
����������
�������

Citation: Huang, H.; Lu, Y.; Pan, Z.;

Zhu, K.; Yu, L.; Zhang, L. ExpGen: A

2-Step Vulnerability Exploitability

Evaluation Solution for Binary

Programs under ASLR Environment.

Appl. Sci. 2022, 12, 6593.

https://doi.org/10.3390/

app12136593

Academic Editors:

Gregory Epiphaniou, Federico Divina

and Carsten R. Maple

Received: 30 May 2022

Accepted: 24 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

ExpGen: A 2-Step Vulnerability Exploitability Evaluation
Solution for Binary Programs under ASLR Environment

Hui Huang , Yuliang Lu *, Zulie Pan , Kailong Zhu , Lu Yu and Liqun Zhang

College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China;
huanghui17@nudt.edu.cn (H.H.); panzulie17@nudt.edu.cn (Z.P.); zhukailong@nudt.edu.cn (K.Z.);
yulu@nudt.edu.cn (L.Y.); zhanglq@nudt.edu.cn (L.Z.)
* Correspondence: luyuliang@nudt.edu.cn

Abstract: Current automatic exploit generation solutions generally adopt an 1-step exploit generation
philosophy and neglect the potential difference between analysis-time environment and runtime envi-
ronment. Therefore, they usually fail in evaluating exploitability for vulnerable programs running in
an ASLR environment. We propose ExpGen, a 2-step vulnerability-exploitability evaluation solution
for binary programs running in an ASLR environment, with three novel techniques introduced,
separately partial-exploit sensitive-POC generation, exploitation context sensitive analysis-time ex-
ploit generation, and runtime exploit relocation. ExpGen firstly generates an analysis-time exploit
that can carry out all the desired exploitation steps through applying the first two techniques in an
iterative manner, then dynamically gaps the address-space layout differences between the analysis-
time environment and runtime environment by adopting the runtime exploit-relocation technique,
making the analysis-time exploit dynamically adaptable to the runtime exploitation session. Using a
benchmark containing six test programs, 10 CTF&RHG programs and four real-world applications
with known vulnerabilities, we demonstrate that ExpGen can effectively generate partial exploit
input that carries out some address-leakage event and provide a complete automated exploitability
evaluation workflow on vulnerable programs running in the ASLR environment.

Keywords: partial exploit; exploit generation; address leakage; runtime exploit relocation

1. Introduction

Finding bugs in software systems and making on-time repairs is always a critical
problem in information security research communities. In the last few decades, with the
great enhancement in computation power and constraint solving ability, fuzzing [1,2] and
symbolic execution [3,4] have become two mainstream bug-finding techniques in both
academy and industry, with derivative techniques including coverage guided fuzzing [5,6],
hybrid fuzzing (a composition of fuzzing and concolic execution) [7,8] proposed and
effectively applied in bug finding.

With massive crashing inputs generated everyday through different kinds of vulner-
ability discovery systems, effective automatic vulnerability assessment becomes a must
for security analysts as manual analysis is obviously expensive and impossible. Based on
taint analysis, tools including !exploitable [9] and HCSIFTER [10] are proposed. Given a
specific crashing input, these methods quickly lead the program execution to a crashing
point, make some necessary fixes to the corrupted state (e.g., recovering the data corrupted
by heap overflow), and then walk further along the state, and report the vulnerability
that is exploitable if a taint-based exploitable pattern could be matched. However, as they
manifest exploitability without generating exploit input, false positives exist.

Since the Cyber Grand Challenge event [11] DARPA held in 2016, automatic exploit
generation(AEG) has become a hot research topic. Solutions including CRAX [12], REX [13],
Mayhem [14], are proposed, to discover vulnerabilities and automatically generate exploits
when possible, for source code and binary respectively. In general, these methods often

Appl. Sci. 2022, 12, 6593. https://doi.org/10.3390/app12136593 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136593
https://doi.org/10.3390/app12136593
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7615-9585
https://orcid.org/0000-0001-5241-0157
https://orcid.org/0000-0001-5775-5824
https://doi.org/10.3390/app12136593
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136593?type=check_update&version=1

Appl. Sci. 2022, 12, 6593 2 of 21

first analyze vulnerabilities in detail along the trace of the crashing input, check out the
vulnerability triggering state, then explore further from the vulnerability triggering state to
search for program states that are deemed exploitable. Once a exploitable state is derived,
these methods collect path-reachability constraints, vulnerability-triggering constraints
and exploit-construction constraints separately through symbolic execution, then solve
the conjunction of these constraints using SMT (satisfiability modulo theories) [15] solvers,
with exploit input finally generated.

However, currently, most AEG solutions can be applied only in exploit generation for
vulnerabilities requiring limited exploitation steps in an environment where the Address
Space Layout Randomization(abbr. ASLR) [16] vulnerability mitigation mechanism is not
deployed. As for vulnerabilities in an ASLR condition, human analysts usually need to leak
some important address information from the target process first, then adjust the payload
content referencing the leaked address, and finally send the relocated data to the target
process to complete the exploitation session. We find that to make this process automatic
without human intervention, the following three key challenges should be addressed,
which are commonly ignored by current solutions.

Challenge 1: Iterative proof-of-concept generation. Current AEG systems usually
first generate some proof-of-concept (abbr. POC) input, then use it to drive the automatic
exploit-generation engine to begin its reasoning process. From a systematic perspective, the
POC input-generation process and the exploitable state-deduction process are completely
separated. This design fits for the 1-step vulnerability exploitation process, where the
exploitable state is already implied within the trace of the provided POC input. However,
as demonstrated later, exploitability evaluation for vulnerable binary programs running in
an ASLR environment often consists of multiple exploitable state-deduction steps, each of
which requires a new POC built on capabilities accumulated from the previous exploitation
steps. Therefore, we need to introduce bidirectional interaction between the frontend
POC-generation process with the backend exploit-generation process, enabling iterative
POC generation so as to push forward the exploitation automaton step-by-step till the final
state denoting the completion point.

Challenge 2: Balance between address leakage forgery and exploitable state construc-
tion. Leaking an address pointing in the range of a payload-relative module is a prerequisite
for vulnerability exploitation in an ASLR environment. In the real world, this leakage is
usually carefully crafted through the exploitation of an otherwise crashing vulnerability.
However, as current AEG solutions usually follow the 1-step exploit-generation philos-
ophy, when they reach the vulnerability-triggering state on which an address-leakage
event should be forged, they would simply focus on crafting exploitable states that can
directly hijack control flow of the target program, completely ignoring the potential address-
leakage artifacts. Some flexible scheduling over the candidate techniques based on the
exact exploitation context is critically needed to pull AEG systems out of the dilemma.

Challenge 3: Adaptable payload relocation. As they do not concerning ASLR, current
AEG systems often generate exploits working in environments where the address space
layout of the target process matches exactly the same with the analysis-time layout exactly.
However, this is not the case for the ASLR environment, as the address space layout in
runtime is completely different from the one exhibited in analysis time. An extra payload
relocation step is needed to fix the gap. However, few current solutions pay attention to
this issue.

Our Solution: In this paper, we present ExpGen, a 2-step vulnerability exploitabil-
ity evaluation system to address the above challenges. Given a binary program with a
memory-corruption vulnerability running in an ASLR deployed environment, ExpGen
firstly generates a partial exploit that can leak a sensitive address from the target pro-
gram, then with this partial exploit in mind, performs iterative POC generation seeking to
generate some STEP-1 POC inputs that can not only manifest the same address-leakage
event, but also direct the target program to reach a new vulnerable state. Based on these
STEP-1 POC inputs, ExpGen generates some analysis-time exploit that can leak the desired
address information and successfully exploit the vulnerability in the exact analysis-time

Appl. Sci. 2022, 12, 6593 3 of 21

environment, and then further performs runtime relocation on the analysis-time exploit.
By feeding the relocated payload in the desired interaction order, ExpGen bridges the gap
between the analysis-time environment and runtime environment, providing a completely
automatic exploitability evaluation workflow with no need for human intervention from
security experts.

