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Abstract: The proposed research is based on a real plastic injection factory for cutting board pro-
duction. Most existing approaches for smart manufacturing tried to build the total solution of IoT
by moving forward to the standard of industry 4.0. Under the cost considerations, this will not be
acceptable to most factories, so we proposed the vision based technology to solve their immediate
problem. Real-time machine condition monitoring is important for making great products and
measuring line productivity or factory productivity. The study focused on a vision-based data reader
(VDR) in edge computing for smart factories. A simple camera embedded in Field Programmable
Gate Array (FPGA) was attached to monitor the screen on the control panel of the machines. Each end
device was preprogrammed to capture images and process data on its own. The preprocessing step
was then performed to have the normalized illumination of the captured image. A saliency map was
generated to detect the required region for recognition. Finally, digit recognition was performed and
the recognized digits were sent to the IoT system. The most significant contribution of the proposed
VDR system used the compact deep learning model for training and testing purposes to fit the
requirement of cost consideration and real-time monitoring in edge computing. To build the compact
model, different convolution filters were tested to fit the performance requirement. Experimentations
on a real plastic cutting board factory showed the improvement in manufacturing products by the
proposed system and achieved a high digit recognition accuracy of 97.56%. In addition, the prototype
system had low power and low latency advantages.

Keywords: digit recognition; Internet of Things; edge computing; deep learning

1. Introduction

In the manufacturing industry, the smart factory is considered to be the solution to the
new industrial revolution. Many manufacturing companies are pursuing various advanced
and expensive technologies to ensure their competitiveness with others. Machine condition
monitoring is a way of making great products and measuring line productivity or factory
productivity. Some recent applications of process control monitoring can be achieved
with appropriate strategies of data collection and cloud storage. Bacci di Capaci and Scali
presented a performance monitoring system in a manufacturing process loop of various
industrial plants based on cloud computing in different application areas to match Industry
4.0 paradigms [1]. Their methodology had been tested on real large plant data to show how
the system improved the operation plan in the factory.

Over the past ten years, wireless sensor networks have rapidly grown in various
applications. Based on the innovations in radio frequency identification, and wireless and
cellular networks, the Internet of Things (IoT) was first proposed by Kevin Ashton [2]. IoT
has become the term for smart things that can configure and communicate with each other
through a global network for many applications. In the IoT world, a lot of smart objects are
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connected to the internet for their specific application [3]. All these objects have their own
identities such that they could be organized, managed, and controlled remotely. Due to
the growth in a diverse range of intelligent applications, IoT systems have enriched our
daily lives [4], involving aspects of healthcare [5], intelligent cities [6,7], agriculture [8],
crowdsensing [9], and crowdsourcing [10], etc. IoT based on robust and suitable total
solutions can also help manufacturers solve the problem from a conventional factory to a
new smart factory to boost their productivity [11]. A real time optimization algorithm for a
large framework based on IoT sensors and an ad-hoc connections system via TCP had been
performed by Vaccari, et al. [12]. Furthermore, their work was also implemented on the
network components of an Italian chemical industrial factory to manage the production
rates of products from different requirements. They also provided the batch and continuous
production processes based on the linear optimization and batch operation scheduling [13].
Towards Industry 4.0, Badii, et al. had implemented the monitoring strategies for multiple
supply chains on an open source platform. Under the system architecture, the production
plant can be integrated with other plants sharing their data and processes, especially with
their customers, through a well-defined interface [14].

Due to financial and technical issues, it is difficult for small and medium enterprises
to adopt the existing smart manufacturing technologies to face the new challenge of the era,
since there are usually several different machines at different times that exist in a factory.
It may result in some difficulty for predictive maintenance and condition monitoring by
IoT systems. To the best of the author’s knowledge, each control panel of the machine in
small and medium-sized plastic injection factories is stand alone with network connection
such that we cannot apply the existing communication interface to them directly. In fact, all
plastic injection machines in the factory of the study case did not have any communication
interface. If someone disassembles the machine and installs the communication interface
themselves, it will violate the warranty of the machine. This would not be acceptable to
the factory. That is a huge problem to develop IoT technologies on them. Therefore, the
conventional monitoring and adjusting process is still done by an experienced operator of
the production line for most small and medium-sized factories.

