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Abstract: Age prediction from X-rays is an interesting research topic important for clinical applica-
tions such as biological maturity assessment. It is also useful in many other practical applications,
including sports or forensic investigations for age verification purposes. Research on these issues
is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the
hands or images of the chest. In this study, we used low-resolution, dual-energy, full-body X-ray
absorptiometry images to train deep learning models to predict age. In particular, we proposed
a preprocessing framework and adapted many partially pretrained convolutional neural network
(CNN) models to predict the age of children and young adults. We used a new dataset of 910
multispectral images that were weakly annotated by specialists. The experimental results showed
that the proposed preprocessing techniques and the adapted approach to the CNN model achieved a
discrepancy between chronological age and predicted age of around 15.56 months for low-resolution
whole-body X-rays. Furthermore, we found that the main factor that influenced age prediction scores
was spatial features, not multispectral features.

Keywords: dual-energy absorption; convolutional neural network; bone age; age prediction

1. Introduction

Dual-energy X-ray absorptiometry (DXA) is the most widely used clinical tool to
diagnose osteoporosis. It permits a precise in vivo quantification of mineralization in
bones surrounded by soft tissue. DXA utilizes two different X-ray energies in order to
separate bone from soft tissue. The lower-energy beam is preferentially attenuated by
bone; however, the contributions of soft tissue to beam attenuation can be mathematically
derived. Radiation exposure to the patient is very small, usually of a magnitude similar
to daily background radiation. Older generation DXA scanners provided low-resolution
images that were solely used for patient positioning verification or regions of interest (ROI)
placement. The obtaining of images of much better quality from modern DXA scanners
has led to the development of many new diagnostic applications, such as the trabecular
bone score or vertebral morphometry [1].

Special DXA protocols permit the quantification of bone mineralization, fat mass, and
fat distribution. Improving the image quality and shortening the scanning time allows
a full-body scan to be performed and to quantify its components. Contemporary DXA
images of the full-body, containing information about the quantity and spatial distribution
of body components, opens the field for research on the new use of this old method.

This work is part of a larger project that addresses the following research question:
how deep learning methods could improve the diagnostic knowledge extraction from
whole-body, low resolution, dual-energy X-ray absorptiometry data, potentially related to
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a lower radiation dose for patients. Related diagnostic knowledge could be represented
in many forms. For example, it could be organized as a set of parameters that include
bone density (e.g., bone mineral density (BMD), bone mineral content (BMC)), fat density,
muscle density, osteoporosis scores, bone age, etc. The scanners used for testing allow a
digital version of the image to be obtained, but it is only used to check correct positioning of
the patient setting and correct placement of the regions of interest (ROI). The bone density
results are computed by specialized software based on the X-ray attenuation data that the
detector receives. For BMD measurement, it is important to eliminate soft tissue input,
a measurement based on bone alone. This is possible by scanning at two different X-ray
photon energies, followed by mathematical manipulation of the recorded signal; different
attenuations for bones and soft tissues at different photon energies are used. Furthermore,
the radiation dose for DXA is considerably lower than the radiation dose for conventional
radiography. Many other information and dependencies can be extracted from such images
that are not used in determining BMD. Many researchers focus on extracting information
from DXA and X-ray images.

