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Abstract: In recent years, the continuous development of artificial intelligence has largely been 
driven by algorithms and computing power. This paper mainly discusses the training and inference 
methods of artificial intelligence from the perspective of computing power. To address the issue of 
computing power, it is necessary to consider performance, cost, power consumption, flexibility, and 
robustness comprehensively. At present, the training of artificial intelligence models mostly are 
based on GPU platforms. Although GPUs offer high computing performance, their power consump-
tion and cost are relatively high. It is not suitable to use GPUs as the implementation platform in 
certain application scenarios with demanding power consumption and cost. The emergence of high-
performance heterogeneous architecture devices provides a new path for the integration of artificial 
intelligence training and inference. Typically, in Xilinx and Intel’s multi-core heterogeneous archi-
tecture, multiple high-performance processors and FPGAs are integrated into a single chip. When 
compared with the current separate training and inference method, heterogeneous architectures 
leverage a single chip to realize the integration of AI training and inference, providing a good bal-
ance of training and inference of different targets, further reducing the cost of training and imple-
mentation of AI inference and power consumption, so as to achieve the lightweight goals of com-
putation, and to improve the flexibility and robustness of the system. In this paper, based on the 
LeNet-5 network structure, we first introduced the process of network training using a multi-core 
CPU in Xilinx’s latest multi-core heterogeneous architecture device, MPSoC. Then, the method of 
converting the network model into hardware logic implementation was studied, and the model 
parameters were transferred from the processing system of the device to the hardware accelerator 
structure, composed of programmable logic through the bus interface AXI provided on the chip. 
Finally, the integrated implementation method was tested and verified in Xilinx MPSoC. According 
to the test results, the recognition accuracy of this lightweight deployment scheme on MNIST da-
taset and CIFAR-10 dataset reached 99.5 and 75.4% respectively, while the average processing time 
of the single frame was only 2.2 ms. In addition, the power consumption of the network within the 
SoC hardware accelerator is only 1.363 W at 100 MHz. 
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1. Introduction 
In recent years, CNN has been widely used in artificial intelligence, especially in the 

application of image classification [1,2]. However, due to the large amount of computation 
of convolutional neural networks, GPUs are traditionally used for training and then de-
ployment. Although this method solves the problem of high computation requirements 
in CNN, it cannot address the problems of flexibility, cost, and power consumption in the 
application of CNN [3,4]. In specific scenarios, such as astronomical devices and Internet 
of Things devices, it is often difficult to satisfy the energy consumption of GPUs [5]. There-
fore, researchers have proposed the method of CNN acceleration using FPGA, ASIC, etc., 
and compared them with GPUs [3,6,7]. In addition, the separation of training and 
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deployment makes the adaptability of the neural network to the environment less than 
ideal. For example, in some complex application scenarios, the parameters of the network 
model are also required to be adjusted dynamically rather than remaining constant. In a 
heterogeneous architecture device based on FPGA, on the one hand, a high-performance 
multi-core processor is integrated, which makes it possible to train the network and trans-
mit the parameters of the neural network in the device. On the other hand, the hardware 
accelerator structure of CNN is realized in the programmable logic part of the device, so 
that a neural network can achieve the optimal power consumption, cost, and performance 
[8–10]. At the same time, it overcomes the poor flexibility caused by the separation of 
training and inference in the traditional deployment approach, and significantly improves 
the responsiveness of AI and the ability to adapt to the needs of different scenarios. Figure 
1 shows the architecture of the lightweight deployment implementation approach pro-
posed in this paper. 

 
Figure 1. Implementation method of artificial intelligence lightweight deployment based on heter-
ogeneous architecture. We train the neural network in PS, and then send the parameters to the ac-
celerator in PL. 

To sum up, the main contributions of this paper are listed as follows: 
1. Taking advantage of the characteristics of the heterogeneous architecture, we pro-

pose a new lightweight deployment scheme of a neural network model, which ena-
bles AI applications in different scenarios to achieve a better balance between flexi-
bility, performance, cost, power consumption and anti-interference capabilities. The 
integrated deployment of neural network training and forward inference accelera-
tion with flexible weight adjustment has been realized. 

