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Abstract: In our currently ageing society, fall prevention is important for better healthy life expectancy
and sustainable healthcare systems. While active outdoor walking is recommended as adequate
exercise for the senior population, falls due to tripping and slipping exist as the primary causes
of severe injuries. Minimum foot clearance (MFC) is the lowest vertical height of the foot during
the mid-swing phase and indicates the risk of tripping. In contrast, coefficient of friction (COF)
factors determine the occurrence of falls from slipping. Optimisation of the MFC and the COF for
every step cycle prevents tripping and slipping, respectively. Even after the initiation of hazardous
balance loss (i.e., tripping and slipping), falls can still be prevented as long as the requirements
for balance are restored. Biomechanically, dynamic balance is defined by the bodily centre of mass
and by the base of support: spatially—margin of stability and temporally—available response time.
Fall prevention strategies should, therefore, target controlling the MFC, the COF and dynamic
balance. Practical intervention strategies include footwear modification (i.e., shoe-insole geometry
and slip-resistant outsoles), exercise (i.e., ankle dorsiflexors and core stabilisers) and technological
rehabilitation (i.e., electrical stimulators and active exoskeletons). Biomechanical concepts can be
practically applied to various everyday settings for fall prevention among the older population.

Keywords: fall prevention; tripping; slipping; dynamic balance; minimum foot clearance; required
coefficient of friction; margin of stability; available response time; gait analysis; biomechanics

1. Introduction

Advancements in medical science and social security systems support longevity, and
in our modern society, the life expectancies of developed nations are generally above 80 yrs,
which has sharply increased since the middle of the last century [1]. While humans have
pursued a longer lifespan, if their well-being and quality of life (QOL) are insufficient, not
only senior individuals themselves but also the surrounding family could suffer due to
the need for constant care and high medical costs. For a country with a severe trend of
ageing, such as Japan, healthcare costs (i.e., medical, long-term nursing care, etc.) have
already exceeded the total national revenue [2]. As taxation alone is not sufficient, national
bonds have been issued as one of the few options to match these increasing financial
demands [3,4]. Without accommodating for the fundamental adaptations necessary for
an ongoing ageing society, current unsustainable healthcare systems will soon face critical
degradation. Instead of mere longevity, our attention should be shifted to the concept
of ‘healthy life expectancy’, broadly defined as “the time in which people can live with
sufficient well-being and QOL” [5]. To improve our ‘healthy life expectancy’, it is important
to prevent or even reverse the onset of ‘frailty’ among older adults.

‘Frailty’ in the context of ageing refers to general health declines, which can be di-
vided into physical (e.g., sarcopenia), mental (e.g., depression) and social components
(e.g., isolation) [6,7]. As illustrated in Figure 1, falls are the devastating result of frailty and
a trigger for other health issues [8]. The current review, therefore, focuses on ‘falls among se-
nior adults’ due to the high frequency and serious consequences of falls (i.e., hospitalisation
and injury-related death).
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hospitalisation and injury-related death). 

 
Figure 1. Diagram of frailty, falls and associated elements. 

Adequate exercise such as ‘active walking’ is vital and strongly recommended for 
older adults to maintain their physical, mental and social health, but falls risks paradoxi-
cally exist when they are walking [9]. Therefore, it is important to ensure safe walking, 
but until recently, limited techniques were available to quantify the risk of movement-
related falls. As such, only general associations with actual falls episodes have been re-
ported with respect to chronic health conditions, the history of falls, medication 
(polypharmacy), muscle atrophy (e.g., sarcopenia), mental health, cognitive functions, os-
teoarthritis, motor control systems, visual and auditory functions, joint range of motion, 
connective tissue conditions (e.g., tendons and ligaments), proprioception and bone 
health [10–23]. These findings have been useful for general guidelines on the prediction 
of falls risks, but more specific approaches based on motion analysis are required to 
deepen our understanding of particular movement-related falls risks during active walk-
ing. 

Biomechanical approaches describe a fall as a two-fold scenario: perturbation to dy-
namic balance and subsequent failure in balance recovery [24–26]. Quantifiability is the 
strength of biomechanical approaches that can objectively evaluate individuals’ falls risks 
and the effectiveness of intervention strategies (i.e., training, rehabilitation and assistive 
device) [27]. The current review aims to summarise the latest research findings on fall 
prevention from biomechanical aspects, but it is important to first highlight the key epi-
demiologic information about falls in the senior population. 

2. Fall Prevention for Sustainable Healthcare Systems 
Globally, about one in three older adults above 65 years old fall at least once a year 

and half of them experience multiple falls [28,29]. About 9–20% of the falls lead to serious 
injuries (e.g., fractures), hospitalisation, visits to the emergency department and death 
[30–32]. Medical costs due to fall-related injuries are difficult to directly compare between 
countries, but in a U.S. report, USD 50 billion was the estimated cost in 2018 [33]. For 
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Adequate exercise such as ‘active walking’ is vital and strongly recommended for older
adults to maintain their physical, mental and social health, but falls risks paradoxically
exist when they are walking [9]. Therefore, it is important to ensure safe walking, but
until recently, limited techniques were available to quantify the risk of movement-related
falls. As such, only general associations with actual falls episodes have been reported
with respect to chronic health conditions, the history of falls, medication (polypharmacy),
muscle atrophy (e.g., sarcopenia), mental health, cognitive functions, osteoarthritis, motor
control systems, visual and auditory functions, joint range of motion, connective tissue
conditions (e.g., tendons and ligaments), proprioception and bone health [10–23]. These
findings have been useful for general guidelines on the prediction of falls risks, but more
specific approaches based on motion analysis are required to deepen our understanding of
particular movement-related falls risks during active walking.