In [2] the authors presented a study that described the comparison of the use of
DXA images together with X-ray images to assess bone age in children using the Bland
and Altman statistical methods. A high agreement was obtained between the bone age
assessments performed by DXA and the X-ray. Other studies also considered the problem
of using statistical methods, this time involving only BMD measurements. Castillo et al.
in [3] investigated whether there were correlations between age and gender and BMD,
and whether you could use this solution in forensic anthropology. The research was
carried out on 70 subjects and showed bone mineral density to be a useful technique
for gender and age data in forensic anthropology. Neural networks can also be used to
analyze X-ray images. Navega et al. in [4] used neural networks to create a method to
estimate age at death. The data sample consisted of 100 femora of female individuals. The
authors used a modified general regression neural network as a model for age prediction.
Using a nonprobabilistic artificial neural network, the mean absolute difference achieved
between the real and estimated age ranged from 9.19 to 12.03 years, depending on the
variables used in the modelling. The use of classic X-ray images is also applicable. Lee
et al. in [5] proposed using hand X-ray images to predict bone age. The images were
preprocessed (region of interest (ROI) segmentation, standardization and preprocessing of
input radiographs) and analyzed by the neural network, GoogLeNet. The solution was
validated using 8325 data samples. The accuracy achieved by the classification model was
within 2 years (<98%) and within 1 year (<90%) for a group of women and men. A similar
solution was presented by Iglovikov et al. in [6]. Bone age prediction was performed using
a database provided by the Radiological Society of North America (RSNA). Initially, the
images were processed: hand masks were extracted and all other objects were removed
(using positive mining utilizing U-Net architecture), key points were detected, and the
hands were placed on the images in one orientation and size (network inspired by the
VGG model). Bone age assessment was performed using two types of convolutional neural
network (CNN), regression and classification, as well as image division into three areas
(whole hand, carpal bones, metacarpals, and proximal phalanges). The smallest mean
absolute error (MAE) was obtained for the ensemble of classification and regression models
and the ensemble of regional models. This solution had the best accuracy with an MAE
equal to 6.10 months. Human age can also be estimated on the basis of chest images using
CNNs. In solution [7], Karargyris et al. created such a solution based on the DenseNet-169
model, which was pretrained on ImageNet. They used the Chest X-ray dataset from the
National Institutes of Health, which includes 10,000 chest images from 30,000 different
people. They obtained the following results: for a margin of ±4 years, a sensitivity equal
to 0.6745 and for ±9 years the value was −0.9441. Similarly, Xue et al. [8] used X-rays to
classify gender. The dataset contained 2066 chest X-ray images (1097 women and 969 men).
The images were preprocessed and then the features were extracted from them using the
following neural networks: AlexNet, VggNet, GoogLeNet, and ResNet (for comparison).
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The classification was carried out using a support vector machine (SVM) and a random
forest. The best result was obtained for the VGGNet-16 + SVM classifier, which had an
accuracy of 86.6% with 5 times cross-validation. The VGGNet-16 is a version of VGG family
of models (Visual Geometry Group, from the Department of Science and Engineering of
Oxford University) with 16 layers (13 convolutional layers and 3 dense layers). Spine X-ray
images can also be used to classify gender. Xue et al. in [9] developed a sequential CNN
model, trained from scratch using spine images. An accuracy of 88.9% was obtained for
the original spine images. Data analysis using the DenseNet-121 model pre-overtrained in
the ImageNet data range gave an accuracy of 99% for cervical images and 98% for lumbar
images. In [10] Marouf et al. proposed a hybrid methodology for gender classification
and bone age estimation, using the trained VGG-16 model and the RSNA dataset. They
achieved an accuracy of 99% for the gender classification and for age classification they
achieved an MAD 0.50 years and an RMS of 0.67 years. In [11] Mumtaz et al. proposed
to examine a method based on CNNs and left-hand radiographs of children to determine
gender. Using class activation mapping (CAM) they showed that the lower part of the
palm around the wrists (wrist) was more important in determining the gender of the child.
The model accuracy was 98%, given the unfinished skeleton of the children. Age can also
be determined from whole-body CT scans. In [12], Nguyen et al. presented a solution
based on deep hierarchical features. They used data from an anonymous hospital that
contained 813 whole-body CT bone images. They tested the fine-tuned VGGNet, ResNet,
and GoogLeNet models and a modified model, which was based on VGGNet for automatic
BAA. The best result was achieved for modified VGGNet with hierarchical features, which
had an MAE of 4.856 months. Castillo et al. proposed a model for predicting bone age
based on the VGG16 with an attention mapping-focused architecture. Using the RSNA
dataset [13] they achieved an MAE equal to 11.45 months for both genders. Liu et al.
evaluated a proposed two-stage bone age assessment network with ranking learning using
the same dataset. They achieved an average MAE of 6.05 months [14]. Salim and Hamza
introduced a two-stage approach for bone age assessment using segmentation and ridge
regression [15]. The MAE of the proposed solution was equal to 6.38 months.

Here, we focused on age prediction for children and young adults from dual-energy
X-ray images. This could be important in many applications, including in the proper
assessment of a child’s development. The agreement between chronological age and
developmental advancement is an important indicator of the health condition of children.
However, under pathological conditions, age predictions based on other methods (e.g.,
bone age) may better reflect biological maturity [16]. In this work, our contributions were
as follows:

• We built a dataset of low-resolution, dual-energy X-ray absorptiometry images with
annotations performed by specialists. This was probably one of the first datasets
containing whole-body, dual-energy X-ray absorptiometry images (to the best of
our knowledge).

• We proposed a CNN-based age prediction framework for low-resolution, whole-body,
dual-energy X-ray absorptiometry images.

