj boundary; otherwise, a new micro-cluster
is created considering the ls = xi, ssq = (xi)ˆ2, and n = 1. There is a threshold for the
number of micro-clusters (q); thus, an extra action is necessary to fix the model when the
limit is exceeded. They are removed if there are outdated micro-clusters (ts is outside of
the time window). Otherwise, the closest pair is merged into a single micro-cluster.

Appl. Sci. 2022, 12, 6464 7 of 22

Figure 3. SESC overview [13].

When all the nodes finish the micro-cluster model update, which is executed in parallel,
a set composed of the union of all the micro-clusters (from all the nodes) is used as weighted
data points by the centralized F-EAC algorithm in order to estimate the number of clusters
and build a (macro-)clustering model. It is expected that the number of micro-clusters
is higher than the number of macro-clusters (q >> k) and much smaller than the data
stream size (q << n). Thus, it is expected that the centralized system can handle the
summarized data.

3.2. ISESC

Differently from SESC, the Incremental Scalable Evolutionary Stream Clustering (IS-
ESC) [13] was designed to cluster raw data directly instead of summarizing them into
micro-clusters. Storing the data requires more resources such as memory and processing
time than micro-clusters but provides more information and higher accuracy. Distributed
and scalable frameworks (such as MapReduce) were designed to provide such resources.
SF-EAC provides the first macro-clustering model over an initial data portion, using dis-
tributed and parallel computation. These macro-clusters use a data structure extended from
the micro-cluster concept, providing incrementality and additivity capabilities. Besides the
components n, ls, ssq, and ts, the macro-cluster structure also keeps the lowest simplified sil-
houette index (SS) value (lss) among its data points. The SS index considers the compactness

Appl. Sci. 2022, 12, 6464 8 of 22

and the separation of the data point xi belonging to a micro-cluster Mj, which are repre-
sented by two terms, ai and bi, respectively. Specifically, the ai term is given by dist(xi, mj)
and bi = dist(xi, mc), where mc is the closest neighbor micro-cluster centroid to mj.
Then, the SS index is calculated as SS(xi) = 1− ai

bi
. The average SS index for all data

points gives an estimate of full clustering quality, which ranges from 0 to 1 (under k-means
assumption). The cluster radius (rd) can be calculated according to Equation (1), which
results in the standard deviation, and α defines how many standard deviations compose
the radius (α ≥ 1).

rd = α

√
ls
n
− (

ss
n
)T(

ss
n
) (1)

Figure 4 presents an overview of ISESC. After SF-EAC clusters the first micro-batch,
the incremental update component of the algorithm updates the model with new data
from the following micro-batches. If the component detects a change (concept drift) during
the update, the full-clustering component (SF-EAC) is executed to estimate the number of
clusters and build a new model.

Figure 4. ISESC overview, adapted from [13].

Inspired by FEAC-Stream [23], the incremental update component searches for evi-
dence of a significant change (e.g., the emergence of a new cluster) and, if there is none,
updates the clusters incrementally. For each data point, the component calculates the
shortest Euclidean distance between the point and the centroids (d), and its SS value
(ss) [21] associated with the closest cluster. Evidence of a significant change is a data point
for which d is higher than the radius of the closest cluster (rd) or has an SS value inferior to
the lowest SS value of the points of the associated cluster (ss < lss). If any data point of the
micro-batch matches this evidence criterion, the full-clustering component is executed; oth-
erwise, the associated cluster is updated, and the incremental update component continues.
All distances, SS, and tests of evidence are made in a distributed fashion through map jobs
of MapReduce.

The evidence criterion is represented and visualized as two boundaries for each cluster.
Figure 5 is a partial representation of a bi-dimensional clustering model, where C3 and C4
are cluster centroids and pi : i ∈ {1, 2, 3, 4} are data points. The dotted lines represent the
clusters’ radius (rd) boundaries, and the dashed lines represent the irregular and convex
lowest simplified silhouette (lss) boundaries given by the SS function. In this illustrative
scenario, p1 is within the lss boundary of C3 but not within that of rd. The lss boundary can
assume such irregular and wide areas that may even encompass new clusters, and then this
object will be treated as evidence of a significant change. In turn, p2 is within overlapping
rd boundaries but is not within any lss area. Inserting p2 in either C3 or C4 may not be
considered correct, as it does not truly merge these two clusters. Thus, p2 will also be

Appl. Sci. 2022, 12, 6464 9 of 22

treated as evidence of a significant change (cluster merging). Note that lss areas will never
overlap since they grow towards the Voronoi diagram, and k-means always consider the
minimum distance. The data point p3 is outside both boundaries and will be treated as
evidence of a significant change. The last data point, p4, lies within both boundaries of C4
and does not represent evidence of a significant change.

Figure 5. Representation of boundaries used to detect significant change for evidence criterion.

If evidence of change is detected, the model is incrementally updated. A reduce
job assigns the data points to their closest clusters, aggregating their summaries and
incrementally updating their information. Then, clusters not updated in the most recent
time window, i.e., with ts values older than the time window limit, are removed from the
model. The remaining updated clusters compose the new model.

Otherwise, if evidence of change is detected, the full-clustering component is executed
over the data of the present time window. It consists of running SF-EAC over an initial
population of pre-defined solutions built from the current model and derivatives. The cur-
rent model reflects the known structure along the data stream. Based on this model, two
methods are used to derive it: the first aims at increasing iteratively the number of clusters k
until a limit kmax is reached, selecting prototype candidates among the farthest objects from
the existent centroids (inspired by [18]); the second method aims at decreasing k by merging
the closest pairs of clusters repeatedly until a kmin cluster is reached. The closest pair of
clusters is estimated by their boundaries, i.e., the distance between centroids minus the
sum of their radii values (rd). If necessary, both methods may use other arbitrary stopping
criteria (the maximum population size, for example). Besides guided initialization, SF-EAC
provides different strategies to diversify the population during the evolutionary search,
estimating a new data-adjusted model.

ISESC incrementally updates the model with a low computational cost when no signif-
icant change is detected. However, it runs the full-clustering component at any evidence of
change, which is the most accurate (but costly) way to learn the current clustering model.
Thus, ISESC prioritizes quality and is suitable for data sets with low concept drift, i.e., the
clusters do not or rarely change abruptly. Otherwise, the full-clustering component may be
triggered repeatedly, requiring computational resources.

