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Abstract: The extensive use of Internet of Things (IoT) technology has recently enabled the devel-
opment of smart cities. Smart cities operate in real-time to improve metropolitan areas’ comfort and 
efficiency. Sensors in these IoT devices are immediately linked to enormous servers, creating smart 
city traffic flow. This flow is rapidly increasing and is creating new cybersecurity concerns. Mali-
cious attackers increasingly target essential infrastructure such as electricity transmission and other 
vital infrastructures. Software-Defined Networking (SDN) is a resilient connectivity technology uti-
lized to address security concerns more efficiently. The controller, which oversees the flows of each 
appropriate forwarding unit in the SDN architecture, is the most critical component. The controller’s 
flow statistics are thought to provide relevant information for building an Intrusion Detection Sys-
tem (IDS). As a result, we propose a five-level classification approach based on SDN’s flow statistics 
to develop a Smart Attacks Learning Machine Advisor (SALMA) system for detecting intrusions 
and for protecting smart cities from smart threats. We use the Extreme Learning Machine (ELM) 
technique at all levels. The proposed system was implemented on the NSL-KDD and KDDCUP99 
benchmark datasets, and achieved 95% and 99.2%, respectively. As a result, our approach provides 
an effective method for detecting intrusions in SDNs. 

Keywords: Software-Defined Networking (SDN); NSL-KDD; smart city; Intrusion Detection System 
(IDS); Extreme Learning Machine (ELM); Internet of Things (IoT) 
 

1. Introduction 
According to studies from throughout the globe, cities are growing in size and pop-

ulation [1]. As a result of the scarcity of services and resources, such as medical, transpor-
tation, environment, and education, daily living in metropolitan areas will become even 
more difficult. The phrase “smart city” is used to adopt and to apply mobile computing 
systems across all of a city’s components and levels via realistic data management net-
works [1]. To become more innovative, cities emphasize the use of technology for net-
worked data management, such as the Internet of Things (IoT) [2], cloud computing, and 
big data. These data management systems enhance several elements of operations and 
organizations in the smart city, including traffic control, sustainable resource manage-
ment, life quality, and infrastructure. Novel strategies for effective data management nec-
essarily need to be developed in order to achieve the long-term sustainability of these 
services in metropolitan settings. The following components contribute to a smart city: 
1. Smart Infrastructure, including city facilities with embedded smart technology, e.g., 

buildings, streets, energy, and water networks, smart grids, and sensors, etc. 
2. Smart individuals, including strategies for motivating individuals to be more creative 

and receptive to new ideas. 
3. Smart Mobility: Transportation networks with increased embedded systems for gen-

uine management and surveillance. 
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4. Smart Services: Using technology and ICT to provide services throughout the city in 
education, safety, surveillance, health, and tourism, etc. 

5. Smart Governance: The formation of smart governments in metropolitan areas, facil-
itated by technology service engagement, delivery, and participation. 

6. Smart Economy: Using technological advancement to help companies grow, create 
jobs, and expand their communities. 

7. Smart Environment: Using information and communication technologies, and inno-
vation to safeguard and to manage resources (emission control, pollution monitoring 
sensors, systems for waste management, and recycling, etc.). 

8. Smart Living: Urban development that increases sustainability and life quality. 
These elements are inextricably linked; therefore, data collection and infrastructure 

facilities must be integrated into the city’s physical Infrastructure. Governance is required 
to manage such subsystems and to achieve the goal of digitalization [3] andError! Refer-
ence source not found. depicts a multilayer design for smart cities in general [4]. From 
top to bottom, this n-tier design must incorporate both physical and soft infrastructures, 
and the following layers [3]. 
• Layer (1) Natural Environment: This refers to all of the natural characteristics in the 

city’s location (sea, rivers, forests, landscape, and lakes, etc.). 
• Layer (2) Hard Infrastructure (non-ICT-based): All of the recognized urban charac-

teristics are included in this layer as a result of human activity, and are required for 
city functioning (water-energy-waste, roads, buildings, bridges, and utilities, etc.) 

• Layer (3) Hard Infrastructure (ICT-based): this refers to all smart gear that is used to 
provide SSC services (servers, supercomputers, networks, sensors, and data centers, 
etc.) 

• Layer (4) Services: A plethora of intelligent city services, categorized according to 
worldwide urban key performance indicators and grouped into the six aspects of 
smart cities. 

• Layer (5) Soft Infrastructure: the endpoint that consumes the services. 
Physical Infrastructure is represented in Layers 1, 2, and 3, while the rest of the layers 

represent Soft Infrastructure in the Figure 1. 
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Figure 1. A smart city’s generic multi-tiered ICT architecture [4]. 

Even as cities try to become smart, the aforementioned growing application technol-
ogies raise several security issues, and privacy problems and obstacles. Cyber-attacks in 
the smart city may affect any device linked to the network, which can have major issues 
when essential systems such as a city’s electricity grid are connected. Confidentiality, in-
tegrity, availability, privacy, access control, and non-repudiation are the most crucial se-
curity and privacy concepts that need to be understood [5]. In the disciplines of infor-
mation, communication, and physics, they must be met. Internet technology has advanced 
quickly in response to the advancement of new cyber-technologies. Hence, the age of in-
terconnectedness with everything has been reached today. With the advent of Internet 
technology, we have entered a new generation of connectivity that has elevated connec-
tivity to a critical and integral part of our modern life, giving ease and progressing civili-
zation. 

On the other hand, this technology has a slew of security issues brought on by hostile 
network attacks. According to Kaspersky Lab data released in the second quarter of 2018, 
over 962 million fraudulent intrusions were conducted in 187 nations worldwide, a stead-
ily rising figure. Furthermore, cyber-attacks on mobile devices have demonstrated a ran-
dom pattern of expansion because of the widespread use of mobile networking, exacer-
bating the severity of the crisis. Figure 2 shows that mobile threats in the second quarter 
of 2017 were around 1,300,000 threats, and this number kept increasing until it reached 
approximately 1,750,000 threats in the second quarter of 2018 [6], which illustrates how 
dealing with these intrusions by detecting and preventing them becomes more critical. 
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Figure 2. The situation of global mobile threats. 

Globally, the adoption of IoT has recently risen dramatically. In 2017, the number of 
linked IoT devices topped 27 billion, and these IoT devices would continue to overgrow 
in response to market demand, potentially reaching roughly 125 billion by 2030 [7]. Mali-
cious attackers increasingly target essential infrastructure such as smart cities, electricity 
transmission, and other vital infrastructures. There will be significant problems in the fu-
ture if these facilities are vulnerable to cyber-attacks. As a result, protecting equipment 
against malware activity has become an essential and pressing task, as such intrusions 
may pose serious risks. 

