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Abstract: Attention mechanisms are widely used for Convolutional Neural Networks (CNNs) when
performing various visual tasks. Many methods introduce multi-scale information into attention
mechanisms to improve their feature transformation performance; however, these methods do not
take into account the potential importance of scale invariance. This paper proposes a novel type
of convolution, called Calibrated Convolution with Gaussian of Difference (CCGD), that takes into
account both the attention mechanisms and scale invariance. A simple yet effective scale-invariant
attention module that operates within a single convolution is able to adaptively build powerful
scale-invariant features to recalibrate the feature representation. Along with this, a CNN with a
heterogeneously grouped structure is used, which enhances the multi-scale representation capability.
CCGD can be flexibly deployed in modern CNN architectures without introducing extra parameters.
During experimental tests on various datasets, the method increased the ResNet50-based classification
accuracy from 76.40% to 77.87% on the ImageNet dataset, and the tests generally confirmed that
CCGD can outperform other state-of-the-art attention methods.

Keywords: convolutional neural network; scale-invariance; attention mechanism

1. Introduction

Convolutional Neural Networks (CNNs) have proven to be effective at tackling a wide
range of visual tasks [1,2]. To make features more robust and improve their performance,
they often use attention mechanisms to suppress semantic noise, highlight regions with the
correct semantic features and bring the network’s operational character closer to human
vision. Excellent attention-based networks often have strong feature transformation capa-
bilities, thus providing more accurate representations that can support specific tasks. This
has made research into how to enhance the feature extraction capability of attention-based
networks an important topic in visual computing in recent years.

A number of different attention methods have been proposed with the goal of achiev-
ing more effective feature transformation [2–10]. These methods can be broadly categorized
into two types: single-scale and multi-scale. SENet [3] provides a powerful, lightweight
screening mechanism that can self-recalibrate the feature distribution via channel-wise
interdependencies. Moving beyond a focus on channels, BAM [4] and CBAM [5] use spatial
importance in a similar way for the calibration index. Later works [6–8] extend this even
further by designing advanced attention blocks. However, single-scale attention methods
lack the ability to make full use of self-similarity and structural information at different
levels. This results in the attention regions being less than ideal (note, for instance, that in
the third column of the first row in Figure 1, the activated region of nails represents only
a small proportion of the overall group). One of the simplest ways to tackle this problem
is to introduce multi-scale structures in the attention design. Typical examples, such as
SKNet [9] and its variants [10,11], use multi-scale information to generate more responsive
attention maps, given the same structural constraints. This produces compelling results
when used for image classification tasks (it can be seen in the fourth column in Figure 1 that
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SK has a stronger ability to represent features than the single-scale method, SE). However,
while such methods are effective in carrying out a multi-scale feature fusion, they seldom
touch the distinctive importance of invariance in the scale space. Still, scale-invariant
features can be of crucial importance in a wide variety of visual tasks.
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Figure 1. Heatmaps for different learning models using Grad-CAM [12]. All the selected models
were based on ResNet50 [13] and trained on ImageNet [14]. It can be seen that CCGD offers more
comprehensive region identification.

In view of the above issues, we have developed a novel convolution operator called
Calibrated Convolution with Gaussian of Difference that unifies scale-invariance and atten-
tion mechanisms. The focus of the method is upon collecting scale-invariant information for
the execution of self-calibration. This generates more discriminative feature representations
by explicitly incorporating more accurate information. As is shown in Figure 1, CCGD
is better to extract comprehensive salient regions than traditional convolutions or other
attention mechanisms, no matter what shape they are. Figure 2 shows a structural diagram
of CCGD. It is composed of two paths. One is a scale-invariant attention module that
can transform a feature map into a pixel-level attention map. This attention map is used
as a reference to guide the feature transformation process by means of its own invariant
feature information. The other path is an original scale path. Here, feature maps are only
executed as convolution operations to retain the original scale features and reduce the
number of parameters. These two paths form a heterogeneously grouped structure that
can aggregate contextual information at different levels. The work presented here offers
the following contributions:

• A novel convolution operator, called Calibrated Convolution with Gaussian of Differ-
ence (CCGD), which introduces scale-invariant information into the attention mecha-
nism and has a heterogeneously grouped structure. CCGD is especially well-suited
to feature transformation because of its remarkable capacity for self-calibration and
multi-scale representation.