A computer vision-based data reader with edge computing would help the factory to
be a smarter one. Computer vision provides object detection and recognition technology
for many interesting applications of the IoT. Conventional feature descriptors in computer
vision such as Scale Invariant Feature Transform (SIFT) [15], Speeded Up Robust Features
(SURF) [16], Binary Robust Independent Elementary Features (BRIEF) [17], etc. are used in
object detection for IoT cases to extract features for image classification tasks. However,
these methods rely on hand-crafted features from input images using conventional machine
learning or pattern recognition algorithms. They also requires a lot of domain knowledge
and research experience to extract useful features from the input image to construct feature
extractors for such applications. They are then used as input vectors for the classifiers, like
Logistic Regression [17], Support Vector Machines [18], etc. to identify the label associated
with an entire image (region of interest) in the case of a scene classification (object detection)
problem. Therefore, the performance of the classification model is highly dependent on the
feature extractor that can effectively and appropriately characterize the semantic features
from the concerned images. Recently, the deep learning models combined with computer
vision technologies have been able to convert general IoT devices into intelligent IoT devices
that can solve a wide variety of realistic problems. For example, a smart speaker based on a
face recognition algorithm was trained using a deep neural network. An object detection
model was also deployed in the smart speaker; thus, the smart speaker’s camera turns on
and calls out the names of detected objects to respond to the user’s command [19]. Most of
the past study regarding AI/Computer Vision inspection for smart factories might not be
applied to this study directly. They focused on accurate product inspection, including object
detection and recognition. Computing resources are not the most important consideration.
In general, the more powerful platform the system uses, the better inspection result it
obtains. Recently, some studies based on computer vision had been proposed to recognize
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digits [20,21]. Some deep learning results were only focused on analog meters to perform
digit number recognition but not on PLC screens [22], and even a large R-CNN network
was used to train the recognition model [23]. It really needs high computing power like
GPU to train the object detection and recognition models. These techniques can successfully
detect and recognize digits under some special conditions. However, these models are
quite expensive and consume high power, such that it makes them almost impossible to
run applications on using edge devices for solving various real problems. This background
highlights the following two research questions:

(1) How do we build a vision-based data reader in an IoT system by a deep learning
network to monitor machine conditions in real time and have a high precision rate?

(2) How do we design a lightweight algorithm and compact model for a vision-based
data reader used on edge devices?

The proposed method applied robust image recognition to construct an automatic IoT
system to monitor the processing condition and performance of connected machines to
improve their productivity and performance. It focused on building a system to perform
digit recognition tasks through a deep learning network. A simple camera embedded in
Field Programmable Gate Array (FPGA) was attached to monitor the screen on the control
panel of machines, and it was pre-programmed to capture images in real-time. The pre-
processing step was then performed to have the normalized illumination of the captured
image, and a saliency map was generated to reduce the detection time of the required
region for recognition. Finally, digit recognition was performed and the recognized digits
were transmitted through the IoT system for machine monitoring. The most significant
part of the proposed system is the Vision-based Data Reader (VDR) system that uses the
designed compact model for training and validation purposes to fit the requirements of
cost consideration and real-time monitoring in edge computing. To build the proposed
compact model, several different convolution filters are used. Data collected by VDR will
transmit to the cloud. Cloud computing is responsible for abnormal event detection and
the corresponding decision-making. Experiments on a real plastic cutting board factory
showed the improvement in manufacturing products by the proposed system and achieved
a high digit recognition accuracy of 97.56%. In addition, the proposed prototype system
had low power and low latency advantages.

Section 2 explains the background and current developments in related technologies.
Section 3 describes the research structure. Section 4 shows experimental results and analysis.
Finally, conclusions are discussed in Section 5.

2. Materials and Methods
2.1. Problem Definition

This research was performed on a real case about production process improvement in
a plastic cutting board factory by IoT technologies. The photo of machines in the factory is
shown in Figure 1. There are four types of plastic injection molding machines, including
horizontal injection molding, vertical injection molding, the robot servo motor is driven,
and swing-arm robot. They are responsible for the production of plastic cutting boards of
various sizes.

