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Abstract: In the last decade, distraction detection of a driver gained a lot of significance due to
increases in the number of accidents. Many solutions, such as feature based, statistical, holistic, etc.,
have been proposed to solve this problem. With the advent of high processing power at cheaper
costs, deep learning-based driver distraction detection techniques have shown promising results. The
study proposes ReSVM, an approach combining deep features of ResNet-50 with the SVM classifier,
for distraction detection of a driver. ReSVM is compared with six state-of-the-art approaches on
four datasets, namely: State Farm Distracted Driver Detection, Boston University, DrivFace, and
FT-UMT. Experiments demonstrate that ReSVM outperforms the existing approaches and achieves a
classification accuracy as high as 95.5%. The study also compares ReSVM with its variants on the
aforementioned datasets.

Keywords: residual network; convolution neural network; safe driving; distraction detection

1. Introduction

Road accidents are the leading cause of death globally. There are around 1.3 million
casualties each year in the world because of road accidents as per World Health Organi-
zation figures [1]. As observed in a 2015 report by the National Highway Traffic Safety
Administration (NHTSA), many of these accidents, 391,000 in USA in that year alone, were
caused by distracted drivers [2] (The NHTSA includes fatigue, absent-mindedness, and
drowsiness as part of distracted driving). According to Cutsinger, an average of nine people
every year suffer from severe road accidents in the US alone [3].

Distracted driving, including daydreaming, eyes off the road, and cell phone usage,
accounts for a large proportion of road traffic fatalities worldwide. Out of these distractions,
cell phone usage is at the top of the list as shown in Figure 1. Road traffic fatalities have been
on the rise for the last few years [4]. In this regard, researchers have begun to explore the
benefits of artificial intelligence when applied to a diverse range of problems, including, but
not limited to, understanding driving behaviors, mitigating road incidents, and developing
driver’s assistance systems [5,6].

The report also shows that the total number of deaths has been increasing each year
and driver’s distraction is considered to be the leading cause of these accidents. Mobile
phone usage during driving is widespread among novice and young drivers, which further
adds more risk as shown in Figure 1.
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Figure 1. Statistics showing the percentage distribution of drivers committing various types of
distraction including watching videos on smartphone/tablet (WV), checking or posting to social
media (CPSM), personal grooming (PG), watching something on a cell (WOC), sending text messages
(STM), reading text messages (RTM), and talking on a cell phone (TCO) (https://www.statista.com/
chart/3010/driving-distractions/, accessed on 19 June 2022).

Around 200 applications for highway safety were developed by the American Auto-
mobile Association (AAA), that were used for head pose estimation, drowsiness and sleep
detection, driver’s facial movement detection, and driver’s training [2]. Figure 2 shows the
statistics based on the National Safety Council analysis of NHTSA data. It shows that, on
average, 3022 deaths were caused by distracted drivers.

Figure 2. NHTSA data showing the percentage distribution of deaths due to distraction-affected
crashes from 2011 to 2018 in the US.

With the recent increase in computational resources, and a greater availability of paral-
lel computing architectures, deep learning—that was previously considered infeasible—has
now become possible and has demonstrated promising results for object detection [7,8],
image classification [9,10], and other image analysis tasks [11,12].

As opposed to using handcrafted features, the automatic extraction of deep fea-
tures has cause a paradigm shift towards the usage of convolutional neural networks.
Various studies have used recurrent neural networks (RNNs) for extraction of spectral

https://www.statista.com/chart/3010/driving-distractions/
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information [6] and convolutional neural networks (CNNs) for spatial information extrac-
tion [13,14] to classify various driving postures, and they yielded better results.

The study proposes ReSVM, an extension of our previous work [15], that uses deep
features of ResNet-50 along with support vector machine (SVM) for identifying distracted
drivers. The features from RGB frames are extracted from the average max-pooling layer
after a series of convolutional and pooling batch normalization operations. A feature vector
map is used for training and testing using SVM.

In this study, we have classified distracted drivers based on a single image. We take
into account various types of distraction. A driver is distracted if he/she is texting, calling,
turning on the radio, drowsy, sleepy, drinking, looking right, talking and laughing, waving
a hand, looking down while driving, signaling, head nodding under varying lighting
conditions, closing eyes, head panning under varying lighting conditions, has a sad and
tensed face, watching the right direction, watching the back side, watching something low
down while driving, and watching a distraction to the left. It should be noted that image
classification takes into consideration only the spatial features. The temporal aspect is,
however, ignored which reduces the complexity of the problem.

The datasets used in our experiments are State Farm Distracted Driver Detection
(SFDDD), Boston University (BU), DrivFace, and FT-UMT datasets.

• An approach to detect driver distraction is proposed which uses the deep features
of ResNet-50 that are then used by the SVM for the classification. To the best of
our knowledge, we are the first to propose feeding deep features of ResNet to an
SVM classifier.

• We evaluated our approach using four datasets, namely; State Farm Distracted Driver
Detection, Boston University, DrivFace, FT-UMT.

– We compared our proposed architecture with 12 existing approaches. Results
showed that our proposed approach outperforms these approaches on these
datasets in terms of accuracy.

– Our proposed approach, based on deep features of ResNet-50, outperforms
existing deep architectures.

The work is important since it has diverse applications impacting driver safety. It can
be used by car manufacturers to implement safety features that will prevent accidents due
to distraction. Businesses that manage large fleets of vehicles, such as those in the mobility,
ride-sharing, and trucking industries, can use this to monitor their drivers for tiredness and
distraction, and hence improve the work conditions, and ensure the safety of their workers.
Law enforcement and highway safety agencies can use it to detect drivers that may pose a
threat to the others on the road, and take actions to preempt any accidents.