Intrusion Detection Systems (IDSs) have been a popular research area and a conten-
tious problem, owing to the Internet’s ever-increasing abundance of data. As a result, de-
veloping IDSs stands to reason, and it is a widely used operational security defensive 
strategy in the information industry. An IDS is a method/methodology for protecting ap-
plication systems against malicious assaults, and it is the second line of defense. IDSs may 
be either network- or host-based. These may be used to defend a computer from the net-
work or from end-user attacks. An IoT network and system, such as sensing equipment, 
might be an end-user device in the network [8]. Anomaly-based detection and signature-
based detection are two types of detection techniques. By analyzing network traffic or 
data in computer memory for specified patterns, signature-based Detection approaches 
effectively recognize detected assaults. Anomaly-based detection monitors the behaviors 
of the whole objects, systems, or traffic, and compares them to predetermined behaviors 
that are thought to be normal, to find unknown threats. Any deviation from the usual 
operations is seen as a potential assault. Due to the complexity of attackers’ techniques 
and the increase in zero-day assaults, an anomaly-based IDS is ideally suited to today’s 
environment [9]. To detect abnormalities, most anomaly-based IDSs use Artificial Intelli-
gence (AI), such as Machine Learning (ML) [9]. AI and Machine Learning aim to develop 
a computer that is capable of learning independently and distinguishing between normal 
and aberrant system behavior [10]. Many techniques for improving IDS performance have 
been advocated by academics, including Decision Tree (DT), artificial immune system, 
data mining, clustering-based methods, and statistics, etc. 

Various applications link massive IoT devices to real-world items in smart cities. The 
huge number of IoT devices distributed over a broad array of protocols, devices, technol-
ogies, and services challenges the administration of the emerging IoT environment. As a 
result of these Internet integration protocols, substantial cybersecurity dangers and vul-
nerabilities exist for exploiting information regarding citizens’ everyday activities [11]. At 
least two major security issues confront each smart application. The first challenge is in 
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recognizing zero-day attacks that start in a smart city’s cloud data center via a range of 
protocols utilized by IoT devices, presuming that the massive attacks are hidden within 
IoT devices. The second difficulty is in identifying cyber-attacks intelligently (e.g., IoT 
malware attacks, etc.) [11] before IoT networks harm a smart city. Currently, most classic 
IDSs are still in use [12] because IoT network devices in smart cities have limited resources 
and capabilities, and are not suited for them [12]. 

However, updated hacker technology and sophisticated attack skills may create sig-
nificant amounts of data with various features, including many samples, a variety of new 
attack kinds, and an unequal distribution of data. These issues are common in today’s 
cyber environment, and they surely lower IDS performance [13]. ML can process multi-
dimensional data and provide real-time predictions in dynamic contexts. Machine Learn-
ing developments have now broadened their application to include the creation of suc-
cessful IDSs. Learning-based systems such as neural networks (NNs) have outperformed 
conventional approaches in various areas. Because of its learning and adaptable nature, 
ML-based IDSs can keep up with multiple threats. 

This article describes an approach for detecting general-purpose network incursions 
using an Extreme Learning Machine (ELM) network. The bulk of previously announced 
intrusion detection algorithms expose only one form of attack at a time, or can separate 
legitimate traffic from attacks. A five-level classification model based on ELM algorithms 
is used in the proposed system. R2L and DOS ARE IDENTIFIED FIRST because their as-
saults have incredible detection accuracy. Then, since their models have lesser accuracies, 
both Probe and U2R assaults are in the following tiers. The suggested model is tested on 
the NSL-KDD [14] and utilizes one classifier per layer, and it may outperform popular 
shallow ML-based IDSs. This article employs a multilayer technique based on ELM clas-
sification algorithms. The following are some of this paper’s most significant contribu-
tions: 
• Developing a multi-level hybrid system capable of detecting intrusions based on six-

flow characteristics that a standard Software-Defined Networking (SDN) controller 
can readily collect. 

• Grouping multi-level homogenous classifiers hierarchically based on Machine 
Learning. 

• Evaluating the suggested system’s efficacy using standard datasets (NSL-KDD, 
KDDCUP99) that contain a collection of special attacks not included in the training 
set. 

• Gains in accuracy are up to 95% compared to well-known state-of-the-art supervised 
Machine Learning methods employing similar datasets and flow-based features. 
The remainder of the paper is organized as follows: the second section presents re-

cent related work. The third section provides background information on smart cities. 
Section 4 examines anomaly detection methods; Section 5 gives a potential solution for 
anomaly detection; Section 6 discusses experiments and findings, and Section 7 concludes 
with a discussion of future directions. 

2. Related Work 
There are several attempts to help enhance the performance of various IDS(s) by uti-

lizing Machine Learning, deep learning, and hybrid learning. This section discusses some 
recent research studies that propose an anomaly-based IDS and that use the NSL-KDD 
benchmark dataset to evaluate their proposed systems. Later, in the study, we compare 
our approach with these studies and show that our policy enhances them and achieves 
better results on the NSL-KDD benchmark dataset. 

Tang et al. [15] used the NSL-KDD Dataset to train a Deep Neural Network (DNN) 
for flow-based anomaly detection in a Software-Defined Networking (SDN) model for 
IDSs [14]. They constructed a fundamental DNN consisting of three hidden layers, an in-
put layer, and an output layer. They employed just six characteristics from the dataset 
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provided as an input of six neurons, including protocol type, src bytes, count, dst bytes, 
and srv count. These features include fundamental and traffic-based features that may be 
readily accessed in SDN setups. The binary classifier is the model’s output. The neurons 
in the hidden layers are 12, 6, and 3. The batch size is set to 10 and the epoch is set to 100 
in the model start parameters. The results of the experimentations achieved an accuracy 
of 75.75%. Rawat et al. [16] used DNN for IDSs in SDNs, which determined the most ap-
propriate hyperparameters and network configurations in the DNN, and achieved 75.9% 
accuracy. 

Wang et al. [17] presented the Localized Evolving Semi-Supervised Learning Based 
Anomaly Detection Scheme, called LESLA. Offline and online training were combined 
using semi-supervised learning in contrasting pessimistic likelihood estimation (CPLE) to 
allow self-evolution during anomaly detection. Hence, the self-training applies a hard la-
bel to the unlabeled data, causing the model to worsen, and increasing misclassification. 
Unlabeled data are soft-labeled in CPLE-based models. The model was trained using 500 
labeled data and 120,000 unlabeled data, semi-supervised. Using NSL-KDD, the sug-
gested system’s accuracy is 80.93% when all of the dataset’s features are used, and 77.26% 
when just six features are used. 