2. Using Programable Logic (PL) of MPSoC, the balance between pipeline and parallel-
ism was realized in the neural network layer based on the limited resources, and the 
performance of neural network forward inference was optimized. After optimizing 
and packaging each layer, a flexible and customizable hardware-accelerated IP li-
brary was constructed. 
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3. We deployed a neural network training framework in the Processing System (PS) of 
MPSoC to support neural network training. The automatic network weight parame-
ter migration script was written to realize the data processing automation of light-
weight deployment integration. 
The rest of this article is as follows: Section 2 introduces some of the related pioneer-

ing work. Section 3 describes the lightweight deployment method of the neural network, 
introducing our architecture characteristics and the construction method of the LeNet-5 
network training in the PS side and IP core acceleration in the PL side. Section 4 introduces 
the experiment of inference accelerated IP core, including the design of the SoC and veri-
fies the function of accelerated IP core. In Section 5, the performance of the accelerator IP 
core is analyzed according to the experiment results. Then, we summarize our contribu-
tion and look into the future research direction in Section 6. Finally, we summarize the 
work of this paper in Section 7. 

2. Related Work 
The concept of CNN originated in the 1960s. Hubel and Wiesel, two neuroscientists, 

discovered the information processing pattern in the biological visual system and thus 
proposed the concept of receptive fields, proving that the visual cortex is hierarchical, 
which is the theoretical basis of the convolutional neural network. In 1990, Lecun con-
ducted supervised learning on Neocoginitro network, applied back propagation to the 
training process, and made subsequent improvements. In 1998, Lecun proposed an artifi-
cial neural network with a multi-layer structure, which is the famous LeNet-5 model [11]. 
In order to solve complex problems in various application scenarios, scientists have con-
tinued to improve and innovate CNN and put forward different models. As a typical rep-
resentation of CNN, LeNet-5 contains the basic modules of CNN, namely, the convolution 
layer, pooling layer, activation layer, and full connection layer. 

The MNIST data set is a large handwritten character data set, including handwritten 
numeral images from zero to nine, with 60,000 training images and 10,000 test images. 
The image size is 28 × 28 pixels, and is a single-channel grayscale image [12]. The CIFAR-
10 data set is suitable for a small data set of universal object recognition and contains 10 
categories of RGB color images with a size of 32 × 32 pixels [13]. The 10 categories include 
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The dataset contains 
a total of 50,000 training images and 10,000 test images. In general, these two datasets are 
used to train various image processing systems and are widely used in the field of deep 
learning. 

As mentioned in the Introduction, neural networks are algorithmically complex and 
require huge computing power for training and inference. From the perspective of a light 
weight and flexibility, FPGAs, which have developed rapidly in recent years, have be-
come increasingly integrated, including more and more on-chip RAMs, DSPs for arithme-
tic operations, and reconfigurable logic units [7]. When compared with GPUs, FPGA has 
the characteristics of high resource density, high performance-to-power ratio ,and flexi-
bility, so it is more suitable for harsh operating environments such as outer space [3]. From 
the perspective of performance and power consumption, FPGA provides superior perfor-
mance/Watt over CPU and GPU, because FPGA’s on-chip BRAMs, hard DSPs, and recon-
figurable fabric allow for efficiently extracting fine-grained parallelisms from small/me-
dium size matrices [14]. Despite the popularity of GPUs in deep learning implementa-
tions, FPGAs are emerging as an alternative mainly because of advantages such as their 
high performance per watt, parallelism, and their flexibility in model level optimizations 
when compared to the fixed architectures of GPUs [15]. In low-power environments, 
FPGAs are more suitable for mobile devices and resource-limited platforms. 