We have built a prototype of ExpGen based on the state-of-art fuzzer AFL++ [17] and
symbolic execution engine S2E [18], and evaluate it on six test programs, 10 CTF&RHG
challenges and four real-world applications running under Linux. Experimental results
demonstrate that (1) ExpGen can generate partial exploit more efficiently than current
test-case generation systems and (2) ExpGen can launch a dynamic exploitation session on
all the 20 vulnerable programs in a completely automatic way.

In summary, we make the following contributions in this paper:

• We propose a new iterative partial-exploit sensitive POC-generation mechanism, that
can generate ’advanced’ POC inputs able to bring in the same leakage event the
partial exploit carried out and trigger some new vulnerability, therefore providing
support on incremental exploitability evaluation for vulnerabilities requiring multiple
exploitation steps.

• We propose an exploitation-context guided analysis-time exploit generation method,
which schedules different exploitation techniques according to specific exploitation
contexts accumulated in the current exploitable state, providing the ability to either
generate a partial exploit that can trigger a forged address-leakage event if no leakage
context has been calculated yet, or generate complete a analysis-time exploit input
that can carry along all the exploitation steps desired by the real exploitation session.

• We propose a runtime exploit-relocation technique, that can dynamically adapt the
analysis-time exploit with precise semantic information to the runtime address space
layout, therefore providing a completely automatic exploitability evaluation workflow
for vulnerable programs running in an ASLR environment.

• We have implemented a prototype of ExpGen and demonstrated its effectiveness in
the exploitability evaluation of the vulnerable CTF&RHG challenges and real-world
programs.

2. Motivation Example

In this section, we first illustrate the manual-exploitation workflow for a simple
program that contains a stack-overflow vulnerability and runs in an environment where
ASLR is deployed, then discuss the limitations of current AEG solutions in handling this
case, and finally illustrate the inspirations we draw from the example on the automatic
exploitability evaluation of vulnerabilities that require multiple exploitation steps.

2.1. the Vulnerability and Exploitation Process

As for the example program demonstrated in Figure 1a, we compile it with options
PIE [19] and NX [20] enabled and run it under Linux-i386 platform with ASLR option
turned on. For simplification, we assume the stack protector [21] option is turned off during
compilation. We can see a function containing some backdoor functionality exists in
line 1–3. For brevity we assume in analysis-time the load base of the compiled image being
0x55569000, and the backdoor resides at offset 0x181 in the compiled image.

Appl. Sci. 2022, 12, 6593 4 of 21

Figure 1. An example of stack overflow exploitation under ASLR environment. (a) shows the source
code of the example. (b) shows the stack frame of func when being called by main. (c) shows the
exploitation steps carried out with corresponding POC or exploit data shown on the right.

We can also see, in line 12, there exists a call to posix-API function read, which would
fetch at most 0x100 bytes from the standard input channel to the local array pointed by the
buffer, whose size is only 0x60, resulting in a potential stack-overflow vulnerability. From
the stack layout demonstrated in Figure 1b, we can see that, when the program receives
more than 0x60 bytes, the saved EBP or, what is more important, the saved EIP, would
be overwritten, therefore triggering a segmentation fault when the called function func
returns. We temporarily comment out line 13, which will be discussed later in Section 2.2.2.

The manual exploitation process of the example program is demonstrated in Figure 1c,
consisting of the following phases.

1. Address-leakage exploit generation. We craft an input S0 that would take up
precisely 0x60 none-zero bytes. When fed to the target program, this input would not
overflow the local variable buffer in func’s stack frame, but can cause the call on printf at
line 14 to leak extra data on the stack including the saved EBP and the saved EIP(as the EBP
value usually consists of four none-zero bytes under 32 bit systems at runtime). Therefore
we can obtain a leaked address of the main executable which is the return address of the
callage to func in main. S0 would be the first data sent to the target program during the
attack session.

2. Control-flow hijack exploit generation. We generate an input S1 that can trigger
function backdoor, which would not be invoked under normal conditions. S1 is composed
of 0x64 none-zero bytes (note, here we pad saved EBP with 4 bytes) trailed by 0x55569181,
which is backdoor’s address at analysis time. Thus, when the control flow returns from
func to main, we can hijack the control flow onto backdoor and obtain a shell from it.

3. Exploit synthesis. As we have got two exploits, separately S0 capable of leaking a
runtime address in the main executable and S1 capable of control-flow redirection onto
backdoor in the main executable at analysis time, we now synthesize the two crafted inputs
into a complete one in the following dynamic exploitation session.

When the target program is launched, we feed it with S0 through the standard input
channel first, and fetch the leaked runtime address Aruntime by monitoring the byte stream
from the standard output channel. With the corresponding analysis-time address Aanalysis in
mind, we replace the analysis-time specific value 0x55569181 in S1 with Aruntime-Aanalysis +
0x55569181, obtaining a new input block S′1 where the target program-address-space related
fields are all ’relocated’ to the runtime environment. Lastly, we send S′1 to the target process
with the desired shell successfully obtained afterwards.

2.2. Inspirations for AEG

This section performs a thorough introspection of the general workflow of current
AEG solutions, analyzes the reasons why they cannot handle the above example, and

Appl. Sci. 2022, 12, 6593 5 of 21

then proposes several principles we believe critical to enabling AEG systems to evaluate
exploitability for vulnerabilities requiring multiple exploitation steps.

2.2.1. General Workflow of Current AEG Solutions

As mentioned earlier, current AEG solutions generally follow the workflow demon-
strated in Figure 2. Given the target program and a seed corpus, current AEG systems
first employ state-space exploration techniques including fuzzing, symbolic execution, etc,
generating massive test cases to explore the path space of the target program as much as
possible. If some inputs are found able to trigger a crash, or violate some security properties
enforced by sanitizers such as AddressSanitizer [22], etc.), these input would be deemed
to be a POC input manifesting a vulnerability and be provided directly to the backend
dynamic trace-analysis engine.The dynamic trace-analysis engine traces the execution of
the target program under the specific POC input until the desired vulnerability is triggered,
then makes necessary modifications to on that program state to drive the execution further
to reach an exploitable state, e.g., EIP overwritten. If an exploitable state is discovered,
the exploitation technique scheduler enumerates known exploitation techniques includ-
ing ret2libc [23], ret2text [24], etc., to build a exploitable memory layout, on which the
path-reachable constraint, the vulnerability triggering constraint and payload-arrangement
constraint are collected. By calculating a concrete input that satisfies the conjunction of the
three constraints, an exploit input for the vulnerability is finally generated.

Figure 2. The general workflow of current AEG systems.

2.2.2. Principles for Automatic Multi-Step Generation

Though current AEG systems can already generate exploits for memory-corruption
vulnerabilities, including stack overflow, heap overflow, and format-string vulnerability,
effectively under environments where exploitation-mitigation mechanisms, including NX
and stack canary, are deployed, for the demo example shown in Figure 1, they often fail in
exploit generation. However, we can derive some key insights from the example, which we
believe could be used as principles for advanced AEG system design and implementation.
These principles are listed below.

principle 1. Formulation of 2-step exploitation automaton. As we can see in Section 2.1,
the exploitation process for the example program consists of two steps, separately one
for address leakage, the other for control-flow hijack. Though the target program has
an evident stack-overflow vulnerability, we should not trigger it immediately when a
crashing event happens, but forge an address-leakage event instead. Only when this
prerequisite is met can we push forward the exploitation-evaluation session onto the next
stage, where we generate an exploit able to pwn at analysis time. However, as mentioned
earlier, current AEG systems generally follow a one-step exploitation philosophy. When
reaching a crashing point, they would immediately seek an exploitable state, irrespective of
the intermediate leakage step that must be completed before. Therefore, we can conclude
that the formulation of a 2-step exploitation automaton is a must to solve this issue.