Additionally, each of those machines has at least three versions in the development
process of the factory, such that it makes the corresponding Programmable Logic Controller
(PLC) panel almost totally different, and the control systems are all stand-alone. Through
the study in a small sized plastic injection factory, many control panel or PLC panels of
those machines are stand alone and one cannot apply the existing communication interface
to them directly. If someone disassembled the machine and installed the communication
interface by himself, it would violate the warranty of the machine. This will not be
acceptable to the factory. Therefore, it is difficult to monitor those machines using the
general IoT technology. It results in great difficulty for the existing IoT deployment to
monitor those machines. Under the cost consideration, the proposed lightweight system
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applied digit recognition to replace direct smart instrumentations that can measure and
send the measurement directly to the PLC. Some PLC panels are shown in Figure 2.
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The current major production item of the factory in this study was a plastic cutting
board. Figure 3 shows the temperature mapping picture corresponding to the production
process. It includes six steps: (1) pellet input, (2) front-end processing, (3) mid-stage
processing, (4) back-end processing, (5) nozzle injecting, and (6) molding. The line segments
represent the ideal temperature setting at a different step. Melting plastic materials at high
temperatures and injecting them into the mold is the basic process for producing a plastic
cutting board. Processing time and temperature are important factors for production
performance. The flow rate of the plastic material into the machine can be adjusted directly
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by the PLC parameters setting but temperature control depends on the water-based cooling
system which can only be adjusted manually by experienced operators. If the temperature
is too high, PLC gives the alarm and stops the working process to prevent faulty products.
The operator then increases the cooling water and waits for a suitable temperature to restart
the process. The y-axis is just a concept showing the difference of temperature among
different steps of the production process. But the exact temperature will be changed for
different products such that there is no point label in the y-axis.
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The parameter setting on PLC of plastic injection generally depends on five main
conditions: temperature, pressure, speed, time, and measurement. Each of them shows
the current condition of the machine by numbers on the monitor screen of the control
panel. According to digit detection and recognition, the current parameters can be obtained
from images of the screen, such that the IoT system can control the entire process of
production automatically. For example, if the temperature of the mold is too high, it may
produce defective products. At this moment, the system should try to cool down the mold
immediately. The IoT system may decrease the temperature by increasing the velocity of
cooling water in the system.

2.2. IoT

A general IoT system includes a basic three-layer architecture, sensing layer, network
layer, and application layer. The sensing layer includes many kinds of different sensing
components, such as cameras, for a vision-based approach. For the network and application
layers, devices are independent individuals integrated with the management platform.
Many devices communicate with each other in the layers and this results in valuable
feedback between them, which is useful for further analysis [24]. Figure 4 shows the
proposed three-layer architecture. Therefore, IoT applications have enriched our daily lives
in healthcare, smart cities, agriculture, etc. The collection and analysis of real data from
IoT can help users have some unobserved information in our environment. Since there
are a large number of continuous data generated from the IoT devices, this will result in
the congestion of the network and the overloading of the server. The system will have
problems of delayed communication and poor performance [25].

Based on the IoT structure, many kinds of sensing components were designed in the
sensing layer. For example, this study focused on online cameras to monitor machines. This
structure is used to receive data from the control panel of the machine. In general, cameras
are embedded in Field Programmable Gate Array (FPGA) for further computation and
network communication. The communication between devices for different applications
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rely on the network layer to make the data transmission possible in the IoT based on the
existing network architecture, but more flexibly and efficiently. The immediate data is
responsible for transmitting information about event detection results from end devices to
the server through the network in the IoT architecture. It will reach the goal of real-time
analysis and process.
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2.3. Deep Learning

Deep learning has indeed made significant progress in many applications including
computer vision, speech recognition, and the IoT environment. The development of deep
learning has also tremendously influenced the field of smart factories based on computer
vision and can be deployed on IoT devices [26]. However, because of the enormous compu-
tational complexity of deep learning, deploying such classification models on constrained
devices has emerged as a critical bottleneck at the IoT edges [27]. Furthermore, efficient
features learned from a deep learning model are usually fit for a particular training dataset.
Therefore, if the dataset is not well constructed, the model would not perform well for
unknown images. Based on prior studies, the performance for our task based on deep
learning exhibited unsatisfactory performance under severe illumination variations. The
main reason is that the deep learning feature was trained by the captured images of the
monitoring screens of machines in the factory under uneven lighting conditions. For
example, the light in the factory is a non-uniform illumination and there may be both
underexposed and overexposed areas in the captured image. The traditional deep learning
methods designed some constraints to solve it and relied heavily on paired training image
data and prior knowledge [28].