With the development of deep learning, the CNN model structure has become more 
and more complex, and it has become very difficult to conduct rapid validation and hard-
ware-accelerated calculation for the model; at this stage, FPGA has come into the sight of 
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AI scientists. Seeking new CNN hardware acceleration solutions has gradually become a 
hot topic in the field of AI [16–18]. More and more deep learning models use accelerators 
based on FPGAs. S. I. Venieris and C. Bouganis developed fpgaConvNet, a new domain-
specific modeling framework [19]. It implements an automatic design method for map-
ping ConvNets to a reconfigurable platform based on FPGA. When compared with the 
previous method, the hardware structure generated by this automatic design method can 
improve the performance density by 1.62 times. Based on Xilinx’s SDAccel tool and FPGA, 
R. DiCecco et al. implemented the Winograd convolution engine, which can be used with 
other layers running on host processors to run multiple popular CNNs [20]. The results 
show that the framework achieved 50 GFLOPS in benchmark tests (using 3 × 3 convolu-
tion). Based on Xilinx Aritix-7 series FPGA, Hua optimized the design of a light-weight 
handwritten numeral system, and realized numeral recognition through the compressed 
CNN network, realizing the hardware acceleration of CNN and significantly improving 
the speed and accuracy of recognition [21]. Shahmustafa Mujawar et al. proposed and 
verified the architecture of CNN based on Xilinx FPGA using the MNIST handwritten 
dataset [22]. The adopted approaches of a sliding filter for convolution and parallel com-
putation of Multiplication and Accumulation (MAC) operations resulted in an optimized 
hardware architecture with reduced arithmetic operations and faster computations. The 
architecture they mentioned has been implemented on Artix-7 FPGA and attained a sig-
nificant improvement in speed when compared to existing architecture working at 300 
MHz. Huang et al. proposed a novel composite hardware CNN accelerator architecture 
to solve the problem of the inefficient computing resource mapping mechanism and data 
supply [23]. They proposed a multi-CE architecture based on a row-level pipelined 
streaming strategy for convolution layers and a single-CE architecture based on a batch-
based computing method for full-connection layers. Zhang et al. compared various FPGA-
based CNN implementations, and finally achieved a peak performance of 61.62 GFLOPS 
under a 100 MHz working frequency, which outperforms previous approaches signifi-
cantly, based on the VC707 FPGA board [24]. However, the flexibility of accelerator solu-
tions using pure FPGA is obviously inferior to SoC with a heterogeneous architecture 
based on FPGA. The multi-core high-performance ARM processor integrated into SoC 
will provide a better solution for the deployment of CNN. 

The neural network deployment of SoC based on heterogeneous architecture has 
gradually become a hot topic. Y. A. Bachtiar and T. Adiono proposed a configurable CNN 
and maximum pool processor architecture based on a low-capacity SoC, and completed 
the algorithm validation on Xilinx Zynq-7000 SoC [25]. In order to reduce the calculation 
time, S. Ghaffari and S. Sharifian proposed a new method to calculate the hyperbolic tan-
gent activation function, and implemented the LeNet convolutional network architecture 
and used MNIST data sets as samples to identify handwritten numerals [26]. The experi-
mental results show that the model reduces the latency significantly while maintaining 
accuracy. Based on Zynq SoC, Huang realized the design of the image classification recog-
nition system, and used the Vivado HLS tool to design the IP core of the image classifica-
tion system [27]. When compared with the prototype, the accelerator implementation 
method achieves up to 43 times greater acceleration on the CIFAR-10 data set, and main-
tains 73.7% classification accuracy and a low power consumption of 2.063 W, which indi-
cates that the heterogeneous architecture SoC can better realize image classification and 
recognition, and has better real-time performance in embedded image applications. Liu et 
al. implemented a CNN accelerator based on the ZYNQ heterogeneous platform by coor-
dinating resources and bandwidth for the design [28]. The accelerator has a high resource 
utilization and can accelerate both standard convolution and depth-wise separable con-
volution. The experimental results show that the accelerator designed in their paper can 
achieve 17.11 GOPS for 32 bit floating point, while it can also accelerate depth-wise sepa-
rable convolution, which has obvious advantages when compared with other designs. 
Zhang et al. proposed a reconfigurable CNN accelerator with an AXI bus based on ARM 
+ FPGA architecture [29]. They implemented the proposed architecture on the Xilinx 



Appl. Sci. 2022, 12, 6616 5 of 17 
 

ZCU102 FPGA for YOLOv2 and YOLOv2 Tiny models on COCO and VOC 2007 respec-
tively, with peak performance of 289 GOPs at 300 MHz clock frequency. To satisfy the 
demand of mobile computing and low-power application scenes, Xie et al. proposed a 
general reconfigurable embedded system design of convolution neural networks based 
on Altera Cyclone-IV FPGA [30]. Based on the cooperation and interaction between hard-
ware and software, the system is able to accomplish image identification and other CNN 
works with high speed and low power. The system achieves a peak performance of 59.52 
GOPS under a 120 MHz working frequency, with the power of 1.35 W. P. Meloni et al. 
proposed an accelerator architecture that is suitable to be implemented on mid-to high-
range FPGA devices, that can be re-configured at runtime to adapt to different filter sizes 
in different convolution layers [31]. It peaks at 120 GMAC/s and 129 GMAC/s when exe-
cuting 5 × 5 and 3 × 3 filters, respectively, and consumes less than 10 W of power. More 
studies show that it is feasible to construct a new neural network inference framework 
based on a heterogeneous architecture SoC, and it has better flexibility in data transmis-
sion and optimization, and is better than other implementation schemes in terms of per-
formance and power consumption [32–37]. 