Dey et al. [18] applied ML techniques in SDN architecture to suggest a flow-based 
anomaly detection solution in the OpenFlow controller. Some feature selection ap-
proaches, including the Chi-squared test, Symmetric Uncertainty, CFS Subset Evaluator, 
Gain Ratio, and Info Gain, were used to treat the dataset to enhance the classifier perfor-
mance. Their research is based on NSL-KDD, which has 41 characteristics. Except for the 
CFS Subset Evaluator, which extracted nine features, all feature selection techniques ex-
tracted 15 features. The reduced dataset is then put through a variety of classifiers (J48, 
Random Forest (RF), PART, Naïve Bayes (NB), Decision Tree (DT), RBFN, and Bayes Net), 
while aggregating the results using 10-fold cross-validation. With the Gain Ratio for fea-
ture selection and RF for classification, this work achieved an accuracy of 82%. 

Latah and Toker [19] evaluated different measures of well-known anomaly-based in-
trusion detection techniques. They concentrated on supervised ML algorithms that em-
ploy the following classifiers: RF, DT, NB, ELM, Support Vector Machines (SVM), K Near-
est-Neighbor (KNN), NN, Linear Discriminant Analysis (LDA), Bagging Trees, 
LogitBoost, RUSBoost, and AdaBoost. They used the well-known NSL-KDD benchmark 
dataset. By focusing on just six SDN features, they utilized Principal Component Analysis 
(PCA) to de-dimensionalize the data. The most significant results were obtained while 
using Decision Tree, which has an accuracy of 83.24% and an f-score of 89.38%. 

Tang et al. [20] presented a method for detecting intrusions into SDNs using a Gated 
Recurrent Unit Recurrent Neural Network (GRU-RNN). The Anomaly Mitigator, the 
Anomaly Detector, and the Flow Collector are the main components of this method. The 
Flow Collector module is invoked when a message contains a packet or when a timer 
function is called. It collects all flow data, including IP addresses, ports of the source and 
destination, and protocol details. The Anomaly Detector module will obtain all of the ag-
gregated features, load a GRU-RNN trained model, receive network statistics, and deter-
mine whether or not a flow is an anomaly, allowing the Anomaly Mitigator module to 
make flow choices. GRU-RNN comprises four layers: an output layer and three hidden 
layers. They just employed six basic capabilities that are readily available in SDN settings. 
The output dimension is two, since the model is a binary classifier (Normal vs. Anomaly). 
Correspondingly, six, four, and two neurons are found in the buried layers. The suggested 
technique was tested using the NSL-KDD dataset and was shown to be 89% accurate. 

Latah and Toker [21] proposed a five-layer classification approach that takes six flow 
features as input, as shown in Figure 3. They used kNN, ELM, and hierarchical ELM 
(HELM) for the first, second, and subsequent levels. They only employed the six flow 
characteristics immediately accessible via the controller. Their multilayer approach im-
proved the system’s overall accuracy to 84.29%, based on the NSL-KDD dataset. 
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Figure 3. Multi-level hybrid IDS. 

Gao et al. [6] presented a principal adaptive component (A-PCA) for an IDS-com-
bined Incremental Extreme Learning Machine (I-ELM). The essential aspects of network 
traffic are adaptively picked in this technique, and the I-ELM then obtains the highest 
detection accuracy. Automatic feature extraction is accomplished using the A-PCA based 
on parameter limitations, while the I-ELM is in charge of identifying malicious assaults. 
The performance of this technique was evaluated using the NSL-KDD dataset. This work 
reached an accuracy of 81.22% and a detection rate of 96.1%. 

Zheng et al. [22] proposed an improved LDA-based Extreme Learning Machine Clas-
sification (ILECA) as an IDS. They enhanced LDA by weighting it with a spatial similarity 
function to improve the between-class scatter matrix, then combined it with LDA to obtain 
the ideal transformation matrix for the spatial separation of high-dimensional data, and 
utilized it to minimize feature dimensions. They also identified the dimensionality-re-
duced data using ELM with the single hidden layer NN technique. They conducted ex-
periments to validate their hypotheses using the NSL-KDD dataset. The evaluation find-
ings indicated that the suggested ILECA had enhanced generalization characteristics, 
with an accuracy rate of 92.35%. 

Al-Yaseen et al. [23] increased the effectiveness of identifying known and new 
threats, offering a multi-level hybrid intrusion detection model incorporating SVM and 
ELM (Figure 4). A modified K-means approach was also presented for creating a high-
quality training dataset that considerably improves classifier performance. Modified K-
means create new small training datasets that reflect the initial training dataset, reducing 
classifier training time and improving intrusion detection system performance. The pro-
posed work’s performance was evaluated using the KDDCUP99 benchmark dataset. Re-
sults showed that this work had an accuracy of 95.75% and a false alarm rate of 1.87%. 
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Figure 4. Multi-level hybrid IDS via class imbalance with deep learning. 

Rani [24] developed an IDS using DNN with the classifier-level class imbalance ap-
proach. The network data are first preprocessed using data conversion, before being nor-
malized using the min–max method. The normalized information is then sent into a neu-
ral network, which modifies the cross-entropy function to address the problem of class 
imbalance. It is accomplished by weighing the classes while the classifier is being trained. 
The system achieved 85.56% accuracy on the NSL-KDD dataset. Imrana et al. [25] devel-
oped an IDS using a bidirectional Long-Short-Term-Memory (BiDLSTM). The efficiency 
of the BiDLSTM technique was validated on the NSL-KDD dataset and outperformed the 
standard LSTM. It achieved 91.93% accuracy, while standard LSTM achieved 87.26%. 

Chen et al. [26] developed a network anomaly detection model based on clustering, 
followed by a density peaks clustering technique, DPC-GS-MND, based on grid screening 
and mutual neighborhood degree. They achieved 96.83% accuracy on the KDDCUP99 da-
taset. Ramadan et al. [27] developed an IDS for Flying Ad Hoc Networks based on Recur-
rent Neural Networks (RNN), and achieved 91% on the KDDCUP99 dataset. Table 1 sum-
marizes the related work, including the utilized technique, dataset, and the achieved ac-
curacy. 

Table 1. Related Work Summary. 