The rest of this paper is organized as follows. Related work is discussed in Section 2
while proposed methodology and datasets are presented in Section 3 and Section 4.4,
respectively. We share our evaluation results in Section 5.6 while variants of the proposed
approach are illustrated in Section 6. Conclusions and future work are given in Section 9.

2. Related Work

The related work has been divided broadly into two main categories, machine learning
and deep learning.

2.1. Approaches Based on Machine Learning

Zhang et al., in 2011, identified mobile usage as one of the major causes of driving
accidents [16]. They implemented a hidden conditional random fields model based on
mouth, facial, and hand features for profiling of cell phone usage by the drivers. They
were able to achieve 91.2% accuracy. Zhao et al. proposed a feature-based approach using
contourlet transform (CT), skin-like region segmentation, and homomorphic filtering using
a random forest classifier for detecting distraction [17]. Their approach was developed for
classifying four activities, namely: operating the shift gear, grasping the steering wheel,
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eating, and talking on a mobile phone. It was empirically observed that eating was the most
difficult category to classify. Their approach yielded 88% accuracy on their self-generated
dataset at Southeast University (SEU). Zeng et al. proposed an approach based on Haar-like
features to detect the driver’s eye state and head movement, exhibiting 80% accuracy [18].

Image classification approaches are usually computationally intensive. To address
this issue, Wang and Qin presented an architecture which used FPGA for faster image
processing [19]. Their objective was to determine if the drivers’ eyes were closed in the
image. They combined grayscale projection with Prewitt operator-based edge detection
for the classification. Sigari et al. implemented various features including facial features,
eye gaze direction, and head pose estimation on a Raspberry Pi [20]. They used these
features along with a support vector machine for distraction detection. Liu et al. proposed
a real-time system using the driver’s head and eye movement for detecting cognitive
distraction [21]. They proposed a semi-supervised method to increase the time efficiency
of labeling the training data. Seshadri et al. proposed a framework using histogram of
gradients along with adaptive boosting, and yielded 93.9% accuracy on their self-generated
dataset [22].

Ragab et al. proposed a distraction detection system based on five visual cues using
a random forest classifier and achieved an accuracy of 82.78% [23]. These cues included
eye closure, arm position, eye gaze, orientation, and facial expression. Liao et al. pro-
posed a real-time algorithm for detection of cognitive distraction using a support vector
machine (SVM) [24]. They evaluated their approach on self-generated datasets, achieving
an accuracy of 98.5% and 93.0% for urban and highway simulated scenarios, respectively.
Streiffer et al. proposed an approach based on random forest and contourlet transform for
distraction detection [25]. They tested their approach on a dataset that was generated using
the driver’s side pose and achieved an accuracy of 90.5%.

Wathiq et al. [26] presented a two-pronged approach in which the system first de-
termines if a driver was distracted, based on yawing, head position, eye position, mouth
position, etc. In the case of distraction, an alarm was generated and nearby hospital services
were informed so that they could remain ready for any mishaps. They developed various
features for face orientation, arm position, facial expression, and eye behavior. These fea-
tures were combined and fed to the feed-forward neural network (FFNN). Their approach
achieved a classification accuracy of 95.62.

Along similar lines, in 2019, Ou et al. proposed a deep neural network for the detection
of distracted driving [27]. The system also worked in night mode using a near-infrared
camera and achieved 92.24% accuracy. In daylight, the accuracy improved to 95.98%.

In 2017, Li et al. presented an architecture to investigate the solutions for distracted
driving using performance indicators from on-board kinematic readings [28]. They de-
veloped a non-linear autoregressive exogenous (NARX) driving model to predict vehicle
speed using distance headway and speed history. In the end, two features, mean absolute
speed prediction error and steering entropy from the NARX model, were used with the
SVM, yielding an accuracy of 95%.

2.2. Approaches Based on Deep Learning

Deep learning networks have shown promising results towards solving computer
vision problems in the last decade [29,30]. Wollmer et al. implemented an LSTM recur-
rent neural network for real-time detection of driver’s distraction, head tracking, and
modeling the temporal context of long-range driving [31]. They were able to imple-
ment subject-independent detection of inattention. Ren et al. used the Faster-RCNN
deep learning model [32] and obtained an accuracy of 94.2% on the dataset developed by
Seshadri et al. [22]. Streiffer et al. proposed a deep learning architecture, DarNet, that used
the sensor data as an input for the classification of driving behavior [25], yielding better
results than the baseline model.

In 2016, Le et al. proposed an R-CNN model to detect the hand position on the steering
wheel [33]. In the same year, Yuen et al. implemented AlexNet for head pose estimation
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and used the stacked hourglass network in the refinement stage to predict facial landmarks
and reduce the face localization [34]. They classified distraction based on the yaw angle of
the driver’s head [35].

In 2017, Kim et al. proposed an architecture to classify open and closed eye images with
different conditions, acquired by a visible light camera, using a deep residual convolutional
neural network [36]. In the same year, Whui Kim et al. made a comparison of various deep
learning networks including Inception, ResNet-50, and MobileNet using the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset [13]. Their key insight
was that the MobileNet outperformed the other networks.

In 2018, Masood et al. implemented VGG-16 to identify the cause of distraction and
achieved an accuracy of 99% on the State Farm Distracted Driver Detection (SFDDD)
dataset [37]. In the same year, Tran et al. [38] developed an assisted driving testbed to
create realistic driving experiences and validate the distraction detection algorithms. They
used four CNNs, AlexNet, VGG-16, ResNet, and GoogLeNet, that were implemented and
evaluated on an embedded GPU platform. They also developed a warning system for
alerting the distracted driver in real time. Another distraction detection system based on
convolutional neural network and data augmentation techniques was proposed by Sathe
et al. whose main purpose was to decrease overfitting and increase the variability of the
dataset [39].