To sum up, hardware acceleration based on heterogeneous architecture SoC makes 
the deployment of neural network more flexible, but FPGA still needs to be reconfigured 
repeatedly in implementation, and its adaptability to new scenarios has been less capable. 
Therefore, it is of more important research value to make full use of multi-core high-per-
formance processors in heterogeneous architecture to build neural network training envi-
ronments and improve the robustness of CNN deployment, which will provide a better 
solution for the application of artificial intelligence lightweight deployment. 

3. Method 
3.1. Integrated Architecture of Artificial Intelligence 

In general, the lightweight deployment of artificial intelligence includes two aspects. 
One is to train the model with the multi-core processor part in the heterogeneous archi-
tecture device, and then obtain the trained model parameters. The other is to construct 
and optimize the inference model of the network in the programmable logic part of the 
heterogeneous architecture device. The inference model receives the model parameters 
obtained by training through the bus interface inside the SoC. 

Figure 2 shows the overall implementation structure of lightweight AI integration. 
The neural network training framework was deployed at the PS side of MPSoC to support 
the training of deep learning networks. At the same time, IP core of neural network accel-
erator was constructed at the PL side. By transferring model weights and feature graph 
data to the IP core for neural network acceleration, the integration of neural network train-
ing and forward inference acceleration with flexible weight adjustment was finally real-
ized. The implementation method is embodied in the following aspects: 
(1) Firstly, a multi-core processor was used to train CNN in the PS terminal inside the 

SoC, and a large amount of image data was sent into the network. After several iter-
ations, the CNN model with the best performance on the test set was finally obtained. 
Then, the model weights were exported by script and passed to the CNN accelerator 
IP core. 

(2) The basic network layer of CNN was realized on the PL side inside the SoC, and these 
basic network layers were connected according to the network structure to form a 
complete neural network structure. 

(3) Through advanced extensible interface (AXI) specifications, PS and PL were linked 
together to form a complete hardware structure for training and inference [38]. In this 
hardware structure, the CNN accelerator IP core was encapsulated into API functions 
that can be called directly by the Linux operating system, so as to constitute a com-
plete implementation structure for training and acceleration. 
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Figure 2. Overall system architecture. It mainly shows the direction of data flow in PS and PL and 
How to exchange data between PS and PL. 

3.2. Training Methods of Neural Networks 
By running the neural network training framework PyTorch on an ARM multi-core 

processor in MPSoC, the training for AI lightweight deployment was realized. This 
method can significantly reduce the overall power consumption of the system when train-
ing the network. For an application scenario with low requirements on the convergence 
speed of training model, using the high-performance multi-core CPU in MPSoC to per-
form network training can significantly reduce the overall cost and power consumption 
of the system. Figure 3 shows the modified LeNet-5 network model. 

 
Figure 3. LeNet-5 network model. Compared with the original LeNet-5, we changed the input layer 
from a single channel to three channels. 

In order to reduce the training load of PS in MPSoC, the neural network can be 
trained on the computer first and then the pre-trained model can be obtained when the 
implementation method of integrated artificial intelligence lightweight deployment is 
adopted. The model can be efficiently run in MPSoC’s PS to complete the final training 
and extract the parameters of the network model. 

The LeNet-5 network used in this paper has five network layers. The first three are 
the convolutional layers, and the input layer is the feature map of 32 × 32 pixels of single 
channel. Each convolutional layer is followed by the maximum pooling layer to control 
the network scale. The latter two are fully connected layers, and the last layer of the two 
fully connected layers completes the output of the image’s ten categories. The LeNet-5 
network uses the ReLU function as an activation function. The output of the output layer 
is normalized by the log_softmax function. 

When the CIFAR-10 data set is used to train the network model, the input of the first 
convolution layer of LeNet-5 network is extended from single channel to three channels. 
When using MNIST data set to train the network model, it is necessary to copy the MNIST 
data set in one-dimensional form into three-dimensional form, and then pass it to the in-
put channel of the first convolution layer of LeNet-5 network. 
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To train the modified LeNet-5 model, it is required to install an embedded Linux 
operating system on the PS side of the MPSoC to run the PyTorch framework. In the pro-
cess of training the model, if the convergence is not ideal, the convergence speed of the 
model and the performance of the optimized model on the test set can be improved by 
adjusting the super-parameters such as learning rate and optimizer. 