Study Technique Dataset Accuracy (%) 
Tang et al. [15] Simple DNN NSL-KDD 75.75 

Rawat et al. [16] DNN NSL-KDD 75.9 
Wang et al. [17] Semi-Supervised Approach NSL-KDD 77.26 
Dey et al. [18] Random Forest NSL-KDD 81.95 

Latah and Toker [19] Decision Tree NSL-KDD 88.74 
Tang et al. [20] GRU-RNN NSL-KDD 89 

Latah and Toker [21] KNN, ELM, and HELM NSL-KDD 84.29 
Gao et al. [6] A-PCA-I-ELM NSL-KDD 81.22 

Zheng et al. [22] ILECA NSL-KDD 92.35 
Al-Yaseen et al. [23] SVM and ELM KDDCUP99 95.75 

Rani [24] Classifier-level DNN NSL-KDD 85.56 
Imrana et al. [25] LSTM, BiDLSTM KDDCUP99 87.26, 91.36 
Chen et al. [26] DPC-GS-MND KDDCUP99 96.83 
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Ramadan et al. [27] LSTM-RNN KDDCUP99 91 
Chung and Wahid[28] Simplified Swarm Optimization KDDCUP99 93.3 
Ambusaidi et al. [29] Least Squares SVM KDDCUP99 92.8 

Khalvati et al. [30] SVM KDDCUP99 94.8 
Mohammadi et al. [31] FGLCC, FGLCC-CFA KDDCUP99 92.59, 95.05 

Alazzam et al. [32] Sigmoid _PIO, Cosine_PIO KDDCUP99 94.7, 96 

3. Smart City 
Many security and privacy concerns have emerged due to the rising use of intelligent 

apps. The smart city network includes a wide range of devices due to new technology, 
and a single hacked item might render the whole collection susceptible; exploiting such 
flaws enables hackers to start a series of cyber-attacks. For a city to adopt innovations into 
smart city cyberinfrastructure and to enhance the living circumstances of its residents, 
smart city security is critical. Availability, confidentiality, integrity, access control, pri-
vacy, and non-repudiation are some of the primary security and privacy criteria. The dis-
covered data of a smart city’s physical areas contains precise facts regarding the people 
who dwell in such surroundings [33]. 

Sustainability means meeting present needs without risking future generations’ abil-
ities to meet their own. The sustainable development goals (SDG) include cities where 
everyone has access to smart services, electricity, housing, transportation, and other 
amenities. The relations between SDGs and smart cities can be listed as follows: 
• Ensure everyone has access to affordable, safe, and appropriate housing and services, 

and improve slums. 
• Ensure everyone has access to sustainable, accessible, cheap, and safe transportation 

systems, focusing on road safety and vulnerable populations such as the elderly, per-
sons with disabilities, children, and women. 

• All nations should be able to design and manage human settlements in a participa-
tory, integrated, and sustainable manner. 

• Enhance global efforts to conserve and to protect the world’s heritage. 
• Assist LDCs in creating sustainable and resilient structures with local resources, in-

cluding financial and technical assistance. 
Figure 5 shows that every aspect of a smart city can be utilized to achieve SDGs as 

follows: 
• Smart Mobility includes integration with ICT, providing clean and non-motorized 

options. 
• Smart People: This includes a society that encourages creativity, inclusion, and smart 

education. 
• Smart Living: This is achieved by providing a healthy, safe, and happy life. 
• Smart Economy: This is achieved by encouraging innovation, entrepreneurship, 

productivity, and interconnection. 
• Smart Government: The government should have a transparent policy, open data, 

and provide e-governance. 
• Smart Environment: This includes environments that have green buildings, energy, 

and planning. 
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Figure 5. SDG and Smart City. 

The introduction of sustainable technological developments to the network of smart 
cities is expected to enhance people’s quality of life by improving the functioning of urban 
systems and promoting sustainable development. The advent and deployment of this 
technology in various intelligent systems has made security and privacy problems a key 
challenge that needs robust solutions. Due to the expanding use of AI, AI systems are 
critical in multiple smart applications, including autonomous home appliances, pacemak-
ers, and system control. For instance, providers and device manufacturers may use data 
mining technology to collect and analyze sensitive information and personal data, and 
achieve various essential service-related goals. Additionally, attackers who comprehend 
AI are themselves more intelligent. Certain cybercriminals can examine how ML defenses 
are developed, and are trained to deploy specific approaches to degrade algorithm relia-
bility. However, significant security hazards are associated with the increased usage of AI 
technology. Since new technologies are integrated into smart city networks, edge-based 
structures face new security concerns, as edge-dispersed operating settings are more sus-
ceptible to assaults than centralized clouds [34]. As a result, a system that can detect and 
prevent attacks on smart city edge devices is needed. 

Smart city systems, comprising sensor devices that are scattered throughout danger-
ous areas, provide a plethora of security risks, and need security risk management and 
mitigation. It is critical to develop techniques for mitigating such hazards to enable the 
deployment of smart city apps, and to boost users’ desire to utilize them. As a result of 
the diversity of sensor networks and gadgets in smart cities, developing a risk manage-
ment plan is a significant challenge. 

The term “sustainable smart city network” refers to a network that allows smart cities 
to connect; this notion was a relatively recent trend in the mid-2010s [35]. Smart cities, 
urbanization, sustainability, and ICTs are examples of the same idea. According to Mo-
hanty et al. [36], technical criteria for a sustainable smart city necessitates the integration 
of numerous qualities. The bulk of ideas for smart city building were four primary char-
acteristics: sustainability, smartness, quality of life, and urbanization. The following are 
some of the advantages of incorporating smart city traits: 
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• Sustainability: The ability to help a city reach ecological balance while maintaining 
and operating the city. 

• Smartness: Aspirations to improve the city’s citizens’ environmental, economic, and 
social situations. 

• Quality of life: Nowadays, we can assert that an urban citizen’s financial and emo-
tional well-being reflects an increase in their quality of life, with citizens catalyzing 
urban growth; these solutions seek to enhance educational opportunities, housing 
quality, health conditions, and social cohesion. 

• Urbanization: Distinctive urbanism is centered on economic, technical, infrastruc-
tural, and governance elements of the transition from a rural to an urban environ-
ment. 
The ML-based IDS for a smart city has three main components. Initially, the endpoint 

layer is the layer of smart devices that operate in the Internet environment, such as smart 
water, energy, and traffic, etc. Next, the intermediate layer is the controller, such as the 
router that connects with the smart devices closest to the endpoint. The middle layer uses 
a deep-run intrusion detection algorithm to evaluate traffic from smart devices, and clas-
sify it as regular or abnormal. If the traffic is normal, it is forwarded to the next compo-
nent. The highest layer connects cloud nodes by a specified scale of fog nodes [37]. This 
paper aims to build the IDS to run in the intermediate node to identify abnormal traffic 
and to prevent it from accessing smart city edge devices. 