3.3. ISESC-CD

Incremental Scalable Evolutionary Stream Clustering with Change Detection (ISESC-CD) [13]
is an extension of ISESC with one additional heuristic component, an attempt to avoid
unnecessary executions of full clustering. The change-detection component (CD) resides
between the incremental update and full-clustering components, as shown in Figure 6. This
component addresses five types of data stream changes detected by the incremental update
component: (i) the displacement of an existing cluster in space; (ii) the emergence of a new
cluster; (iii) the split of an existing cluster caused by the arrival of objects that leads two or
more parts of the cluster in different directions; (iv) the disappearance or expiration of an

Appl. Sci. 2022, 12, 6464 10 of 22

existing cluster according to its ts and the time window; (v) the merging of two existing
clusters, as they incrementally overlap each other. The role of CD is to distinguish the
displacement of the clusters (case i) from the others, as cases ii and iii increase the number
of clusters k, while cases iv and v decrease it. Applying k-means is enough to deal with
cluster displacements, while the full-clustering component is required to estimate models
with variations of k.

Figure 6. ISESC-CD overview, adapted from [13].

The model’s change is detected by comparing the current model with two derivations
of it. The first derivation results from adding the farthest object from the centroids of the
model as a new centroid, increasing k by one. The second results from merging the closest
pair of clusters according to its boundaries (the distance between the centroids minus the
sum of their radii), decreasing k by one. Both derivations and the current model are fine-
tuned by distributed k-means, and then compared among themselves in terms of SS index
values. If the current model is the best evaluated, it is preserved. Otherwise, significant
evidence of change is detected, and the full-clustering component builds a new model.

Although the full-clustering component is essentially SF-EAC, other clustering algo-
rithms may be considered since the incremental update and change-detection components
work regardless of the full-clustering and vice versa. This structure, named Incremental
Scalable Stream Clustering with Change-Detection (ISSC-CD), allows the exploration of
new batch stream clustering algorithms from non-stream ones.

3.4. Computational Complexity Analysis

For the worst-case scenario, the asymptotic computational complexity of the evolu-
tionary algorithms presented in this work for single micro-batch processing is shown in
Table 1. The size of the micro-batch is given by nmb, d is the dimensionality of the data, mc
is the number of micro-clusters, m is the number of worker nodes of a distributed system,
nw is the size of the landmark window, km is the maximum number of clusters found
during the process, i is the maximum iterations of k-means, g is the maximum generations
of F-EAC-based algorithms, and |P| is the population size.

Although the three algorithms have linear complexity in relation to the stream/micro-
batch size, for most scenarios, mc < nw

nmb
∗ km ∗ i ∗ g ∗ |P|, which gives SESC a lower

boundary than ISESC and ISESC-CD.

Appl. Sci. 2022, 12, 6464 11 of 22

Table 1. Asymptotic computational complexity analysis of the evolutionary algorithms.

Algorithm Worst Case

SESC O((nmb ∗ d ∗mc)/m)

ISESC O((nw ∗ d ∗ km ∗ i ∗ g ∗ |P|)/m)

ISESC-CD O((nw ∗ d ∗ km ∗ i ∗ g ∗ |P|)/m)

4. Scalable Distribution-Based Clustering Algorithms

We propose three novel scalable clustering algorithms based on goodness-of-fit tests,
i.e., test the data set against a reference distribution. Their goal is to test the hypothesis that
specialized approaches to clustering Gaussian-distributed data can improve the accuracy
of clustering in the scenario of high-speed data streams.

4.1. SGMS

Scalable G-Means for Stream (SGMS) is based on the scalable version of G-means
(SG) [10]. The algorithm has the same incremental update and change-detection com-
ponents described for the ISESC-CD in Section 2 but adopts the SG procedure in the
full-clustering component instead. When its change-detection component triggers, the full-
clustering component is executed over the data in the time window (X). It applies SG to
estimate the number of clusters and build a new model. Starting from one cluster with all
the data, SG consists of iteratively splitting the unstable clusters of the model, i.e., clusters
that did not fit the Gaussian distribution. The process is repeated until all clusters fit the
Gaussian distribution with a prior-defined confidence level and become stable. Other
stopping criteria may be adopted, e.g., a maximum number of splits or iterations. In order
to reduce the computational cost, the goodness-of-fit tests are applied over one-dimensional
projections of the clusters. G-means is guided by the goodness-of-fit of Gaussian distri-
bution over the clusters, which assumes that the structures of the data sets resemble this
distribution. Consequently, such an assumption holds for SG and SGMS.

An overview of SG is presented in Algorithm 1. It starts with two sets: A for unstable
clusters and B for stable ones. Thus, the current partition of each iteration is defined by
A ∪ B. The first cluster c1 is built from the mean of X and added to A. The algorithm
begins its iterations by assigning each data point with its closest cluster of the current
partition using a map job (line 5). Following this, a subset wj of data points is created
for each unstable cluster aj, ∀j ∈ A. A job maps each data point xi into a pair of <j, xi>,
where j is the index of the assigned subset. At line 7, the scalable version of k-means is
executed for each subset wj with k = 2, as defined in the original G-means [20]. Usually,
during the execution of the scalable version of k-means, each data point is mapped with the
index of its cluster as a key [24]. However, the clustering of each subset wj must be done
independently, i.e., isolated from the others. Such independence is provided by mapping
the data points with keys formed by the index of their clusters and their subset index j.
This independence allows the partitioning of all clusters at once by a single pair of maps
and reduce jobs by k-means iteration. The result is a set of models mj obtained for each wj
subset, which is used to create a collection of projection vectors [20] (line 8). In line 9, a map
job is used to project each data point within wj against its projection vector vj. After this,
each subset pj of the projected data points is shuffled through the distributed system to fit
a single node and allow the Anderson–Darling (AD) statistical test application. Each pj is
sorted in parallel by the nodes, and the test is applied with the confidence level α, yielding
a set of statistics tj (line 10). For each j, if the statistics of tj accepts the null hypothesis that
pj fits the Gaussian distribution, its original cluster aj is considered stable and moved to
B. Otherwise, the cluster aj is split, which means adding into A the clusters mj resulting
from wj, and deleting their original cluster aj. The iterations continue until the algorithm
reaches a stop criterion (line 4). The algorithm stops if all clusters are stable or a predefined
maximum number of iterations is reached in this work.