Appl. Sci. 2022, 12, 6593 6 of 21

principle 2. An iterative POC-generation mechanism with a partial-exploitation con-
text in mind. As the exploitation process for complex vulnerabilities usually consists of
multiple steps, deriving the final exploitable state directly through a single POC input
discovered immediately by some blind fuzzer becomes no longer feasible, as it is hard for
such a POC input to trigger all the desired exploitation effects. Therefore, a new iterative
POC-generation mechanism should be devised to discover new exploitation steps and
accumulate them onto the POC invariant held during each iteration, driving the multi-step
exploitation automaton to continuously move forward.

principle 3. Semantic-information-based fix on the gap between analysis-time ex-
ploitation and runtime exploitation. As for exploitability evaluation on vulnerabilities
in environments where ASLR is enabled, during manual exploitation, analysts should
perform runtime relocation on the module-related payload after leaking some sensitive
address, in order to ensure that the control flow of the target program can be hijacked
gracefully without triggering a segmentation fault. To our knowledge, among current AEG
solutions only Marten [25] has paid attention to the automatic anatomy. Through the leaked
address, Marten calculates the load base of the module the leaked address resides in, and
then adds it to the corresponding payload part. For brevity, we call this literal relocation
as it works directly on the literal form of input words. However, for programs involving
complex computations, literal relocation often fails due to a lack of semantic information.

For demonstration, let us review on the example program. This time, we uncomment
line 13 in Figure 1a, thus, the compiled program performs an extra exclusive or operation
on the input content. We now focus on the payload part ExpEIP that would overwrite EIP
in runtime. To overwrite EIP with 0x55569181, which is backdoor’s analysis time address,
ExpEIP would be evaluated as ‘\x91\x81\x46\x45’ in little endian by the analysis engine.
Now, assume that, at the exploitation time we derive the load base of the main executable
to be 0x80480000 from the leaked address, using literal relocation, we should adjust ExpEIP
with ‘\x91\x81\x8e\xc5’. However, when we feed the relocated payload to the target
program wishing to obtain a shell, the program would simply crash as the overwritten EIP
at runtime was mistakenly pointing onto ’\x81\x91\xe9\xd5’(0xc58e8191 XOR 0x10101010
= 0xd59e9181), which is an unmapped address.

This failure shows that blindly applying literal relocation to a gap between analysis-
time and runtime is not sufficient in AEG for complex programs; only considering fine-
grained semantic knowledge in concern can we provide a more complete solution.

3. Design of ExpGen

Based on the derived principles listed in Section 2.2.2, we propose ExpGen, a 2-step
vulnerability-exploitability evaluation solution for binary programs in environments where
the ASLR vulnerability mitigation technique is adopted. As demonstrated in Figure 3,
ExpGen is composed of three major components, namely, partial-exploit sensitive POC
generation, analysis-time exploit generation, and runtime exploit relocation.

Figure 3. Overview of ExpGen.

Given a binary program, ExpGen first employs the POC-generation engine generating
POC inputs that can lead the execution of the target program trigger a vulnerability. These
POC inputs are then fed to the analysis-time-exploit generation engine, which, with the
exploitation automaton in mind, tries to generate a partial exploit that can leak some

Appl. Sci. 2022, 12, 6593 7 of 21

address information from the target program. This partial exploit is then proposed back to
the POC-generation engine, driving the latter to generate a STEP-1 POC input not that only
holds the desired partial-exploit context, but also triggers a new vulnerability behavior.
This STEP-1 POC input is then used to drive the analysis-time EXP-generation engine to
move a new exploitation step forward, on which we finally obtain the analysis-time exploit
which embodies the complete exploitation steps and the corresponding meta data holding
a description of this analysis-time exploit. These two outcomes are then fed to the backend
runtime exploit generation engine, which analyzes the leakage scheme and performs
dynamic payload relocation on the analysis-time exploit during the runtime exploitation
session. If the target system’s control flow is successfully hijacked, the vulnerability is
deemed exploitable in an ASLR environment by ExpGen.

4. Partial-Exploit-Sensitive POC Generation

As depicted in Figure 3, ExpGen builds its partial-exploit-sensitive POC -generation
engine upon a hybrid fuzzer, then constructs partial-exploit-sensitive fuzzing atop it. This
section illustrates the details.

4.1. Hybrid Fuzzer

As demonstrated in Figure 4, The hybrid fuzzer is composed of two components, a
feedback-directed fuzzing engine and a generation-based symbolic execution engine.

Figure 4. Overview of hybrid fuzzer.

The feedback-directed fuzzing engine maintains a coverage bitmap recording the
coverage information on each edge in the target program, collects the execution statistics of
a given seed through dynamic execution monitoring, and then checks if this seed can hit
new edges not covered before. If so, the coverage bitmap is updated, with the seed input
considered as a promising one and added to the promising queue holding test cases on
which fuzzing engine would perform further mutations later on to explore new paths in
the target program.

The generation-based symbolic-execution engine takes the target program and a
single seed as input, calculates a corresponding path constraint by concolicly tracking the
execution trace, and then generates new constraints by flipping each condition in the path
constraint. Through querying these constraints, some variants would be derived.

Our hybrid fuzzer combines the above two components in a bidirectional-enhancing
way. The test cases deemed promising by the feedback-directed fuzzing engine are provided
as candidate seed inputs to the generation-based symbolic execution, enabling the latter to
explore different execution paths while avoiding the path-explosion problem commonly
faced by symbolic execution techniques. The generation-based symbolic execution, on
the other hand, generates variants of the seed input that can exercise different execution
paths. These variants are synchronized by the feedback directed fuzzing engine, which
would check out those variants that can be deemed as promising and start a new round of
test-case generation.

Appl. Sci. 2022, 12, 6593 8 of 21

4.2. Partial Exploit Sensitive Fuzzing

Once some partial exploit carrying out an address leakage-event is generated by the back
end analysis-time exploit generation engine, as depicted in Section 5, the above hybrid fuzzer
has to generate test cases that not only exhibit the same address leakage effect exposed by
the partial exploit, but also trigger a new vulnerability afterwards. To implement this kind
of partial-exploit sensitive fuzzing, we make the following adaptions to both the feedback-
directed fuzzing engine and the generation-based symbolic execution engine.

On the feedback-directed fuzzing engine side, we make address leakage an additional
feedback source. More specifically, we collect the address space layout information during
the execution monitoring phase, along with implementingdynamic hooks on API functions
including write, recv, etc, that would send data to the output channel. An example hook on
a POSIX write function in Linux i386 platform is demonstrated in Figure 5. After checking
the output file descriptor pointing to our desired channel (line 7–9), this hook extracts the
buf parameter and nbytes parameter denoting the memory region to write (line 11–13), and
checks if this region contains some address pointing within the memory region of the main
executable or the libc.so module, which is the most common runtime library in the GNU
Linux platform (line 15–17). If some address information is located in the output buf, we
set the corresponding leakage context (line 18–24) for this test case, marking it as definitely
promising for further generating a test case upon it.

Figure 5. Hook on write.

On the generation based symbolic execution side, given a test case tcase generated
by feedback-directed fuzzing based on a partial exploit input exppartial , assumeing that
tcase would lead the single-path symbolic execution to obtain a path constraint c0 AND
... AND ci AND ci+1 AND ... AND cn, where conditions ranging from c0 to ci are derived
by the prefixing exppartial part and conditions ranging from ci+1 to cn are derived by the
remaining part in tcase, the generation-based symbolic execution engine would only flip
the latter conditions, while keep the former unchanged in test-case generation.

5. Analysis-Time EXP Generation

Given a specific POC input, the analysis-time EXP generation component performs
concolic analysis along the corresponding trace of the target program. During this process,
ExpGen actively records the leakage events that happened alongside the trace, and upon
discovering an exploitable state, either tries to forge a leakage event if no leakage context
has yet been recorded so far, or directly applies known exploitation techniques based on
the maintained leakage context, generating an analysis-time exploit that can carry out all
the necessary exploitation steps deriving complete exploitation of the vulnerable program
in the exact analysis-time environment.

Appl. Sci. 2022, 12, 6593 9 of 21

5.1. Address-Leakage Checker

During the runtime analysis of a specific execution, the address leakage checker
component checks if the execution trace constitutes address-leakage events. If so, the corre-
sponding leakage information would be recorded in the exploitation context, providing
references for exploitation technique applications when some exploitable state is reached.
In practice, we monitor three types of address-leakage events, namely, explicit address
leakage, implicit address leakage and forged address leakage.

Explicit address leakage denotes the situation where the execution directly sends
some address information to its output stream. This time, we record the leaked address
addrleak in the corresponding context, and keep the execution continue until an exploitable
vulnerability is encountered.