Achieving satisfactory performance in computer vision tasks requires high-resolution
images such that deep learning-based computer vision processing tasks also depend on
image resolution. This resolution of the image is particularly important for IoT applications
where we need object detection and classification at a distance. A hybrid approach was
proposed to combine deep learning with hand-crafted feature extractors and got good
performance. The generated hand-crafted features were used as the input of the training
model to reduce the difference between features from humans and the deep learning
network. Based on the idea, Zeng et al. proposed the new feature loss to implement a
facial-expression recognizing IoT application [29].
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2.4. Digit Recognition

Digital digits can be used to represent information or the condition of electricity, water,
gas, etc., in factories, houses, and other places. Digital meters or panels with digit numbers
are installed to monitor the real-time conditions. Generally, the digit number reading
is obtained by operators. The operator watches the panels and writes down the digit
number. Unfortunately, reading digits from the panels of meters and storing information
by operators are time-consuming tasks and have very high chances of resulting in privacy,
integrity, and authentication problems. Automatic reading by IoT supported with computer
vision technology can be implemented with a camera attached to capture images of the
screen of the control panels and a computation model can be used to detect text in images.
It had been addressed with three main steps to accomplish the goal. It included screen
detection, digit area segmentation, and digit number recognition [30]. Screen detection is
a significant task to crop images of the required region of interest (ROI) from the panel.
Ebrahimzadeh and Jampour [31] proposed an appearance feature-based method to perform
handwritten digit recognition. The appearance features were generated by the histogram
of oriented gradients (HOGs). Karanje et al. proposed a maximally stable extremal region
(MSER) approach using blob detection to extract character candidates from a natural scene
image with text [32]. Afterward, the HOG feature was also used to perform Chinese word
detection in an image by support vector machines (SVMs) [33].

Recently, some studies had used conventional datasets of digit numbers to train the
deep learning algorithms for text recognition tasks [20,21]. Some previous research results
were only focused on analog meters. YOLO v3 was used to detect the ROI, and a deep
learning model based on the VGG network performed the digit number recognition [22].
Another deep learning model based on faster R-CNN is used to extract and recognize
digits [23]. Most of the previous results were only focused on analog meters but not on a
PLC screen. For R-CNN, it really needs high computing power like GPU to train the object
detection model. These techniques can successfully detect and recognize digits under some
special cases. However, these models are quite expensive and consume high power, such
that it makes them almost impossible to run applications on using edge devices for solving
various real problems. For example, dynamic training has to be performed on edge devices
for solving various real problems in factories. The proposed approach focused on an FPGA
development board by Intel. DE10 Lite was used as the hardware platform of the edge
devices for training and testing processes.

3. Results
3.1. System Architecture

Making great products and measuring line or the entire factory’s productivity depend
on machine condition monitoring. The conventional monitoring and adjusting process
was done by an experienced operator of a production line for small and medium-sized
factories. Figure 5 shows the working process of condition monitoring by operators. In
Step 1, if the PLC detects the machine in an abnormal condition, it stops the production
process and alerts the operator to help. The operator performs PLC setting inspection to
find out the corresponding problems in Step 2. The operator then adjusts the parameters
and PLC does the inspection again in Step 3 and Step 4, respectively. At last, the production
process is restarted after troubleshooting in Step 5. Actually, there are no caveats from
the PLC of the production machine in the study case. In the conventional monitoring and
adjusting process, machine downtime will cause delays in manufacturing and waste raw
materials in pipes if an abnormal event occurs. Therefore, it needs an automatic system to
read the corresponding data from the PLC panel and to make a decision through the IoT
architecture to control the production process.