Appl. Sci. 2022, 12, 6464 12 of 22

Algorithm 1: SG overview
Data: X, confidence level α
Result: clustering model M

1 let c1 ←−mean of X;
2 let A←− {c1} ;
3 let B←− {};
4 while there are unstable clusters do
5 assign data points and clusters;
6 wj ←− data points within Aj, ∀j ∈ A;
7 mj ←− k-means(wj, 2), ∀j ∈ A;
8 vj ←− projection vector from mj, ∀j ∈ A;
9 pj ←− project wj against vj, ∀j ∈ A;

10 tj ←− AD(pj, α), ∀j ∈ A;
11 for j ∈ t do
12 if tj accepted null-hypothesis then
13 append Aj into B;
14 end
15 else
16 append the two clusters of mj into A;
17 end
18 remove Aj from A;
19 end
20 end
21 M←− A ∪ B

4.2. SPGMS

The second algorithm proposed, Scalable PG-Means for Stream (SPGMS), is based on
our scalable version of PG-means [19], called SPG-means. We chose PG-means rather
than G-means as the former achieved higher-quality results on no incremental batch
clustering in [19]. Similar to SGMS, SPGMS has the same incremental update and change-
detection components described for the ISESC-CD in Section 2, replacing the full-clustering
component with SPG-means.

SPG-means consists of learning one cluster by iteration, beginning from the single-
cluster partition. In each iteration, a statistical test is used to verify the goodness-of-fit of the
model against the data under several projections and decide whether to create or not a new
cluster. If so, the algorithm derives new clusters from the learned ones based on different
prototypes: some are randomly selected (to promote diversity); others are chosen among
the data points most unfit for the test (to promote intensification). After this, the algorithm
refines the selected clusters and adds the best-evaluated to the current clustering model.

A more detailed view of SPG-means is presented in Algorithm 2. A scalable version of
the expectation-maximization (EM) algorithm [25] initializes the model M for k = 1 at line
2. Similar to PG-means, SPG-means executes the Kolmogorov–Smirnov test (KS) [26] under
several projection vectors V (built at line 3) in order to reinforce the goodness-of-fit of data
against the model. The number of projections r is an input parameter and may be defined as
−2.6198 · log(ε), being ε the desired error rate, as presented in [19]. In line 4, a distributed
map job projects the data points of the whole time window (X) over the projection vectors
V. The result is |X| ∗ r pairs, where the projection index j is the key, and the projected
value is the pair value. Additionally, the centroids of the clusters in the model M are also
projected against the same projection vectors V (line 5), but in a centralized way this time,
as the number of centroids is small and can be quickly calculated.

Appl. Sci. 2022, 12, 6464 13 of 22

Algorithm 2: SPG-means overview
Data: X, confidence level α, number of projections r
Result: clustering model M

1 let k←− 1;
2 model M←− EM(X, k);
3 V ←− draw randomly r projection vectors;
4 pj ←− projection of X against vj, ∀j ∈ V;
5 mj ←− projection of M against vj, ∀j ∈ V;
6 ksj ←− KS(pj, mj, α), ∀j ∈ V;
7 if no ksj rejected null hypothesis, ∀j ∈ V then
8 return M;
9 end

10 for l = 1..10 do
11 ck+1 ←− select a new prototype;
12 M′l ←− EM(X, M + ck+1);
13 end
14 M←− best M′l according to likelihood;
15 k←− k + 1;
16 if k = kmax then
17 return M;
18 end
19 go to line 3;

The sixth line of Algorithm 2 consists of testing the goodness-of-fit of projected data
against the projected model. In order to obtain the KS statistics, each pj for all j ∈ V
must be sorted and ranked. The sort and rank implementations of Apache Spark [25]
were used, and its return is a rank index for each object of the data set. The projected
data point and rank index are used in a map job to obtain: (i) the cumulative probability
of each data point, given the distribution mixture of the projected model mj, and (ii) the
distance between the cumulative probabilities of the projected data and model. Then, a
reduce job is used to apply the supremum math function in order to obtain the KS statistics.
Finally, the result is compared with the critical values to reject or accept the null hypothesis
of both data and model belonging to the same distribution mixture.

If the KS test results show that the projected data fit the model for all the projection
vectors V, the algorithm returns the model (line 8 of Algorithm 2). Otherwise, it learns
the presence of a new cluster and increases k. In line 11, ten data points are selected as
prototypes of the new clusters, half selected randomly and the other half through guided
selection. This selection is made by using a probability density function to find the five
points most unfitted to the distribution mixture because these points have a high probability
of representing an unlearned cluster. After this, each selected prototype is inserted into
a new model derived from the learned one (M + ck+1), refined by the scalable version of
EM, and evaluated by likelihood. The best model (M′l) from the selected ten replaces M
at the next iteration, and k is incremented. If kmax is reached, the model M is returned.
Otherwise, the process iterates once more, starting at line 3.

4.3. SPKMS

The latest algorithm proposed in this work, Scalable PK-Means for Stream (SPKMS), is a
derivation of SPGMS that aims to improve the computational complexity of the scalable
EM algorithm, known to be costly [27]. Furthermore, the authors of PG-means [19] sug-
gested other clustering algorithms as an alternative for EM if processing time is relevant.
Following such advice, we have chosen k-means due to its influence and low computational
complexity. While EM clusters data as a mixture of distributions, k-means partition the
data, which may obtain different results.

Appl. Sci. 2022, 12, 6464 14 of 22

Presented in Algorithm 3, the SPK-means performs projections over data and model
and uses KS statistics to test their goodness-of-fit, similarly to SPG-means (Algorithm 2). If
a projection leads KS to reject the null hypothesis that the data and model belong to the
same distribution, SPKMS prepares to learn a new cluster. In line 10, the algorithm selects
ten new prototypes C: half of them randomly, and the other half are the farthest data points
from the current centroids, as done in k-means++ [18]. This selection is made by a map job,
which calculates the distance between each data point and its closest centroid, followed by
a reduce job, which obtains the farthest data point. In line 11, a set of ten models M′ are
derived from the already learned one (M), each containing one of the selected prototypes C.

