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Abstract: Deep vision multimodal learning aims at combining deep visual representation learning
with other modalities, such as text, sound, and data collected from other sensors. With the fast
development of deep learning, vision multimodal learning has gained much interest from the
community. This paper reviews the types of architectures used in multimodal learning, including
feature extraction, modality aggregation, and multimodal loss functions. Then, we discuss several
learning paradigms such as supervised, semi-supervised, self-supervised, and transfer learning.
We also introduce several practical challenges such as missing modalities and noisy modalities.
Several applications and benchmarks on vision tasks are listed to help researchers gain a deeper
understanding of progress in the field. Finally, we indicate that pretraining paradigm, unified
multitask framework, missing and noisy modality, and multimodal task diversity could be the future
trends and challenges in the deep vision multimodal learning field. Compared with existing surveys,
this paper focuses on the most recent works and provides a thorough discussion of methodology,
benchmarks, and future trends.

Keywords: multimodal learning; computer vision; deep learning; introductory; survey

1. Introduction

Humans perceive objects in various ways, such as sight, hearing, and touch. “Modality”
is defined as a signal that an object is represented in a certain way. Common unique
modality information includes text, image, video, and sound. Modality information from
multiple channels can be more widely collected and recorded in modern networked society.
For example, recording a short video with subtitles and posting it conveys information
that includes multiple modalities such as video, text, and sound. “Multimodality” refers to
modal information for the same object. As humans can use multimodal information to help
make judgments, machines can also perform representation learning and its downstream
tasks through input with multimodal information.

Recent work has shown that deep learning is widely used in the field of computer vi-
sion, with great success in, for example, image classification, semantic segmentation, object
detection, and other vision tasks. Meanwhile, large-scale pretrained models based on deep
learning are well developed for natural language processing tasks. Some researchers have
found that in some real-world tasks, better performance is achieved by using information
from both visual and language modalities. Deep learning models that use multimodal
information tend to be better than those that use a unimodality. Huang et al. [1] has
demonstrated that multimodal learning yields more accurate estimates of latent space rep-
resentations.

Several surveys have been published on the topic of multimodal learning [2]. The first
to thoroughly propose this concept was a widely accepted taxonomy for multimodal
machine learning by [3] as representation, translation, alignment, fusion, and co-learning.
This taxonomy allows researchers to better grasp the state and future trends in multimodal
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learning. Among them, multimodal representation learning is the focus of this paper.
Representation learning for unimodality has been a long-standing topic in deep learning.
Essentially, it is the process of converting input signals into features usable by the model for
machine learning [4]. Zhang et al. [5] provide a comprehensive analysis of works on deep
multimodal learning from three perspectives: learning multimodal representations, fusing
multimodal signals at various levels, and multimodal applications. Guo et al. [6] highlight
the critical issues of newly developed technologies, such as the encoder–decoder model,
generative adversarial networks, and attention mechanism in a multimodal representation
learning perspective. Mogadala et al. [7] discuss multimodal problem formulation, methods,
existing datasets, and metrics, including the results obtained with corresponding state-of-
the-art methods.

However, the existing review articles focus on the analysis and classification of ab-
stract theories and are not comprehensive enough to discuss the applications and existing
methods, especially the new implementations in recent years. Unlike previous reviews,
this paper focuses on the visual–language multimodal learning techniques that have be-
come popular in recent years, presenting recent progress in three main parts of learning
architectures, learning paradigms, and multimodal data analysis. Meanwhile, we collect
larger scale multimodal tasks and benchmarks, as well as state-of-the-art (SOTA) models
and metrics corresponding to each dataset. To reflect currency, innovation, and diversity,
the vast majority of methods mentioned in this article are from articles included in major
deep learning conferences after 2019 and have a large impact. This review focuses on
specific technologies rather than comprehensive taxonomy. We hope this article will be
helpful to both novice and veteran researchers in the multimodal field. Generally, the major
contributions of our work can be summarized as follows:

• In terms of methodology, we propose a rational classification, including architectures,
paradigms, and issues. We pay particular attention to recent works in this field.

• In terms of benchmarks, we collect larger scale multimodal tasks and benchmarks,
as well as state-of-the-art models and metrics corresponding to each dataset.

• In terms of trends, we outline the trends according to the works in recent years and
discuss the challenges that deserve attention in the future.

The rest of the paper is organized as follows shown in Figure 1. We first review
different architectures used in multimodal learning in Section 2. The learning paradigms
are described in Section 3. In Section 4, multimodal data analysis is provided and discussed.
In Section 5, we introduce several vision-related applications in the multimodal learning
field, followed by the multimodal benchmark in Section 6. In Section 7, we point out
challenges and future trends in multimodal learning. Finally, we conclude our work in
Section 8.
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2. Learning Architectures

The construction of a learning architecture and framework is the core technology of
deep multimodal learning. This section discusses the design of feature extraction, modality
aggregation, and multimodal loss function.

2.1. Feature Extraction

Feature extraction is the first step after the multimodal input signal enters the net-
work. Essentially, the input signal is mapped to the corresponding feature space to form a
feature vector. A well-performing representation tends to perform better on subsequent
downstream subtasks. Zhang et al. [8] show that even only improving visual features signif-
icantly improves the performance across all vision–language tasks. For feature extraction,
this paper mainly collects and discusses the transform-based network architecture.

Transformers [9] are a family of sequence-to-sequence deep neural networks. While
they were originally designed for natural language processing (NLP), they have recently
been widely used on modalities such as images [10], video [11], and audio [12]. Transform-
ers use the self-attention mechanism to embed the input signal, then map it into the feature
space for representation. An attention mechanism can be described as mapping a query
and a set of key–value pairs to an output, where the query, key, value, and output are all in
the form of vectors. The output is computed as a weighted sum of values, each weighted
by the query’s similarity function with the corresponding key. This approach [9] effectively
handles the task of feature extraction from long sequences. As it has a larger receptive
field, it can better capture the auto-correlation feature information in the input sequence.
Transformer-based models have the following two good properties: unity and translation
ability. Unity refers to the architecture in which feature extraction for different modalities
can all use the transformer-based architecture of the network. Translation ability means
that the feature hierarchy between different modalities can be easily aligned or transferred
due to the same feature extractor architecture. These two properties are discussed in detail
in the remainder of this section.

For multimodal feature extraction, transformers have demonstrated the ability of
unity. In a typical multimodal learning network, text features are extracted using BERT [13],
and image features are extracted using ResNet [14]. This approach results in the granularity
on both sides not being aligned, as the text side is the token word and the image side is
the global feature. A better modeling method should also convert the local features of the
image into “visual words” so that the text words can be aligned with the “visual words”.
After the transformer has achieved state-of-the-art achievements on each unimodality task,
the task of using the transformer for multimodal learning is taken for granted. Furthermore,
because the individual feature extraction of each modality can be realized with it, a unified
framework is formed. Therefore, the interaction and fusion of various modality information
also become more accessible. Singh et al. [15] use a single holistic universal model for all
language and visual alignment tasks. They use an image encoder transformer adopted
from ViT [10] and a text encoder transformer to process unimodal information and a
multimodal encoder transformer that takes as input the encoded unimodal image and text
and integrates their representations for multimodal reasoning. The decoder is applied to
the output of the appropriate encoder for different downstream tasks to obtain the result.