Both the CPU and GPU can support neural network training, and the CUDA accel-
eration platform launched by Nvidia accelerates neural network training. At present, the 
vast majority of neural network training is completed on GPUs. We compared the training 
speed and power consumption of the two platforms under the PyTorch framework. As 
shown in Table 1, the training time of GTX1050 to complete an epoch is 0.08 times that of 
MPSoC integrated multi-core, but the power consumption is about 30 times that of PS. In 
more demanding power consumption scenarios such as edge-computing systems, CPUs 
with a lower power consumption can also provide reliable support for neural network 
training, although they are not as fast as GPUs. 

Table 1. Comparison of training performance. 

 GPU ZYNQ UltraScale + MPSoC 
Device GTX1050 quad-core Arm Cortex-A53 

Power consumption 75 W Less than 2 W 
Training duration/epoch 22.6 s 286 s 

When compared with GPUs, the computing performance of the multi-core processor 
in MPSoC is limited, so the batch size needed to be reduced to decrease the workload of 
the multi-core processor during training. As can be seen from the experiment results given 
in Figure 4b, within 500 epochs, no matter how the value of the batch size changed, the 
loss curve on the training set always maintained a normal downward trend, which would 
eventually make the model converge correctly without over-fitting. When combined with 
the experimental results given in Figure 4a, it can be seen that the larger the batch size 
value is, the faster the convergence rate of recognition accuracy is, which means the 
shorter the time required for training the model, thus significantly reducing the overall 
power consumption of the multi-core processor. Therefore, from the perspective of accu-
racy and loss, the value of batch size can be reduced in practical model training, so that 
the convergence speed of the model will not be significantly affected during training and 
the CPU load will not be too heavy. 

  
(a) (b) 

Figure 4. The effect of different batch sizes on the model convergence speed: (a) Recognition accu-
racy (acc) changes with epoch; (b) loss (loss) changes with epoch. 

After the training is completed, the weight parameters of the LeNet-5 network can 
be extracted from the trained model through Python script. The model parameters are 
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composed of a “key” value and “value” value. Key is the name of the network layer, value 
is the parameter value of the corresponding network layer, and the data type is a tensor. 

In this design, first of all, the corresponding value was extracted according to the 
network layer name key, and its data type was transformed from the tensor into the array 
numpy of data type FP32. Then, we saved it to a file named after each layer; finally, the 
model parameters obtained by training were passed to the hardware accelerator for for-
ward inference in PL by AXI specification. 

3.3. Hardware Accelerator Structure Design of Convolution Layer 
As mentioned above, the LeNet-5 network has five network layers, mainly including 

three convolution layers and two fully connected layers. Therefore, the structure of these 
two network layers can be optimized when designing a neural network accelerator. The 
first three network layers are all convolution layers with the same implementation meth-
ods. In this design, the convolution layer, activation function and pooling layer were 
placed in the same module, which reduces the difficulty of interface design and improves 
the readability and maintainability of the code. 

The data flow operation process of hardware accelerator of convolution layer is di-
vided into the convolution operation, ReLU activation function and pooling operation. 

The convolution operation is expressed as: 

𝑓𝑓𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑓𝑓𝑗𝑗𝑖𝑖𝑖𝑖 ⊗ 𝑤𝑤𝑖𝑖,𝑗𝑗 + 𝑏𝑏𝑖𝑖

𝑖𝑖𝑖𝑖

𝑗𝑗=1

 (1) 

where wi,j is the convolution kernel corresponding to the j-th input feature graph and the 
i-th output feature graph, and bi is the bias of the i-th output feature graph. 

The activation function ReLU is expressed as: 

𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑥𝑥, 0)   (2) 

where x is the value of the input feature graph, and f(x) is the value of the output feature 
graph. 

The pooling operation is expressed as: 

𝑓𝑓𝑖𝑖,𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑚𝑚𝑚𝑚𝑥𝑥
𝑝𝑝∗𝑝𝑝

�
𝑓𝑓𝑚𝑚,𝑖𝑖
𝑖𝑖𝑖𝑖 ⋯ 𝑓𝑓𝑚𝑚,𝑖𝑖+𝑝𝑝−1

𝑖𝑖𝑖𝑖

⋮ ⋮
𝑓𝑓𝑚𝑚+𝑝𝑝−1,𝑖𝑖
𝑖𝑖𝑖𝑖 ⋯ 𝑓𝑓𝑚𝑚+𝑝𝑝−1,𝑖𝑖+𝑝𝑝−1

𝑖𝑖𝑖𝑖
� (3) 

where p is the sampling core size of maximum pooling. The redundant information in the 
feature map can be eliminated by the pooling layer operation, which can reduce the 
amount of computation, but will not affect the accuracy of recognition. 