Implicit address leakage refers to occasions where the above explicit leakage does
not directly happen, but either the pointer of the output buffer or the origin of the output
content can be controlled. Take the program snippet shown in Figure 6 for example. Given
a POC input containing 1024 ‘\0’, the execution of the target program would pass through
the callage on printf at line 10. However, as we find the index variable that determines
the pointer on the output content can be influenced by the POC input during symbolic
execution, in such a case, we can bind address pointing to some known regions that contain
sensitive address information (e.g., the global offset table [26]) on the symbolic pointer
data + index× 4 to dynamically turn this implicit leakage into an explicit one.

Figure 6. A Demostration Example on Implicit Leakage.

Forged address leakage refers to states that would normallybe terminated due to
exception; however, under a certain transformation that breaches the consistency of the
execution state, they can be transformed into a partial exploitable state. Take Figure 1b
for example. Assume, in analysis time, we drive the target program with a POC input
containing 0x100 ‘A’s. Although this input would invoke the stack-overflow vulnerability
at line 12, triggering a sensitive address write operation on EIP when returning from
function f unc at line 15, we should not directly generate the final exploit input on the
exploitable site as we have not leaked any address layout information to bypass ASLR
yet. However, as the call on ‘printf’ at line 14 would print a string starting at an address
pointing to the stack frame of the function ‘func’ and the string content is controllable by
the external input, we can truncate the length of the string starting at buffer to 0x60 at that
state, and therefore turn the original crashing stack overflow into a forged information
leakage that would happen without triggering a segmentation fault. As the truncation
would breach the data consistency of input length, we generate a partial exploit input
that would trigger the forged information leak in the truncated context, and hope the
POC-generation engine described in Section 4 generates a new POC input that would
trigger some new vulnerability while absolutely triggeringthe forged leak event embodied
by the partial exploit.

Appl. Sci. 2022, 12, 6593 10 of 21

5.2. Exploitation-Technique Applier

During dynamic analysis, our exploitation technique applier monitors four types of
exploitable states, separately onStackEipHijack, onFuncPtrOverwrite, onFuncContentOver-
write and onStackEBPHijack. Table 1 demonstrates the related context that would be
recorded in these states. When ExpGen discovers some exploitable state, the corresponding
context information is recorded. The exploit-technique applier then schedules the avail-
able known exploitation techniques bound to this exploitable state, trying to generate an
analysis-time exploit input that can carry out all the necessary steps in complete exploita-
tion process. The bounds between the exploitable states and exploitation techniques are
shown in Figure 7.

Table 1. Specifications on Exploitable States.

Exploitable State Contexts to Record

onStackEipHijack the overwritten return pointer on stack, ESP and sequence of
symbolic bytes from ESP

onFuncPtrOverwrite the content of the overwritten function pointer

onFuncContentOverwrite the function pointer pointing the the overwritten content and
the size of the overwritten content

onStackEBPHijack the overwritten EBP on stack

Figure 7. Bounds between Exploitable States and Exploitation Techniques.

5.3. Exploit-Meta-Data Generator

As mentioned in Section 2.2.2, the gap between analysis-time exploit generation and
runtime attack session should be fixed in order to make the exploit input adaptable to
runtime exploitation. ExpGen separates this process into two stages, separately, a meta
data generation phase leveraging description information of the analysis-time exploit, and

Appl. Sci. 2022, 12, 6593 11 of 21

a runtime-exploit relocation phase performing the semantic-aware exploitation transplan-
tation. We introduce the former phase in this section, leaving the latter to Section 6.

Speaking more precisely, the exploit meta data should contain the necessary semantic
information necessary on the address space-layout-related parts in the generated exploit.
Therefore, during analysis time, we collect the address-space layout information containing
each module’s load base and size, the range of the stack region and the heap region. If
an address leakage happens, the leaked address is also collected. If some analysis-time
address is utilized by the exploitation-technique applier when scheduling some payload
arrangement techniques, the exact address is also recorded together with the final query
string of the complete SMT exploit constraint for later off-line relocation.

6. Runtime-Exp Relocation

When an exploit input is generated together with the corresponding meta data by
the analysis-time EXP generation engine, ExpGen employs runtime-EXP relocation to
make it adaptable to the real-world environment under evaluation. As demonstrated
in Figure 3, the runtime-EXP relocation consists of two parts, separately a leak analyzer
and a constraint-based relocator. This section illustrates how these two components work
together to fix the gap between analysis-time exploit generation and runtime vulnerability
exploitation.

6.1. Leak Analyzer

The main duty of the leak analyzer is to calculate the interaction sequence which the
runtime exploitation process should follow, and information about the leaked address
including the offset in the output stream, the output format, etc. We discuss how the
leak analyzer completes the above calculation through two dynamic analysis methods,
separately, an IO-sequence analysis and a leak-location analysis.

6.1.1. Io Sequence Analysis

Given a specific analysis-time exploit input seed0 and a target program P, an IO se-
quence defines the input/output actions that should happen during the runtime-exploitation
process on P with seed0 provided as the source of the input stream. For the simple program
demonstrated in Figure 1a, assume an analysis-time exploit Expanalysis containing two
parts, separately one with 0x60 ‘A’s and another with 0x64 ’B’s suffixed by 0x81915655, the
IO sequence IOSeq for Expanalysis is demonstrated below:

IOSeq = {IOEntry1 = {type = READ, len = 0x60},
IOEntry2 = {type = WRITE, len = 0x68},
IOEntry3 = {type = READ, len = 0x68},
IOEntry4 = {type = WRITE, len = 0x68}

}

Based on an open-sourced whole-system dynamic analysis platform, we filter out the
specific execution context for the target process through process monitoring, record the file
descriptors allocated for the IO stream, then dynamically hook the read and write system
calls that happened in the execution context. Once a read/write action happens on the
desired file descriptor, the corresponding information is recorded in the above form. When
the target process terminates, the complete sequence is recorded for further exploitation.

6.1.2. Leak-Location Analysis

Given the output stream of the target program, ExpGen employs leak-location analysis,
a dynamic analysis aiming to determine the range in the stream corresponding to a leaked
address, together with the format of the leaked content. With this information in mind, the
back-end-constraint-based relocator can dynamically extract the desired leaked addresses
at runtime for payload relocation.

Appl. Sci. 2022, 12, 6593 12 of 21

The leak-location analysis is implemented through a customized pwntool [27] script.
When the main executable is loaded into the process, our leak-location analysis script
collects the complete address-space layout information, and then interacts with the target
process in the exact order specified by the IO sequence derived in Section 6.1.1. During the
interaction, the leak-location analysis retrospects the output stream byte by byte in three
patterns, separately, the literal form, hexadecimal form and string form, trying to extract
some pointer-typed content pointing exactly to a module already loaded in the address
space. If successful, the desired information is gathered together for later use.

6.2. Dynamic Exploitation with Constraint-based Relocation

At the final stage, ExpGen synthesizes all the auxiliary information mentioned above,
transferring the analysis-time exploit into a well-suited one for the running process during
the exploitation session. Algorithm 1 shows the complete process.

Algorithm 1 Runtime Exploitation Session with Constraint Based Payload Relocation

Input:
The full duplex channel to connect to the target process, proc.
The analysis-time exploit input, Expanalysis.
The meta data on Expanalysis, ExpMd.
The IO sequence, IOSeq = {IOEntry1, IOEntry2, . . . , IOEntryn}, where IOEntryi(1 ≤
i ≤ n) is the record describing the ith IO action.
The leaked address descriptions, LADescs = {LADesc1, LADesc2, . . . , LADescn},
where LADesci (1 ≤ i ≤ n) characterizes the ith leaked address in the output stream.