Transformers also have demonstrated the ability of translation ability. Likhosherstov
et al. [16] propose co-training transformers. By training multiple tasks on a single modality
and co-training on multimodalities, the model’s performance is greatly improved. Akbari
et al. [17] present a framework for learning multimodal representations from unlabeled
data using convolution-free transformer architectures. These works show the important
role of transformers in multimodal feature extraction and they will certainly become a
major trend in the future.

However, due to the excessive memory and a large number of parameter requirements
from transformers, existing work typically fixes or fine-tunes the language model and
trains only the vision module, limiting its ability to learn cross-modal information in an



Appl. Sci. 2022, 12, 6588 5 of 26

end-to-end performance. Lee et al. [18] decompose the transformers into modality-specific
and modality-shared parts so that the model learns the dynamics of each modality both
individually and together, which dramatically reduces the number of parameters in the
model, making it easier to train and more flexible.

Another mechanism that has been used for multimodal feature extraction is called
a memory network [19,20]. It is often used in conjunction with transformers, which are
models that focus on different aspects. Most neural network models cannot read and
write long-term memory parts and cannot be tightly coupled with inference. The method
based on a memory network stores the extracted features in external memory and designs a
pairing and reading algorithm, which has a good effect on improving the modal information
inference of sequences and is effective on video captioning [21], vision-and-language
navigation [22,23], and visual-and-textual question answering [24] tasks.

In conclusion, recent works dig out the potential value of the transformer-based
network as the multimodal feature extractor. The transformer-based network could be
applied to vision, language, and audio modalities. Thus, the multimodal feature extractor
can be composed of a unified architectural form, which is suitable for aligning the features
and transferring the knowledge between modalities.

2.2. Modality Aggregation

After extracting multimodal features, it is important to aggregate them together.
The more typical fusion methods [25,26] are divided into early fusion and late fusion. Early
fusion refers to directly splicing the multimodal input signals and then sending them into a
unified network structure for training. Late fusion [27,28] refers to the fusion of the features
of each modal signal after feature extraction. Finally, the network structure at the end is
designed according to the different downstream tasks. As early and late fusion inhibit intra-
and intermodal interactions, current research focuses on intermediate fusion methods,
which allow these fusion operations to be placed in multiple layers of deep learning
models. Different modalities can be fused simultaneously into a shared presentation layer
or executed incrementally using one or more modalities at a time. Depending on the
specific task and network architecture, the multidodal fusion method can be very flexible.
Karpathy et al. [29] uses a “slow-fusion” network where extracted video stream features
are gradually fused across multiple multimodal fusion layers, which performs better in
a large-scale video stream classification task. Neverova et al. [30] consider the difference
in information level between modalities and fuse the information of different modalities
step by step, which are visual input modalities, then motion input modals, then audio
input modalities. Ma et al. [31] propose a method to automatically search for an optimal
fusion strategy regarding input data. In terms of specific fusion architecture, existing
fusion methods can be divided into matrix- or MLP-based, attention-based, and other
specific methods.

Matrix-based fusion. Zedeh et al. [32] use “tensor fusion” to obtain richer feature
fusion methods with three types of tensors: unimodal, bimodal, and trimodal. Liu et al. pro-
pose the low-rank multimodal fusion method, which improves efficiency based on “tensor
fusion”. Hou et al. [33] integrate multimodal features by considering higher-order matrices.

MLP-based fusion. Xu et al. [34] propose a framework consisting of three parts: a
compositional semantics language model, a deep video model, and a joint embedding
model. In the joint embedding model, they minimize the distance of the outputs of the
deep video model and compositional language model in the joint space and update these
two models jointly. Sahu et al. [35] first encode all modalities, then use decoding to restore
features, and finally calculate the loss between features.

Attention-based fusion [36]. Zedeh et al.use “delta-memory attention” and “mul-
tiview gated memory” to simultaneously capture temporal and intermodal interactions
for better multiview fusion. The purpose of using the memory network is to save the
multimodal interaction information at the last moment. In order to capture the interac-
tive information between multimodalities and unimodality, the multi-interactive attention
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mechanism [37] is further used; that is, textual and visual will fuse information through
attention when they cross the multiple layers. Nagran et al. [38] use a shared token between
two transformers so that this token becomes the communication bottleneck of different
modalities to save the cost of computational attention.

In addition to these specific fusion methods, there is some auxiliary work. Perez et al. [39]
help find the best fusion architecture for the target task and dataset. However, these
methods often suffer from the exponential increase in dimensions and the number of
modalities. The low-rank multimodal fusion method [40] performs multimodal fusion
using low-rank tensors to improve efficiency. Gat et al. [41] propose a novel regularization
term based on the functional entropy. Intuitively, this term encourages balancing each
modality’s contribution to the classification result.

In conclusion, direct concating of modal inputs is abandoned, and more work is
considered to fuse them gradually while extracting features or after that. The fusion
methods should be chosen specifically due to the properties of modalities and tasks.

2.3. Multimodal Loss Function

A reasonable loss function design can effectively help the network to train, but there
is currently no comprehensive summary of some special loss functions used in multi-
modal training. This section lists some loss functions specifically designed for multimodal
learning, shown in Figure 2.

Multimodal Loss
Function

  Cross-modal focal loss [George et al. 2021] 

  Cross-modal center loss [Jing et al. 2020]

  Cross-modal cycle-consistency loss [Ging et al. 2020]

  Contrastive alignment loss [Kamath et al. 2021]

  Soft cross-modal contrastive loss [Chun et al. 2021]

  Multi-teacher alignment loss [Valverde et al. 2021]

Figure 2. Multimodal loss function summary.

Cross-modal focal loss [42]. This is an application of focal loss [43] in the multimodal
field. Its core idea is that when one of the channels can correctly classify a sample with
high confidence, the loss contribution of the sample to the other branch can be reduced; if
one channel can completely correctly classify a sample, then the other branch can no longer
penalize the model. It shows that another modality mainly controls the loss value of the
current modality.

Cross-modal center loss [44]. This is an application of center loss [45] in the multi-
modal field, which minimizes the distances of features from objects belonging to the same
class across all modalities.

Cross-modal cycle-consistency loss [46]. This is used to enforce the semantic align-
ment between clips and sentences. It replaces the cross-modal attention units used in [47,48].
Its basic idea is to consider mapping the original modality to the target modality during
cross-modal matching and find the matching target modality information with the highest
similarity for specific original modality information. The matched target modal information
is inversely mapped back to the original modal. Finally, the distance between the mapped
value and the original value is calculated.

Contrastive alignment loss [49]. This loss function adopts InfoNCE [50] with refer-
ence to contrastive learning. It enhances the alignment of visual and textual embedded
feature representations, ensuring that aligned visual feature representations and linguistic
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feature representations are relatively close in feature space. This loss function does not
act on the position but directly on the feature level to improve the similarity between the
corresponding samples.

Soft cross-modal contrastive loss [51]. To capture pairwise similarities, HIB formu-
lates a soft version of the contrastive loss [52] widely used for training deep metric embed-
dings. Soft cross-modal contrastive loss adopts the probabilistic embedding loss in previous
contrastive loss, where the match probabilities are now based on the cross-modal pairs.

Multiteacher alignment loss [53]. This is a loss function used in multimodal knowl-
edge distillation [54] that facilitates the distillation of information from multimodal teachers
in a self-supervised manner. It measures the distance of the feature distribution of each
modality after the feature extraction stage.

In conclusion, most of the loss functions for multimodal learning are extended by
some previous unimodality loss functions, which are complemented according to the cyclic
consistency or alignment between modalities.