• As a result of our experiments, we demonstrated that age could be successfully
predicted from low-resolution images, so potentially even less radiation energy could
be used at the data-acquisition phase.

The rest of the paper is structured as follows. In Section 2, the methodology used in
the study is described. The results are presented in Section 3 and discussed in Section 4.
The study is concluded in Section 5.

2. Materials and Methods
2.1. Data Acquisition

All data used in this study were obtained from the Hologic QDR 4500 X-ray Bone
Densitometer (Hologic Inc., Marlborough, MA, USA). This model has a single switched
pulse, dual-energy X-ray tube operating at 100 and 140 kVp. The average tube current is
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equal to 5 mA at a 50% duty cycle. It can be used to scan the lumbar spine (in anterior-
posterior and lateral projections), the proximal femur, and the whole body. The maximum
scan area is 195 cm × 65 cm. Each original sample generated by this device contains high-
and low-resolution data. In this study we focused on raw, low-resolution, whole-body data.
Each sample contained six images that were not preprocessed, corresponding to high- and
low-energy beams passing through a rotating drum filter with three different segments that
had radio-opacities equivalent to tissue, bone, and air and then a patient (Figure 1). In the
remaining part of the paper, we refer to these by combining the keywords of energy level
and the segment of the drum filter (e.g., the low bone image corresponds to low energy
passing through the segment of the filter with radio-opacities equivalent to bone). The
height of the low-resolution images was variable from 84 to 128 pixels. The width was
constant and was equal to 106 pixels.

Figure 1. The first six images correspond to low- and high-energy beams passing through different
segments of the filter and the patient: (a) low air, (b) low tissue, (c) low bone, (d) high air, (e) high
tissue, (f) high bone. Images (g–i) are a result of the subtraction of high-energy images from low-
energy images.

2.2. Dataset

The dataset consisted of 1455 samples of the full body DXA scan, but according to
the objective of this study we only used examples from young subjects (patients up to
230 months old at the time of the DXA scan). After reduction, the dataset included 910 sam-
ples, 570 for males and 370 for females (the mean age was equal to 140.4 ± 42.1 months).
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This dataset is referenced further in the text as the DXA dataset. Considering a small
number of samples, the influence of data augmentation on the analyzed deep learning
models was tested. The data augmentation operations (selected experimentally) were
rotation of the image by an angle of 0 to 5 degrees and random horizontal flip of the image.
The augmented dataset is further referenced in the text as the augDXA dataset. The age
of the subjects at the time of the DXA scan, which was used as labels, was determined by
subtracting the birth date from the date of the DXA scan. All retrospectively used clinical
and image data were collected from 2015 to 2020 at Gdansk Medical University. The use
of DXA scans in the study was approved by the Independent Bioethics Committee for
Scientific Research at the Medical University of Gdańsk.

To obtain an appropriate representation of the data in the training and validation sets,
the samples were categorized by age of the subject as follows: group 1—age from 0 to
96 months (170 samples), group 2—age from 97 to 132 months (215 samples), group 3—age
from 133 to 156 months (177 samples), group 4—age from 157 to 180 months (168 samples),
and group 5—age from 181 to 230 months (184 samples), see Figure 2. The samples in all
groups were proportionally divided into a training set (80%) and a validation set (20%)
in a five-fold cross-validation experiment. Validation samples were not used during the
training. The validation set was used as a test set (during the training the validation set
was used only to monitor the training process, it was not used in any decision making, e.g.,
early stopping, etc.).

Figure 2. The data in groups with a similar number of samples were divided proportionally into
training and validation datasets based on age.

Data Preparation

Three different variants of the three-channel images were investigated. In the first case
the arrays corresponding to high energy were subcontracted from arrays corresponding to
low energy for each filter. In the second case, the three-channel images were assembled
from the low- and high-energy arrays separately. In the third variant, the images were
assembled from three copies of the same array (e.g., three copies of a low tissue array).