Output:
1: smtSolver = SMTSolver()
2: contents = Expanalysis
3: sendIndex = 0
4: recvIndex = 0
5: LAIndex = 0
6: for each IOEntry ∈ IOSeq do
7: if IOEntry.type == READ then
8: sendIndex_end = sendIndex + IOEntry.len
9: proc.send(contents[sendIndex : sendIndex_end])

10: sendIndex = sendIndex_end
11: else if IOEntry.type == WRITE then
12: recvContent = proc.receive(IOEntry.len)
13: if recvIndex <= LADescsLAIndex.o f f set AND IOEntry.len + recvIndex >=

LADescLAIndex.o f f set + LADescLAIndex.len then
14: leakAddr = extractLeakAddr(recvContent,
15: LADescsLAIndex.o f f set− recvIndex,
16: LADescsLAIndex.len, LADescsLAIndex. f mt)
17: modBase = leakAddr− LADescsLAIndex.modO f f set
18: analysisAddrs = ExpMd.addr_slots[LADescsLAIndex.modName]
19: actualAddrs = relocAddrs(analysisAddrs, modBase)
20: smtConstraint = rewriteConstraint(ExpMd.smtConstraint,
21: analysisAddrs, actualAddrs)
22: content = smtSolver.query(smtConstraint)
23: LAIndex = LAIndex + 1
24: end if
25: recvIndex = recvIndex + IOEntry.len
26: end if
27: end for

Given the full duplex channel proc connected to the target process, the complete
exploit Expanalysis generated in analysis-time, the corresponding meta data ExpMd, the
IO sequence IOSeq, and the leaked address descriptions LADescs, the algorithm arranges

Appl. Sci. 2022, 12, 6593 13 of 21

the input/output actions in the exact order specified by IOSeq. When a READ action
should be performed, the corresponding region in content is located and then sent to the
target process through the send interface of proc. When a WRITE action is on demand,
that is, the target process sends back some data to us, we fetch the data through the
receive interface, and then check if an address leakage exists in by referencing description
LADescsLAIndex of the current anticipated leak address at line 13. If it is confirmed to
exist, the actually leaked address is calculated at line 14–16, on which we can obtain the
corresponding load base of the module M in which the leaked address resides (line 17). This
module base is then utilized to calculate the corresponding runtime addresses actualAddrs
for all the address values analysisAddrs used in analysis-time exploit generation that
resides in the same module at analysis time (line 18–19). We then derive an updated
exploit constraint by substituting analysisAddrs to actualAddrs in ExpMd.smtConstraint
(line 20–21). Through querying on this constraint, we can generate a new exploit (line 22)
correctly fixing the gap for module M between analysis-time and runtime. For ongoing
IO interactions, this updated exploit (line 21) would be used as source of input stream;
therefore, the updated exploit can be sent to the target process, executed normally in the
runtime address space-layout.

7. Evaluation

We implemented a prototype of ExpGen based on the fuzzer engine AFL++ [17],
whole-system binary symbolic execution engine S2E [18], SMT constraint solver Z3 [28],
and the exploit development library pwntools [27]. It consists of 2001 lines of C++ code on
the S2E side and 7804 lines of C code on the AFL++ side to construct the partial-exploit-
sensitive POC-generation component, 14,512 lines of C++ code on the S2E side generating
the analysis-time exploit, and 1022 lines of Python code synthesizing utilities provided by
pwntools and Z3 implementing dynamic exploitation on the vulnerability in the remote
process with constraint-based relocation performed on time.

In this section, we present the evaluation results of this system. These experiments
weer all carried out in a 64-bit Ubuntu 20.04.3 LTS system on a workstation with 64 G RAM
and Intel(R) i9-9880H CPU @ 2.30 GHz.

7.1. Benchmarks

The benchmarks we constructed to evaluate our system are demonstrated in Table 2.
These benchmarks are composed of six test programs, four programs from RHG 2021ljb chal-
lenge [29] held in China in November 2021, two programs from RHG 2021 challenge [30]
held in China in March 2021, four challenges from CTF events and four real-world ap-
plications with exposed vulnerabilities. These benchmarks are all 32 bit ELF user-mode
applications running under i386 architecture machines. These programs were collected
based on the following criteria.

• The benchmark programs should cover different types of vulnerabilities. As we can
see in Table 2, there are five types of memory-corruption vulnerabilities, separately,
integer overflow, format string, use after free, heap overflow and stack overflow,
covered in this collection. These are all memory-corruption vulnerabilities commonly
seen in binary programs.

• The benchmark programs should run in environments where ASLR is deployed,
and leaking an address is a must in the vulnerability-exploitation process. As for
the latter, there are two types of address leakage, separately, explicit leakage and
forge-needed leakage. In the former cases, the target program would intentionally
leak an address to the output channel, while, in the latter cases, when there exists no
such direct information leakage, the analysis engine has to forge an address leakage
event utilizing the vulnerabilities in the target program so as to carry out the complete
exploitability evaluation process.

• The real-world applications are mainly from user-mode applications with public
vulnerabilities. These programs take input either from the command line arguments,

Appl. Sci. 2022, 12, 6593 14 of 21

the environment variables or the standard input channel, sending output directly
through the standard output channel.

Table 2. Evaluation Benchmark.

Dataset Program Vulnerability Type Leakage Type

test programs

vul1 integer overflow forge-needed
vul2 integer overflow explicit
fmt1 format string vulnerability explicit
fmt2 format string vulnerability explicit

heap1 use after free explicit
heap2 heap overflow explicit

RHG 2021ljb

question5 stack overflow explicit
question6 stack overflow explicit
question8 format string vulnerability forge-needed

question13 stack overflow forge-needed

RHG 2021 prob1 stack overflow forge-needed
prob8 format string vulnerability forge-needed

plaidctf-2013 ropasaurusrex stack overflow forge-needed

bamboofox ret2libc3 stack overflow forge-needed

pwnable.tw start stack overflow forge-needed
unexploitable stack overflow forge-needed

real applications

ncompress 4.2.4
(CVE-2001-1413) stack overflow forge-needed

iwconfig v26 (BID-8901) stack overflow forge-needed
DNSTracer 1.9

(CVE-2017-9430) stack overflow forge-needed

rsync 2.5.7 (CVE-2004-2093) stack overflow forge-needed

We conducted experiments trying to answer the following two research questions,
with some results published at https://github.com/helios-ops/ExpGen.git.

• RQ1: Can ExpGen generates partial exploits that can leak a sensitive address locating
in the address space layout of the target programs more efficiently and effectively than
current test-case generation methods?

• RQ2: Can ExpGen generates an exploitation session able to exploit the target programs
in environments where ASLR is deployed, when crafting an address leakage is a must
in exploitation?

7.2. Effectiveness in Partial Exploit Input Generation

To answer RQ1, we compared ExpGen to open-sourced test-case generation engines.
These engines include AFL, AFL++, which are systems based on fuzzing, S2E, a state-of-art
symbolic execution engine, and QSYM, a well-known hybrid fuzzer. To determine whether
ExpGen could perform better than current systems in generating a partial exploit that can
successfully leak some runtime address information when fed to the target program, we
evaluated these systems under benchmarks whose leakage type is ‘forge-needed’ in Table 2.

We provide the same initial seed corpus to each engine in the conducted experiments.
We also allocate for each engine the same computation resources including the processor
cores, the memory limit, the time limit, etc. As ExpGen combines one AFL instance and
two S2E instances to generate partial exploits, we customized the other engines mentioned
above with the same computation capability including three logical processors, 64 GB
memory with a time quota lasting for 2 h. The specific configuration for each engine is
demonstrated in Table 3. We also provide an introspection process to check whether the
generated test cases can execute the same path executed by the desired partial exploit, or,

https://github.com/helios-ops/ExpGen.git

Appl. Sci. 2022, 12, 6593 15 of 21

what is more, leak some address information when fed to the target program. For the latter
case, the time cost in partial exploit generation was also calculated at runtime.

Table 3. Engine Configuration.