Algorithm 3: SPK-means overview
Data: X, confidence level α, number of projections r
Result: clustering model M

1 let k←− 1;
2 model M←− 1-cluster by mean of X;
3 v←− draw randomly r projection vectors;
4 pj ←− projection of X against vj, ∀j ∈ v;
5 mj ←− projection of M against vj, ∀j ∈ v;
6 ksj ←− KS(pj, mj, α), ∀j ∈ v;
7 if no ksj rejected null hypothesis, ∀j ∈ v then
8 return M;
9 end

10 C ←− select 10 prototypes;
11 M′ ←− M + cs∀cs ∈ C;
12 M′′ ←− k-means(X, M′);
13 M←− best M′′l ∈ M′′;
14 k←− k + 1;
15 if k = kmax then
16 return M;
17 end
18 go to line 3;

In line 12 of Algorithm 3, a scalable version of k-means refines the set of models M′,
using each data reading to update all the models at once. Then, the scalable version of the SS
index evaluates the refined models M′′ in parallel and replaces M with the best-evaluated
model. Similar to SPG-means, M is returned if kmax is reached; otherwise, the process
continues iterating from line 3.

4.4. Computational Complexity Analysis

Our three optimization methods based on the model distribution have two cases: the
worst-case scenario, where the full clustering (G-means, PG-means, or Pk-means) must
be used and reused to update the model from scratch; and the best-case scenario, which
occurs when full clustering is not needed. Both cases are presented in Table 2. The size of
the micro-batch is given by nmb, d is the dimensionality of the data, mc is the number of
micro-clusters, m is the number of worker nodes of a distributed system, nw is the size of
the landmark window, km is the maximum number of clusters found during the process,
i is the maximum iterations of k-means, g is the maximum generations of F-EAC based
algorithms, |P| is the population size, and l is the number of EM iterations.

Appl. Sci. 2022, 12, 6464 15 of 22

Table 2. Asymptotic computational complexity analysis of the model-based algorithms.

Algorithm Worst Case Best Case

SGMS O(nw ∗ kmˆ2 ∗ d ∗ i)/m) O((nw ∗ km ∗ d)/m)

SPGMS O(nw ∗ kmˆ2 ∗ dˆ3 ∗ l) O((nw ∗ km ∗ d)/m)

SPKMS O(nw ∗ kmˆ2 ∗ d ∗ i) O((nw ∗ km ∗ d)/m)

The main difference in the computational cost of SPGMS and SPKMS resides in the
data dimensionality: the former requires a matrix inversion for EM, which implies an
O(d3) cost; the latter uses a k-means, which is linear considering the data dimensional-
ity d for most common distance measures. Such a characteristic makes SPGMS unfea-
sible for data sets with high dimensionality, scenarios for which SPKMS is preferable.
Both algorithms need a sort step bounded by O(n log n). However, as log n << k ∗ d holds
for most scenarios, other parts of the algorithms asymptotically dominate this step.

5. Experiments

In this section, we experimentally compare the presented algorithms among them-
selves. The reason for this is that, to the best of our knowledge, there is no other published
clustering algorithm in the literature for data streams implemented on top of the MapRe-
duce model (which provides scalability, reliability, resilience, and flexibility) that can
estimate the natural number of clusters from a data stream automatically. We analyzed the
experimental results qualitatively, through the Adjusted Rand Index (ARI) [28], and in total
processing time. The ARI returns the value of 1 when the compared partitions are identical
and is adjusted to 0 when comparing random partitions.

5.1. Experimental Setup

All the algorithms were implemented in Scala 2.11, using Apache Spark 2.3 (http://
spark.apache.org/, accessed on 20 May 2022) to implement MapReduce and Spark Stream-
ing (http://spark.apache.org/streaming/, accessed on 20 May 2022) as the Discretized-
Stream implementation. The experiments were run in a cluster with ten commodity
computers providing 60 processing cores (3.5 GHz) and 73 GB (35 GB usable by JVM) of
RAM. For better estimation of results, each algorithm was repeated twenty times. It is
important to note that the scalability inherited from MapReduce allows the replication of
the experiments with larger and more sophisticated systems.

We selected seven data sets for our experiments, four built with Gaussian-distributed
clusters and three data sets from real applications (Table 3). The data stream generator
consists of an adaptation of RandomRBFGeneratorEvents [29], which replaces the default
uniform randomizer with a Gaussian one. The artificial data sets aim to demonstrate
the compared algorithms on different combinations of data size and number of clusters,
besides testing the hypothesis presented previously (specialized approaches to clustering
Gaussian-distributed data can improve the accuracy of clustering in scenarios of high-
speed data streams). On the other hand, the real data sets represent different challenges for
the algorithms since they do not strictly follow a distribution mixture. The well-known
KDDCup99 (10% version) data set [30] (KC99) is a set of network connections for intrusion
analysis, evaluated over its five-class version (Normal, DOS, PROBE, R2L, and U2R). The
YouTube Games data set (YTG) [31], text_game_lda_1000 version, is a set of pre-processed
textual features (title, tags, and descriptions) associated with a set of videos about 30 games
(the noise class 31 was removed). The PaperAbstracts data set [12] (PPA) is a set of pre-
processed scientific paper abstracts of seven different knowledge areas.

Since the real data sets do not have a natural sequence, we allocated the data objects
in the stream based on their similarity. Such allocation was made to favor the gradual
evolution of the data and provide cluster appearance and disappearance events over time.
Therefore, all the data streams were divided into 100 micro-batches.

http://spark.apache.org/
http://spark.apache.org/
http://spark.apache.org/streaming/

Appl. Sci. 2022, 12, 6464 16 of 22

Table 3. Characteristics of artificial and real data sets: the name and type of each data set, their
numbers of attributes and instances, and the range of the number of clusters.

Data Set Type Attributes Instances # of Clusters

100k5-2 Artificial 10 105 3. . . 7
1M5-2 Artificial 10 106 3. . . 7
1M10-5 Artificial 10 106 5. . . 15
10M10-5 Artificial 10 107 5. . . 15
KDDCup99 (10%) [30] Real 34 494,021 2. . . 6
PaperAbstracts [12] Real 5871 6.65× 104 2. . . 6
YouTube Games [31] Real 1000 8.79× 104 2. . . 7

Considering the PPA and YTG data sets, the cosine dissimilarity was adopted for
k-means based algorithms. Unfortunately, SPGMS could not process these data sets due to
their high dimensionality, which causes the distributed version of EM (Gaussian Mixture
algorithm) to perform poorly [25,32]. Therefore, dimensionality reduction is advised in
these cases.