3. Learning Paradigms

If learning architectures are likened to concrete equations and functions, learning
paradigms are more like methodologies that guide problem solving. In addition to the
most widely used supervised learning paradigm, other learning paradigms are also em-
ployed in the multimodal field, such as semi-supervised learning, self-supervised learning,
and transfer learning. This section will discuss and summarize these three parts shown in
Figure 3.

  Pesudo label [Cheng et al. 2016]

  VAE [Shen et al. 2017]

  Non-deep learning [Guillaumin et al. 2010]

Learning Paradigms

Semi-supervised
Learning

Self-supervised
Learning

Transfer Learning

  Distillation [Valverde et al. 2021]

  Latent dirichlet allocation [Krizhevsky et al. 2012]

  Clustering [Asano et al. 2020]

  Contrastive learning [Alayrac et al. 2020]

  Non-sequence-based [Tramer et al. 2017]

  Sequence-based [Sun et al. 2019]

Figure 3. Multimodal learning paradigms.

3.1. Semi-Supervised Learning

Semi-supervised learning is a learning paradigm concerned with the study of how
computers and natural systems such as humans learn in the presence of both labeled and
unlabeled data [55]. It can use readily available unlabeled data to improve supervised
learning tasks when the labeled data are scarce or expensive. The semi-supervised learning
paradigm is important in multimodal learning because aligned and structured multimodal
datasets are often expensive and difficult to obtain.

Guillaumin et al. [56] presents an early example of successful multimodal image
classification using non-deep learning methods. Text assistance is used to assist unlabeled
image classification. This suggests the potential for complementarity between modalities,
which will be discussed later in this article. Cheng et al. [57,58] apply this learning paradigm
to the RGB-D Object Recognition task. Their idea is to train an RGB-based and depth-based
classifier separately on the labeled dataset and design a fusion module to obtain the result.
For the unlabeled dataset, they first obtain the two prediction results of the RGB and depth
streams, respectively, and exchange them as pseudo-labels of the other stream for training,



Appl. Sci. 2022, 12, 6588 8 of 26

to achieve the purpose of semi-supervision. This method naively considers the possibility
of cross-validation between modalities, but it does not necessarily work well for other
multimodal forms such as text and image multimodality. In [59,60], some methods applied
to vision–language mapping with the variational auto-encoding Bayes framework are
extended to a semi-supervised model for an image–sentence mapping task.

3.2. Self-Supervised Learning

The self-supervised paradigm [61] can be viewed as a special form of unsupervised
learning method with a supervised form, where supervision is induced by self-supervised
tasks rather than preset prior knowledge. In contrast to a completely unsupervised setting,
self-supervised learning uses information from the dataset itself to construct pseudo-labels.
In terms of representation learning, self-supervised learning has great potential to replace
fully supervised learning. For self-supervised signal representation within unimodality,
Taleb et al. [62] cut an image into patches of uniform size and shuffle the order and trained
the network to stitch the shuffled patches into the original image, which is similar to solving
a puzzle problem. Training the network to solve the jigsaw puzzle allows the network to
learn the deep features of the image in a self-supervised manner, thereby improving the
performance of the network in downstream tasks such as segmentation and classification.

This learning paradigm is especially suitable for multimodal domains. This is because,
in multimodal learning, not only a single modality itself will generate self-supervised
signals, but also the alignment and constraints between modalities are also important
sources of self-supervised signals. The rich self-supervised signals enable multimodal
self-supervised learning. Tamkin et al. [63] introduce a domain-agnostic benchmark for
self-supervised (DABS) multimodal learning on seven diverse domains: realistic images,
multichannel sensor data, English text, speech recordings, multilingual text, chest X-rays,
and images with text descriptions. It is an attempt to create the latest benchmark in
the field. Valverde et al. [53] present a novel self-supervised framework consisting of
multiple teachers that have diverse leverage modalities, including RGB, depth, and thermal
images, to simultaneously exploit complementary cues and distill knowledge into a single
audio student network. This work also proves that the single modality is a sufficiently
robust one on some multimodal tasks with the training assistance of other modalities.
Coen et al. [64] also train with signals transported across modalities. Gomez et al. [65] use
textual information to train a CNN [66] to extract unlabeled image features. The motivation
is that textual descriptions and annotations are easier to obtain than images. The first step
is to learn image topics through latent Dirichlet allocation [67], and then perform parameter
training of the image feature extraction network based on these topics.

In the video field, some work has also been developed in recent years. Afouras et al. [68]
demonstrate that object embedding obtained from a self-supervised network facilitates a
number of downstream audio-visual tasks that have previously required hand-engineered
supervised pipelines. Asano et al. [69] propose a novel clustering method that allows
pseudo-labeling of a video dataset without any human annotations by leveraging the
natural correspondence between the audio and visual modalities. Specifically, it is to
learn a clustering labeling function without access to any ground-truth label annotations.
They think that each modality is equally informative in the algorithm to learn a more
robust model. Alayrac et al. [70] use video and audio signals to extract features and design
a contrastive loss, and then fuse the video and audio features with text features for a
contrastive loss. The advantage of this method is that the parts with the same semantic
level can be aligned when comparing modalities because the semantics of text are often
more advanced in video and audio. Cheng et al. [71] separated the audio and video in video
and determined whether they are from the same video to turn self-supervised learning
into a binary classification problem. Alwassel et al. [72] conduct a comprehensive study of
self-supervised clustering methods for video and audio modalities. They proposed four
approaches, namely single-modality deep clustering (SDC), multihead deep clustering
(MDC), concatenation deep clustering (CDC), and cross-modal deep clustering (XDC).
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These approaches differentiate how intramodal and intermodal supervisory signals are
utilized when the clustering algorithm iterates.

3.3. Transfer Learning

Transfer learning [73] is an indispensable part of today’s deep learning field. The essence
of transfer learning is to adjust the model parameters that have been trained on the source
domain to the target domain. Since the dataset of downstream tasks is often relatively
small in practical applications, training directly on it will lead to overfitting or difficulty
in training. Taking natural language processing as an example, the way that has been
developing this year is to train on large-scale datasets and then use pretrained models to
transfer learning to downstream tasks. Such pretraining models often have a large amount
of parameters, such as BERT [13], GPT [74], GPT-2 [75], and GPT-3 [76]. After the success
of transfer learning in the field of natural language processing, various pretraining models
have sprung up in the unimodality situation, such as ViT [10] in the field of computer
vision and Wave2Vec [77] in the field of speech. There has been extensive work showing
that they benefit downstream unimodal tasks in performance and efficiency.

This need is even more important in the multimodal field since multimodal aligned
data are rare and expensive. A large number of the downstream tasks in the multimodal
field rely on transfer learning, e.g., [49,53,78,79]. Hu et al. [80] share the same model
parameters across all tasks instead of separately fine-tuning task-specific models and
handle a much higher variety of tasks across different domains. This section describes the
different methods of multimodal transfer learning. An important type of transfer learning
is to unify vision and language features into a shared hidden space to generate a common
representation for the source domain, then adjust the common representation to the target
domain [47,81–83]. It can be subdivided into non-sequence-based, such as image–text,
and sequence-based, such as video–text and video–audio.