• The capacity to replace traditional convolution and plug-and-play methods in modern
CNNs to form CCGDNet without introducing any extra parameters. This enables
them to have a more robust representation learning capability.

Comprehensive experiments were undertaken that demonstrate that our approach
outperforms most methods on both the Cifar100 [15] and ImageNet [14] datasets when
adopting the same standard training strategies.
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Figure 2. Structural diagram of the proposed Calibrated Convolution with Gaussian of Difference.

2. Related Works

As our work is focused on improving the feature representation learning capacity of
CNNs by using a scale-invariant attention mechanism, we first review the related work on
deep learning methods for network architecture design. We then look at existing attention
mechanisms for CNNs.

2.1. Architecture Design

Network architecture design is a long-standing concern in CNNs. The particular
interest is the need for an efficient backbone module that can be used to enhance the network
performance across different tasks, such as accurate classification of the image features
in datasets. Pioneering network architecture designs include AlexNet [1], VGGNet [16],
GoogleNet [17], ResNet [13], and DenseNet [18]. In these works, ResNet is the most
widely used, with many researchers adopting it as a prototype network for the design
of applications, e.g., WideResNet [19] and ResNext [20], which can improve network
performance and convergence speed by increasing its width or by introducing lightweight
3× 3 grouped convolutions. Res2Net [21] and HS-ResNet [22] build upon ResNet by having
a fine-grained hierarchical split and concatenated connections within a single residual block.
This makes it possible to build very deep and robust networks. Apart from ResNet-based
improvements, there are augmented versions of DenseNet, such as CondenseNet [23],
which can take advantage of dense connection mechanisms. Meanwhile, the NSA [24]
series allows for the accumulation of predefined search spaces that can be incorporated
into search strategies by means of having a network architecture that can vary according to
performance estimates.

2.2. Attention Mechanisms

Attention mechanisms aim to suppress semantic noise and highlight effective informa-
tion by building various long-range dependencies. Numerous attention-based methods
have contributed to the success of deep learning in the field of computer vision. These
methods can be broadly categorized into two categories according to the scale structure they
use as the basis of the attention mechanism: single-scale attention and multi-scale attention.

Single-scale attention: Here, a single original scale feature map is used to generate the
attention map. In an early version of this, SENet [3] adaptively recalibrated channel-wise
feature responses by explicitly modeling single scale feature interdependencies between
channels. Working more broadly from a spatial dimension, BAM [4] and CBAM [5]
similarly used both channel-wise interdependencies and spatial locations for the purposes
of reweighting. This can yield a better performance while using the same parameters.
Other approaches, such as SRM [6], have sought to model style information dependencies
and incorporate them into the attention block. However, single-scale attention methods
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are generally limited by their inability to make full use of self-similarity information and
structural information at different levels, leading to sub-optimal results.

Multi-scale attention: Here, a multi-scale feature set is used to generate the attention
map. Thus, SKNet [9] has a built-in dynamic kernel selection mechanism that is guided by
a combination of features from different multi-scale convolutions (3× 3 and 5× 5). This
enhances network performance by having a smaller number of additional parameters and a
lower computational complexity. SPA [10] introduces structural regularization in the form
of spatial pyramid blocks that can also incorporate structural information. This is then
used to build a more comprehensive multi-scale attention map. The recently developed
SCNet [11] adaptively builds multi-scale spatial and inter-channel dependencies around
each spatial location by means of a novel self-calibration operation. HMSA [25] uses a
multi-scale attention module that learns to predict a dense mask that can combine multi-
scale predictions. This not only improves performance in comparison to average-pooling
but also allows the network to diagnostically visualize the importance of different scales
for classes and scenes.

Most existing multi-scale attention methods have evolved from multi-scale inference
for computer vision. As a result, they can effectively collect self-similarity information and
structural information contained in features at different scales. However, most methods
combine the multi-scale information by using simple addition operations, which intro-
duces redundancy. Furthermore, the scale-invariant features contained in the multi-scale
information are overlooked despite their importance to the feature calibration process.