4. Classification 
Classification is accomplished via the use of a classifier algorithm. The critical ele-

ment is categorization action that is associated with learning, and which is often referred 
to as classification techniques. ML is a method of representational learning that focuses 
on the evolution of systems that perform AI tasks such as prediction, diagnosis, and recog-
nition, etc. The three main forms of learning are supervised, unsupervised, and semi-su-
pervised [38]. 

ML algorithms have three main types: supervised, unsupervised, and semi-super-
vised learning. Deep learning is a promising learning scheme in ML [39]. Guided catego-
rization, often known as supervised learning, is a kind of learning that enables the recog-
nition of a set of likely classes in advance. Correctly categorized data examples are used 
as a training set in this procedure. In the following phase, supervised learning algorithms 
anticipate the outcome. 

Consequently, this is an excellent solution for when a certain target value is needed. 
This kind of learning also requires a set of training datasets that comprise both the input 
and the anticipated outcomes. The training set is then used to classify new data. SVMs, 
ANNs, logistic regression, NB, KNN, RF, DT, and other supervised learning methods are 
considered to be classification algorithms [40]. Descriptive or undirected categorization 
refers to unsupervised learning. The term “unsupervised” refers to data that does not 
have an expected outcome. Clustering, self-organizing map (SOM), and deep learning, are 
well-known unsupervised learning methods. Semi-supervised learning uses labeled and 
unlabeled data to combine supervised and unsupervised learning [41]. The NB, SVMs, 
ANNs, DT, ensemble learning, and ELM are discussed. A comparison of these algorithms 
is in Table 2. 
• Naïve Bayesian 

The NB classifier is a primary probabilistic classifier that is often used to identify 
network intrusions. It combines previous knowledge with sample data and utilizes statis-
tical deductions, which use probability to show various sorts of uncertainties. The concept 
that all input attributes are uncorrelated to one another forms the basis of its principles. 
As a result, it shows how likely it is that an object is from a specific class. From Tao et al. 
[42], in order to use the time-NetFlow link, the NB method was paired with a time slicing 
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function, as network traffic fluctuates at various periods and some traffic does not appear 
at all. 
• Support Vector Machines (SVMs) 

A SVM is used to look for patterns. It uses use supervised learning ideas such as 
kernels (e.g., radial basis function (RBF)), sparseness, the lack of local minima, and capac-
ity checking accomplished by acting on the boundary (the hyperplane solution’s distance 
from its nearest point). In the learning domain, classifiers with a high degree of generali-
zation correctly predict the class of new input [43]. From Kabir et al. [44], the least squares 
support vector machine has been proposed as a basis for an IDS, a basic SVM classifier 
(LS-SVM) variation. Compared to a standard SVM, this modification is more prone to be 
influenced by outliers and noise in the training set. There are two steps to their decision-
making process. The first step is responsible for shrinking the dataset to a manageable size 
using an optimum allocation approach that selects samples based on data variability. The 
LS-SVM is then fed these representative samples in the following step. This technique was 
designed to function with incremental and static data, which yielded good performance. 
• Artificial Neural Networks (ANN) 

ANNs are mathematical representations of the structure of the brain of intelligent 
creatures that learn via experience. In reaction to inputs and responses from the environ-
ment in which they function, they are capable of self-adaptation, self-organization, and 
learning. While NNs are inspired by biological design, they are mainly used as classifiers 
in anomaly detection. The most often utilized ANN techniques are Back Propagation (BP) 
and Multi-layer Perceptron (MLP) [45]. Brown et al. [46], depending on the protocols used 
at the application layer, such as FTP, SMTP, and HTTP attributes, proposed a two-class 
classifier based on an evolutionary general regression NN (E-GRNN) as an IDS. The au-
thors employed evolutionary computing to discover the best configuration for the general 
regression neural network, by modifying parameters and distinguishing characteristics 
(feature mask). By removing unneeded information, this technique decreases computing 
complexity while also improving classification accuracy. Only labeled data, which are dif-
ficult to obtain, owing to the need for expert knowledge, may be used to train a classifier 
with the assistance of supervised learning models. Unsupervised approaches, on the other 
hand, only analyze the unlabeled data, which is widely available in real-world circum-
stances. 
• Ensemble Approach 

When opposed to employing individual classifiers, an ensemble technique combines 
the outputs of many classifiers into a unified one, resulting in improved performance [47]. 
Bukhtoyarov and Zhuckov [48] have proposed a unique tree-level strategy for merging 
individual classifier choices to develop an ensemble distributed classifier for networks. 
This approach is based on using Genetic Programming (GP)-based Ensembling (GPEN). 
GPEN develops a program that shows how to use GP operators to combine component 
network forecasts to obtain an ensemble forecast. 
• Decision Tree (DT) 

Each node in the DT may compare and contrast different actions based on their costs, 
benefits, and probability. It is a diagram representing the probable consequences of a set 
of connected decisions [49]. Typically, a DT starts with a single node and then branches 
out to include more options. Each of these occurrences results in the addition of nodes, 
which results in the acquisition of instances. As a consequence, it takes on the shape of a 
tree. 
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Table 2. Comparison of classification algorithms [50]. 

Model Advantages Disadvantage 

Ensemble 
approach 

•Enhances precision and stability. 
•Reduced variance, contributing to the avoidance 
of overfitting problems. 

•Complexity of computation. 
•Difficult to interpret if the model is large. 
•Requires fine-tuning of various parameters. 

NB Classifier 
• It performs well with textual data. 
• It is simple to build.  
• It is quick when compared to other methods. 

• A fundamental assumption regarding the data 
distribution’s shape. 
• Due to a lack of data, a frequentist must estimate a 
probability value for all potential values in the 
feature space. 

SVM 

• SVMs may be used to describe decision 
boundaries that are not linear. 
• When linear separation is required, it performs 
comparably to logistic regression.  
• SVM is resistant to overfitting concerns. 

• A vast number of dimensions contribute to the 
results’ lack of transparency. 
• Selecting an effective kernel function is difficult 
(prone to overfitting/training difficulties). 
• Memory complexity. 

DT 

• Decision trees are a rapid approach for both 
learning and prediction.  
• They are well-suited for handling qualitative 
(categorical) data.  
• They work best with decision boundaries 
parallel to the feature axis. 