This paper proposed an IoT system architecture to solve the above situation for
machine condition monitoring. Figure 6 shows the system architecture about the relations
of modules including image detection and a recognition module for a vision-based data
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reader, a fog Arduino electromagnetic control module for controlling the plastic material
input and water-cooling system, and a cloud computing module.
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This study focused on performing digit recognition tasks in the end device and
transmitting extracted numbers of PLC parameters through an IoT system to further
manufacturing management. A simple camera embedded in FPGA was attached to monitor
the screen on the control panel of machines at all times, not just when the system alarm is
activated. The FPGA end device is pre-programmed to capture an image in real-time. The
pre-processing step was then performed to have the normalized illumination of the captured
image. A saliency map was generated to detect the required region for recognition. Finally,
digit recognition was performed and the recognized digits were sent to the IoT system. The
proposed VDR system designed a compact model for the training and recognition process
to fit the requirement of cost consideration and real-time monitoring in edge computing.
The proposed automatic VDR system for condition monitoring is shown in Figure 7. In
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Step 1 the real-time VDR monitors the PLC screen constantly to get the production data. If
the data is not in the normal range, the system will adjust the corresponding parameters
through IoT devices. Based on the results of VDR, machine parameters can be set remotely
by a Switchbot. It will be the button pusher instead of the original operator. The diagram
of the data flow of the VDR system is shown in Figure 8.
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3.2. Illumination Normalization

For the proposed VDR system, image preprocessing on the captured images should
avoid over and under enhancement with color and contrast distortions, since the factory
is usually not well-lit. Furthermore, the gray value in the image is very sensitive to the
variation of lighting conditions. Unfortunately, images may be captured from the same
scene under uneven illuminations, especially for the proposed recognition tasks of the
VDR system. Even for the human visual system, it is quite difficult to recognize the same
object from images that are captured under considerably different illuminations [34]. For
the same reason, the proposed VDR system will also be difficult to have good detection
and classification results if the training and testing datasets are taken in those situations.
For example, images might be taken from different factories.

The illumination normalization process is used to reduce the lighting effect of images
that are captured under uneven lighting conditions. We generated a basic model for a
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standard lighting condition that will be useful to adjust the observed images that are
captured under different illuminations to a uniform one. For the proposed VDR system, a
histogram-based statistical model M is generated by extracting the features from training
images S under standard lighting conditions. At the testing stage, each input image T will
be adjusted by the trained statistical model M to be an approximation T′ under standard
lighting conditions. Without loss of generality, the intensity histogram of an image is
treated as the probability density function. The histogram-based statistical model M is a
one-to-one mapping function which is shown in the following Equation (1) [35].

M = C−1
S ·CT (1)

where CS is the empirical Cumulative Distribution Function (CDF) of S and CT is the
empirical CDF of input image T. Each pixel in T can be adjusted by using M to normalize the
illumination from the original lighting effect. For an input testing image T, the illumination
normalization is focused on the ROI RT and the statistical histogram features of the extracted
region RT are extracted by the method of [35]. According to model M, the transformed
statistical histogram of RT′ will be similar to that for standard lighting conditions. Let RT
be the ROI after illumination normalization, then Equation (2) shows how to generate it by
Equation (1).

RT′(x, y) = M(RT(x, y)) = C−1
S ·CT(RT(x, y)) (2)

We finally realized the illumination normalization process for each ROI. It was applied
to the VDR system before digit detection. It resulted in not only high accuracy for digit
region detection but also in low computation time for the training process and recognition
task by a deep learning network.

3.3. Saliency Map Extractor

The user interface of the PLC panel has no fixed form for different machines, and
there is some uncorrelated information on it which biased the digit region detection and
recognition. Figure 9a shows the PLC panel of an old machine with some notes on it. There
is also a digit on each note. Figure 9b shows the PLC panel of a new machine with too
much information on it. That includes Chinese characters, English characters, and a lot of
numbers. It may result in some difficulty in the region detection and recognition process.
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From psychology, the saliency of an image means the eye-to-brain connection of a
human to quickly focus on the ROI of a scene. Similarly, it can be applied to locate the
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regions where digits are shown on the PLC screen. Itti et al. [36] proposed a saliency
map constructed from the image features by a statistical method to locate the ROI of
an image. The computational model for the saliency map took advantage of intensity,
color, and orientation features. Afterward, the difference between the center pixel and the
surrounding pixels in 3 × 3 neighboring regions was also applied to compute the saliency
map [37].

The proposed system was designed in a coarse to fine architecture which not only
maintained much information but also increased the speed of the VDR system. The input
image was first transformed to a grayscale image for the consideration of low computational
end devices. Then, a Gaussian image pyramid based on the transformed grayscale image
was constructed. The features in the Gaussian pyramid were generated by a 3× 3 Gaussian
filter applied to the input image. The scaling factor was set by two on each axis. Next, the
difference between the center pixel and the surrounding pixels was used to represent the
features between coarse and fine scales. Finally, the saliency maps in the Gaussian pyramid
were summed up to have the final map.