3. Methods
3.1. Motivation

Before presenting details of our proposed method, we will give a brief introduction
to the Difference of Gaussians (DoG) method present in the SIFT [26] algorithm to clearly
establish the motivation underlying this paper.For any given general expression of an image
f (x, y), the goal of the DoG is to establish a large number of stable distinctive matching
points, so as to improve geometric estimation. The DoG assumes that subtractive expansion
can take the following form:

DOG , Gσ1(x, y)− Gσ2(x, y)

=
1√
2π

 1
σ1

e
−(x2+y2)

2σ2
1 − 1

σ2
e
−(x2+y2)

2σ2
2

 (1)

where, G(·) is the Gaussian filtering function, and σ represents the difference smoothing
parameter. As a result of this subtractive mechanism, the DoG method can extract the
distinctive stable and invariant features of complex objects. This plays a key role in classical
matching algorithms.

Inspired by the DoG, we incorporate invariant distinctive information into a pixel-level
attention module. We argue that it is the DoG-based feature descriptors in our innovative
attention module that enable it to take full advantage of distinctive invariant information.
In the following section, we describe our CCGD in detail.

3.2. Scale-Invariant Calibrated Convolution

A structural diagram of the proposed method is shown in Figure 2. As with grouped
convolution, CCGD divides the standard convolutional filters into multiple parts
[F1,F2,F3,Fg]. Here, however, each filter is not positioned in parallel, but rather made
responsible for executing a particular function.

An input, X, is evenly divided into two subsets, X1 and X2, each of which then enters
a designated pathway for learning feature representations at a different level. The scale-
invariant attention pathway is further subdivided into two sub-paths. The first component
of the top path is a 3× 3 convolution. Meanwhile, the X2 features are sent along a bottom
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path to execute a Scale-Invariant Calibration (SIC) operation. Motivated by the DoG, this
module contains continuous down-sampling and up-sampling operations, Sr(·), with dif-
ferent rates, to mimic the Gaussian filtering in Equation (1). This minimizes the extra
computational load and parameters. A Gaussian blur approximation, G, is then obtained,
which has the same resolution as the input, X2 . This can be written as follows:

G = {Gi}n
i=1 = Sr(X2) (2)

where n denotes the number of iterations for Sr(·). The difference operation on the bottom
path is performed upon G as follows:

D =
n−1

∑
i=1

(Gi+1 − Gi)
2 (3)

where D is a set of difference maps. To avoid any possible differentiation problems in
the back-propagation and to enhance the effect of the difference maps, we use a square
function to replace the absolute value operation. The calibrated operation can therefore be
defined as follows:

X′2 = F2(X2)� δ
(

D +Fg(X2)
)

(4)

where δ represents the sigmoid activation, and � denotes element-wise multiplication.
A 3× 3 group convolution, Fg(·), is used to introduce a learnable feature region as an
extra replenishment.

For the attention mechanism in CNNs, the mathematical description can be expressed
as follows:

X′ = F (X)� AM(X) (5)

where AM(·) represents the attention map, which is used to assist in the calibration of
the output features of a convolution. Correspondingly, δ

(
D +Fg(X2)

)
is the attention

map that calibrates the output features of F2(·). Where, the DoG is a key technology for
generating robust attention maps. Then, the final output after CCGD can be formulated
as follows:

Y = Y2 ∪Y1 = F3
(
X′2
)
∪ F1(X1) (6)

The advantages of CCGD are three-fold. First, by utilizing the calibrated steps de-
fined in Equation (4), each feature is allowed to adaptively build powerful pixel-level
dependencies on the basis of its scale-invariant information, enabling recalibration of the
intermediate feature representation. Second, as F2(·) and F3(·) are combined into series
form, the receptive field of the scale-invariant attention pathway can be expanded explicitly,
thus providing a feature map that is different from the original pathway, F1(·) , in the
scale space. This gives CCGD a strong multi-scale representation ability. Third, instead
of introducing added parameters, the scale-invariant calibration operation only employs
lightweight continuous down-sampling, up-sampling, and 3× 3 grouped convolutions.
The deeper the network, the more significant this becomes.