Non-sequence-based. Rahman et al. [84] believe that non-text modalities (vision and
audio) will affect the meaning of words and then affect the position of feature vectors in
semantic space [85], so non-text and text jointly determine the new position of feature vec-
tors in semantic space. It is a method of assisting transfer learning of text with information
from other modalities. Gan et al. [86] propose a method to enhance the generalization
ability of models using large-scale adversarial training [87], which consists of two steps
of pretraining and transfer learning. It is a general framework that can be applied to any
multimodal pretrained model to improve the model’s generalization ability.

Sequence-based. Different from non-sequential tasks, sequential tasks represented
by videos have more difficulties in transfer learning. Consecutive clips usually contain
similar semantics from consecutive scenes, which means sparsely sampled clips already
contain critical visual and semantic information in the video. Therefore, a small number of
clips are sufficient to replace the entire video for training. Based on this, a large part of the
work [88,89] is to take clips from the video for training randomly. Many approaches extract
features from text input and clip input from sampled video separately and then aggregate
them before the prediction layer. Lei et al. [90] propose to constrain each frame of video
information with textual information such as “early fusion” and finally summarize the
resulting predictions for each frame. Sun et al. [91] propose to convert video frames into
discrete token sequences by applying hierarchical vector quantized features to generate a
sequence of “visual words” that are aligned with the text. Furthermore, it is self-supervised
by a masked language model method similar to BERT. This method of converting visual
information into “visual words” is also reflected in [92], which is a good solution for
aligning different modal representations in transfer learning.

In conclusion, multimodal learning allows the use of rich learning paradigms. In the
absence of supervised signals, complementary and alignment information between modali-
ties can be an alternative to self-supervision and semi-supervision. Multimodal transfer
learning is also more diverse and generalizable.
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4. Multimodal Data Analysis

Huang et al. [1] theoretically demonstrate that under specific effective learning meth-
ods, multimodal learning can perform better than unimodality. However, in practical
situations, there are often many problems in acquiring multimodal information. In some
scenarios, some modalities are missing, discontinuous, or unstructured. In the other cases,
some modalities have low coincidence or contain much noise. These situations have sig-
nificant adverse interference effects on the performance of deep data-based learning and
are also the biggest problems that need to be overcome in the application of multimodal
representation learning. This section lists two main challenges, namely missing and noisy
modality and potential solutions.

4.1. Missing Modalities

The missing modality problem is defined as a situation where the data contain missing
modalities during training and inference of multimodal learning. Approaches to solving
this problem are mainly carried out from generative models and transfer learning. In
addition, Ma et al. [93] use Bayesian meta-learning for the first time in the case of severely
missing modality (about 90%).

The idea of the generative model is to use the existing modalities to generate the
missing modalities for the completion of regular training. Huang et al. [94] propose that for
incomplete multimodal data (such as images and text labels), during training, the features
of the images are first extracted, and then they are used to generate the missing text label
features. Training is carried out by using the generated text pseudo-labels as supervision.
Given only an image, the model can generate the corresponding missing label features
during the inference process and then obtain the full multimodal representation to perform
some downstream tasks such as classification and retrieval.

Ding et al. [95,96] use the idea of transfer learning to solve the problem of missing
modality. They first borrow an auxiliary database with complete modalities and then
simultaneously consider knowledge transfer across databases and modalities within a
unified framework. Ma et al. [31] show that the multimodal model can perform better than
the unimodal in terms of any missing ratio by an optimal fusion strategy.

4.2. Noisy Modalities

There is much noise in modal information in the real world, and the information
between different modalities is often not equal. For example, on multimodal sentiment
analysis tasks [97], text annotations often have a high weight in the final judgment, but vi-
sual and auditory signals have low confidence and are full of noise. The mainstream
method is to integrate and denoise information through multimodal co-learning, which
aids the modeling of a resource-poor modality by exploiting knowledge from another
resource-rich modality.

Pham et al. [98] iteratively translate and compute the loss between the two modalities
while training the model, in the expectation of obtaining aligned modal representations.
Moon et al. [99] collect noisy data from social media, which are composed of short captions
with accompanying images. On this basis, they first extract the clear text part from the noisy
caption modality as the information input of the third modality and then use the attention
mechanism to fuse the information of all modalities. It is also a good idea to obtain the
correspondence between modalities after denoising by clustering [69,100]. Lee et al. [101]
explore the task of denoising noisy audio with the aid of a video signal. Their approach is
to learn the affinity between two modalities and treat the unmatched parts as noise.

In conclusion, missing modalities and noise modalities are inevitable in real-world
applications. Multimodal models have been shown to be able to outperform unimodal
models in all cases theoretically and experimentally, while how to fully utilize multimodal
information is also a potential topic.
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5. Application

With the widespread dissemination and collection of multimodal data based on mul-
timedia platforms such as TikTok and YouTube, multimodal representation learning also
has more excellent application value in society. This section introduces the common vision-
related applications of multimodal representation learning, including media captioning,
visual question answering, multimodal machine translation, text–image retrieval, and text-
to-image generation. They represent several major categories: vision to vision, text to text,
test to vision, text–vision retrieval, and text to text under vision assistance.

5.1. Media Captioning

So-called media captioning is used to generate a corresponding caption or description
for an image [102] or a video [103]. COCO [104] is one of the most comprehensive early
datasets and is still widely used today. The Charades [105] dataset is collected from real
and diverse examples of daily dynamic scenes. Charades-Ego [106] is a large-scale dataset
of paired third- and first-person videos. Before the advent of transformers, such tasks
were usually carried out by methods [107–109] based on the family of recurrent neural
networks (RNNs) [110], long short-term memory (LSTM) [111], and convolutional neural
networks (CNNs) [112,113]. In recent years, many methods have been proposed based
on the attention mechanism [114]. There are also some works exploring the possibility of
this task in weakly supervised or even unsupervised directions [115,116]. Wang et al. [117]
propose a novel hierarchical reinforcement learning framework for video captioning, where
a high-level manager module learns to design subgoals and a low-level worker module
recognizes the primitive actions to fulfill the subgoal. Lu et al. [118] first generate the
caption template and then fill it in according to the image content.

5.2. Visual Question Answering

This application was first proposed comprehensively in 2015. Given an image and
a natural language question about the image, the task is to provide an accurate natural
language answer [119–121]. It combines the two tasks of text-based Q&A [122,123] and
describing visual content [124], and especially emphasizes the importance of vision in
this task [125]. There are many datasets proposed for this task [119,126–133]. In 2016,
Wu et al. [134] grouped the approaches for this application into four broad categories:
joint embedding approaches [135–138], attention mechanisms [139–144], compositional
models [24,145–148], and models using an external knowledge base [149,150]. A number
of approaches have emerged in recent years, but most fall into these four categories.

5.3. Multimodal Machine Translation

Compared with machine translation, multimodal machine translation accepts informa-
tion from multiple modalities to assist in completing translation tasks. A classic example
is, given a sentence described in English, and a picture associated with it, expecting an
output of a sentence in German [151,152]. There are many datasets proposed for this
task [152–154]. The most likely application scenario for this task is caption translation
in videos or images [155]. In recent years, many methods have been proposed based on
the attention mechanism [156–160]. There are also some methods based on multiagent
communication [161,162]. Considering that images and texts do not have good consistency
in some scenarios, Elliott et al. [163] propose adversarial evaluation as a necessary metric.
However, visual information may only be needed in particular cases. In [164–168], some
methods are committed to solving this problem. Huang et al. [169] try to explore the
possibility of unsupervised learning with shared visual features in different languages.