In 2019, Xing et al. proposed a CNN model based on a Gaussian mixture model (GMM)
for recognition of driver’s behavior [40]. To minimize the training cost, transfer learning
was applied before training the model. They used three CNN models, namely: GoogLeNet,
AlexNet, and ResNet-50. The authors focused on classifying various activities including
texting, rear and side mirror checking, answering a cellular phone, talking, and using
an in-vehicle radio device. They were able to achieve an 81.6% accuracy using AlexNet,
and a lower accuracy of 78.6% and 74.9% using GoogLeNet and ResNet50, respectively.
They were able to achieve 78.6%, 81.6%, and 74.9% using AlexNet, GoogLeNet, and
ResNet-50, respectively.

More recently, Mase et al. empirically observed that Inception-V3 coupled with bidirec-
tional LSTMs outperformed other CNN and recurrent neural network (RNN) architectures
with an average F1-score of 93.1%. Their approach focused on identifying postures which
were indicative of distraction. In 2020, Li et al. proposed a bimodular approach for dis-
traction detection consisting of two modules on a self-generated dataset [41]. The first
module computes the bounding box of the driver’s right ear and hand, and provides this
as input to the second module. The second module of the proposed approach used the
input information to predict the distraction type. Dhakate et al. proposed an ensemble
method to detect distracted drivers by stacking the feature vectors of various convolutional
networks [42].

The Boston University (BU) dataset consists of images that cover four types of dis-
tractions, namely: looking down, head nodding, eye closure, and head panning. These
images have been generated in controlled lab settings where the light source was moved
in different directions while capturing the images. Dahmane et al. proposed a distraction
detection system based on yaw head pose estimation using the BU dataset [43]. Later, in
2017, they proposed a system to estimate both roll and yaw angle using a decision tree
model [44]. They used non-intrusive feedback regarding the user’s head pose in order to
determine the direction of their gaze and subsequently infer their attention level. Eraqi
et al. proposed an approach which relied on a weighted and ensembled convolutional
network [45]. They tested their approach on the BU dataset and obtained 84.64% accuracy.
In 2018, Ali and Tahir proposed a feature-based system using a neural network to detect
distraction due to driver’s head panning, achieving an accuracy of 89.20% on the same
dataset [46]. In the BU dataset, our proposed approach ReSVM, combining deep features
of ResNet-50 with an SVM classifier, outperforms the state-of-the-art approach (89.20%)
by achieving an accuracy of 90.46%. However, this dataset lacks more realistic scenarios.
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Compared to the BU dataset, SFDD and DrivFace datasets contain more realistic images as
well as more categories of distraction.

Hssayeni et al. relied on deep convolutional methods on dashboard camera images
to detect distracted drivers [47]. They used transfer learning on AlexNet, VGG-16, and
ResNet-152 and were able to achieve an accuracy of 82.5% on the SFDD dataset. In 2018,
Chawan et al. proposed a system based on averaging the various existing convolutional
neural network (CNN) models, namely: VGG16, VGG19, and Inception, for classification
of distracted drivers [48]. They achieved an accuracy of 89.9% on the same dataset. In 2020,
Mse et al. proposed a novel approach to identify distracted drivers from their postures
using CNNs and stacked bidirectional long short-term memory (BiLSTM) networks which
captured the spectral–spatial features of the images [49]. Results showed that they achieved
a classification accuracy of 92.7% on the same dataset. In 2019, Tamas et al. proposed
that the dropout layer from VGG-16 could be used to prevent overfitting while detecting
driver’s distraction [50]. In addition to that, an attention mechanism was implemented to
optimize the resource allocation. The authors tested various activation functions, including
DReLU, SELU, and Leaky ReLU, and achieved 95.82%. accuracy on the SFDD dataset. In
2020, Vijayan et al. gave a comparative analysis of the approaches called scale invariant
feature transform (SIFT) and RootSIFT for drowsy feature extraction [51]. The enhanced
SIFT, called RootSIFT, achieves 93% accuracy on the BU dataset, which is better than
normal SIFT in extracting the drowsy features. In 2020, Ortega et al. introduced the
Driver Monitoring Dataset (DMD), an extensive dataset which includes real and simulated
driving scenarios: distraction, gaze allocation, drowsiness, and hand–wheel interaction [52].
They achieved an accuracy of 93.2% on the same dataset. Previously, in 2016, Diaz et
al. proposed a new automatic method for coarse and fine head yaw angle estimation
of the driver [53]. They relied on a set of geometric features computed from just three
representative facial keypoints, namely the center of the eyes and the nose tip. They were
able to achieve an accuracy of 81% on the BU dataset. Although these aforementioned
approaches exhibited good accuracy, there is still room for improvement. Our proposed
approach, ReSVM, outperforms the state-of-the-art approaches and achieves an accuracy
of 95.5% and 93.44% on SFDD and DrivFace datasets, respectively. One of the reasons why
our approach outperforms the state-of-the-art techniques is because ResNet performs well
with noisy data as compared to the other CNNs.

3. Methodology

This study proposes a deep learning architecture, ReSVM, for driver’s distraction
detection. ReSVM is an optimized version of ResNet-50 that uses deep features obtained
by the latter’s pooling layer and feeds these features to a support vector machine (SVM) as
can be seen in Figure 3.

Previously, deep learning architectures, such as CNNs, could only use sigmoid func-
tions for various computer vision tasks. Therefore, there was a limit on the number of layers
of these networks. More recently, with the introduction of rectified linear unit, AlexNet
and VGGNet have been able to use an increased number of layers i.e., 5 and 19, respec-
tively. The increase in the number of layers resulted in an increase in training error. Later
on, this degradation problem was addressed with the development of residual networks
(ResNets) [30].