According to studies performed in [33], five iterations of k-means is enough to fine
tune most data partitions. Thus, the compared algorithms adopt a limit of five iterations
for k-means runs. A study presented in [34] showed a trade-off between the population
size and the maximum number of generations of F-EAC. Based on this study, F-EAC-based
algorithms evolve a population of 10 individuals for five generations here. SPGMS and
SPKMS used α = 0.01 and 12 projections, and SPGS also used α = 0.01. The number of
micro-clusters of the incremental-update component of SESC was systematically chosen:
we executed five repetitions for each data set with |D| × kmax × β micro-clusters, where
|D| represents the size of the distributed system (10 for this work) and β ∈ {1, 2, 3, 4, 5}.
The executions showed that increasing β also increases the processing time but does not
improve the quality of the model; thus, β = 1 was adopted. For all the algorithms,
except SGMS, kmin = 2 and kmax = 2 × cmax, where cmax is the upper bound of the
class number range for a data set. SGMS was limited to 6 iterations, which allowed the
production of up to 26 clusters.

The Shapiro–Wilk test [35] rejected the normality hypothesis over most of the experi-
mental results regarding ARI values and computing time, which is not recommended for
parametric statistical tests. Thus, the non-parametric test of Friedman was adopted with
95% significance over all the results presented here, followed by Fisher’s least significant
difference (LSD) for multi-comparisons [36]. The results from the tests indicate whether
the algorithms have differences in quality/time, with 95% significance, being significantly
better or worse than another.

5.2. Qualitative Analysis of Quality

A qualitative quality analysis, measured by ARI, among the six algorithms and over
the most representative data set results, is presented in the charts of Figure 7. The vertical
axis represents the average ARI score values, and the horizontal axis measures the micro-
batch position in the stream from 1 to 100. For each algorithm, the markers indicate the
average of ARI, and the vertical grey bars are their standard deviations. Note that concept
drift and concept evolution in the data streams cause variations in quality, reflected by
the ARI scores. The charts show discrepancies in the algorithms’ behaviors for different
data sets. One of the most notable discrepancies resulted from SGMS in the real data sets
(the right arrows in Figure 7c–e). SGMS overestimated the number of clusters up to six
times more that of other algorithms for such data sets, which caused a decrease in its
ARI values. Similar to [19], the split policy inherited from G-means overestimated the
number of clusters here. SPGMS had better quality than SGMS in the KDD data set because
the goodness-of-fit test inherited from PG-means was designed to deal with the G-means
overestimation of k. However, SPGMS was shown to be computationally prohibitive for
high-dimensional data sets. Fortunately, SPKMS had good performance and we found

Appl. Sci. 2022, 12, 6464 17 of 22

that its goodness-of-fit test, inherited from PG-means, dealt with the k overestimation,
even in scenarios with scalable batch streams. Over artificial Gaussian data sets, the SGMS
algorithm performed as well as the other algorithms.

Figure 7. ARI comparison among the presented algorithms over the five most relevant data set
results. The markers represent the ARI score of each algorithm over each data set. The vertical grey
bars represent the standard deviation.

It is notable that SESC presented a lower-quality result during the micro-batches
from 71 to 80 of 100k5-2 (Figure 7a) compared to the other algorithms. In this scenario,
the granularity and density of the micro-clusters were not sufficient to detect two close
clusters with the SS index, which caused SESC to underestimate the number of clusters
and, consequently, impacted the ARI.

For most scenarios, ISESC and ISESC-CD have similar quality, which is expected
since their only difference is the change-detection component. However, there are some
punctual differences, as presented in the periods between the micro-batches 48 and 52, 67,
and 74 of the YTG data set. In such periods, the ISESC can promptly detect changes in the
data stream, while the ISESC-CD needs more time to discover (and react) to these changes.
A different scenario occurred for the PPA data set, where the SS index that guides the F-EAC
did not behave similarly to the ARI, as described in [12]. Such behavior caused significant
ARI differences between ISESC and ISESC-CD, mainly between micro-batches 5 and 20
and between micro-batches 56 and 75. In both intervals, ISESC replaced the model with a

Appl. Sci. 2022, 12, 6464 18 of 22

better-evaluated one (according to the SS index), while ISESC-CD incrementally updated
its current model. As the SS and ARI indexes do not behave similarly to PPA, the increase
in the SS value in ISESC caused a decrease in its ARI values. Figure 8 shows how ISESC
was slightly better in terms of SS, when compared to ISESC-CD in the same intervals.

Figure 8. SS comparison—PPA data set. The vertical axis represents the SS score and the horizontal
axis represents the micro-batch position.

5.3. Quantitative Analysis of Quality

The quantitative analysis presented here compares the scores of the algorithms among
themselves. In terms of ARI, the algorithm’s score is the number of micro-batches (out of
100) for which the algorithm has the best or statistically equivalent result. For each data set,
these results are tested over the repetitions of the algorithms. High scores indicate that the
algorithm obtained better-quality results more often. For example, the algorithm SGMS
achieved the best-quality result (or statistically equivalent) for 88 out of 100 micro-batches
over the data set 100k5-2. Table 4 shows the score of each algorithm over each data set.
The bold cells highlight the highest sum of points for each data set. For fairness, Total 1
sums the scores for the data sets with moderate dimensionality, which could be processed
by SPGMS (100k5-2, 1M5-2, 1M10-5, 10M10-5, KC99). Total 2 summarizes the score for all
the data sets.

Table 4. ARI rank scores. The table shows in how many micro-batches the algorithm was the best,
in terms of ARI, or statistically equivalent to the best. The bold cells highlight the best algorithm for
each data set.

D
at

a
Se

t

SE
SC

IS
ES

C

IS
ES

C
-C

D

SG
M

S

SP
G

M
S

SP
K

M
S

100k5-2 42 83 83 88 37 86
1M5-2 40 65 65 68 29 78
1M10-5 25 51 52 49 47 73
10M10-5 30 64 65 22 19 65
KC99 34 74 78 1 11 62
YTG 74 53 44 0 0 62
PPA 70 38 71 0 0 46

Total 1 171 337 343 228 143 364
Total 2 315 428 458 228 143 472

ISESC and ISESC-CD produced similar-quality results, mainly on artificial data sets,
as shown in Table 4. Moreover, ISESC-CD was even better than ISESC in some 1M10-5,
10M10-5, KC99, and PPA micro-batches. This result evidences that the change-detection
component of ISESC-CD did not affect the algorithm’s quality in most scenarios. A similar
result is presented in [13].