Next, in all cases, the obtained images were normalized globally to a value from −1
to 1, channel-wise. The normalization range was selected on the basis of the model used.
Lastly, the images were cropped symmetrically and padded to a size of 128 × 128 pixels.
Each channel of a single image was padded with a constant value equal to the mean of
24 pixels selected from the background image.
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2.3. Tested Model and Training Procedure

In our study we adopted different base models (MobileNetV2 [17], VGG16 [18],
InceptionV3 [19], ResNet50V2 [20], and InceptionResNetV2 [21]) without top layers, loaded
with ’ImageNet’ weights and added layers (Figure 3). Added layers included the following:
a global average pooling layer (GA) or depthwise convolution layer (DW) with a 4 × 4
or a 2 × 2 filter (depending on the base model), two dropout layers with a 0.35 dropout
parameter, a dense layer with 128 filters, and a regression layer with 1 filter. The ReLU
activation function was used in both the convolution layers and the linear activation
function was used in the depthwise convolution layer. The number of convolutional and
dropout layers, as well as the number of filters and dropout parameters, were selected after
multiple experiments. The loss function was defined as the mean square error, and the
metric as the mean absolute error.

Figure 3. Scheme of proposed models used in the study. A preprocessed input image was first
processed by the base model. Five different base models were investigated as indicated by the blue
block. Features extracted by the base model were provided as an input for the head model. The first
layer of the head model was either depthwise convolution or global average pooling. Both methods
were investigated together with the fixed set of remaining layers of the head model presented in
the figure.

The first experiment (Experiment I) consisted of a five-fold cross-validation using
different base models with added layers and the DXA dataset. In the second experiment
(Experiment II), the influence of data augmentation on the selected model (MobileNetV2
DW) was evaluated. In both experiments, the number of epochs was set to 200, and
the base learning rate was set to 0.0001. All layers in the base models were frozen. The
number of parameters in each model is presented in Table 1. In the third experiment
(Experiment III), we evaluated the one selected model on the RSNA 2017 [22] bone age
dataset. The depthwise convolution layer was adjusted to larger images (12 × 12 filter),
and the number of epochs was reduced to 50. Additionally, we evaluated the model
presented in [13] (the attention-based model) using the DXA and augDXA datasets. The
images were padded to 224 × 224 pixels and the model was adapted to the same size. In
the fourth experiment (Experiment IV), we investigated whether the usage of the DXA
images improved prediction of age in comparison to single-energy X-ray images. For
this purpose, the five-fold cross-validation (the MobileNetV2 DW model) was conducted
using the images obtained by concatenating the low- and high-energy arrays separately.
Similarly, the images consisting only of the copies of arrays corresponding to low/high
energy passing one of the filters were tested. All calculations were performed at the
NVIDIA DGX-1 station available at the AI Living Lab, Gdansk University of Technology.
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Table 1. Number of parameters for each of the adapted models.

Adapted Model Total Parameters Trainable Parameters

MobileNetV2 DW 2,443,841 185,857
MobileNetV2 GA 2,422,081 164,097
VGG16 DW 14,789,185 74,497
InceptionV3 DW 22,075,425 272,641
ResNet50V2 DW 23,862,017 297,217
InceptionResNetV2 DW 54,541,281 204,545

3. Results

The performance of each model was evaluated with the mean absolute error (MAE) [23]
expressed in months. For each fold, the experiment was conducted five times and the
mean MAE value and related standard deviation were calculated. Additionally, the mean
MAE value and standard deviation were calculated for all folds. The vanilla gradient
method [24] was used to inspect the resulting models, in which body parts were processed
to obtain the final regression results. To use the vanilla gradient method, the regression
model (MobileNetV2 DW) was converted to a classification model.

3.1. Experiment I—DXA Dataset

The results of Experiment I are presented in Table 2. The best mean result was achieved
for the MobileNetV2 DW model. The calculated average MAE ranged from 13.39 months
to 16.67 months (the mean MEA was equal to 15.56 months). The lowest standard deviation
calculated for all folds was achieved for the ResNet50V2 DW model (−0.58 months). It is
important to underline that the mean MAE obtained for the MobileNetV2 DW was lower
by 1.52 months than that for MobileNetV2 GA. Figure 4 shows the learning curves for
MobileNetV2 DW.

Figure 4. Training process for the MobileNetV2 DW model using the DXA dataset. Both figures
present mean and standard deviation calculated from all folds in a single test. The top right part of
the figure shows the scaled part of the plot for the last 100 epochs.
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Table 2. Average values and standard deviations of MAE obtained in Experiment I—different models,
DXA dataset. The mean MAE and standard deviation in the last row were calculated from all folds.