A large number of training samples from the ImageNet dataset were used for training
a residual neural network (ResNet-50) to classify a diverse range of images including living
things such as animals, birds, rodents, etc., and also various inanimate objects. The residual
networks, with 50 or 101 layers, use residual blocks in their network architecture [30] and
have consecutive 1 × 1, 3 × 3, and 1 × 1 convolution layers. Normally, deep ResNet layers
contain 3 × 3 filters. Feature size is inversely proportional to the number of filters, i.e., if
the feature map size is doubled, then the number of filters is reduced to half and vice versa.
Due to this relationship, the time complexity is conserved.
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The ReSVM takes an input of images with different sizes and variable lighting con-
ditions as shown in Figure 3. The basic idea is to stack all the features as a feature map
that is obtained from the last multilayer perceptron convolution layer (mlpconv) of the
trained ResNet-50. Then, mean of the feature map is computed and fed to the SVM layer
for classification [54].

Figure 3. Flow chart showing the proposed architecture.

Global average pooling carries several advantages over fully connected layers. For one,
it is more native to the convolution structure because it enforces correspondence between
feature maps and different categories [55]. An overfitting at this layer is avoided as there
exists no parameter that needs optimization in case of global average pooling. The spatial
information is summed up in case of global average pooling, which makes it more robust
to spatial translations of the input.

SVM has been in use for the last couple of decades owing to its accurate classification
with lower computational costs and excellent generalization ability [56,57]. A non-linear
approximation and adaptive learning capability of SVM brings various benefits in handling
non-linear data and small samples [58]. SVM is suitable for both regression as well as
classification tasks. The SVM algorithm finds a hyperplane by classifying the data points
in an N-dimensional space. The objective of the SVM algorithm is to find a maximum
separating margin between the hyperplane and the data points. For maximizing the
margins, hinge loss is used as a loss function. Our experimental results clearly show that
SVM (with non-linear RBF kernel [59]) used with our architecture outperforms a neural
network (MLP) on all four datasets. This improvement can be attributed to some inherent
strengths of SVMs. Namely, they have good generalization capabilities which prevent
overfitting, and they can also handle non-linear data efficiently. In the case of artificial
neural networks, there is no specific rule for determining their structure. The appropriate
network structure is achieved through experience and trial and error. It can further be
observed that SVM also exhibits better results as compared to ID3, AdaBoost, naive Bayes,
random forest, and k-NN.

• Training data {xi, yi} i = 1, . . . , l, xi ∈ Rn, and yi ∈ {−1, 1}.
• On a separating hyperplane: xw + b = 0, where

– w normal to the hyperplane;

–
|b|
‖w‖ is the distance to origin;

– ‖w‖ Euclidean norm of w.

• d+, d− shortest distances from labeled points to hyperplane.
• Define margin m = d+ + d−.
• Task: find the separating hyperplane that maximizes m.
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Key point: Maximizing the margin minimizes the VC dimension.

• For the separating plane:

xiw + b ≥ +1, yi = +1 (1)

xiw + b ≤ −1, yi = −1 (2)

≡ (3)

yi(xiw + b)− 1 ≥ 0, ∀i. (4)

• For the closest points the equalities are satisfied, so:

d+ + d− =
|1− b|
‖w‖ +

| − 1− b|
‖w‖ =

2
‖w‖ . (5)

• One coefficient per training sample.
• The constraints are easier to handle.
• Training data appear only in dot products.
• Great for applying the kernel trick later on.

• Minimize

LP =
‖w‖2

2
−

l

∑
i=1

αiyi(xiw + b) +
l

∑
i=1

αi. (6)

• Convex quadratic programming problem with the dual: maximize

LD =
l

∑
i=1

αi −
1
2

l

∑
i,j=1

αiαjyiyj(xixj). (7)

• Those points having αi > 0 represent the support vectors.
• Solution is mainly dependent on them.
• The points with αi = 0 can be removed, or moved away arbitrarily from the hyper-

plane.

• Once the hyperplane is found:
ŷ = (wx + b). (8)

The optimal hyperplane is determined by solving the constrained optimization prob-
lem min( 1

2 wTw), subject to yn(wTxn + b) ≥ 1 for n = 1, 2, 3, . . . , N, w ∈ Rd, b ∈ R.

A way to find the non-linear classifiers’ kernel trick is applied to maximum-margin
hyperplanes. In the resulting algorithm, a non-linear kernel function replaces every dot
product, which enables it to locate the max-margin hyperplane in a new (mostly higher
dimensional) feature space, essentially the transformed feature space. It can be a non-linear
transformation and the new dimension can be of a higher dimension. The classifier in this
space is linear, however, in the original input space, it can be non-linear. Although the
generalization error increases in high-dimensional feature space, the algorithm still yields
better results.

4. Datasets

We generated results on the four publicly available standard datasets given below
to establish reliability of our approach and provide a comparison with state-of-the-art
techniques. Since these datasets provide a broad coverage of the various types of distraction,
by performing well on all of these, we establish that our approach can cater to a wide
variety of scenarios.

Various state-of-the-art approaches have generated results on specific datasets. In
order to provide fair comparison with those aforementioned approaches, we had to generate



Appl. Sci. 2022, 12, 6626 9 of 22

results on those datasets as well. Moreover, these datasets provided sufficient coverage of
different activities that can be used to classify distraction detection.