Engine Configuration Setup

ExpGen 1 AFL++ instance, 2 S2E instances

AFL 1 AFL master instance, 2 AFL slave instances

AFL++ 1 AFL++ master instance, 2 AFL++ slave
instances

S2E 3 S2E instances working in parallel

QSYM 1 PIN-based concolic executor, 1 AFL master
instance, 1 AFL slave instance

Figure 8 demonstrates the results. We can see that ExpGen is able to generate partial
exploits for the all list programs much more efficiently than other test-case generation
engines. We believe the main reason for this phenomenon lies in the exploitation awareness
uniquely exhibited by ExpGen. As for fuzzers such as AFL and AFL++, they generally
generate cluster-program inputs by the branch-coverage statistics. They often represent a
branch coverage by the first test case they encountered during generation time, discarding
other test cases that exhibit the same branch coverage. This philosophy does not work for
partial-exploit generation. As we can see from Figure 1, the path taken by the desired partial
exploit can be covered easily by test cases generated through some simple data mutation.
Thereby though carrying out an evident address-leakage feature, the exact partial exploit
would simply not be viewed as promising, missing the opportunity to participate in the
further round of test case generation. For S2E and QSym, their core symbolic-execution
parts classify each input by the path constraint it takes, also neglecting the exploitation
context information during test-case generation. ExpGen, however, because of its address
leakage sensitivity, can definitely identify out the interesting exploitation step carried out by
the partial exploit, marking it as a promising seed for further test-case generation, therefore
obtaining better results on this criterion.

Figure 8. Time Cost in Partial Exploit Generation of each Engines.

7.3. Effectiveness in Exploit Generation

To answer RQ2, we compared ExpGen with REX [13], an open-sourced automatic
exploit-generation engine developed by the Shellphish team. We choose from benchmarks

Appl. Sci. 2022, 12, 6593 16 of 21

listed in Table 2 that exhibits both ’explicit’ and ’forge-needed’ in leakage type, feed them
with partial exploits that can already cause an address-leakage event as the initial seeds,
test if they can generate exploit input at analysis-time and further try to perform complete
exploitation on the target programs.

Table 4 demonstrates the results. We can see that although REX can generate analysis-
time exploit successfully as ExpGen given the same partial exploit already embodying the
desired address leakage effect, it fails in actual exploitation on all the programs listed in
the benchmark, while ExpGen achieves complete success. We believe the main reason for
this huge difference lies in the novel runtime exploit relocation technique we outline in this
paper. Working as ExpGen’s back end, the runtime-exploit relocation engine dynamically
fixes the gap between the analysis-time address space layout and runtime address space
layout, therefore providing a unique advantage for ExpGen in complete automation of the
exploitability evaluation process.

Table 4. Experimental results of exploit generation.

Program Engine Exploit Generation Leakage Invoked PWN Ability

vul1 ExpGen ok forge-needed success
REX ok forge-needed fail

vul2 ExpGen ok explicit success
REX ok explicit fail

fmt1 ExpGen ok explicit success
REX ok explicit fail

fmt2 ExpGen ok explicit success
REX ok explicit fail

heap1 ExpGen ok explicit success
REX ok explicit fail

heap2 ExpGen ok explicit success
REX ok explicit fail

question5 ExpGen ok explicit success
REX ok explicit fail

question6 ExpGen ok explicit success
REX ok explicit fail

question8 ExpGen ok forge-needed success
REX ok forge-needed fail

question13 ExpGen ok forge-needed success
REX ok forge-needed fail

prob1 ExpGen ok forge-needed success
REX ok forge-needed fail

prob8 ExpGen ok forge-needed success
REX ok forge-needed fail

ropasaurusrex ExpGen ok forge-needed success
REX ok forge-needed fail

ret2libc3 ExpGen ok forge-needed success
REX ok forge-needed fail

start ExpGen ok forge-needed success
REX ok forge-needed fail

unexploitable ExpGen ok forge-needed success
REX ok forge-needed fail

ncompress 4.2.4 ExpGen ok forge-needed success
REX ok forge-needed fail

iwconfig v26 ExpGen ok forge-needed success
REX ok forge-needed fail

DNSTracer 1.9 ExpGen ok forge-needed success
REX ok forge-needed fail

rsync 2.5.7 ExpGen ok forge-needed success
REX ok forge-needed fail

Appl. Sci. 2022, 12, 6593 17 of 21

8. Discussion

This paper proposed ExpGen, a vulnerability exploitability evaluation solution for
binary programs running in environments where the ASLR vulnerability-mitigation tech-
nique is adopted. Different from current AEG solutions, which generally follow an one-step
exploit generation philosophy immediately crafting exploitable states that can directly hi-
jack control flow when reaching a vulnerability-triggering state, ignoring the intermediate
stages necessary to leak some address information from the target program’s address space
layout, ExpGen takes an iterative automation methodology employing three novel tech-
niques, separately, partial-exploit-sensitive POC generation, exploitation-context-sensitive
analysis-time exploit generation and dynamic runtime exploit relocation.

The partial-exploit-sensitive POC-generation mechanism constructs a bidirectional
enhancing hybrid fuzzer containing feedback-directed fuzzing and generation based sym-
bolic execution. On the feedback-directed fuzzing engine side, we make address leakage an
additional feedback source. On the generation-based symbolic-execution engine side, we
only flip the path conditions not embodied by the partial exploit, while keep the remainder
unchanged.

The exploitation-context-sensitive analysis-time exploit generation actively records the
leakage events happening during dynamic concolic execution, mimics known exploitation
techniques and schedules them according to the specific exploitable state met during analy-
sis, generating analysis-time exploit input that can carry out all the desired exploitation
steps in the analysis-time environment. This analysis-time exploit is then fed to the runtime
exploit-relocation engine, which by performing semantic aware payload relocation, makes
analysis-time exploit dynamically adaptable to the runtime exploitation session.

As demonstrated in Section 7, ExpGen obtains better results in partial-exploit gener-
ation than current test-case generation systems and is proven effective in automatically
evaluating exploitability on vulnerable programs running in the ASLR environment. How-
ever, there are still improvements that can be made on ExpGen. We list them below for
future works.

• Semantic-aware payload generation. AEG systems generally takes shellcode or ROP
sequence as payload to execute. When an exploitable state is discovered, the imitated
exploitation techniques all try to direct the hijackable control flow onto these payload.
However, as for current AEG systems, these payloads are often provided beforehand.
This would often fail when the payload to be constructed must follow a specific
constraint imposed by the program semantics. The automatic crafting of the desired
payload in the exploitable state with program semantics information in mind is
definitely a must for advanced AEG systems.

• Directed exploitable heap layout derivation. Automatic exploitable heap layout deriva-
tion is a critical problem for AEG systems when tackling heap-related vulnerabilities
including heap overflow, use-after-free (abbr. UAF), double-free, etc., as exploitation of
these vulnerabilities generally requires a specific POC input that can lead the program
to reach an exact heap region layout. Though several works including RELAY [31],
HAEPG [32], etc., have proposed some passive pattern-matching-based solutions
selecting out the execution states met with the prerequisite of some exploitable pattern
and then performing an AEG process upon them, directed automatic exploitable heap
layout deduction, however, we believe, is an important researching topic that can
enhance the efficiency in exploitable heap interaction sequence generation.

• Adaption onto multi-step exploitation automaton. Currently, ExpGen implements a
two-step exploitation automaton, one step for address leakage, the other control flow
hijack. This can, however, be easily adapted to multi-step exploitation automaton,
upon which we may be able to evaluate the compositional exploitability with multiple
vulnerabilities on hand.

Appl. Sci. 2022, 12, 6593 18 of 21

9. Related Work
9.1. Feedback-Directed Fuzzing

Since AFL [5] was proposed, feedback-directed fuzzing has become the most promising
fuzzing technique. Variants including honggfuzz [33], AFL++ [17] were proposed. These
fuzzers generally instrument binary programs through dynamic binary translation [34] or
dynamic binary instrumentation [35], then collect the runtime branch coverage information
during executions of the generated test cases. If a test case can trigger some new coverage
that has not been seen before, this test case is viewed as interesting, and the fuzzer would
later generate new test cases upon it.

The branch coverage is the original type of feedback a fuzzer collects from the target
program during the fuzzing stage. Motivated by this example, researchers have defined
many other types of feedback information and use these information to construct an ad-
vanced evolutionary fuzzer. IJON [36] provides several annotation techniques for analysts
to directly add customized feedback mechanisms onto the source code of the analyzed
programs. Angora [37] tracks the taint information alongside the execution to ncrease
branch coverage by solving path constraints without symbolic execution. GREYONE [38]
performs data-flow-sensitive fuzzing. It infers taint of variables through dynamic mon-
itoring, and, based on this information, dynamically makes decisions on which branch
to explore, which bytes to mutate and how to mutate in the fuzzing process. UAFL [39]
introduces a new type of feedback called ‘typestate’ and devises a typestate-guided fuzzer
to discover use-after-free vulnerabilities from the target programs.