The proposed digit recognition approach involves the extraction of semantically
important regions from input image I ∈ R with the size of W × H, where W (H) represents
the width (height) of an image, respectively. The saliency map extraction is described by SI
∈ R represents a saliency map for image I, and S(·) is a saliency map detection function that
extracts the saliency map. It is represented as SI = S(I). Since the saliency map can represent
the semantically important regions of an image, the saliency map would be a mask to get
the region of digit numbers from the PLC panel in the digit detection process.

3.4. Digit Region Segmentation

According to the characteristics of the saliency map, the digit detection network (DDN)
can quickly extract the information of ROI in fewer steps based on the improved object
detection model. The first step is digit area detection. Image features are extracted by
using ResNet [38] as the backbone network, which had shown a strong ability to extract the
important features in deep learning. The data features of the ROI region are standardized
by multilevel ROI pooling, and then location regression is conducted. ResNeSt50 is used as
the backbone to extract ROI image features, and the Inception network is used to determine
the digit position information. ROI pooling is used to standardize the data features of a
single-digit area. Location regression is based on the Non-Maximum Suppression (NMS)
proposed by [39]. Eight examples of digit detection results by the proposed system for
different font, color, size, length, width, lighting, and background was shown in Figure 10.
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3.5. Digit Recognition

For the recognition of digits in images, a compact DNN architecture with several
convolutional filters has been developed. It is easier to implement in end devices like FPGA
with low computation power and less storage when compared with the other conventional
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method since few parameters are used for training. Howard et al. used a separable
convolution to build the compact DNN architecture [40]. The separable convolution
includes filtering steps based on depth-wise operations and combining steps based on
point-wise operations. It divided the image into channels and performed convolutions on
each channel. In the combining process, point-wise convolution was performed by a filter
of size 1 × 1 on each point. The above process reduced the size and computation time of
the deep learning model [41]. The architecture of the proposed deep learning model for
the VDR system is shown in Figure 11. The network model proposed in Figure 11 that
was designed to be a compact DNN architecture with several convolutional filters has
been developed. Therefore, it is easier to implement in edge devices like FPGA with low
computation power and less storage when compared with the other conventional method,
since few parameters are used for training.
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First, the convolution layer is based on a normal convolution (3 × 3 Conv) which
contains 28 filters. It is then followed by a max-pooling operation and dropout. For the next
layer, the model has used one depth-wise (3× 3 D-Conv) and one point-wise (3× 3 P-Conv)
convolution layer, which was also followed by MaxPooling and Dropout operations. The
step size was set to 1 and the window size was set by 2 × 2. After the convolution layer,
there are activation function rectified linear units (ReLU) to solve the vanishing gradient
problem and the Batch normalization (BN) layer [42] to make the network faster and more
stable. Finally, the output layer of the deep learning model is based on the Softmax layer
for a similar measure.

4. Discussion

This section shows the parameter setting and discussion about the experimental
results. The experimental environment was built in two plastic injection factories. One had
12 machines with four types of panels and the training images were generated from four
machines. There was one for each type of machine. The other had 10 machines also with
four types of panels, and the testing images were generated from four of them. In the VDR
system, the camera, Pcam 5C, was used as the vision module to be embedded on the FPGA
development board, which was attached to monitor the screen on the control panel of the
machines. The video streaming format was set as 30 frames per second for computation
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consideration, although it supports another choice at 60 frames per second. Since the
original imaging module is designed around the Omni-vision and provided a 5-megapixel
color image by active array dimensions with a size of 2592 × 1944, the performance of the
proposed VDR system can be improved further. Since the camera provides a 5-megapixel
image, the captured image of the control panel will contain each digit on the panel. In fact,
there are many digits on a control panel. For the FPGA development board, an Intel. DE10
Lite with a powerful main chip was used as the hardware platform. Both training and
testing processes were performed with the image dataset captured from the aforementioned
experimental environment. When generating the image database, there was no restricted
limitation about the illumination configurations. The situation was the same as the daily
production of the factory. The image dataset contains 54,688 digit images. All of them were
normalized to 28 × 28 for the training process.