3.3. Instantiations

As indicated above, CCGD can enhance the ability of CNNs to accurately represent
features. To further investigate the viability of the proposed method, we have developed
what we term CCGDNet by incorporating CCGD into ResNet. All 18-layer, 50-layer, and
101-layer bottleneck structures were used as the trunk for the network. Here, we simply
replaced the 3× 3 convolutional layer in each building block with the proposed CCGD (see
Figure 3), while leaving other relevant hyperparameters intact. By default, the number of
different maps in our CCGD is set to 2. This will be further explained in Section 4.3.
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Figure 3. CCGD integrated with different residual block in ResNet: (a) basicblock;
(b) bottlenck block.

4. Experiments
4.1. Implementations

We conducted detailed experiments using the generic PyTorch framework. For fairness
of comparison, we implemented all of the classification experiments by adopting the same
standard practice [13]. For the input, we used the Cifar100 [15] and ImageNet [14] datasets.
In the case of ImageNet, we used SGD to optimize all the models. The momentum and
weight decay were initialized at 0.9 and 5× 10−4, respectively. We executed all of the
methods tested for 100 epochs with a 0.1 initial learning rate. This was attenuated by a
factor of 10 after every 30 epochs. For the Cifar100 data, the batch size was set to 128, and
the training was conducted over 200 epochs. The optimization strategy was similar to
the one used for ImageNet. By default, all tasks were performed on a server with an 8
GTX1080Ti card and 256 GB of RAM.

4.2. Results for the Cifar100 Datasets

We first integrated the proposed CCGD into ResNet [13] and its variant, ResNetXt [20],
to form CCGDNet, and then explored the performance gain for the Cifar100 dataset.
After that, we conducted extra experiments to compare CCGDNet against other state-of-
the-art attention-based methods. As with our prior instantiations, we only replaced the
original 3× 3 convolution with CCGD. The results in Figure 4 show that our CCGD+ResNet
outperforms ResNet by a significant margin. For instance, CCGD+ResNet18 outperforms
ResNet50 by a margin of 1.63%, and CCGD+ResNetXt further obtains the considerable
performance improvements. The same trend can be observed for deeper networks. Table 1
shows the top-1 accuracy for the various attention model when applied to the ResNet. When
compared with other state-of-the-art attention-based methods, we can see that CCGDNet
achieved more advanced performance improvements. For instance, SENet achieved an
accuracy of only 80.18%,whereas the baseline with CCGD achieved an accuracy of 81.36%,
an increase of 1.18%. It is interesting to note that the advantage of this model not only
improves network performance but also reduces the number of parameters, e.g., SENet50
(26.24 M) vs. CCGDNet50 (22.30 M), an obvious decrease of 15%.
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Figure 4. The results of using CCGD on Cifar100 dataset with ResNet and ResNetXt backbone.

Table 1. The results of using different attention-based methods on Cifar100 dataset with
ResNet backbone. Results in bold are the best in each column with the same backbone. ↑means the
increase from baseline.

Methods Backbone Params Flops Top-1 (%)

ResNet
(Baseline)

ResNet18

11.22 M 0.56 G 77.56

SE [3] 11.31 M 0.57 G 78.11
BAM [4] 11.25 M 0.57 G 77.77

CBAM [5] 11.31 M 0.57 G 77.94
SKNet [9] 11.55 M 0.57 G 78.76

GC [8] 11.32 M 0.57 G 77.92
SRM [6] 11.23 M 0.57 G 78.05
SC [11] 9.83 M 0.60 G 78.50

CCGD(Ours) 9.04 M 0.66 G 79.19 (↑ 1.63)

ResNet
(Baseline)