4.1. State Farm Distracted Driver Detection

The study used the State Farm Distracted Driver Detection dataset (SFDDD) (https:
//www.kaggle.com/c/state-farm-distracted-driver-detection, accessed on 19 June 2022).
It consisted of 2D images from dashboard cameras. A total of 22,400 images, having a
resolution of 640 × 840 pixels, were used in the experimentation. Out of these, 21,000
images contained a distracted driver. A detailed breakdown is given in Table 1. The dataset
was divided into 20,400 training images and 2000 testing images. As shown in Figure 4, the
dataset contained various activities that were indicative of distraction, namely: (i) texting,
(ii) operating the radio, (iii) making phone calls, (iv) drinking, (v) combing, (vi) applying
makeup, and (vii) talking.

Table 1. Distracted and not distracted frames in four datasets, namely: (i) SFDDD, (ii)
BU, (iii) DrivFace, and (iv) FT-UMT. DF = Distracted Frames, NDF = Not Distracted Frames,
TF = Total Frames.

Datasets DF NDF TF

SFDDD 21,000 3000 22,400
BU 2178 1995 4173
DrivFace 391 216 607
FT-UMT 11,000 10,000 21,000

Figure 4. Key frames of the SFDDD showing various distractions, namely: (a) drowsiness, (b)
drinking, (c) texting, (d) tuning the radio, (e) sleeping, and (f) calling.

4.2. Boston University Dataset

The study also used the Boston University dataset (BU) (ftp://csr.bu.edu/headtracking/,
accessed on 19 June 2022) that, similar to SFDDD, consisted of 2D dashboard camera images.
We used 4173 images, having a resolution of 320 × 240 pixels, for evaluation purposes. Out
of these, 2178 images contained variation in the light conditions. This is shown in Table 1.
The dataset was split into training and testing, consisting of 2000 images. The dataset
contained various activities, namely: (i) varying light in left direction, (ii) varying light in

https://www.kaggle.com/c/state-farm-distracted-driver-detection
https://www.kaggle.com/c/state-farm-distracted-driver-detection
ftp://csr.bu.edu/headtracking/


Appl. Sci. 2022, 12, 6626 10 of 22

right direction, (iii) varying light in up direction, (iv) nodding head with varying light, (v)
watching up with varying light, as shown in Figure 5.

Figure 5. Different frames of the BU dataset showing distractions, namely: (a) head panning towards
left, (b) head nodding down, (c) head panning towards right, (d) head nodding up, (e) facing forward
with distracted eyes, and (f) looking forward.

4.3. DrivFace Dataset

We used the DrivFace dataset (http://adas.cvc.uab.es/elektra/enigma-portfolio/cvc1
1-drivface-dataset/, accessed on 19 June 2022) that consisted of dashboard camera images.
From it, 607 images with a resolution of 640 × 480 pixels were used in the experimentation.
Out of these, 391 images depicted distraction as shown in Table 1. The dataset was divided
into two parts: training and testing. Eighty percent of images were used for training and
20% for testing. The dataset contained various activities, namely: (i) talking, (ii) waving
a hand, (iii) watching left direction, (iv) watching right direction, (v) nodding head, (vi)
setting on the dashboard, and (vii) sleeping, as shown in Figure 6.

4.4. FT-UMT Dataset

Lastly, the study used the FT-UMT dataset (https://sites.google.com/site/farooq1us/
dataset, accessed on 19 June 2022) consisting of 2D dashboard camera images. A total of
21,000 images were used. These had a resolution of 640 × 480 pixels. Out of these total
frames, 11,000 contained a distracted driver, as is shown in Table 1. The dataset depicted
various activities, including: (i) looking left, (ii) sad and tensed face, (iii) drowsiness, (iv)
watching back direction, (v) nodding the head, (vi) looking right, and (vii) sleeping.

http://adas.cvc.uab.es/elektra/enigma-portfolio/cvc11-drivface-dataset/
http://adas.cvc.uab.es/elektra/enigma-portfolio/cvc11-drivface-dataset/
https://sites.google.com/site/farooq1us/dataset
https://sites.google.com/site/farooq1us/dataset
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Figure 6. Various frames of the DrivFace dataset depicting various distractions, namely: (a) looking
right, (b) looking forward, (c) talking and laughing, (d) looking forward and waving a hand, (e) head
panning left, and (f) head panning right and signaling.

5. Experiments and Results

The proposed architecture, ReSVM, was compared with ResNet-50, ResNet-101, VGG-
19, MobileNet, InceptionV3, and Xception for a two-category problem of driver’s distraction
detection. The first category corresponds to normal driving without distraction, while the
second corresponds to distracted driving that may include talking on a phone, texting,
drinking, operating the radio, talking, combing, and applying makeup. We evaluated
the classification accuracy and the execution time of our approach on four publicly avail-
able datasets, namely: State Farm Distracted Driving (SFDDD), Boston University (BU),
DrivFace, and FT-UMT datasets using 10-fold cross validation.

The parameter ranges used for ResNet-50, ResNet-50, ResNet-101, VGG-19, MobileNet,
InceptionV3, and Xception classifier are dropout = ‘0.1’, activation function = ‘softmax’, and
optimizer = ‘rmsprop’.

5.1. Experimental Setup

Experiments were performed using Google Colab. The hardware consisted of an
NVIDIA Tesla K80 GPU with 16 GB of graphics memory. The code was written in Python.

5.2. Experiment 1: State Farm Distracted Driver Detection Dataset

ReSVM outperformed the existing state-of-the-art approaches on SFDDD as can be
seen from Table 2 and Figure 7. The reasons include the combination of deep features
of ResNet-50 along with the SVM classifier in the ReSVM. SVM scales relatively well to
high-dimensional data and also reduces the risk of overfitting [60]. This modification
increased the percentage accuracy of the proposed approach from 89%, using simple
ResNet-50, to 95.5%. It can be empirically observed that this combination was helpful for
datasets containing high intraclass variations such as SFDDD. This dataset has a variety of
distractions including texting, talking, operating the radio, nodding, panning, drinking,
combing, applying makeup, and cognitive distractions.