Fold MobV2 DW MobV2 GA VGG16 DW InceptionV3 DW ResNet50V2 DW Inception ResNetV2 DW

1 13.39 ± 0.11 15.70 ± 0.09 15.64 ± 0.10 15.63 ± 0.07 14.67 ± 0.16 15.27 ± 0.10
2 16.29 ± 0.09 17.73 ± 0.06 16.25 ± 0.05 16.72 ± 0.13 15.72 ± 0.15 16.99 ± 0.14
3 16.58 ± 0.07 17.58 ± 0.42 16.49 ± 0.13 17.14 ± 0.37 16.03 ± 0.10 17.56 ± 0.08
4 14.85 ± 0.01 16.31 ± 0.07 16.74 ± 0.05 17.09 ± 0.03 15.95 ± 0.10 17.69 ± 0.12
5 16.67 ± 0.07 18.11 ± 0.07 18.30 ± 0.03 18.8 ± 0.065 16.39 ± 0.11 18.17 ± 0.07

MAE 15.56 ± 1.26 17.08 ± 0.92 16.69 ± 0.89 17.09 ± 1.04 15.75 ± 0.58 17.14 ± 1.00

MAE [months]: mean and standard deviation

3.2. Experiment II—augDXA Dataset

The results of Experiment II are presented in Table 3. After data augmentation,
improvement could be observed (a decrease in the average MAE up to 1.2 months) for
each fold with the exception of the first (the model MobileNetV2 DW).The calculated
average MAE ranged from 13.77 months to 15.82 months (the mean MEA was equal to
15.02 months). Figure 5 shows the learning curves for the model MobileNetV2 DW using
the augDXA dataset.

Table 3. Average values and standard deviations of MAE obtained in Experiment II—MobileNetV2
DW model, augDXA dataset. The mean MAE and standard deviation in the last row were calculated
from all folds.

Fold MAE [Months]: Mean and SD

1 13.77 ± 0.12
2 15.82 ± 0.09
3 15.75 ± 0.11
4 14.30 ± 0.04
5 15.47 ± 0.09

MAE 15.02 ± 0.83

Figure 5. Training process for the MobileNetV2 DW model using the augDXA dataset. Both figures
present mean and standard deviation calculated from all folds in a single test. The top right part of
the figure shows the scaled part of the plot for the last 100 epochs.



Appl. Sci. 2022, 12, 6608 9 of 13

3.3. Experiment III—RSNA 2017 Challenge Dataset and Attention Model

The results of Experiment III are presented in Table 4. The MobileNetV2 DW model
obtained a mean MAE equal to 16.29 months using the RSNA 2017 dataset. Figure 6
shows the learning curves for the MobileNetV2 DW model for the RSNA 2017 dataset. The
attention-based model achieved a mean MAE that was equal to 19.48 months for the DXA
dataset and 17.05 months for the augDXA dataset. It should be noted that the mean MAE
obtained for the attention-based model (the DXA dataset) was greater by 3.92 months than
the MobileNetV2 DW model. The learning curves are shown in Figure 7—the temporal
increase in MAE for the validation dataset can be observed after the fourth epoch.

Table 4. Mean values and standard deviations of MAE obtained in Experiments I, II, and III.

Summary

Model Dataset MAE [Months]: Mean and SD

MobileNetV2
DW

DXA 15.56 ± 1.26
augDXA 15.02 ± 0.83
RSNA 2017 16.29 ± 0.19

Attention
Model

DXA 19.48 ± 0.77
augDXA 17.05 ± 0.55
RSNA 2017 11.45 [13]

Figure 6. Training process for the MobileNetV2 DW model using the RSNA 2017 challenge dataset—
mean and standard deviation calculated from five tests.

Figure 7. Training process for the attention model using the DXA dataset—mean and standard
deviation calculated from five tests.
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3.4. Experiment IV—The Single Energy X-ray Images

The results of Experiment IV are presented in Table 5. Regardless of the type of image
used in the prediction, the obtained values of mean MAE and standard deviation differed
only slightly (the maximum difference in mean MAE was equal to 0.5 months).

Table 5. Mean values and standard deviations of MAE obtained in Experiment IV—MobileNetV2
DW, different images.

Images MAE [Months]: Mean and SD

DXA 15.56 ± 1.26
High energy 15.78 ± 1.13
Low energy 15.43 ± 1.04
High air 15.93 ± 1.15
Low air 15.61 ± 1.27
High tissue 15.74 ± 1.13
Low tissue 15.52 ± 1.29
High bone 15.89 ± 1.04
Low bone 15.47 ± 1.04

3.5. Vanilla Gradient

The results of the vanilla gradient algorithm are shown in Figure 8. Analyzing the
results of the algorithm, it could not be clearly stated which body parts were processed
to obtain the final classification result, but it was noted that the features determining the
classification of the DXA image were mostly within the outline of the body. This confirmed
that the model predicted, based on the image of the human body, not the background.