Through analysis of Equations (1)–(3), the hardware accelerator operation process of 
the convolution layer is expressed as: 

𝑓𝑓𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑀𝑀𝑚𝑚𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶(𝑥𝑥,𝑤𝑤𝑘𝑘𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙 , 𝑏𝑏)�) (4) 

The convolutional layer operation model represented by Equation (4) was mapped 
to the most basic hardware accelerator structure, as shown in Figure 5. By optimizing the 
basic structure, the overall processing performance of the convolution layer hardware ac-
celerator was further improved. 
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Figure 5. Implementation of convolution modules from the perspective of hardware logic. 

When a software model is transformed into a hardware structure by the HLS tool, 
the expression of the software model may adversely affect the final hardware accelerator 
structure. Typically, the convolution operations given in Equation (1) are usually imple-
mented in nested loops. In order to minimize the impact of high latency caused by re-
peated reading of feature graphs, the sequence of convolution operations is described as 
follows (Algorithm 1). 

Algorithm 1: Convolution 
OUT: Output 
IN: Input 
W: Weight 
R: Row of output feature map 
C: Column of output feature map 
K: Kernel size 
CHin: In-Channel size 
CHout: Out-Channel size 

1. for(kr = 0; kr < K; kr++) 
2.  for(kc = 0; kc < K; kc++) 
3.   for(r = 0; r < R; r++) 
4.    for(c = 0; c < C; c++) 
5.     for(chi = 0; chi < Chin; chi++) 
6.      for(cho = 0; cho < CHout; cho++) 
7.       OUT[cho][r][c] = W[cho][chi][kr][kc] * IN[chi][r + kr][c + kc]; 

In the implementation of the hardware accelerator, the Pipeline command can be 
used to shorten the instruction trigger interval within the for cycle, so as to improve 
throughput and reduce delay. As shown in Table 2, in the absence of the Pipeline com-
mand, both the latency and interval for completing an image recognition are 7,709,158 
clock cycles. After the Pipeline command was added in the fifth line of code of the algo-
rithm given above, the latency and interval of one image recognition significantly reduced 
from 7,709,158 to 353,263 clock cycles, and the performance was about 22 times improved. 
However, resource utilization has also increased significantly. For example, the use of 
digital signal processing block DSP48E increased by about 27 times, and the use of flip-
flop (FF) and Look-Up Table (LUT) has also increased by about 2 times. This is consistent 
with the tendency of hardware accelerators to increase the utilization of logical resources 
in exchange for improved data processing capability. 
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Table 2. Comparison of resource usage of convolutional layers before and after optimization. 

 No Optimization Pipelined 
Latency & Interval (clock cycles) 7,709,158 353,263 

Utilization Estimates 

BRAM_18K 79 83 
DSP48E 9 244 

FF 29,061 53,049 
LUT 24,651 41,842 

When using the Pipeline command, if the number of Pipeline layers is too high, 
which may lead to the rapid increase of resource usage or the delay cannot reach the ex-
pected value, the larger cycle can be divided into two smaller cycles as follows (the mul-
tiplication of the two smaller cycles equals the larger cycle times), so as to reduce the num-
ber of Pipeline layers (Algorithm 2). 

Algorithm 2: For Loop Optimization 
OUT: Output 
IN: Input 
KL: Inner loop 
KH: Outer loop 
K = KL * KH: Original loop count 

1. for(h = 0; h < KH; h++) 
2.  for(l = 0; l < KL; l++) 
3.   OUT[h * KL + l] = f ( IN[h * KL + l]); 

When converting to hardware accelerator structure, after adding the Pipeline com-
mand at line 2 of the algorithm given above, the high-level synthesis tool will only expand 
the loop at line 2, which significantly reduces the number of Pipeline layers and resource 
consumption. 

3.4. Hardware Accelerator Structure Design of the Full-Connection Layer 
As mentioned earlier, the last two layers of the LeNet-5 network are fully connected 

layers. The hardware acceleration structure of the full connection layer is relatively sim-
ple, and its operation model can be expressed as: 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑤𝑤𝑖𝑖𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑓𝑓𝑖𝑖𝑖𝑖 + 𝑏𝑏  (5) 

where win,out is the weight of the full connection layer, corresponding to the in-th input 
feature graph and the out-th output feature graph; b is the offset of the out-th input feature 
graph. 