ResNet50

23.76 M 1.31 G 79.80

SE [3] 26.24 M 1.31 G 80.18
BAM [4] 26.28 M 1.31 G 80.24

CBAM [5] 26.28 M 1.31 G 80.45
SK [9] 24.03 M 1.33 G 80.84
GC [8] 26.28 M 1.32 G 79.97

SRM [6] 23.76 M 1.31 G 80.34
SC [11] 23.71 M 1.25 G 80.47

CCGD(Ours) 22.30M 1.36 G 81.36 (↑ 1.56)

Table 2 shows the top-1 accuracy for the various models when applied to the Cifar100
dataset. When compared to the original backbone networks, our method improved the
performance of all baseline models. In the case of ResNetXt, the performance increased
from 80.78% to 81.83%, a 1.05% gain that confirmed the superiority and generalization
ability of our method for general backbone networks. When compared with other state-of-
the-art attention-based methods, we can see that CCGDNet achieved the best performance
in several scenarios, but not in all. SE, for instance, outperformed CCGD in the case of
DenseNet. This is contrary to what we would have expected. As already mentioned,
a heterogeneously grouped structure is used for CCGD composition. This boosts its multi-
scale representation ability. However, DenseNet and CCGD both use heterogeneously
grouped structures and feature reuse mechanisms, both of which could be reformulated as
a homogeneous strategy. This may, therefore, lead to over-fitting on small-scale datasets.
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Table 2. Performance comparisons of different models on the Ciafr100 dataset. Results in bold are
the best in each column.

Methods
Backbone

ResNetXt DenseNet DLANet

Baseline 80.78 80.24 80.43
SE 81.40 80.66 -

BAM 81.15 80.48 -
SK - 80.24 80.79

SGE 81.35 80.08 80.74
CCGD(Ours) 81.83 80.53 81.10

4.3. Results for the ImageNet Datasets

Next, we explored whether the superior performance of our method could be gen-
eralized to other datasets apart from Cifar100. Comparative experiments were therefore
carried out using the ImageNet dataset. Due to space limitations, we only report here the
detailed metrics for ResNet [13]. Table 3 shows that, when compared to other attention
methods, CCGDNet achieved a better performance while using fewer parameters, i.e., for
SENet50, BAMNet50, and SRMNet50, the top-1 accuracies were 0.76%, 0.97%, and 0.74%
better, respectively. Clear advantages were also visible in the loss curves (see Figure 5).
We also explored the effect of using different network depths on the ImageNet dataset.
As can be seen in Table 3, as the depth increased, the performance of CCGDNet steadily
surpassed the other competitors, given the same configuration. These results demonstrate
the effectiveness of CCGD for complex datasets.

Table 3. The results of using different attention-based methods on ImageNet dataset with
ResNet backbone. Results in bold are the best in each column with the same backbone. ↑means the
increase from baseline.

Methods Backbone Years Parameters FLOPS Top-1 (%) Top-5 (%)

ResNet (baseline)

ResNet-18

CVPR-16 11.69 M 1.82 G 69.83 89.10
SE [3] CVPR-18 11.78 M 1.82 G 70.86 89.78

BAM [4] BMVC-18 11.71 M 1.83 G 71.12 89.99
CBAM [5] ECCV-18 11.78 M 1.82 G 70.73 89.91

TA [27] WACV-21 11.69 M 1.83 G 71.19 89.99
CCGD (Ours) 9.16 M 2.05 G 71.22 (↑ 1.39) 90.03 (↑ 0.93)

ResNet (baseline)

ResNet-50

CVPR-16 25.56 M 4.12 G 76.40 92.94
SENet [3] CVPR-18 28.08 M 4.13 G 77.11 93.40
BAM [4] BMCV-18 25.92 M 4.21 G 76.90 93.66

CBAM [5] ECCV-18 28.09 M 4.13 G 77.34 93.69
GALA [28] ICLR-19 29.40 M - 77.27 93.66

GC [8] CVPR-19 28.10 M 4.13 G 77.70 93.76
SK [9] CVPR-19 26.15 M 4.19 G 77.54 93.62

SRM [6] CVPR-19 25.62 M 4.12 G 77.13 93.70
SC [11] CVPR-20 25.60 M 3.95 G 77.52 93.78
TA [27] WACV-21 25.56 M 4.17 G 77.48 93.68