Figure 8. The results of the vanilla gradient algorithm were placed on top of the original image, and
its colour was changed to teal.

4. Discussion

The proposed solution achieved satisfying results for the age estimation using the
full-body, low-resolution DXA scan with a mean MAE equal to 15.56 months. First, the
results obtained were the best among all evaluated models. Second, obtaining an MAE = 0
was not expected due to differences in the body development of young subjects (including
pathological changes). For example, hypothyroidism delays skeletal development and
thyrotoxicosis accelerates bone maturation [25]. The analyses of samples with greater differ-
ences between actual and predicted age could, for example, indicate a connection between
the MAE and different disorders, such as the bias in bone mineralization during maturation.
Therefore, the difference between chronological age and DXA-related biological age could
be potentially important for diagnostics purposes [25,26].

It it necessary to point out that the prediction of age using single X-ray and DXA
images yielded similar results. This might suggest that spatial (geometrical) features are the
dominant factor in age prediction using the investigated CNNs. The results of the vanilla
gradient algorithm seemed to confirm this statement, as the distribution of the points of
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interest, though not perfectly even, lacked any clusters. The issues related to the connection
of DXA images and different parameters (e.g., BMD) will be the subject of future work.

Different configurations of the models were investigated. Firstly, we investigated
different base models, which proved to be efficient for other computer vision tasks in
healthcare (MobileNetV2 [17], VGG16 [18], InceptionV3 [19], ResNet50V2 [20], and Incep-
tionResNetV2 [21]). All of these base models showed similar results. However, introducing
the depthwise convolution layer instead of the global pooling layer improved the model
quality, reducing the MAE value by 1.52 months. Investigated data-augmentation methods
also reduced the MAE value (by 0.54 months).

The proposed framework was compared with known experiments for the RSNA
2017 dataset. The result of the cross-check analysis showed the importance of adjusting
model architecture to the analyzed dataset. For example, the validation results of the
retrained attention-based model [13] for our dataset showed much worse results than for
the proposed model. The difference in the related mean MAE values was approximately
4 months. In the cross-check we validated our framework for the RSNA 2017 dataset. The
results obtained were worse by less than 5 months (mean MAE value). Other different
models were proposed for the RSNA 2017 dataset. For example, in [14] the authors achieved
a mean MAE equal to 6.05 months. In another paper [15] authors obtained mean MAE
equal to 6.38. However, it is important to underline that the images in the RSNA 2017
dataset had a minimal resolution 512 × 512 pixels and represented a slightly different
domain (only the hand). For comparison purposes only, the size of the hand in images
used for this study was, e.g., about 15 × 15 pixels.

For the MobileNetV2 DW model, the list of five samples from the validation set
with the greatest MEA was determined for each fold in two out of five repetitions of
Experiment I (a total of 25 samples—14 females and 11 males). In both repetitions, exactly
the same samples were determined, although their position on the list was different (with
the exception of the sample with the greatest MEA for each fold, they remained at the same
position). The difference between the mean age of all samples and the mean age of the
25 worst samples was within the standard deviation. Similarly, also for augDXA DW the
list of five samples from the validation set with the greatest MEA was determined for each
fold. Of the total of 25 samples on the list in Experiment I, 17 were repeated on the list
in Experiment II (including the sample with the greatest MEA for each fold). Ten of the
samples with the greatest MAE were submitted for consultation with the radiologist. The
consultations indicated that the majority of those samples were obtained from subjects
that were too tall or too short for their age. This also supported the statement that the
convolutional neural network predicted age on the basis of geometric features.

5. Conclusions

It was shown that it was possible to estimate the age of a subject based on their low-
resolution image obtained from a DXA scan, although the convolutional neural network
focused on spatial features in the area of the whole body. As it was experimentally verified,
for low-resolution images the multispectral features did not improve the final results. It is
worth noting that both the usage of the depthwise convolution layer and data augmentation
improved results. Future work should focus on extraction information correlated dual-
energy X-ray absorptiometry, by taking into account the different parameters (e.g., bone
mineral density) and additional metadata (e.g., gender), coupled with image segmentation.
We also plan to expand the conducted study, by investigating different regression models.
It is necessary to point out that all data used in this study were collected with the same
densitometer. To properly validate the proposed solution, the DXA data from other sources
should be obtained and tested. Lastly, the additional experiments should be conducted
using higher resolution images (e.g., DXA scans of body parts).
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