Appl. Sci. 2022, 12, 6464 19 of 22

SESC performed worse than ISESC and ISESC-CD for most data sets, except for PPA
and YTG. It is interesting to note that SESC performed better than other algorithms in
specific situations, such as in the interval between micro-batch 43 and 76 of YTG or 21
and 33 of PPA (as shown in Figure 7d and 7e, respectively). Reflecting on the ARI values,
such intervals contain overlapping clusters, and SESC could detect and learn them better.
Summarizing data on micro-clusters smooths the overlapping of clusters for the SS eval-
uation compared to raw data. Sometimes, this smoothness improved the SS evaluation,
resulting in higher ARI values. Such an effect rarely happens for algorithms that analyze
raw data. It is important to note that the systematic definition of the number of micro-
clusters, described at the beginning of Section 5, improved the quality results for YTG and
PPA concerning [13].

SGMS produced high-quality results for 1M5-2 and 1M10-5, the best algorithm for
100k5-2. Such results reside in the well-behaved Gaussian clusters of these data sets, the best
scenario for SGMS. However, low-quality results were obtained for 10M10-5, mainly due
to the increased number of clusters overlapping in the last 30 micro-batches. On real data
sets, SGMS was the worst algorithm (also shown in Figure 7). It did not even obtain a score
on the PPA and YTG data sets. This occurred because SGMS inherited from G-means the
drawback of overestimating k in non-Gaussian-distributed clusters.

The quality of the SPGMS results is worse than the SGMS ones, although the opposite
was presented in [19] for their centralized counterparts when evaluating other validation
indices. SPGMS is not guided by the SS index, unlike other algorithms, using likelihood
instead. SPGMS achieved the worst result for 10M10-5. This result is derived from the fact
that close to 96% of the full-clustering runs of SPGMS (using EM) over the data set overesti-
mated the number of clusters, stopping at the defined upper bound. A different behavior
was presented by SPKMS, which also uses projections and tests the goodness-of-fit. Such
results indicate that models that were refined by EM and evaluated by likelihood performed
worse than those that were refined by k-means and evaluated by SS in our experiments.

SPKMS produced quality results for both artificial and real data sets. Moreover, it
had a better score than SPGMS for all data sets and was able to cluster high-dimensional
data sets (PPA and YTG). Moreover, it was the best algorithm for the 1M5-2, 1M10-5,
and 10M10-5 data sets (Table 4). The quality of SPKMS results from the combination of
four characteristics: (i) a systematic method to decide whether to increase k, guided by
goodness-of-fit tests and inherited from PG-means; (ii) the seeding of the new prototypes
based on k-means++; (iii) the refinement of models by k-means and, (iv) the selection of the
best partition by the SS index.

Based on the ARI scores in Table 4, SPGMS presented the worst results for most data
sets that it was able to process, and SPKMS was the best algorithm in most scenarios,
followed by ISESC-CD, ISESC, SESC, and SGMS. Furthermore, SPKMS was the best-
evaluated considering normally distributed data sets, and SGMS was shown to be more
accurate than SESC. Note that the clusters of the real data sets do not need to fit the Gaussian
distributions, i.e., the goodness-of-fit tests are not expected to fit all data sets. However,
SPKMS was among the best results for most of these data sets.

5.4. Processing Time Analysis

Table 5 presents the processing time comparison (in minutes) among all algorithms.
For simplicity, the total execution time of the compared algorithms was considered instead
of the time for processing individual micro-batches. Total 1 sums the running time for the
data sets processed by SPGMS (100k5-2, 1M5-2, 1M10-5, 10M10-5, and KC99), and Total 2
does the same for all data sets. Every cell represents the average and standard deviation of
20 repetitions, including the totals. The values in bold highlight the fastest algorithm and
the ones with no significant difference from the fastest for each data set, according to the
Friedman test with 95% confidence. SESC was the fastest for all the data sets. ISESC-CD
was faster than ISESC (5.2 times on average, according to Total 2), due to its change-
detection component being designed to avoid unnecessary full-clustering processing. This

Appl. Sci. 2022, 12, 6464 20 of 22

component was able to avoid full-clustering processing 82% of the time. ISESC-CD was also
statistically equivalent to the fastest algorithm over most data sets and the totals. However,
unlike SESC, it obtained high-quality results (Table 4) for most of the data sets. Because of
the expectation-maximization algorithm, SPGMS was the slowest algorithm for most of
the data sets, unable to process them all. Designed to overcome this, SPKMS was 2.2 times
faster than SPGMS, considering the Total 1 of Table 5. Due to its simplicity, SGMS was
the fastest projection-based algorithm, but not so fast as the evolutionary FEAC-based
algorithms. SGMS requires many shuffles through the distributed system (as SPGMS and
SPKMS). In short, the fastest algorithm was SESC, followed by ISESC-CD, SGMS, ISESC,
SPKMS, and SPGMS.

Table 5. Average execution time comparison in minutes [µ (σ)]. The bold cells highlight the best
algorithm, or statistically equivalent, for each data set.