Table 3 shows the optimal parameters (number of epochs and learning rate) of the
proposed approach (ReSVM) and existing deep networks.
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Table 2. Comparison of ReSVM in terms of accuracy with existing architectures on four datasets,
namely: (i) State Farm Distracted Driver Detection, (ii) Boston University, (iii) DrivFace, and (iv) FT-
UMT datasets. DS = Dataset, D1 = SFDDD, D2 = BU, D3 = DrivFace, D4 = FT-UMT, R-50 = ResNet-50,
R-101 = ResNet-101, V-19 = VGG-19, I-V3 = InceptionV3, M = MobileNet, Xp = Xception.

Ds R-50 R-101 V-19 M I-V3 Xp ReSVM

D1 89.00 86.00 92.15 95.00 94.00 94.00 95.50
D2 87.30 44.44 47.09 60.32 86.24 85.71 90.46
D3 87.61 45.90 39.34 80.33 85.25 85.25 93.44
D4 82.50 54.50 48.50 94.00 92.00 91.50 94.50

Figure 8 shows the ROC-AUC plot obtained by applying ReSVM on SFDDD, BU,
DrivFace, and FT-UMT datasets. The value of AUC-ROC for the SFDDD dataset is highest,
showing that ReSVM has the highest measure of separability. It shows that the proposed
model is better in distinguishing between a distracted driver and one who is not distracted.
The value ROC-AUC for BU and DrivFace datasets is relatively lower than that of SFDDD.
The reasons include the dim light conditions, lack of clarity, and high intraclass variations
of these datasets.

Table 3. Optimal parameters (number of epochs and learning rate) of ReSVM and state-of-the-art deep
networks. R-50 = ResNet-50, R-101 = ResNet-101, V-19 = VGG-19, I-V3 = InceptionV3, M = MobileNet,
Xp = Xception.

Epochs/LR R-50 R-101 V-19 M I-V3 Xp ReSVM

Epochs 20 60 70 20 20 20 20
LR 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Figure 7. Comparison of ReSVM with existing state-of-the-art approaches in terms of percentage
accuracy on SFDDD dataset.

5.3. Experiment 2: Boston University Dataset

ReSVM outperformed the state-of-the-art approaches on the Boston University dataset
as can be seen from Table 2 and Figure 9. As can be observed, the accuracy of ResNet-50,
ResNet-101, VGG-19, MobileNet, InceptionV3, and Xception are reduced drastically in
this dataset as compared to SFDDD. For instance, the percentage decrease in accuracy of
VGG-19, ResNet-101, and ResNet-50 is {47.09%, 44.44%, and 87.15%}, respectively. This
is due to dim light conditions and lack of clarity in the frames of this dataset. However,
ReSVM-50 remained comparatively stable with a percentage decrease of 3.31%. Both
ReSVM-50 and ResNet-50 use the same deep features, however, they differ in classifier. The
combination of deep features of ResNet-50 along with the SVM classifier is responsible for
this stable performance of ReSVM. One reason includes the ability of the SVM classifier
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to show good performance on small samples and large features [61]. The accuracy of
VGG-19 drastically decreases in this dataset as compared to SFDDD. One reason for this
degradation in performance is the lack of a large amount of training data [62].

Figure 8. ROC-AUC of ReSVM using (a) SFDDD dataset, (b) BU dataset, (c) DrivFace dataset, and
(d) FT-UMT dataset.

Figure 9. Comparison of ReSVM with existing state-of-the-art approaches in terms of percentage
accuracy on BU dataset.
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5.4. Experiment 3: DrivFace Dataset

Once again, ReSVM outperformed the state-of-the-art approaches when tested on the
DrivFace dataset as can be seen from Table 2 and Figure 10. All the approaches, including
proposed and existing, underwent the same percentage degradation as can be seen in the
case of the BU dataset. For instance, the percentage decrease in accuracy of VGG-19 and
ResNet-101 was 57.30% and 46.63%, respectively. The dataset is smaller in size and has high
intraclass variations due to the illumination factor of frames, glasses, eye gaze movements,
talking to a passenger, picking up something on the dashboard, sleeping, etc. It can further
be observed that ReSVM replaces the SVM classifier in ResNet-50, which increases its
accuracy from 87.61% to 93.44%. As mentioned in Section 5.3, the SVM classifier shows
good performance on small samples and large features [61].

Figure 10. Comparison of ReSVM with existing state-of-the-art approaches in terms of percentage
accuracy on DrivFace dataset.

5.5. Experiment 4: FT-UMT Dataset

As opposed to the other datasets considered in this study, the FT-UMT dataset poses
more challenges because it also takes into account the user expressions, such as sadness and
anger, which increases the intraclass variations. As can be seen in Table 2 and Figure 11,
ReSVM exhibits the best performance accuracy as compared to the other approaches on
this dataset.



Appl. Sci. 2022, 12, 6626 15 of 22

Figure 11. Comparison of ReSVM with existing state-of-the-art approaches in terms of percentage
accuracy on FT-UMT dataset.

5.6. Experiment 5: Execution Time

We compared the running time of our approach with the state-of-the-art on four
datasets, namely: (i) State Farm Distracted Driver Detection, (ii) Boston University, (iii)
DrivFace, and (iv) FT-UMT. It can be observed from Table 4 that ReSVM is 120, 10, 26, 49
times faster than VGG-19, Mobile-Net, InceptionV3, and Xception, respectively, on SFDDD
while it is {141, 11, 30, 57} times faster in the case of the BU dataset. A similar trend is
observed in DrivFace and FT-UMT datasets. The best execution time was achieved by
ResNet-50 but at the cost of reduced accuracy. Our proposed approach, ReSVM, uses
similar deep features as that of ResNet-50 but it differs in the use of the classifier. It can be
observed from Table 2 that the usage of this SVM classifier increases its percentage accuracy
from {89, 87.15, 87.61, 82.50} in the case of ResNet-50 to {95.5, 90.46, 93.44, 94.5} on SFDDD,
BU, DrivFace, and FT-UMT, respectively, however, the execution time increases as well.