To improve the accuracy and reduce the loss percentage of the deep learning model,
the initial learning rate was finally set to be 0.01 based on the prior testing process on
several different learning rates for optimal performance. Adam optimization [43] is the
frequently used optimizer for deep neural networks and provides good results. The loss
function adopted L2 regularization and a square coefficient is used as a penalty term. For
the entire training dataset, the proposed model is trained for 100 epochs to see the change
in learning rate. The loss curve vs. epochs of the training and testing process is shown in
Figure 12. For comparing the performance with the existing methods, a VGG-based CNN
method is also implemented for digit recognition [22].
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Tests of the proposed method were implemented in a plastic injection factory. It
showed the improvement in manufacturing products by the proposed system and achieved
a high digit recognition accuracy of 97.56%. Furthermore, the ROI identification was 100%,
because the edge of the ROI did not need to approach the boundary of the digit and the
calibration of cameras can also improve the precision. In addition, the experiment was
performed on low-power end devices with the micro control unit. The proposed network
resulted in about 1% lesser accuracy than the existing VGG-based CNN method, but a
few parameters were used to fit the hardware performance of FPGA. The comparison of
the accuracy of the proposed and existing method is shown in Table 1. For Table 1, the
training and testing of the VGG-based CNN method was performed on a GTX 1060 with
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6 GB memory and the power rate was 115.0 Watts. However, it needs only 5 Watts for
the proposed method to train and test on the Intel. DE10 Lite. Although the network
won’t reach 100% accuracy, the need for an operator to check for false positives and false
negatives is drastically reduced.

Table 1. The comparison of the proposed and VGG-based CNN method.

Model Average Accuracy

VGG-based CNN
the proposed method

98.02%
97.56%

To verify the efficiency of the developed method to the industrial reality, the developed
architecture was implemented in a designed testing platform for simulating the online test.
Two simulations based on the statistical model were adopted in this study. The simulations
were performed on AnyLogic Cloud, which is a web platform for applying simulations
operationally. Suppose that the probability that a machine is stopped by an abnormal
condition in one day follows a Poisson probability distribution P(λ, λ), where λ is 1. The
probability for the waiting time in minutes follows a uniform probability distribution
U(10, 30). For the simulation of a VDR system, the data of the machine condition was
shown in a panel screen monitored by the VDR system and the corresponding machine
parameter adjusting suggestion responded in real-time. The simulation generated five
machines in the system and was running for seven days to test the performance. Machines
1 to 5 worked continuously and event 1 to 5 may happen randomly according to Poisson
probability distribution. The total waiting time of machine downtime by abnormal event
was accumulated. Figure 13a shows the waiting time of machines caused by the VDR
system. Since it can manage machines in real-time, the total waiting time is less than 4 s,
which is due to a network delay. For the simulation of the conventional system monitoring
by operators, the wait time of each machine corresponding to the event was simulated
according to uniform probability distribution. The simulation of a conventional working
process for condition monitoring by the operator was based on the working flow in Figure 7.
These parameters of uniform probability distribution came from the factories in the study
cases. In Figure 13b, the total waiting time exceeds 150 min. It was observed that the
VDR system drastically reduced the waiting time of machines when compared with the
conventional process involving operators.
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5. Conclusions

This paper proposed a VDR embedded in FPGA for edge computing to construct an
IoT system. It can be used to improve the efficiency of the factory. It focused on performing
recognition tasks and transmitting extracted numbers through an IoT system to further
manufacturing management. A simple camera embedded in FPGA was attached to monitor
the screen on the control panel of the machines. The end device is preprogrammed to
capture images in real-time and locally process data on the end device. The preprocessing
step was then performed to have the normalized illumination of the captured image. A
saliency map was generated to detect the required region for recognition. Finally, digit
recognition was performed and the recognized digits were sent to the IoT system. The
proposed VDR system uses the compact deep learning model for training and validation
purposes to fit the requirement of cost consideration and real-time monitoring in edge
computing. Experimental results for a real factory environment show the efficiency of the
proposed method. For machine monitoring, digit recognition is just the first step. There are
light signals, numbers, pointers, bar graphs, dynamic code tables, flow charts and related
texts included on the control panel. The compact deep learning model for training and
testing purposes to fit the requirement of cost consideration and real-time monitoring in
edge computing might be applied to other machine monitoring applications. In the future,
the proposed VDR system can be improved to deal with data collection from the control
panel of machines including the knob switch status, pointer meter, status lights, mechanical
counters, texts, etc.
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