9.2. Automatic Exploit Generation

Brumley et al. [40] introduced an automatic patch-based solution that can generate
exploit input for programs where patches for some vulnerabilities are available. Though
effective in five Microsoft programs, its exploitation automaton is only able to cover a small
fraction of vulnerability exploitation cases. In 2011, Thanassis Avgerinos et al. proposed
AEG [41]. AEG is, to our knowledge, the first end-to-end system for automatic exploit
generation. By implementing preconditioned symbolic execution and targeting symbolic
execution, it can automatically generate exploits for control-flow hijacking vulnerabilities.
One year later, MAYHEM [14] was proposed, enhancing AEG in hybrid symbolic execution
and index-based memory modeling. Huang et al. proposed CRAX [12]. Based on the
open-source binary symbolic execution engine S2E [18], CRAX dynamically monitors a
POC input for a specific vulnerability in a concolic execution way. By collecting the path
constraint and crafting the exploitable constraint, CRAX is able to generate exploits for
vulnerabilities including format string, stack overflow, etc.

Automatic exploit generation for heap-related vulnerabilities has also become a hot
research topic nowadays. Sean Heelan et al. proposed SHRIKE [42], a pseudo-random
black-box search algorithm that searches for the inputs required to place the source of a
heap-based buffer overflow or underflow next to heap-allocated objects that an exploit
developer, or automatic exploit-generation system, wishes to read or corrupt. However,
SHRIKE is only applicable to PHP programs. For binary programs, Deng et al. proposed
a pattern-based exploitability evaluation framework RELAY [31] capable of generating
an exploit input to evaluate metadata corruption vulnerabilities. Wang et al. proposed
revery [43], a system able to generate exploits on heap-related vulnerabilities with POC
input that cannot lead to the exploitable state provided. A novel layout-oriented fuzzing
technique and a control-flow stitching solution were also introduced in revery. Based on
revery, maze [44] was also proposed, modeling the heap-layouts techniques (such as heap
feng shui), and implementing automated heap-layout manipulation. Zhao et al. proposed
propose HAEPG [32], an automatic exploit framework that can utilize known exploitation
techniques to guide exploit generation.

However, none of the above AEG solutions make separate discussions and studies on
vulnerability exploitation in an ASLR environment. Austin Gadient proposed Marten [25],
which is, to our knowledge, the first attempt on this issue. However, as mentioned in

Appl. Sci. 2022, 12, 6593 19 of 21

Section 2.2.2, we find the relocation Marten performs on an analysis-time exploit is only in
a literal form, ignoring the complex semantic information imposed by the execution of the
target program; therefore it would fail in circumstances where the execution of a program
imposes complex constraint on the to-be-relocated parts of the analysis-time exploit. Our
method, however, because of the semantic aware runtime exploit relocation technique it
implements, can tackle this issue properly, providing solution much more complete than
Marten’s.

10. Conclusions

In this paper, we propose a novel two-step vulnerability-exploitability evaluation
solution ExpGen for binary programs running in an environment where ASLR is deployed.
We devise a partial-exploit sensitive POC-generation mechanism and exploitation context
sensitive analysis-time exploit generation scheme. These two techniques cooperate together
to generate an exploit input that can exercise all the necessary steps desired to tackle the
issue on vulnerability exploitation in an analysis-time ASLR environment. Then, through
the runtime exploit relocation technique we proposed, the gap between analysis-time
address-space layout and runtime address-space layout is fixed, providing a completely
automated exploitability-evaluation pipeline. Experimental results demonstrate that Exp-
Gen has advantages over current AEG solutions in both address-leakage exploit generation
and runtime exploitation session adaption.

Author Contributions: Conceptualization, H.H. and Y.L.; methodology, H.H. and Y.L.; software,
H.H. and Z.P.; validation, H.H.; investigation, H.H.; resources, Y.L. and Z.P.; writing-original draft
preparation, H.H.; writing-review and editing, H.H., Y.L., Z.P., K.Z., L.Y. and L.Z.; supervision, Y.L.
and Z.P.; project administration, Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by National Key Research and Development Project of China
(No. 2017YFB0802900).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to sincerely thank all the reviewers for your time and expertise
on this paper. Your insightful comments help us improve this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, M; Greene.A; Amini, P. Fuzzing: Brute Force Vulnerability Discovery; Addison-Wesley Professional: Boston, MA, USA, 2007.
2. Manès, V.J.M.; Han, H.; Han, C.; Cha, S.K.; Egele, M.; Schwartz, E.J.; Woo, M. The art, science, and engineering of fuzzing: A

survey. IEEE Trans. Softw. Eng. 2019, 47, 2312–2331.
3. King, J.C. Symbolic Execution and Program Testing. Commun. ACM 1976, 19, 385–394. https://doi.org/10.1145/360248.360252.
4. Cadar, C.; Dunbar, D.; Engler, D.R. KLEE: Unassisted and Automatic Generation of High-coverage Tests for Complex Systems

Programs. In Proceedings of the 8th USENIX Conf. on Operating Systems Design and Implementation, USENIX Association,
2008, OSDI’08, San Diego, CA, USA, 8–10 December 2008; pp. 209–224.

5. American Fuzzy Lop. Available online: https://lcamtuf.coredump.cx/afl/ (accessed on 21 April 2022).
6. Aschermann, C.; Schumilo, S.; Blazytko, T.; Gawlik, R.; Holz, T. REDQUEEN: Fuzzing with Input-to-State Correspondence. In

Proceedings of the Symposium on Network and Distributed System Security (NDSS), San Diego, CA, USA, 24–27 February 2019.
7. Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang, R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Driller: Augmenting

Fuzzing Through Selective Symbolic Execution. In Proceedings of the Proceedings 2016 Network and Distributed System Security
Symposium, San Diego, CA, USA, 21–24 February 2016. https://doi.org/10.14722/ndss.2016.23368.

8. Yun, I.; Lee, S.; Xu, M.; Jang, Y.; Kim, T. QSYM : A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 745–761.

9. !Exploitable Crash Analyzer Version 1.6. Available online: https://www.microsoft.com/security/blog/2013/06/13/exploitable-
crash-analyzer-version-1-6/ (accessed on 23 April 2022).

https://lcamtuf.coredump.cx/afl/
https://www.microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6/
https://www.microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6/

Appl. Sci. 2022, 12, 6593 20 of 21

10. He, L.; Cai, Y.; Hu, H.; Su, P.; Liang, Z.; Yang, Y.; Huang, H.; Yan, J.; Jia, X.; Feng, D. Automatically assessing crashes from heap
overflows. In Proceedings of the 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE),
Urbana, IL, USA, 30 October–3 November 2017; pp. 274–279. https://doi.org/10.1109/ASE.2017.8115640.

11. Cyber Grand Challenge (CGC) (Archived). Available online: https://www.darpa.mil/program/cyber-grand-challenge (accessed
on 22 April 2022).

12. Huang, S.K.; Huang, M.H.; Huang, P.Y.; Lai, C.W.; Lu, H.L.; Leong, W.M. CRAX: Software Crash Analysis for Automatic Exploit
Generation by Modeling Attacks as Symbolic Continuations. In Proceedings of the 2012 IEEE Sixth International Conference on
Software Security and Reliability, Aithersburg, MD, USA, 20–22 June 2012; pp. 78–87. https://doi.org/10.1109/SERE.2012.20.

13. Shellphish. Rex. Available online: https://github.com/angr/rex (accessed on 23 April 2022).
14. Cha, S.K.; Avgerinos, T.; Rebert, A.; Brumley, D. Unleashing Mayhem on Binary Code. In Proceedings of the 2012 IEEE

Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 380–394. https://doi.org/10.1109/SP.2012.31.
15. Barrett, C.W.; Sebastiani, R.; Seshia, S.A.; Tinelli, C. Satisfiability Modulo Theories. Handb. Satisf. 2009, 185, 825–885.
16. Address Space Layout Randomization. Available online: https://en.wikipedia.org/wiki/Address_space_layout_randomization

(accessed on 22 April 2020).
17. Fioraldi, A.; Maier, D.; Eißfeldt, H.; Heuse, M. AFL++: Combining Incremental Steps of Fuzzing Research. In Proceedings of the

14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association, Boston, MA, USA, 10–11 August 2020.
18. Chipounov, V.; Kuznetsov, V.; Candea, G. The S2E Platform: Design, Implementation, and Applications. ACM Trans. Comput.