SESC ISESC ISESC-CD SGMS SPGMS SPKMS

100k5-2 0.78 (0.02) 26.26 (3.04) 5.97 (0.63) 8.76 (0.45) 60.74
(17.23) 33.14 (7.46)

1M5-2 1.03 (0.01) 40.69 (6.97) 12.11 (1.51) 25.59 (1.22) 162.97
(11.75)

151.79
(10.49)

1M10-5 2.75 (0.44) 89.73
(12.52) 20.89 (2.38) 35.70 (3.04) 284.68

(32.12)
316.05
(27.77)

10M10-5 18.38 (3.75) 587.57
(50.84) 83.07 (7.40) 76.27 (9.74) 4273.37

(362.64)
1685.29
(196.06)

KC99 1.18 (0.03) 50.87 (5.89) 16.45 (2.24) 59.52 (4.71) 283.44
(19.16)

106.56
(10.36)

YTG 20.66 (0.72) 263.09
(42.80)

85.33
(13.28)

178.34
(18.25)

187.29
(26.10)

PPA 67.10 (4.32) 666.61
(36.20)

99.90
(10.05)

171.29
(26.03)

279.87
(47.29)

Total 1 23.46 (4.29) 762.10
(75.70)

134.74
(8.55)

195.26
(6.03)

4958.73
(320.05)

2216.43
(97.10)

Total 2 111.46
(6.08)

1660.93
(102.93)

317.36
(19.99)

537.41
(27.74)

2670.20
(123.19)

6. Conclusions

In this work, six algorithms designed to cluster scalable stream batches and estimate
the number of clusters were experimentally compared. SESC was the fastest algorithm
due to its summarizing power, while SPKMS achieved high-quality results for most data
sets due to its goodness-of-fit tests over projections, a heuristic for seeding prototypes,
and partition refinement by k-means. Moreover, ISESC-CD and ISESC stand out for their
quality results, while ISESC-CD achieved competitive processing time. Considering the
algorithms based on goodness-of-fit tests, SGMS was the fastest, obtaining quality results
for the normally distributed data sets. Additionally, the evolutionary algorithms obtained
the best results, in terms of quality, for real data sets. Such results show that our proposed
algorithms can complement each other for various application scenarios.

The experiments support our hypothesis that the specialist approach for clustering
data sets with normal distribution could improve the accuracy in scenarios of scalable batch
streams, as the most accurate results for the normal distribution data sets were reached by
SGMS and SPKMS.

As a general guide, a suitable algorithm may be selected according to the distribution
of the data set and the available computational resources. The goodness-of-fit-based
algorithms (SGMS or SPKMS) should be preferred if normality is expected in the data
set. SGMS is faster and can handle scenarios where the available computational resources
render the SPKMS unfeasible. However, the latter obtained the results with the best quality.
If the clusters are not expected to fit a normal distribution or their distribution is unknown,
the evolutionary algorithms, SESC or ISESC-CD, are preferred due to their average quality.

Appl. Sci. 2022, 12, 6464 21 of 22

SESC is fast and recommended for scenarios with limited computational resources, while
ISESC-CD has the best quality, requiring more computational resources. According to the
experiments, ISESC and SPGMS did not stand out during the experiments. Although ISESC
reached quality results close to ISESC-CD, the former is considerably slower. SPGMS
showed that adapting PG-means for distributed and parallel batch streams is burdensome
and sometimes unfeasible, as the expectation-maximization step needs to access the data
multiple times. However, it inspired SPKMS, the adaptation of SPGMS that uses k-means
evaluated by silhouette, which is faster and achieves the best-quality results, one of the
main findings of this paper.

Concerning arbitrary-shaped clusters, we intend to investigate how to scale density-
based clustering algorithms for this task in future work.

Author Contributions: Conceptualization and methodology, P.G.L.C., J.A.S., E.R.F. and M.C.N.; soft-
ware, P.G.L.C.; validation, J.A.S., E.R.F. and M.C.N.; formal analysis, J.A.S. and E.R.F.; investigation,
P.G.L.C.; resources, M.C.N.; data curation, P.G.L.C.; writing—original draft preparation, P.G.L.C. and
M.C.N.; writing—review and editing, J.A.S. and E.R.F.; visualization, P.G.L.C.; supervision, M.C.N.;
project administration, M.C.N.; funding acquisition, M.C.N. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES—Finance Code 001) and Fundação de Amparo à Pesquisa do Estado
de São Paulo—FAPESP (Grant 2019/09817-6). The authors also would like to thank CNPq and
FAPEMIG funding agencies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The real datasets experimentally compared here are public domain
and made available by their original developers. The artificial datasets are available at https://
repositorio.ufscar.br/handle/ufscar/13729, accessed on 20 May 2022. The source codes are available
at http://www.dc.ufscar.br/~naldi/source2.html, accessed on 20 May 2022.

Acknowledgments: We would like to thank FAPESP, FAPEMIG, and CNPq for their financial support.
We also would like to thank Greg Hamerly and Yu Feng for sharing their source code.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SESC Scalable Evolutionary Stream Clustering
ISESC Incremental Scalable Evolutionary Stream Clustering
ISESC-CD Incremental Scalable Evolutionary Stream Clustering with Change Detection
SGMS Scalable G-Means for Stream
SPGMS Scalable PG-Means for Stream
SPKMS Scalable PK-Means for Stream

References
1. Gama, J. Knowledge Discovery from Data Streams, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010.
2. Gomes, H.M.; Read, J.; Bifet, A.; Barddal, J.P.; Gama, J. Machine learning for streaming data: State of the art, challenges, and

opportunities. ACM SIGKDD Explor. Newsl. 2019, 21, 6–22. [CrossRef]
3. Silva, J.A.; Faria, E.R.; Barros, R.C.; Hruschka, E.R.; Carvalho, A.C.; Gama, J. Data stream clustering. ACM Comput. Surv. 2013,

46, 1–31. [CrossRef]
4. Moulton, R.H.; Viktor, H.L.; Japkowicz, N.; Gama, J. Clustering in the Presence of Concept Drift. In Proceedings of the Machine

Learning and Knowledge Discovery in Databases; Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 339–355.

5. Naldi, M.C.; Fontana, A.; Campello, R.J.G.B. Comparison Among Methods for k Estimation in k-means. In Proceedings of the
Ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 30 November–2 December 2009;
pp. 1006–1013.

 https://repositorio.ufscar.br/handle/ufscar/13729
 https://repositorio.ufscar.br/handle/ufscar/13729
http://www.dc.ufscar.br/~naldi/source2.html
http://doi.org/10.1145/3373464.3373470
http://dx.doi.org/10.1145/2522968.2522981

Appl. Sci. 2022, 12, 6464 22 of 22

6. Dinh, D.T.; Fujinami, T.; Huynh, V.N. Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette
Coefficient. In Proceedings of the Knowledge and Systems Sciences; Chen, J.; Huynh, V.N., Nguyen, G.N., Tang, X., Eds.; Springer:
Singapore, 2019; pp. 1–17.