Table 4. Comparison of proposed approach i.e., ReSVM, in terms of time with existing architectures
on four datasets. T(s) = Time.

Ds R-50 R-101 V-19 M I-V3 Xp ReSVM

D1 40 840 86,700 6840 18,540 35,100 720
D2 200 560 53,040 4920 12,600 22,920 613
D3 60 120 114,60 1050 2130 4380 951
D4 160 420 45,210 3810 9810 17,010 902

6. Variants of Proposed Approach

We also explored the impact of replacing the SVM with other classifiers in our pro-
posed approach ReSVM. More specifically, we explored the effect of using ID3, multilayer
perceptron (MLP), AdaBoost, naive Bayes (NB), random forest (RF), and k-nearest neigh-
bor (k-NN) classifiers on SFDDD, BU, DrivFace, and FT-UMT. The parameters of these
approaches are shown in Table 5. In all experiments, ReSVM was seen to outperform other
classifiers as shown in Table 6.

It can be observed that the SVM outperformed the other approaches in all four datasets.
The ID3 algorithm exhibited lower accuracy compared to ReSVM as it suffered from
overfitting. The degradation in MLP performance is due to the fact that it is hard to
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Table 5. Parameters used for comparison of decision tree, random forest, k-NN, AdaBoost, and MLP.

Classifier Parameters

Decision Tree criterion = ‘entropy’
in_samples_split = 2
random_state = 0
splitter = ‘best’

Random Forest parcriterion = ‘entropy’
n_estimators = 10
random_state = 0

k-NN leaf_size = 30
metric = ‘minkowski’
n_neighbors = 5
p = 2
weights = ‘uniform’

AdaBoost n_estimators = 50
random_state = None

MLP activation = ‘relu’
alph = 0.0001
max_fun = 15,000
max_iter = 50
random_state = 0
solver = ‘adam’

train and requires a large amount of training data. Naive Bayes implicitly assumes that
all the attributes are mutually independent. This might not always hold true—thereby
limiting its application in many scenarios. Random forest and k-NN are computationally
very expensive in large datasets—the former due to the fact that it creates a lot of trees
(unlike only one tree in the case of decision tree), while the latter suffers because it requires
calculating distance for each data instance. They are also sensitive to noisy and missing
data.

Table 6. Comparison of four datasets with state-of-the-art in terms of percentage accuracy in variants
of proposed approach.

Ds SVM ID3 MLP AB NB RF k-NN

D1 95.50 77.50 84.00 33.00 73.00 91.50 91.00
D2 90.46 75.60 59.78 48.67 57.14 86.70 87.30
D3 93.44 73.77 72.13 62.29 75.40 88.50 86.88
D4 94.50 88.50 81.00 80.50 76.50 95.50 94.00

7. Comparison with Existing Approaches

We now present ReSVM’s improvement over the results presented in the existing
literature. Table 7 shows that ReSVM outperforms Chwan, Mase, Tamas, and Hssayeni. It
uses a combination of deep features of ResNet-50 and SVM that performs well on datasets
containing high intraclass variations such as SFDDD.

Table 7. Comparison using SFDDD dataset.

Dataset Chawan [48] Mase [49] Tamas [50] Hssayeni [47] ReSVM

SFDDD 89.90 92.70 95.00 85.00 95.50

ReSVM outperforms Eraqi, Ali, Dahmane2012, and Dahmane2015 in terms of percent-
age accuracy on the BU dataset as can be seen in Table 8. ReSVM uses an SVM that scales
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relatively well to high-dimensional data and also reduces the risk of overfitting [60]. It can
be observed that all the approaches undergo a degradation in their percentage accuracy in
this dataset as compared to SFDDD. One reason for this degradation in performance is the
lack of a large amount of training data [62].

Table 8. Comparison using BU dataset.

Dataset Eraqi [45] Ali [46] Dahmane [44] Dahmane [43] ReSVM

BU 85.00 89.20 79.63 81.40 90.46

The dataset is smaller in size and has high intraclass variations due to the illumination
factor of frames, glasses, eye gaze movements, talking to a passenger, picking up something
on the dashboard, sleeping, etc.

Similarly, ReSVM outperforms Ali, Vijayan, Ortega, and Diaz as can be seen in Table 9.

Table 9. Comparison using DrivFace dataset.

Dataset Ali [46] Vijayan [51] Ortega [52] Diaz [53] ReSVM

DrivFace 92.35 93.00 93.20 81.00 93.44

8. Discussion

In this work, we compared our proposed approach with six networks (ResNet-50,
ResNet-101, VGG-19, MobileNet, InceptionV3, and Xception) for a two-category classifica-
tion problem of distraction detection (namely, texting—right, talking on the phone—right,
texting—left, talking on the phone—left, operating the radio, drinking, reaching behind,
hair and makeup, and talking to passenger distractions).