5.4. Text–Image Retrieval

Text–image retrieval is a task to explore the relationship between text and vision,
mainly divided into two subtasks, text-based image retrieval and image-based text retrieval.
This task was proposed and developed before deep learning was widely used [170]. Match-
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ing between images and sentences is the key to text–image cross-modal retrieval. Some
works jointly represent the information of vision and text modalities in a feature space and
then calculate the similarity between them [107,171–174].

5.5. Text-to-Image Generation

Unlike generating text from images, there is no specific template for the task of gener-
ating images from text. Therefore, one of the most commonly used methods is generative
adversarial networks (GANs) [175], and there are already some surveys [176–178] on this.
Ref. [179] first introduced a GAN for this task. The following references list some variants
of GANs, including CookGAN [180], ControlGAN [181], SD-GAN [182], DM-GAN [183],
MirrorGAN [184], AttnGAN [185], StackGAN [186], and StackGAN++ [187].

In conclusion, the combination of modalities leads to diverse downstream tasks.
However, multimodal tasks should be carefully evaluated to ensure that they have practi-
cal applications.

6. Multimodal Benchmark

This section lists widely used multimodal datasets, corresponding tasks, and state-of-
the-art models, shown in Table 1. The state-of-the-art models use large-scale pretraining and
a unified multitask framework to approach outstanding performance in many multimodal
tasks. For generative tasks, we detail the metrics used for evaluation.

6.1. Image Captioning

The early image captioning tasks mainly used the Flickr30K [188] and Flickr8K
datasets, and the images of these datasets came from the Flickr website. The most com-
monly used dataset is COCO Captions [189], which contains images of complex scenes
between people, animals, and common daily objects. The annotations for image descrip-
tions in the COCO Captions dataset are based on the entire image. Flickr30K Entities mark
the nouns mentioned in the caption in Flickr30K, and mark the corresponding bbox. Local-
ized Narratives [190] provides each word with a specific region in the image represented by
its tracking segment, including nouns, verbs, adjectives, and prepositions. TextCaps [191]
requires models to read and reason about text in images to generate descriptions about
them. The images in VizWiz [192] are taken by visually impaired people using mobile
phones, are of low quality and involve a wide variety of everyday activities, most of which
require some text reading. The dataset aims to make more people aware of the needs
of the blind, and to develop assistive technologies to solve the visual challenges in their
daily life and to solve the vision problems of the blind. Nocaps [193] aims to evaluate
whether a model can accurately describe objects of emerging classes in test images without
corresponding training data.

As for the evaluation metrics of image captioning, BLEU [194], METEOR [195],
CIDEr [196], and SPICE [197] are some of the most used.

BLEU is Bilingual Evaluation Understudy, which is calculated by modified n-gram
precision. It is a precision-based metric but not recall, while short sentences always obtain
a higher score. BLEU is calculated by the formula:

BLEU = BP · exp
N

∑
n=1

wn log pn (1)

where n denotes n-gram, wn denotes the weight and is usually set to 1
n , BP denotes the

brevity penalty, and pn denotes the n-gram-level precision.
METHOR is Metric for Evaluation of Translation with Explicit ORdering. It claims to

have a better correlation with human judgment when considering the order and matching
of words. METHOD is a recall-based metric calculated by the formula:

METHOR = (1− pen)× Fmeans (2)
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where Fmeans denotes the weighted F-score, pen denotes the penalty factor to penalize
the word order in the candidate translation that differs from the word order in the refer-
ence translation.

CIDEr is Consensus-based Image Description Evaluation. It calculates the cosine
angle of its TF-IDF vector (note that each dimension of the vector represents an n-gram and
not necessarily a word) to obtain the similarity between the candidate sentence and the
reference sentence by the formula:

CIDErn(c, S) =
1
M

M

∑
i=1

gn(c) · gn(Si)

||gn(c)|| × ||gn(Si)||
(3)

where c denotes the candidate caption, S denotes the set of reference captions, n denotes
the n-gram, M denotes the number of reference captions, and gn(·) denotes the TF-IDF
vector based on the n-gram.

SPICE is Semantic Propositional Image Caption Evaluation. It uses a graph-based
semantic representation to encode objects, attributes, and relationships in a caption. It first
parses the caption to be evaluated and the reference captions into syntactic dependency
trees using the Probabilistic Context-Free Grammar (PCFG) dependency parser and then
maps the dependency trees into scene graphs using a rule-based approach. Finally, the F-
score values of objects, attributes, and relationships in the caption to be evaluated are
calculated. SPICE is calculated by a series of formulas:

SPICE(c, S) =
2 · P(c, S) · R(c, S)
P(c, S) + R(c, S)

P(c, S) =
|T(G(c))

⊗
T(G(S))|

|T(G(c))|

R(c, S) =
|T(G(c))

⊗
T(G(S))|

|T(G(S))|

(4)

where c denotes a candidate caption, S denotes a set of reference captions, G(·) denotes the
conversion of a text into a scene graph using some method, T(·) denotes the mapping of a
scene graph into a set of tuples,

⊗
operates like an intersection, except that it is not a strict

match, but is similar to METEOR in matching.
On this task, a multitask unified framework based on the transformer architec-

ture [198,199] is a common feature of state-of-the-art models. These methods concatenate
image and text features as input to the model to be pretrained and use self-attention to
learn image–text semantic alignments. Li et al. [200] use the “object tags” to align the
cross-domain semantics, which are the labels of objects in the image. Wang et al. [201]
performs end-to-end pretraining using a unified target on a large number of weakly aligned
image–text pairs, making it easy to apply transfer learning to downstream tasks.

6.2. Visual Question Answering

The most commonly used datases are VQA, VQA v2 [119,125], and its sub datasets,
which are derived from realistic images. Artificially generated datasets such as CLEVR [127]
have a limited variety of objects, very well-defined patterns of problems, and clean back-
grounds. The VQA dataset contains open-ended questions about images. These questions
require an understanding of vision, language, and commonsense knowledge. It states that
a given answer is correct if it matches the more frequent answer or if it at least matches one
of the possible ground-truth answers.

On this task, a multitask unified framework based on the transformer architecture is
the trend of state-of-the-art models. Nam et al. [202] use the attention mechanism to model
text and images separately, and use triplet loss to measure the similarity between text and
images. Kazemi et al. [203] simply use a combination of multilayer CNNs and LSTMs to
achieve outstanding performance as well.
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6.3. Multimodal Machine Translation

The most common dataset used in multimodal machine translation tasks is Multi30k [152],
which is a dataset to stimulate multilingual multimodal learning for English–German.
The Multi30K dataset extends the Flickr30K dataset with translated or independent Ger-
man sentences. Each image is paired with several English and German descriptions. Most
current models resort to global context modeling, attention mechanism, or multimodal joint
representation learning to utilize visual features. The global context modeling method uses
an encoder to extract visual features as the extra input of the translation model [156]. The
attention mechanism uses an attention-based weighted sum of the visual information and
the source sentence embedding separately, and a gate matrix to fuse the information from
these two modalities [158]. The multimodal joint representation learning method fuses the
two pieces of modal information by decomposing the multimodal translation problem into
two subtasks: learning translation and generating visual feature representations [204].

As the state-of-the-art model, Lin et al. [205] combine local and global visual informa-
tion to learn multimodal contextual features.

6.4. Text-Image Retrieval

The most popular datasets for retrieval tasks are also COCO and Flickr30k. Both are
hand-crafted datasets, with five short, descriptive, and conceptual captions for each image.
For text–image retrieval, the most commonly used evaluation metric is R@K, which is the
abbreviation for recall at K and is defined as the proportion of correct matchings in top-k
retrieved results.