CCGD (Ours) 24.15 M 4.27 G 77.87(↑ 1.47) 93.95 (↑ 1.01)

ResNet (baseline)

ResNet-101

CVPR-16 44.46 M 7.84 G 78.20 93.91
SE [3] CVPR-18 49.32 M 7.86 G 78.46 94.10

BAM [4] BMVC-18 44.91 M 7.93 G 78.46 94.02
CBAM [5] ECCV-18 49.33 M 7.86 G 78.49 94.31

SK [9] CVPR-19 45.68 M 7.98 G 78.79 94.26
SRM [6] CVPR-19 44.68 M 7.85 G 78.47 93.75
SC [11] CVPR-20 44.56 M 7.20 G 78.60 93.98
TA [27] WACV-21 44.56 M 7.95 G 78.03 93.77

CCGD (Ours) 41.89 M - 78.84(↑ 0.64) 94.32(↑ 0.41)
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Figure 5. The loss curves of using different attention-based methods on ImageNet dataset
with ResNet50: (a) training loss; (b) testing loss.

4.4. Ablation Analysis

Experiments were also conducted to assess the contribution of different aspects of the
proposed CCGD. As described in Section 3.2, we developed an SIC operation and grouped
structure to enhance the representation learning capacity. It can be seen in Table 4 that,
when no SIC operation was used, the result was already much better than it was for the
original ResNet-50. This demonstrates the validity of the grouped structure. When the SIC
operation was added, there was a further performance gain of 0.8%. We also examined
the effectiveness of the specific components of the SIC operation. Here, the results show
that, when the other configurations were kept constant, adopting a square function or
extra replenishment yielded a performance gain of about 0.19% or 0.34%, respectively.
This confirmed the validity of our original reasoning. In the SIC module, the number of
differential maps controls the intensity of the calibration mechanism. It can be seen in
Table 5 that, when the differential number was set to two, the performance gain had already
reached the peak value, which slowly declined during the next stage. We believe that an
excessive zoom factor will destroy an image or result in a loss of feature information during
the continuous down-sampling and up-sampling operations. This, in turn, will affect the
quality of the calibration weight.

Table 4. Ablation experiments on ImageNet dataset. Result in bold is the best.

Methods
Design Choice

Top1-Acc
SIC Operation FR Square Function

ResNet - - - 76.40

CCGD

- - - 77.07
X - - 77.56
X X - 77.68
X - X 77.53
X X X 77.87

Table 5. The results of using different numbers of difference maps on ImageNet dataset with ResNet-
50 backbone. Results in bold are the best in each column.

Methods Number Top1-Acc (%) Top5-Acc (%)

CCGD

0 77.10 93.22
1 77.43 93.25
2 77.87 93.95
3 77.84 93.84
4 77.63 93.80
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4.5. Visualization with Grad-CAM

To further examine the feature representation ability of the CCGD, we used Grad-CAM
to observe the effectiveness of the class activation mapping. All of the models were based
on ResNet50 and trained on ImageNet. In Figure 6a, we can see that, when compared with
SE, the CCGD activation mapping covered more regions of the relevant objects, such as
the ‘Hare’ and the ‘Ballpoint’. SE, by contrast, only managed to cover part of the object.
CCGD is also able to reduce the influence of background noise, so that the activation map
is better centered on the target, as can be seen in the case of the ‘Airliner’ image. Similar
phenomena can be observed at different stages (see Figure 6b). In conclusion, the proposed
CCGD is able to improve the accuracy of the network by strengthening the representational
power of the feature map and its robustness against noise.
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Figure 6. Visualization of class activation mapping using ResNet50, SENet50, and CCGDNet50 as
backbone networks: (a) CAM of different objects; (b) CAM at different stages.

5. Conclusions

In this paper, we present a CCGD method that can improve the basic convolutional
feature transformation process of CNNs, thus helping them to generate more discriminative
representations. The image classification results obtained during our experiments agree
well with our initial intuition and theory. In our future research, we aim to conduct further
tests to assess whether CCGD is effective for other kinds of visual tasks, such as object
detection and semantic segmentation.
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