The proposed approach, based on the features obtained from the last pooling layer of
ResNet-50 followed by the classification layer consisting of the SVM, outperformed the ex-
isting approaches and the state-of-the-art networks on SFDDD, DrivFace, BU, and FT-UMT
detection datasets, as can be seen from the results presented in Section 6. Figure 7 shows
that our proposed approach outperformed ResNet-50, ResNet-101, VGG-19, MobileNet,
InceptionV3, and Xception, in terms of accuracy (with a maximum accuracy of 93.44%),
whereas other methods exhibited lower accuracy with VGG-19 performing worst of all.
The reason for the good performance of our proposed approach is the optimal classification
capability of SVM on ResNet-50 features in Figures 12 and 13 showing the scatter plot for
the first two principal components of features extracted from ResNet-50. This figure gives
the visualization of features of the SFDDD dataset that are obtained by applying principal
component analysis. The low performance of VGG-19 is probably due to the vanishing
gradient problem which is well addressed in the architecture of ResNet.
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Figure 12. Scatter plot showing the features (first two principal components) of pooling layer of
proposed approach of SFDDD dataset for driver distraction detection including safe driving, texting—
right, talking on the phone—right, texting—left, talking on the phone—left, operating the radio,
drinking, reaching behind, hair and makeup, and talking to a passenger.

Figure 13. Linear projection showing the features (first two principal components) of pooling layer
of proposed approach of SFDDD dataset for driver distraction detection including safe driving,
texting—right, talking on the phone—right, texting—left, talking on the phone—left, operating the
radio, drinking, reaching behind, hair and makeup, and talking to a passenger.

Table 10 shows the interclass and intraclass distances for the features extracted from
the last pooling layer of ResNet-50 for the SFDDD dataset. We can see that the interclass
variation is higher than the intraclass variation, e.g., interclass distance of class 3 and class
4 is significantly higher than the intraclass distances shown in the diagonal. From the
table, it can be seen that the interclass distance between classes 4 and 1 is maximum, i.e.,
4. Equations (9) and (10) show the formulae for computing average distance and average
linkage for intra- and interclass distances, respectively. In Table 10, the value 0.5 shows
that the distance between those two classes is very small, i.e., high similarity exists. As
there are many classes having high similarity, therefore, the value of 0.5 occurs frequently
in the table.



Appl. Sci. 2022, 12, 6626 19 of 22

Table 10. Comparison of within-class (average distance) and between-class (average linkage) dis-
tances for SFDDD dataset.

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

C0 0.00 0.50 1.50 2.50 3.50 3.50 3.50 3.50 3.50 3.50
C1 0.50 1.50 2.50 3.50 4.00 4.00 4.00 4.00 4.00 4.00
C2 1.50 2.50 0.50 2.75 3.60 3.90 3.80 3.80 2.50 2.90
C3 2.50 3.50 2.75 0.50 1.50 1.90 1.95 2.50 2.80 3.20
C4 3.50 4.00 3.60 1.50 0.50 0.50 1.90 2.10 2.30 3.10
C5 3.50 4.00 3.90 1.90 0.50 0.50 2.50 2.40 3.10 3.30
C6 3.50 4.00 3.80 1.95 1.90 2.50 0.50 0.50 0.50 0.50
C7 3.50 4.00 3.80 2.50 2.10 2.40 0.50 0.50 0.50 0.50
C8 3.50 4.00 2.50 2.80 2.30 3.10 0.50 0.50 0.50 0.50
C9 3.50 4.00 2.90 3.20 3.10 3.30 0.50 0.50 0.50 0.50

Sa =
∑i,i′ ‖ xi − xi′ ‖

Nk(Nk − 1)
(9)

Here, xi is the number of intraclass feature attributes, xi − xi′ is distance, and Nk is
total number of vectors.

da =
∑i,j ‖ xi − xj ‖

Nk Ni
. (10)

xi − xj is distances of interclass vectors, Nk Ni shows total number of vectors.
A question arises whether this approach would be feasible in a real scenario. If some-

one uses our pretrained network, then it can easily be deployed in a device with limited
hardware. As is the case with all the machine learning and deep learning approaches, the
training phase occupies a major chunk of computational resources and execution time.
Once the model has been trained, the actual classification is not resource intensive and,
hence, it can easily be deployed in hardware used in a car.

9. Conclusions and Future Work

In this paper, we proposed ReSVM, a residual neural network with an SVM classifier,
for detecting various types of drivers’ distractions, including texting, operating the radio,
drinking, talking on the phone, combing, and applying makeup.

We compared ReSVM with seven state-of-the-art approaches using four publicly
available datasets. The results showed that ReSVM outperformed the other approaches
and achieved a classification accuracy as high as 95.5%. ReSVM, obtained by replacing the
ResNet-50 classifier with an SVM, showed a percentage improvement of {7.3, 3.31, 5.83,
and 14.54} on SFDDD, DrivFace, BU, and FT-UMT, respectively, as compared to ResNet-50.
This significant percentage increase in the BU dataset is due to that fact that SVM performs
well on missing values and dim light datasets.

In future, we plan to explore additional features that can be useful for detecting
distraction. Car motion can be an important indicator. For instance, a car swerving between
lanes could imply distraction or driving under the influence of alcohol. Driver emotions,
such as extreme anger, which have the potential to adversely affect the driver’s ability to
drive safely, could be another strong indicator for distraction. Jittery limbs and other tics
could also be useful for our purpose as they could imply tiredness or health issues.

In this paper, we performed the classification based only on the spatial features, i.e.,
on images. It is important to note that very short duration events, e.g., glancing down
for a fraction of a second, might not be problematic, and hence should not be classified as
distraction. These temporal aspects of distraction will be explored in our future work.

We also plan to develop approaches for monitoring unsafe driving behavior which
may help prevent accidents, as well as assist law enforcement agencies. Among other
things, this could include traffic signal and rule violations, speeding, tailgating, and sudden
acceleration/deceleration for no apparent reason. Eventually, we also plan to go live
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and develop a distraction detection and alerting system in cars and evaluate its actual
performance on roads. The addition of large data repositories for deep architectures will
also be our future goal.
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