VisualSparta [206] is the first transformer-based text-to-image retrieval model that
enables real-time search of very large datasets with significantly improved accuracy com-
pared to previous state-of-the-art methods. By efficiently implementing invert indexing,
VisualSparta achieves a speed advantage that is even greater on large-scale datasets.

6.5. Text-to-Image Generation

COCO is also widely used in text-to-image generation tasks. There are also several
datasets containing only one broad category. Caltech-UCSD Birds (CUB) [207] has 11,788 im-
ages of 200 different categories of birds. Oxford-102 Flower [208] is a 102-category dataset
consisting of 102 flower categories. The flowers are those commonly occurring in the United
Kingdom. The images have large scale, pose and light variations. CelebAText-HQ [209] is a
large-scale face image dataset with facial attributes, designed for text-to-face generation.
In state-of-the-art models that generate images from text, large-scale pretraining is a key
factor. GANs have shown extraordinary potential in text generation tasks.

As for the evaluation metrics of text-to-image generation, IS [210] and FID [211] are
two of the most used.

IS is inception score. It considers both the quality and diversity of the generated
images. To be specific, for a single image, the category probability distribution should be
the focus, but for a set of images, the category probability distribution should be diverse. IS
is calculated by the formula:

IS = exp Ex∼pG KL(p(y|x)||p(y)). (5)

where x denotes the generated image, y denotes the probability of different categories, G
denotes the image generator, and KL denotes the KL-divergence.

FID is Fréchet inception distance score. Unlike IS, FID compares the generated image
with the real image by computing a kind of similarity. FID is calculated by the formula:

FID(r, G) = ||µr − µg||+ Tr(Σr + Σg − 2
√

ΣrΣg) (6)

where µ and Σ denote means and covariances, r and g denote the real images and generated
images, Tr is the trace of matrix.
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As the state-of-the-art model, Zhou et al. [212] propose the first work to leverage the
well-aligned multimodal semantic space of the powerful pretrained CLIP model without
any text data. Zhang et al. [187] consider this task as a two-stage problem including
low-resolution image generation and image super-resolution. They argue that the model
distribution generated from low-resolution images has a better probability of overlapping
with the natural image distribution, but at the same time the need for high-resolution
images is necessary.

In conclusion, existing multimodal datasets are still relatively limited due to the fact
that labeled and aligned multimodal data are more difficult to obtain. We hope that more
real-world-based multimodal tasks, evaluation metrics, and datasets are released.

Table 1. Multimodal benchmark.

Task and Dataset Model Year Metric

Image Captioning BLEU-4 [194] METEOR [195] CIDEr [196] SPICE [197]

COCO Captions [189] OFA [199] 2022 43.5 31.9 149.6 26.1
SimVL [201] 2021 40.6 33.4 143.3 25.4
Oscar [200] 2020 41.7 30.6 140.0 24.5

COCO [104] M2 Transformer [213] 2019 39.1 29.2 131.2 22.6
Flickr30k [188] Unified VLP [198] 2019 30.1 23.0 67.4 17.0
npcaps [193] LEMON-large [214] 2021 34.7 31.3 114.3 14.9

SimVLM-huge [201] 2021 32.2 30.6 110.3 14.5
TextCaps [191] LSTM-R [215] 2012 22.9 21.3 100.8 13.8
VizWiz [192] CASIA-IVA 2020 28.3 22.1 79.1 17.9
Local Narratives [190] LoopCAG [216] 2021 27.0 26.0 114.0 -
SciCap [217] CNN+LSTM [217] 2021 21.9 - - -

Visual Question
Answering Overall Y/N Number Other

VQA v1 [119] SAAA [203] 2017 64.5 82.2 39.1 55.2
DAN [202] 2016 64.3 83.0 39.1 53.9

VQA v2 [125] VLMo [218] 2021 81.3 94.7 67.3 72.9
OFA 2022 80.5 92.9 67.0 72.7

VQA-CP [140] CSS [219] 2020 58.9 84.4 49.4 48.2
VQA-CE [220] RandImg [220] 2021 63.3 - - -
COCO MCB 7 att. [135] 2016 66.5 - - -
VCR [221] VL-BERT-Large [79] 2019 75.5 - - -
GQA [131] NSM [222] 2019 63.2 78.9 - -
CLEVR [127] NS-VQA [136] 2018 99.8 - - -
IconQA [223] Patch-TRM [223] 2021 82.7 - - -
MSRVTT-QA [224] Just Ask [225] 2020 41.5 - - -

Multimodal Machine
Translation BLEU METEOR

Multi30k [152] DCCN [205] 2020 39.7 56.8
Caglayan [226] 2019 39.4 58.7
MM Transformer [160] 2020 38.7 55.7

Text-Image Retrieval Recall@1 Recall@5 Recall@10

COCO Captions VisualSparta [206] 2020 68.2 91.8 96.3
COCO Oscar 2020 78.2 95.8 98.3
Flickr30k VisualSparta 2020 57.4 82.0 88.1
FooDI-ML [227] ADAPT-12T [227] 2021 19.0 30.0 45.0
WIT [228] WIT-ALL [228] 2021 34.6 64.2 -
Fashion IQ [229] RTIC-GCN [230] 2021 - - 40.6

Text-to-Image
Generation FID [211] IS [210]

COCO Lafite [212] 2021 8.1 32.3
CUB [207] Lafite 2021 10.5 6.0
CelebA-HQ [209] Lafite 2021 12.5 2.9
Oxford Flower [208] StackGAN++ [187] 2018 48.7 3.3

Text Generation BLEU-2 BLEU-3 BLEU-4 BLEU-5

COCO Captions LeakGAN [231] 2017 0.95 0.88 0.78 0.69
RankGAN [232] 2017 0.85 0.67 0.56 0.54
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7. Future Trends

Long before deep learning, multimodal learning had already been developed to a
certain extent. With the help of deep learning represented by neural networks, the future
development prospects of deep multimodal learning will be broader.

7.1. Pretraining Paradigm

Most of the current deep learning methods rely on a large amount of labeled data.
In order to obtain better performance, it is necessary to have more labeled data, which has
become a significant bottleneck. In fact, by traditional methods, annotating large amounts
of structured data and getting the training to converge to an optimal position is no less
challenging than crafting a good embedding space. Collecting large amounts of aligned
and labeled multimodal data has always been a significant challenge in solving multimodal
learning problems such as fusion, translation, and co-learning. Unsupervised pretraining
methods such as BERT [13] address this challenge well and can significantly improve
overall system performance in some tasks such as multimodal representation [79], vision–
text co-training [82], and cross-modal translation [233]. A multimodal model pretrained on
a large-scale dataset can be easily transferred to a specific task, and such a process is one of
the common means in the field of deep learning.

7.2. Unified Multitask Framework

In recent years, there has been a growing body of work on building a unified end-to-
end framework for multimodal learning based on the idea of multitask learning. A typical
example is [199], which accepts multimodal inputs such as images, videos, and text, and has
several different modal task outputs (e.g., image generation, visual grounding, image
captioning, image classification, text generation, etc.). Different combinations between
modalities can produce multiple forms of tasks, and the endowed alignment links between
modalities can in turn facilitate better representations. A unified multimodal framework
requires strong arithmetic support but is bound to become one of the mainstream directions
for multimodal learning.