• Problems with diagonal decision boundaries.  
• Easy to overfit.  
• Extremely sensitive to tiny data perturbations.  
• Out-of-sample prediction issues. 

ANN 
• Recognize complicated connections between 
dependent and independent variables with ease. 
• Capable of dealing with noisy data. 

• Local minima. 
• Overfitting. 
• The processing of an ANN network is difficult to 
understand and takes a long time. 

ELM 
• Fewer optimization restrictions. 
• Increased efficiency. 
• Simple implementation. 

Poorly conditioned hidden layer output matrices 
lead to low robustness. 

5. Research Methodology 
5.1. The Proposed System 

As shown in Figure 6, our proposed system is composed of three components. First 
is the traffic coming from smart city terminal nodes. The second is the anomaly classifica-
tion system that takes traffic as the input from the first component. Using a proposed IDS 
approach, it evaluates traffic from smart devices and classifies it as being regular or anom-
alous. This multi-classification system can detect if the packet is normal or an attack, and 
the type of attack. The third is the cloud layer that takes the output from the second com-
ponent. It communicates with cloud nodes via connecting to a set of fog nodes. If the IDS 
detects normal traffic, the traffic is allowed to communicate with the cloud system, other-
wise, the traffic is prevented. 
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Figure 6. The proposed system components. 
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5.2. ELM 
Professor Guang-bin Huang devised the ELM in 2004, A single-hidden-layer NN that 

is very generalizable, needs little human interaction, and that assures the assumption of a 
specific learning accuracy; the algorithm’s speed is greatly boosted [51]. It saves substan-
tial time and money when compared to traditional NNs. The approach does not need fre-
quent adjustments to the weights and hidden units throughout the training stage. While 
each neuron has an offset, random initialization determines the hidden layer and input 
weight offsets. To finish the training, we only need to know how many hidden layer neu-
rons were used throughout the training; we can then extract the model’s output weight. 

Assume that you have N training samples given for a single hidden layer feed-for-
ward NN (𝑥௜, 𝑡௜), where 𝑥௜ = ሾ𝑥௜ଵ, 𝑥௜ଶ, . . . , 𝑥௜௡ሿ் ∈ 𝑅௡ is the sample input vector and 𝑡௜ = ሾ𝑡௜ଵ, 𝑡௜ଶ, . . . , 𝑡௜௠ሿ் ∈ 𝑅௠ is the intended output vector, where n denotes the number of fea-
tures contained in the input sample, and m is the training sample’s total number of classes. 
Additionally, since this single hidden layer neural network includes L hidden nodes, the 
output of the network may be expressed as follows [52]: 

෍ 𝛽௜𝑔൫𝜔௜. 𝑥௝ + 𝑏௜൯ = 𝑜௝, 𝑗 = 1,2, … , 𝑁௅
௜ୀଵ  (1)

g(•) denotes the activation function, 𝜔௜ = ሾ𝜔௜ଵ, 𝜔௜ଶ, . . . , 𝜔௜௡ሿ் is the input weight vec-
tor between the input layer and the hidden layer, and 𝛽௜ = ሾ𝛽௜ଵ, 𝛽௜ଶ, . . . , 𝛽௜௡ሿ்  is the out-
put weight vector between the hidden layer and the output layer; 𝑏௜ is the ith offset value 
of the hidden layer’s first node, where 𝜔௜. 𝑥௝  indicates the weight assigned to the inner 
product of the value and the value of the training sample, and 𝑜௝ signifies the network 
model’s actual output. Figure 8 shows the single hidden layer feed-forward network ELM 
model. 

 
Figure 8. Feed-forward network with a single hidden layer [52]. 

The single hidden layer feed-forward NN’s objective is to minimize the output re-
sult’s error value, which is as follows: 
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෍ฮ𝑜௝ − 𝑡௝ฮே
௝ୀଵ = 0 (2)

where 𝑡௝ denotes the expected result. 𝛽௜, 𝜔௜, and 𝑏௜ exist according to Formulae (1) and 
(2) to make the following formula accurate [52]: 

෍ 𝛽௜𝑔൫𝜔௜. 𝑥௝ + 𝑏௜൯ = 𝑡௝, 𝑗 = 1,2, … , 𝑁௅
௜ୀଵ  (3)

Equation (3) may be simplified as follows, based on the matrix: 𝐻𝛽 = 𝑇 (4)

H is the hidden layer output value matrix, β, is the hidden layer to the output layer 
weight matrix, and T denotes the projected output matrix in the formula. H, T, and β are 
further stated as follows [52]: 

H=൥𝑔ሺ𝜔ଵ. xଵ + bଵሻ ⋯ 𝑔ሺ𝜔௅. xଵ + b୐ሻ⋮ ⋱ ⋮𝑔ሺ𝜔ଵ. x୒ + bଵሻ ⋯ 𝑔ሺ𝜔௅. x୒ + b୐ሻ൩ே×௅  (5)

𝛽 = ൥𝐵ଵ்⋮𝐵௅் ൩௅×ெ (6)

𝑇 = ൥𝑡ଵ்⋮𝑡௅் ൩ே×ெ  (7)

In the vast majority of circumstances, Hβ = T cannot be demonstrated. For training a 
model, several criteria are discovered: 𝛽௜, 𝜔௜, and 𝑏௜, where 𝑖 ∈ ሾ1 … 𝐿ሿ, and where L is 
the number of layers. These criteria need to be changed so that the error value is as mini-
mal as possible, as shown in the following equation: ‖𝐻ሺ𝜔௜, 𝑏௜ሻ𝛽௜ − 𝑇‖ = minఠ೔,ఉ೔,௕೔‖𝐻ሺ𝜔௜, 𝑏௜ሻ𝛽௜ − 𝑇‖ (8)

When faced with such challenges, a typical NN approach would progressively in-
crease the parameters throughout the iteration phase, resulting in model’s training period 
being extended. The hidden layer’s input weights and bias are randomly initialized 
throughout the Extreme Learning Machine’s model training. A weight matrix for the out-
put is also provided. Because H is known, the model becomes a linear system, Hβ = T, 
which can be solved using least-squares β. The following is the formula: 𝛽 = 𝐻ା𝑇 (9)

The symbol H+ denotes the Moore–Penrose generalized inverse matrix of H’s output 
weight matrix in Equation (9). To summarize, the ELM has the following learning process: 

Input: N training samples (𝑥௜, 𝑡௜), 𝑥௜ ∈ 𝑅௡, 𝑡 ∈ 𝑅௠, 𝑖 = 1,2, … , 𝑁. 
Output: The output weight β from the hidden layer to the output layer. 