After the activating function ReLU, Equations (2) and (5) are combined to obtain the 
operation model of the full-connection layer as follows: 

𝑓𝑓𝑓𝑓𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀_𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶�𝑥𝑥,𝑤𝑤𝑓𝑓𝑐𝑐 , 𝑏𝑏�� (6) 

According to Equation (6), when the Full-Connection module is realized, the output 
result of the Full-Connection module can be obtained through the ReLU activation function 
after the weighted operation of the feature graph and weight. The most basic hardware 
accelerator structure of a Full-Connection module is shown in Figure 6. 
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Figure 6. Implementation of full-connection modules from the perspective of hardware logic. 

For the fully connected layer, the input fin and output fout are one-dimensional arrays 
with the weight win,out being two-dimensional arrays. The model of the full-connection 
layer can be represented as follows (Algorithm 3). 

Algorithm 3: Full-Connection 
OUT: Output 
IN: Input 
W: Weight 
CHin: In-Channel size 
CHout: Out-Channel size 

1. for(chi = 0; chi < Chin; chi++) 
2.  for(cho = 0; cho < CHout; cho++) 
3.   OUT[cho] = W[cho][chi] * IN[chi]; 

Using the Unroll command, users can transform a fully connected layer software 
model represented by a loop into an efficient hardware accelerator structure. As shown in 
Table 3, adding the Unroll command at line 2 of the algorithm given above reduces the 
latency and interval of the full-connection layer hardware accelerator from 128,856 to 
45,696 clock cycles. Obviously, the throughput has improved by about three times. Again, 
this is to increase the overall utilization of logical resources to improve the data-processing 
capacity of the whole connection layer. 

Table 3. Comparison of resource usage of full-connection layers before and after optimization. 

 No Optimization Pipelined 
FC Layers’ Latency & Interval (clock cycles) 128,856 45,696 

Utilization Estimates 

BRAM_18K 79 88 
DSP48E 9 14 

FF 29,061 29,259 
LUT 24,651 28,196 

4. Experiments 
4.1. Creating the Validation Platform 

Xilinx XCZU3EG-SBVA484 MPSoC was used as the core device to verify the design 
of integrated artificial intelligence lightweight deployment. An ARM quad-core Cortex-
A53 application processing unit and ARM dual-core Cortex-R5F real-time processing unit 
were integrated in the PS side of the device. The PL side of the device integrates up to 7.6 
MB of Block RAM (BRAM) and up to 360 digital signal processing modules, known as 
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DSP48E, as well as other logical resources. The hardware platform based on this device 
was equipped with 2 GB LPDDR4 memory [39]. 

Based on the modified LeNet-5 network and IP packaging and reuse technology, the 
design created an image recognition system within MPSoC [40,41]. As shown in Figure 7, 
the hardware accelerator IP core used to realize image recognition function was connected 
to the PS side of the chip through AXI specification. In the figure, the IP core functions of 
each module are as follows: 
(1) LeNet-5 module. This module implements the image recognition hardware accelera-

tor structure based on the modified LeNet-5 network structure. 
(2) Zynq Ultrascale + MPSoC module. This module is an abstraction of PS in the MPSoC. 

It contains the quad-core Cortex-A53 APU and the dual-core Cortex-R5F RPU. 
(3) AXI Interconnect module. In compliance with the AXI specification, multiple AXI 

memory-mapped master devices were connected to multiple memory-mapped slave 
devices through a switch structure, which was used as a bridge to connect S_AXI 
peripherals. 

(4) AXI SmartConnect module. Similar to AXI Interconnect, it was used to connect AXI 
peripherals to PS, in this structure primarily as a bridge to connect M_AXI. 

(5) Process System Reset module. The processor system reset module was used in this 
structure to generate reset signals for PS and three other modules. 

 
Figure 7. Design diagram of system on chip built in MPSoC. It mainly shows the connection rela-
tionship and data flow of each IP core. 

After Xilinx Vivado software’s synthesis and implementation of the overall structure, 
the logical resources used in PL are shown in Table 4. 

Table 4. Resource consumption report after Vivado synthesis and implementation. 

Sources Utilization Estimates Utilization (%) 
BRAMs 41.5 19.2 

DSP 248 68.89 
FF 51,434 36.45 

LUT 48,966 69.40 
LUTRAM 3288 11.42 

According to the power analysis tool in Vivado software, the total power consump-
tion of the image recognition body system is only 3.22 W, while the power consumption 
of LeNet-5, the hardware accelerator module used to realize the forward inference of the 
image recognition, is only 1.363 W. 