7.3. Missing and Noisy Modality

As mentioned in the Multimodal Data Analysis section, there are often many data-
based issues in a real-world application, which can be divided into two categories: missing
and noisy modality. Due to the characteristics of multimodal learning itself, there is mutual
constraint and supervision information between modalities. The multimodal method can
be devised to perform well in some cases, even if some modalities are randomly missing or
when there are some very noisy modalities. There is also a class of cases where the problem
of unbalanced weights between modalities occurs. Peng et al. [234] point out that during
multimodal training, one dominant modality can inhibit the training of another modality,
resulting in the failure to realize the full potential of multimodality, which is also a matter
of concern.

7.4. Multimodal Task Diversity

The mutual arrangement and combination of modalities can define many tasks in
multimodal learning. Therefore, some recent works try to expand outward and are no
longer satisfied with only scoring on the conventional caption tasks but instead explore new
tasks with specific practical value. These new tasks focus on exploring deep multimodal
learning for practical applications. The commonsense captioning task [235] aims to generate
captions and perform commonsense reasoning at the same time given an input video.
The multiperspective captioning task [236] considers text and image inputs from different
viewpoints. The distinctive image captioning task [237] is defined to describe the unique
object or context of an image to distinguish it from other semantically similar images.
The diverse caption and rich image generation task [238] proposes a bidirectional image and
text generation task to align rich images and their corresponding multiple different titles,
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aiming to achieve multiple sentences from one image uniformly and multiple sentences to
generate more suitable images.

The above four aspects of pretraining strategy, unified framework, missing and noisy
modality, and multimodal task diversity are considered by us as feasible frontier directions
for multimodal learning. We hope that researchers will find inspiration from them and
make new contributions to the field of multimodal learning.

8. Conclusions

This paper discusses the methodology, benchmark, and trend of deep vision multi-
modal learning, which is supported by references to some of the more influential papers of
recent years.

The methodology is divided into learning architecture, learning paradigms, and multi-
modal data analysis. In terms of learning architectures, we looked at different steps of a
typical deep learning process: feature extraction, modality aggregation, and multimodal
loss function. We are surprised that the transformer-based models have played a signifi-
cant role in multimodal learning in recent years. There is endless potential to exploit the
unity and flexibility of the attention mechanism across multiple modalities. As for loss
function, most of the loss functions for multimodal learning are extended by some previous
unimodality loss functions, which are complemented according to the cyclic consistency or
alignment between modalities.

We considered some common learning paradigms in deep multimodal learning, in-
cluding semi-supervised learning, self-supervised learning, and transfer learning. We find
that the mutual complementation and alignment of modalities can serve as good alterna-
tives when fully supervised signals are not available. Multimodal transfer learning is more
robust than single modality. We also found that knowledge transfer between modalities can
be achieved utilizing knowledge distillation, etc., which is an important research direction.

In terms of multimodal data analysis, we focus on two kinds of data issues that
multimodal learning may have in a practical situation: missing modalities and noisy
modalities. These two cases reflect the imbalance between the modes in different aspects.
Not much work has been done in this direction, and it is a development focus on how to
utilize strong and weak modalities in multimodal learning reasonably.

For multimodal learning applications and benchmarks, we collect mainstream tasks
in the vision–language multimodal learning field, including media captioning, visual
question answers, multimodal machine translation, text–image retrieval, and text-to-image
generation. These tasks are made up of combinations of modalities and are of practical
value. For each task, we list the widely used datasets and some state-of-the-art models
on them and analyze the reasons for the success of these models. We hope that more
meaningful tasks and datasets will be published.

After our thorough research, we have proposed some possible future research direc-
tions in the deep vision multimodal learning field: pretraining strategy, unified framework,
missing and noisy modality, and multimodal task diversity. We believe that a unified
large-scale multitask pretraining framework will become mainstream, as already demon-
strated in natural language processing. Additionally, as we mentioned before, the task of
making fuller use of unbalanced modal information and more diversity should be given
full attention.

In conclusion, this review examines some of the influential work in deep vision
multimodal learning in recent years and explores future trends. We hope this review will
be helpful for beginners or researchers entering the field. Multimodal learning will be a
significant trend of deep learning in the future, and more interested people are needed to
get involved.
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11. Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; Schmid, C. Vivit: A video vision transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 6836–6846.

12. Gong, Y.; Chung, Y.A.; Glass, J. Ast: Audio spectrogram transformer. arXiv 2021, arXiv:2104.01778.
13. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
15. Singh, A.; Hu, R.; Goswami, V.; Couairon, G.; Galuba, W.; Rohrbach, M.; Kiela, D. FLAVA: A Foundational Language And Vision

Alignment Model. arXiv 2021, arXiv:2112.04482.
16. Likhosherstov, V.; Arnab, A.; Choromanski, K.; Lucic, M.; Tay, Y.; Weller, A.; Dehghani, M. PolyViT: Co-training Vision

Transformers on Images, Videos and Audio. arXiv 2021, arXiv:2111.12993.
17. Akbari, H.; Yuan, L.; Qian, R.; Chuang, W.H.; Chang, S.F.; Cui, Y.; Gong, B. Vatt: Transformers for multimodal self-supervised

learning from raw video, audio and text. Adv. Neural Inf. Process. Syst. 2021, 34, 1–16.
18. Lee, S.; Yu, Y.; Kim, G.; Breuel, T.; Kautz, J.; Song, Y. Parameter efficient multimodal transformers for video representation

learning. arXiv 2020, arXiv:2012.04124.
19. Jason, W.; Sumit, C.; Antoine, B. Memory Networks. arXiv 2014, arXiv:1410.3916.
20. ukhbaatar, S.; Szlam, A.; Weston, J.; Fergus, R. End-to-end memory networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1–26.
21. Wang, J.; Wang, W.; Huang, Y.; Wang, L.; Tan, T. M3: Multimodal memory modelling for video captioning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7512–7520.
22. Lin, C.; Jiang, Y.; Cai, J.; Qu, L.; Haffari, G.; Yuan, Z. Multimodal Transformer with Variable-length Memory for Vision-and-

Language Navigation. arXiv 2021, arXiv:2111.05759.
23. Chen, S.; Guhur, P.L.; Schmid, C.; Laptev, I. History aware multimodal transformer for vision-and-language navigation. Adv.

Neural Inf. Process. Syst. 2021, 34, 1–14.
24. Xiong, C.; Merity, S.; Socher, R. Dynamic memory networks for visual and textual question answering. In Proceedings of the

International Conference on Machine Learning, New York, NY USA, 19–24 June 2016; pp. 2397–2406.
25. Boulahia, S.Y.; Amamra, A.; Madi, M.R.; Daikh, S. Early, intermediate and late fusion strategies for robust deep learning-based

multimodal action recognition. Mach. Vis. Appl. 2021, 32, 1–18.
26. Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion 2013,

14, 28–44. [CrossRef]
27. Wu, D.; Pigou, L.; Kindermans, P.J.; Le, N.D.H.; Shao, L.; Dambre, J.; Odobez, J.M. Deep dynamic neural networks for multimodal

gesture segmentation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1583–1597. [CrossRef] [PubMed]

http://doi.org/10.1109/TPAMI.2018.2798607
http://www.ncbi.nlm.nih.gov/pubmed/29994351
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1109/JSTSP.2020.2987728
http://dx.doi.org/10.1109/ACCESS.2019.2916887
http://dx.doi.org/10.1613/jair.1.11688
http://dx.doi.org/10.1016/j.inffus.2011.08.001
http://dx.doi.org/10.1109/TPAMI.2016.2537340
http://www.ncbi.nlm.nih.gov/pubmed/26955020


Appl. Sci. 2022, 12, 6588 19 of 26

28. Kahou, S.E.; Pal, C.; Bouthillier, X.; Froumenty, P.; Gülçehre, Ç.; Memisevic, R.; Vincent, P.; Courville, A.; Bengio, Y.; Ferrari, R.C.;
et al. Combining modality specific deep neural networks for emotion recognition in video. In Proceedings of the 15th ACM on
International Conference on Multimodal Interaction, Sydney, Australia, 9–13 December 2013; pp. 543–550.

29. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-scale video classification with convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 1725–1732.

30. Neverova, N.; Wolf, C.; Taylor, G.; Nebout, F. Moddrop: Adaptive multi-modal gesture recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 2015, 38, 1692–1706. [CrossRef]

31. Ma, M.; Ren, J.; Zhao, L.; Testuggine, D.; Peng, X. Are Multimodal Transformers Robust to Missing Modality? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Waikoloa, HI, USA, 3–8 January 2022; pp. 18177–18186.

32. Zadeh, A.; Chen, M.; Poria, S.; Cambria, E.; Morency, L.P. Tensor fusion network for multimodal sentiment analysis. arXiv 2017,
arXiv:1707.07250.

33. Hou, M.; Tang, J.; Zhang, J.; Kong, W.; Zhao, Q. Deep multimodal multilinear fusion with high-order polynomial pooling. Adv.
Neural Inf. Process. Syst. 2019, 32, 1–10.

34. Xu, R.; Xiong, C.; Chen, W.; Corso, J. Jointly modeling deep video and compositional text to bridge vision and language in a
unified framework. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 19–25 January 2015;
Volume 29.

35. Sahu, G.; Vechtomova, O. Dynamic fusion for multimodal data. arXiv 2019, arXiv:1911.03821.
36. Zadeh, A.; Liang, P.P.; Mazumder, N.; Poria, S.; Cambria, E.; Morency, L.P. Memory fusion network for multi-view sequential

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LO, USA, 2–7 February 2018; Volume 32.
37. Xu, N.; Mao, W.; Chen, G. Multi-interactive memory network for aspect based multimodal sentiment analysis. In Proceedings of

the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January 2019; Volume 33, pp. 371–378.
38. Nagrani, A.; Yang, S.; Arnab, A.; Jansen, A.; Schmid, C.; Sun, C. Attention bottlenecks for multimodal fusion. Adv. Neural Inf.

Process. Syst. 2021, 34, 1–14.
39. Pérez-Rúa, J.M.; Vielzeuf, V.; Pateux, S.; Baccouche, M.; Jurie, F. Mfas: Multimodal fusion architecture search. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6966–6975.
40. Liu, Z.; Shen, Y.; Lakshminarasimhan, V.B.; Liang, P.P.; Zadeh, A.; Morency, L.P. Efficient low-rank multimodal fusion with

modality-specific factors. arXiv 2018, arXiv:1806.00064.
41. Gat, I.; Schwartz, I.; Schwing, A.; Hazan, T. Removing bias in multi-modal classifiers: Regularization by maximizing functional

entropies. Adv. Neural Inf. Process. Syst. 2020, 33, 3197–3208.
42. George, A.; Marcel, S. Cross modal focal loss for rgbd face anti-spoofing. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7882–7891.
43. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
44. Jing, L.; Vahdani, E.; Tan, J.; Tian, Y. Cross-modal center loss. arXiv 2020, arXiv:2008.03561.
45. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In European Conference on

Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 499–515.
46. Ging, S.; Zolfaghari, M.; Pirsiavash, H.; Brox, T. Coot: Cooperative hierarchical transformer for video-text representation learning.

Adv. Neural Inf. Process. Syst. 2020, 33, 22605–22618.
47. Tan, H.; Bansal, M. Lxmert: Learning cross-modality encoder representations from transformers. arXiv 2019, arXiv:1908.07490.
48. Zhu, L.; Yang, Y. Actbert: Learning global-local video-text representations. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8746–8755.
49. Kamath, A.; Singh, M.; LeCun, Y.; Synnaeve, G.; Misra, I.; Carion, N. MDETR-modulated detection for end-to-end multi-modal

understanding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021; pp. 1780–1790.

50. Van den Oord, A.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748.
51. Chun, S.; Oh, S.J.; De Rezende, R.S.; Kalantidis, Y.; Larlus, D. Probabilistic embeddings for cross-modal retrieval. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8415–8424.
52. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006;
Volume 2, pp. 1735–1742.

53. Valverde, F.R.; Hurtado, J.V.; Valada, A. There is more than meets the eye: Self-supervised multi-object detection and tracking
with sound by distilling multimodal knowledge. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11612–11621.

54. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
55. Zhu, X.; Goldberg, A.B. Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 2009, 3, 1–130.
56. Guillaumin, M.; Verbeek, J.; Schmid, C. Multimodal semi-supervised learning for image classification. In Proceedings of the

2010 IEEE Computer society conference on computer vision and pattern recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 902–909.

http://dx.doi.org/10.1109/TPAMI.2015.2461544


Appl. Sci. 2022, 12, 6588 20 of 26

57. Cheng, Y.; Zhao, X.; Cai, R.; Li, Z.; Huang, K.; Rui, Y. Semi-Supervised Multimodal Deep Learning for RGB-D Object Recognition.
In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016;
pp. 3345–3351.

58. Cheng, Y.; Zhao, X.; Huang, K.; Tan, T. Semi-supervised learning for rgb-d object recognition. In Proceedings of the 2014 22nd
International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 2377–2382.

59. Tian, D.; Gong, M.; Zhou, D.; Shi, J.; Lei, Y. Semi-supervised multimodal hashing. arXiv 2017, arXiv:1712.03404.
60. Shen, Y.; Zhang, L.; Shao, L. Semi-supervised vision-language mapping via variational learning. In Proceedings of the 2017 IEEE

International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1349–1354.
61. Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-supervised learning: Generative or contrastive. IEEE Trans.

Knowl. Data Eng. 2021, Early Access. [CrossRef]
62. Taleb, A.; Lippert, C.; Klein, T.; Nabi, M. Multimodal self-supervised learning for medical image analysis. In International

Conference on Information Processing in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2021; pp. 661–673.
63. Tamkin, A.; Liu, V.; Lu, R.; Fein, D.; Schultz, C.; Goodman, N. DABS: A Domain-Agnostic Benchmark for Self-Supervised

Learning. arXiv 2021, arXiv:2111.12062.
64. Coen, M.H. Multimodal Dynamics: Self-Supervised Learning in Perceptual and Motor Systems. Ph.D. Thesis, Massachusetts

Institute of Technology, Boston, MA, USA, 2006.
65. Gomez, L.; Patel, Y.; Rusinol, M.; Karatzas, D.; Jawahar, C. Self-supervised learning of visual features through embedding images

into text topic spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4230–4239.

66. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 84–90. [CrossRef]

67. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
68. Afouras, T.; Owens, A.; Chung, J.S.; Zisserman, A. Self-supervised learning of audio-visual objects from video. In European

Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 208–224.
69. Asano, Y.; Patrick, M.; Rupprecht, C.; Vedaldi, A. Labelling unlabelled videos from scratch with multi-modal self-supervision.

Adv. Neural Inf. Process. Syst. 2020, 33, 4660–4671.
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