I. Initialize the weights of the inputs I and the offset of the hidden layer 𝑏௜ at random; 
II. Determine the hidden layer H’s output weight; and 
III. Calculate the output weight from the hidden layer to the output layer β. 

5.3. ELM Hyperparameters 
The following are the hyperparameters of ELM (the best hyperparameters are pre-

sented in Table 3): 
• The number of nodes for our hidden layer, i.e., hiddenSize (L); 
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• Input weight W; and 
• bias ‘b’; 
• Activation functions. 

Based on a weighted sum of inputs, activation functions are employed to calculate 
the output response of neurons. Throughout the network, each layer uses a single activa-
tion function. It is available in two variants: linear and nonlinear activation functions. 
Nonlinear activation functions are often employed to solve classification problems. The 
following are some of the nonlinear activation functions [53]: 
 Sine Function: It accepts a real number and returns another real value that ranges 

between 1 and −1. 
 Hard Limit Function: It is a value-assigning limiting function with a threshold. A 

value of 0 or 1 is assigned to each neuron location. When it reaches the threshold, it 
returns 1; otherwise, it returns 0. 

 Triangular Bias Function: The limit of triangular inclination may function as a neu-
ronal exchange. This limit defines the yield of a layer based on its known data. 

 Radial Bias Function: It is a function proportional to the distance to the origin. 
 Sigmoid Function: It’s a ‘S’-shaped activation function with the formula F(x) = 1/1 + 

exp(−x), with values ranging from 0 to 1. 

Table 3. ELM Hyperparameters [54]. 

Variable Name Available Values Best-Value 
hiddenSize. 1, …, inf 2000 

Activation Function Sine, Sigmoid, RBF, 
Triangular Bias, Hard Limit 

Sigmoid 

Cost parameter 1, …, inf 2଺ 

6. Experimental Results and Discussion 
6.1. PC Properties 

The categorization experiments were conducted using a Python-based software 
package on an Intel i7 computer with 8 GB of RAM. 

6.2. Dataset Characteristics 
The NSL-KDD dataset [14], a scaled-down version of the original KDDCUP99 dataset 

[55], has become a gold standard for testing IDSs. In addition to a class attribute, there are 
41 attributes in total. The training dataset has 21 different assaults, whereas the test dataset 
contains 37 different types of attacks. Table 4 describes four types of attacks: probe, R2L, 
U2R, and DoS. 
• Probe—Before initiating an attack, the attacker acquires knowledge regarding the 

various faults in the target system. 
• Denial of Service (DoS) attack—Once an attacker tries to use computational resources 

to increase bandwidth or to overwhelm a device service, legitimate users are barred 
from accessing it. 

• User to root attacks (U2R)—After gaining access to a local target host, an attacker 
attempts to get super or root permissions on the device. 

• Remote to user attacks (R2L)—An attacker tries to get into a victim’s system or net-
work without a legitimate account. 
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Table 4. KDDCUP99 Attack Types [55]. 

Attack Category Attacks (37) 

DoS Back, Edstrom, Smurf, Worm, Mailbomb, Apache2, Land, Pod, 
Process table, Mailbomb Neptune Teardrop 

Probe IPsweep, Mscan, vPortsweep, SaintI, Satan, Nmap 

R2L 
Ftp_write, Sendmail, Snmpgetattack, Xsnoop, Waremaster, 

Snmpguess, imap, Httptunnel, Named, Phf, Xlock, Multihop 
Guess_password 

U2R Xterm, Sqiattack, Buffer_overflow, Loadmodule, Ps, Perl, Rootkit 

The NSL-KDD dataset contains the attributes shown in Table 5. A1, A2, A5, A6, A23, 
and A24 are characteristics that may be readily accessed from the SDN controller [15]. 

Table 5. NSL-KDD Attributes [21]. 

A. # Attribute Name A. # Attribute Name A. # Attribute Name 
A1 Duration A15 Su attempted A29 Same srv rate 
A2 Protocol type A16 Num root A30 Diff srv rate 
A3 Service A17 Num file creations A31 Srv diff host rate 
A4 Flag A18 Num shells A32 Dst host count 
A5 Source bytes A19 Num access files A33 Dst host srv count 
A6 Destination bytes A20 Num outbound cmds A34 Dst host same srv rate 
A7 Land A21 Is host login A35 Dst host diff srv rate 
A8 Wrong fragment A22 Is guest login A36 Dst host same src port rate 
A9 Urgent A23 Count A37 Dst host srv diff host rate 

A10 Hot A24 Srv count A38 Dst host serror rate 
A11 Number failed logins A25 Serror rate A39 Dst host srv serror rate 
A12 Logged in A26 Srv serror rate A40 Dst host rerror rate 
A13 Num compromised A27 Rerror rate A41 Dst host srv rerror rate 
A14 Root shell A28 Srv rerror rate A42 Class label 

6.3. Performance Measures 
The selection of a Network Anomaly Detection System (NADS) for a particular envi-

ronment is a wide topic that may be summarized as an IDS evaluation [56]. The perfor-
mance metrics to consider while deploying/choosing an IDS/anomaly detection system 
are discussed in the following, presenting how these metrics are used to evaluate the ap-
proach presented. True Positives (TP) are accurately identified as attacks, whereas True 
Negatives (TN) are normal connections that are correctly identified as normal connec-
tions. Table 6 provides information on the performance metrics used to evaluate IDSs [57]. 

Table 6. IDS Performance Measures [58]. 

Performance Metric Description Formula 

Detection 
Rate/Precision 

The proportion of true positives among 
projected positives (or) proportion of test data 

flagged as an attack that is an attack. 
TP/(TP + FP) 

Accuracy 

To establish the total accuracy, take a 
measurement. It is the percentage of 

accurately predicted values over the whole 
dataset. 

TP + TN/(TP + FP+ 
FN +TN) 

False Alarm Rate The false-positive rate (FPR), also known as 
the false alarm rate (FAR), is the percentage 

FP/(FP + TN) 
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of legitimate packets mistakenly identified as 
malicious. 