4.2. Design of Validation Method 
Based on the PYNQ framework, the software code of image recognition system was 

written in Python [42]. The overlay programming library provided within the framework 
generates callable Python APIs for the IP core, making the system’s hardware and soft-
ware co-design easier. The data flow of the system is shown in Figure 8. 
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Figure 8. Data flow of accelerated inference on the PL side. It mainly shows the process of data 
processing by software and the way of interacting with hardware. 

After importing the image data to be recognized and the model parameters that have 
been trained, they are transformed into an FP32 numpy array. These numpy arrays are 
stored in DRAM, waiting to be read by the CNN accelerator. The interface of the CNN 
accelerator IP core built on the PL side will be packaged by the overlay programming 
library as a callable Python API. When the program is run to call the accelerator, the 
numpy array stored in DRAM is passed into the accelerator through the AXI bus for for-
ward inference calculation. When the accelerator execution is complete, the returned re-
sults are transmitted back to DRAM over the AXI bus. Finally, the classification result is 
obtained after the evaluation function processing. 

5. Results 
Through the validation of 10,000 images on the test set, the inference speed of an 

accelerator IP check single frame is 2.2 ms, and the average number of recognized frames 
is about 450 frames per second. The processing time of single frame of the model on the 
Inter I5-4300U CPU is 8.1 ms, which not only improves the inference speed by about four 
times, but also has more advantages in power consumption performance, satisfying more 
lightweight deployment requirements. The performance comparison of the two devices is 
shown in Table 5. 

Table 5. Performance comparison of CPU and MPSoC. 

 CPU ZYNQ UltraScale + MPSoC 
Device Inter i5-4300U XCZU3EG-SBVA484 

Frequency 2.5 GHz 100 MHz 
Power 44 W 3.22 W 

Inference time (single frame) 8.1 ms 2.2 ms 

Finally, the recognition accuracy of the accelerator IP checking the MNIST handwrit-
ten numeral set is 99.5%, and the recognition accuracy of CIFAR-10 validation set classifi-
cation is 75.4%, which are consistent with the performance of the model on the computer. 
The screenshot below shows part of the experiment results. 

Loading MNIST network weights and using test sets to verify the results are shown 
in Figure 9: 
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Figure 9. Recognition results of the accelerator on the MNIST dataset. 

The result of loading CIFAR-10 network weights and using test set validation is 
shown in Figure 10: 

 
Figure 10. Recognition results of the accelerator on the CIFAR-10 dataset. 
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6. Discussion 
In this paper, MPSoC was used to build the training and inference model of the inte-

grated LeNet-5 network, which better meets the different requirements of training and 
inference and significantly reduces the implementation cost and power consumption. The 
flexibility of data processing between training and inference was addressed in terms of 
computational power. Since the implementation method of a single chip was adopted, the 
robustness of the entire system was significantly improved in terms of computational 
power, and a new solution was found for artificial intelligence in the application scenarios 
with strict requirements for cost, performance and power consumption. 

We believe that with the continuous development of semiconductor integrated cir-
cuit technology, there will be more and more high-performance heterogeneous architec-
ture devices in the future, so as to provide a better computing power platform for the 
development of artificial intelligence, and to drive the continuous development of artifi-
cial intelligence technology, so that it can better serve the progress of humanity. In future 
studies, we will focus on applying this architecture to more complex application scenarios 
and explore the implementation of more complex network models. 

7. Conclusions 
In this paper, based on the LeNet-5 network structure, we first introduced the process 

of network training using a multi-core CPU in Xilinx’s latest multi-core heterogeneous 
architecture device, MPSoC. Then, the method of converting the network model into hard-
ware logic implementation was studied, and the model’s parameters were transferred 
from the processing system of the device to the hardware accelerator structure, composed 
of programmable logic through the bus interface AXI provided on the chip. Finally, the 
integrated implementation method was tested and verified in Xilinx MPSoC. When com-
pared with the current separate training and inference method, heterogeneous architec-
tures leverage a single chip to realize the integration of AI training and inference, provid-
ing a good balance of training and inference of different targets, further reducing the cost 
of training and implementation of AI inference and power consumption, so as to achieve 
the lightweight goals of computation, and to imporve the flexibility and robustness of the 
system. 
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