Syst. (TOCS) 2012, 30, 2:1–2:49. https://doi.org/10.1145/2110356.2110358.
19. Position-Independent Code. Available online: https://en.wikipedia.org/wiki/Position-independent_code (accessed on 22

April 2020).
20. Notes on Non-Executable Stack. Available online: https://web.ecs.syr.edu/~wedu/seed/Labs_12.04/Files/NX.pdf (accessed on

22 April 2020).
21. Huang, N.; Huang, S.G.; Deng, Z.K. Automatic Detection of Stack Overflow Attack in Canary. In Proceedings of the 8th

International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Harbin,
China, 19–21 July 2018; pp. 1418–1423.

22. Serebryany, K.; Bruening, D.; Potapenko, A.; Vyukov, D. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings of the
2012 USENIX Annual Technical Conference (USENIX ATC 12), Berkeley, CA, USA, 13–15 June 2012; USENIX Association: Boston,
MA, USA, 2012; pp. 309–318.

23. Return-to-Libc Attack. Available online: https://en.wikipedia.org/wiki/Return-to-libc_attack (accessed on 22 April 2020).
24. ret2text. Available online: https://www.ctfnote.com/pwn/linux-exploitation/rop/ret2text (accessed on 22 April 2020).
25. Gadient, A.J. Automated Exploitation of Fully Randomized Executables. Ph.D. Thesis, Massachusetts Institute of Technology,

Cambridge, MA, USA, 2019.
26. Global Offset Table (Processor-Specific). Available online: https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/6n3

3n7fe3/index.html (accessed on 11 June 2022).
27. Pwntools Github Repository. Available online: https://github.com/Gallopsled/pwntools (accessed on 22 April 2022).
28. De Moura, L.; Bjørner, N. Z3: An efficient SMT solver. In Proceedings of the International conference on Tools and Algorithms

for the Construction and Analysis of Systems, Budapest, Hungary, 29 March–6April 2008; pp. 337–340.
29. CQGameRHG2021ljb. Available online:https://github.com/chunqiugame/CQGame_RHG_2021ljb (accessed on 22 April 2020).
30. CQGameRHG. Available online: https://github.com/chunqiugame/CQGame_RHG (accessed on 22 April 2020).
31. Deng, F.; Wang, J.; Zhang, B.; Feng, C.; Jiang, Z.; Su, Y. A Pattern-Based Software Testing Framework for Exploitability Evaluation

of Metadata Corruption Vulnerabilities. Sci. Program. 2020, 2020, 8883746. https://doi.org/10.1155/2020/8883746.
32. Zhao, Z.; Wang, Y.; Gong, X. HAEPG: An Automatic Multi-hop Exploitation Generation Framework. In Detection of Intrusions

and Malware, and Vulnerability Assessment; Maurice, C., Bilge, L., Stringhini, G., Neves, N., Eds.; Springer: Berlin/Heidelberg,
Germany, 2020; Volume 12223, pp. 89–109, https://doi.org/10.1007/978-3-030-52683-2_5.

33. Honggfuzz. Available online: https://github.com/google/honggfuzz (accessed on 21 April 2020).
34. Bellard, F. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the FREENIX Track: 2005 USENIX Annual Technical

Conference, Anaheim, CA, USA, 10–15 April 2005; pp. 41–46.
35. Pin—A Dynamic Binary Instrumentation Tool. Available online: https://www.intel.com/content/www/us/en/developer/

articles/tool/pin-a-dynamic-binary-instrumentation-tool.html (accessed on 22 April 2020).
36. Aschermann, C.; Schumilo, S.; Abbasi, A.; Holz, T. IJON: Exploring Deep State Spaces via Fuzzing. In Proceedings of the 2020

IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; p. 16.
37. Chen, P.; Chen, H. Angora: Efficient Fuzzing by Principled Search. In Proceedings of the 2018 IEEE Symposium on Security and

Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 711–725. https://doi.org/10.1109/SP.2018.00046.
38. Gan, S.; Zhang, C.; Chen, P.; Zhao, B.; Qin, X.; Wu, D.; Chen, Z. GREYONE: Data Flow Sensitive Fuzzing. In Proceedings

of the 29th USENIX Security Symposium (USENIX Security 20), USENIX Association, Boston, MA, USA, 12–14 August 2020;
pp. 2577–2594.

39. Wang, H.; Xie, X.; Li, Y.; Wen, C.; Li, Y.; Liu, Y.; Qin, S.; Chen, H.; Sui, Y. Typestate-guided fuzzer for discovering use-after-free
vulnerabilities. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Korea, 5–11
October 2020; pp. 999–1010. https://doi.org/10.1145/3377811.3380386.

https://www.darpa.mil/program/cyber-grand-challenge
https://github.com/angr/rex
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Position-independent_code
https://web.ecs.syr.edu/~wedu/seed/Labs_12.04/Files/NX.pdf
https://en.wikipedia.org/wiki/Return-to-libc_attack
https://www.ctfnote.com/pwn/linux-exploitation/rop/ret2text
https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/6n33n7fe3/index.html
https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/6n33n7fe3/index.html
https://github.com/Gallopsled/pwntools
https://github.com/chunqiugame/CQGame_RHG_2021ljb
https://github.com/chunqiugame/CQGame_RHG
https://github.com/google/honggfuzz
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

Appl. Sci. 2022, 12, 6593 21 of 21

40. Brumley, D.; Poosankam, P.; Song, D.; Zheng, J. Automatic patch-based exploit generation is possible: Techniques and implications.
In Proceedings of the 2008 IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA, 18–22 May 2008; pp. 143–157.

41. Avgerinos, T.; Cha, S.K.; Hao, B.L.T.; Brumley, D. AEG: Automatic Exploit Generation. In Proceedings of the Network and
Distributed System Security Symposium, San Diego, CA, USA, 6–9 February 2011.

42. Heelan, S.; Melham, T.; Kroening, D. Automatic Heap Layout Manipulation for Exploitation. In Proceedings of the 27th USENIX
Security Symposium (USENIX Security 18), USENIX Association, Baltimore, MD, USA, 14–16 August 2018; pp. 763–779.

43. Wang, Y.; Zhang, C.; Xiang, X.; Zhao, Z.; Li, W.; Gong, X.; Liu, B.; Chen, K.; Zou, W. Revery: From Proof-of-Concept to
Exploitable. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON,
Canada, 15–19 October 2018; pp. 1914–1927. https://doi.org/10.1145/3243734.3243847.

44. Wang, Y.; Zhang, C.; Zhao, Z.; Zhang, B.; Gong, X.; Zou, W. MAZE: Towards Automated Heap Feng Shui. In Proceedings of the
30th USENIX Security Symposium (USENIX Security 21), USENIX Association, virtual, 11–13 August 2021; pp. 1647–1664.

	Introduction
	Motivation Example
	the Vulnerability and Exploitation Process
	Inspirations for AEG
	General Workflow of Current AEG Solutions
	Principles for Automatic Multi-Step Generation

	Design of ExpGen
	Partial-Exploit-Sensitive POC Generation
	Hybrid Fuzzer
	Partial Exploit Sensitive Fuzzing

	Analysis-Time EXP Generation
	Address-Leakage Checker
	Exploitation-Technique Applier
	Exploit-Meta-Data Generator

	Runtime-Exp Relocation
	Leak Analyzer
	Io Sequence Analysis
	Leak-Location Analysis

	Dynamic Exploitation with Constraint-based Relocation

	Evaluation
	Benchmarks
	Effectiveness in Partial Exploit Input Generation
	Effectiveness in Exploit Generation

	Discussion
	Related Work
	Feedback-Directed Fuzzing
	Automatic Exploit Generation

	Conclusions
	References