True 
Positive Rate 

Sensitivity/Recall 

The proportion of attack classes successfully 
detected (or) the percentage of true positives 

projected as positives. 
TP/(TP + FN) 

The F-score/F-measure is a mathematical expression representing the harmonic mean 
of accuracy and recall, as shown in Equation (14) [59]. The F_score is a metric for deter-
mining a test’s accuracy [60]. Improved accuracy and recall are required for good IDS 
performance [61]. When calculating the F_score, both accuracy and recall are taken into 
account [58]: 𝐹_𝑆𝑐𝑜𝑟𝑒 = 2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙  (10)

6.4. Visualization 
In this section, we are making some visualization of our proposed system. Figure 9 

shows the distribution of the NSL-KDD dataset [14] across the different labels, where the 
x-axis is the label category, which is either the normal or attack category (DOS, R2L, U2R, 
or Probe), and the y-axis is the count of samples in each category in the dataset. It is ob-
served that the dataset is somewhat balanced between normal and attack, while the attack 
categories are not balanced, where DOS presents the most commonly observed category 
in the dataset, and U2R is the least observed one. 

In Figure 10, for binary classification between normal and attacks, which are referred 
to as attack_flag in the figure, all the features have a positive correlation except for proto-
col_type. Count, duration, src_bytes, and dst_bytes positively correlate with attack_flag 
in descending order. The binary classification between DOS and the others is called 
dos_flag in the figure. Count and srv_count have a positive correlation with dos_flag in 
descending order. Duration, src_bytes, dst_bytes, and protocol_type negatively correlate 
with dos_flag. The binary classification between Probe and others is referred to as 
probe_flag in the figure. protocol_type, count, and srv_count have a negative correlation 
with probe_flag. Duration, src_bytes, and dst_bytes have a positive correlation with 
probe_flag. For binary classification between U2R and others, this is referred to as u2r_flag 
in the figure. All of the features except for protocol_type have a negative correlation with 
u2r_flag. For binary classification between R2L and others, this is referred to as r2l_flag in 
the figure. protocol_type, count, and srv_count have a negative correlation with r2l_flag. 
Duration, src_bytes, and dst_bytes has a positive correlation with r2l_flag. For multi-clas-
sification between normal, Probe, DOS, U2R, and R2L are called attack_map. The proto-
col_type and srv_count have a negative correlation with attack_map. Count, duration, 
src_bytes, and dst_bytes have a positive correlation with attack_map. 
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Figure 9. Dataset Label Distribution. 

 
Figure 10. Heatmap illustrating feature importance and correlation. 
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and has a low percentage of false alarms. The model in [15] is a straightforward DNN with 
just three hidden layers. The parameters of this system need to be tuned in order to 
achieve better results. The model in [16] was also a DNN, and it achieved almost the same 
results as the model in [15]. The authors [17] used a semi-supervised approach when the 
model was trained exclusively on a tiny training set by self-evolution. It was trained on 
fewer data, which led to other approaches performing better than it. In [18], the model 
used multiple feature selectors to achieve the best result, using a gain ratio that selected 
nine features. Training the model with more features would lead to better results. The 
model in [19] earned the highest accuracy and F1-score; nevertheless, they used PCA as a 
feature selection approach to optimize the system’s overall performance. 

Additionally, the study in [19] demonstrates that PCA may outperform techniques 
such as information gain, which is widely utilized for feature selection. The model in [20] 
is GRU-RNN, with just three hidden layers. The model parameters in [20] need to be tuned 
in order to achieve better results. In [21], the authors used the multi-level classification 
approach used by the proposed approach, and achieved a high level of precision. They 
applied KNN, ELM, and HELM in their models. The model in [6] used A-PCA-I-ELM, but 
it used all 41 features and thus achieved good results. The model in [22] used ILECA, 
where the dimensionality was reduced with ELM. Using more features may lead to better 
results. In [25], the authors used conventional LSTM and BiDLSTM. BiDLSTM achieved 
better results. The model achieved the best f-score and false alarm rate, but it used all of 
the features. In [24], the best detection rate was achieved by solving the class imbalance 
problem using oversampling techniques, and then DNN was used for classification. Fig-
ure 11 shows a comparison in terms of accuracy between SALMA and previous state-of-
the-art techniques. 

Table 7. Comparison between the proposed system and previous approaches to the NSL-KDD da-
taset. 

Method Accuracy (%) 
False Alarm Rate 

(%) 
Precision 

(%) Recall (%) F1-Score (%) 

Simple DNN [15] 75.75 3.21 92.50 59.95 74.13 
Semi-Supervised Approach [17] 77.26 N.A N.A N.A N.A 

Random Forest [18] 81.95 N.A N.A N.A N.A 
Decision Tree [19] 88.74 3.99 83.24 96.5 89.38 

GRU-RNN [20] 89 N.A 89 89.5 89.2 
KNN, ELM, and HELM [21] 84.29 6.3 94.18 77.18 84.83 

DNN [16] 75.9 N.A N.A N.A N.A 
Classifier-level DNN [24] 85.56 N.A 97.09 76.94 85.85 

LSTM [25] 87.26 4.03 90.34 87.26 88.03 
BiDLSTM [25] 91.36 0.88 92.81 91.36 91.67 

ILECA [22] 92.35 N.A N.A N.A N.A 
A-PCA-I-ELM [6] 81.22 N.A 96.1 N.A N.A 

Proposed System (SALMA) 95.04 2.48 92.05 79.59 85.37 
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Figure 11. Accuracy comparison between the proposed system and previous approaches on the 
NSL-KDD dataset [5,13–20,22,23]. 
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Least squares SVM [29] 92.8 6 
SVM [30] 94.8 10 

FGLCC-CFA [31] 95.05 10 
FGLCC [31] 92.59 16 
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Sigmoid _PIO [32] 94.7 10 
Cosine_PIO [32] 96 7 

SVM and ELM [23] 95.75 6 
DPC-GS-MND [26] 96.83 41 

LSTM-RNN [27] 91 41 
Proposed Approach (SALMA) 99.24 6 

 
Figure 12. Accuracy comparison between the SALMA and previous approaches on the KDDCUP99 
dataset [21,24–30].  

8. Conclusions and Future Work 
This study examines the notion of a smart-cities security IDS for effectively upgrad-

ing a typical IDS for smart city IoT applications. In this work, we proposed SALMA as a 
multi-level hybrid IDS for SDNs based on ELM that is used to develop a smart attack 
learning machine advisor system for protecting smart cities from smart threats. The sys-
tem is based only on six flow features used in SDNs. The experimental research using the 
NSL-KDD dataset revealed that our methods considerably increased the overall accuracy 
compared to typical supervised learning algorithms (ELM). Furthermore, with a 95% ac-
curacy rate, the approach recognized the new attacks included in the testing set. Addi-
tionally, the system was tested against the KDDCUP99 dataset and achieved increased 
overall accuracy compared with other state-of-the-art methods. Our approach achieves 
99.2% accuracy on KDDCUP99. Future work should focus on strengthening the system to 
reduce false alarms. 
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