7. Morales, G.D.F.; Bifet, A. SAMOA: Scalable Advanced Massive Online Analysis. J. Mach. Learn. Res. 2015, 16, 149–153.
8. Bifet, A.; Maniu, S.; Qian, J.; Tian, G.; He, C.; Fan, W. StreamDM: Advanced Data Mining in Spark Streaming. In Proceedings of

the IEEE International Conference on Data Mining Workshop, Atlantic City, NJ, USA, 14–17 November 2015. [CrossRef]
9. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
10. Oliveira, G.V.; Coutinho, F.P.; Campello, R.J.; Naldi, M.C. Improving k-means through distributed scalable metaheuristics.

Neurocomputing 2017, 246, 45–57. [CrossRef]
11. Zaharia, M.; Das, T.; Li, H.; Shenker, S.; Stoica, I. Discretized Streams: An Efficient and Fault-Tolerant Model for Stream Processing

on Large Clusters. In Proceedings of the HotCloud’12 Proceedings of the 4th USENIX conference on Hot Topics in Cloud
Computing, Boston, MA, USA, 12–13 June 2012.

12. Cândido, P.; Naldi, M.C.; Silva, J.A.; Faria, E.R. Scalable Data Stream Clustering with k Estimation. In Proceedings of the 2017
Brazilian Conference on Intelligent Systems (BRACIS), Uberlandia, Brazil, 2–5 October 2017; pp. 336–341. [CrossRef]

13. Candido, P.L.; Silva, J.A.; Faria, E.R.; Naldi, M.C. Scalable Batch Stream Clustering with k Estimation. In Proceedings of the 2018
IEEE Congress on Evolutionary Computation (CEC), Brisbane, Australia, 10–15 June 2018; pp. 1–8.. [CrossRef]

14. Khader, M.; Al-Naymat, G. Density-Based Algorithms for Big Data Clustering Using MapReduce Framework: A Comprehensive
Study. ACM Comput. Surv. 2020, 53, 1–38. [CrossRef]

15. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Berkeley Symposium
on Mathematical Statistics and Probability, Berkeley, CA, USA, 18–21 July 1965 and 27 December 1965–7 January 1996.

16. Wu, X.; Kumar, V. The Top Ten Algorithms in Data Mining; CRC Press: Boca Raton, FL, USA, 2009.
17. Alves, V.; Campello, R.J.G.B.; Hruschka, E.R. Towards a Fast Evolutionary Algorithm for Clustering. In Proceedings of the IEEE

Congress on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 1776–1783.
18. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; Volume 8; pp. 1025–1027. [CrossRef]
19. Feng, Y.; Hamerly, G. PG-means: Learning the number of clusters in data. In Proceedings of the Advances in Neural Information

Processing Systems 19; MIT Press: Cambridge, MA, USA, 2007. [CrossRef]
20. Hamerly, G.; Elkan, C. Learning the k in k-means. In Neural Information Processing Systems; MIT Press: Cambridge, MA, USA,

2003.
21. Hruschka, E.R.; de Castro, L.N.; Campello, R.J.G.B. Evolutionary algorithms for clustering gene-expression data. In Proceedings

of the Fourth IEEE International Conference on Data Mining, Brighton, UK, 1–4 November 2004; pp. 403–406.
22. Aggarwal, C.C.; Han, J.; Wang, J.; Yu, P.S. A framework for clustering evolving data streams. In Proceedings 2003 VLDB Conference;

Morgan Kaufmann: Burlington, MA, USA 2003; Volume 29, pp. 81–92. [CrossRef]
23. Silva, J.A.; Hruschka, E.R.; Gama, J. An evolutionary algorithm for clustering data streams with a variable number of clusters.

Expert Syst. Appl. 2017, 67, 228–238. [CrossRef]
24. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.B.; Amde, M.; Owen, S.; et al. MLlib:

Machine Learning in Apache Spark. J. Mach. Learn. Res. 2016, 17, 1235–1241.
25. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.

Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
26. Massey, F.J., Jr. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [CrossRef]
27. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany,

2006.
28. Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [CrossRef]
29. Bifet, A.; Holmes, G.; Kirkby, R.; Pfahringer, B. MOA Massive Online Analysis. J. Mach. Learn. Res. 2010, 11, 1601–1604.
30. Lichman, M. UCI Machine Learning Repository; University of California: Los Angeles, CA, USA, 2013.
31. Madani, O.; Georg, M.; Ross, D.A. On Using Nearly-Independent Feature Families for High Precision and Confidence. Mach.

Learn. 2013, 92, 457–477. [CrossRef]
32. Damji, J.; Wenig, B.; Das, T.; Lee, D. Learning Spark-Lightning-Fast Big Data Analysis; O’Reilly Media: Newton, MA, USA, 2015.
33. Anderberg, M. Cluster Analysis for Applications; Academic Press: Cambridge, MA, USA, 1973.
34. Naldi, M.C.; Campello, R.J.G.B.; Hruschka, E.R.; Carvalho, A. Efficiency issues of evolutionary k-means. Appl. Soft Comput. 2011,

11, 1938–1952. [CrossRef]
35. Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [CrossRef]
36. Conover, W. Practical Nonparametric Statistics; Wiley: Hoboken, NJ, USA, 1999.

http://dx.doi.org/10.1109/ICDMW.2015.140
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1016/j.neucom.2016.07.074
http://dx.doi.org/10.1109/BRACIS.2017.53
http://dx.doi.org/10.1109/CEC.2018.8477668
http://dx.doi.org/10.1145/3403951
http://dx.doi.org/10.1145/1283383.1283494
http://dx.doi.org/10.7551/mitpress/7503.003.0054
http://dx.doi.org/10.1.1.13.8650
http://dx.doi.org/10.1016/j.eswa.2016.09.020
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1007/s10994-013-5377-0
http://dx.doi.org/10.1016/j.asoc.2010.06.010
http://dx.doi.org/10.1093/biomet/52.3-4.591

	Introduction
	Related Work
	Scalable Evolutionary Clustering Algorithms
	SESC
	ISESC
	ISESC-CD
	Computational Complexity Analysis

	Scalable Distribution-Based Clustering Algorithms
	SGMS
	SPGMS
	SPKMS
	Computational Complexity Analysis

	Experiments
	Experimental Setup
	Qualitative Analysis of Quality
	Quantitative Analysis of Quality
	Processing Time Analysis

	Conclusions
	References