Biomechanical approaches describe a fall as a two-fold scenario: perturbation to
dynamic balance and subsequent failure in balance recovery [24–26]. Quantifiability is
the strength of biomechanical approaches that can objectively evaluate individuals’ falls
risks and the effectiveness of intervention strategies (i.e., training, rehabilitation and as-
sistive device) [27]. The current review aims to summarise the latest research findings on
fall prevention from biomechanical aspects, but it is important to first highlight the key
epidemiologic information about falls in the senior population.

2. Fall Prevention for Sustainable Healthcare Systems

Globally, about one in three older adults above 65 years old fall at least once a year and
half of them experience multiple falls [28,29]. About 9–20% of the falls lead to serious in-
juries (e.g., fractures), hospitalisation, visits to the emergency department and death [30–32].
Medical costs due to fall-related injuries are difficult to directly compare between countries,
but in a U.S. report, USD 50 billion was the estimated cost in 2018 [33]. For sustainable
social security systems in our ageing society, reductions in fall-related injuries are thus
urgently demanded because future forecasts predict further acceleration in ageing. In Japan
in 2010, the total national revenue was reported to be USD 500 billion, when healthcare
costs alone (i.e., medical, nursing care etc.) in the same year exceeded USD 550 billion [2].
This serious financial deficit was compensated for by national bonds to double the budget,
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but as a result, Japan has been suffering from the largest amount of national debts in the
world (close to USD 9 trillion in 2021) [34]. For such an unsustainable healthcare system
to fundamentally reform, it is essential to promote ‘healthy life expectancy’ with reduced
reliance on the conventional ‘medical treatment’ or ‘injury rehabilitation’ schemes. In this
sense, ‘fall prevention’ is important for the senior population, and the following section
introduces the major direct causes of falls, namely tripping and slipping.

3. Biomechanical Factors for Falls Risks

There are a number of factors interacting with each other to increase falls risks. How-
ever, it is estimated that 59–78% of falls are due to either tripping or slipping [24,35].
Although a fall can be described as a two-fold episode (i.e., balance perturbation and
failure in balance recovery, efforts should first be devoted to the ‘prevention of potential
balance perturbation’.

3.1. Biomechanics of Tripping and Minimum Foot Clearance (MFC)

Tripping, the leading cause of falls, is defined as unexpected foot contact with the
walking surface or an object upon that surface, which generates momentum sufficient to
destabilise the walker [36]. The two key factors for tripping falls are, therefore, (i) physical
foot contact and (ii) excessive momentum. Focusing on these two essential conditions for
falls by tripping, minimum foot clearance (MFC) is recognised as the critical gait event
(Figure 2) [37].
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MFC is the mid-swing phase event, where the vertical swing foot displacement 
reaches the local minimum while travelling near maximum horizontal velocity [39]. The 
position of both feet is parallel at MFC (Figure 2, right), leaving the small base of support 
(BOS) vulnerable to forward balance loss and subsequent falls [40,41]. MFC characteristics 
can, however, be individual-specific, and some older adults do not experience MFC 
events, possibly due to a slower gait speed and inadequate joint control [42]. The optimi-
sation of MFC control is most important in preventing falls by tripping [37]. While a 

Figure 2. (Left) Illustration of minimum foot clearance (MFC) and swing foot clearance graph [38];
(right) frontal plane illustration at MFC, COM = centre of mass, BOS = base of support, BOS boundary
indicating the line between the toes (frontal BOS boundary).

MFC is the mid-swing phase event, where the vertical swing foot displacement reaches
the local minimum while travelling near maximum horizontal velocity [39]. The position
of both feet is parallel at MFC (Figure 2, right), leaving the small base of support (BOS)
vulnerable to forward balance loss and subsequent falls [40,41]. MFC characteristics can,
however, be individual-specific, and some older adults do not experience MFC events,
possibly due to a slower gait speed and inadequate joint control [42]. The optimisation
of MFC control is most important in preventing falls by tripping [37]. While a higher
MFC is fundamental, it is also important to achieve constant swing foot control (i.e., intra-
individual gait control consistency), indicated by variability measures such as standard
deviation (SD) and interquartile range (IQR) [37,43]. As shown in Figure 3 (left), a lower
IQR (or SD) indicates the ability for consistent MFC control [44].
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percentile; (right) illustration of ankle dorsiflexion to increase MFC.

MFC can be analysed in detail by plotting the data in the histogram to understand the
individual-specific MFC characteristics [37]. As highlighted in Figure 3, the area marked
‘High Risk’ is of particular importance because the risk of tripping increases at occasional
low swing foot clearances. While most previous studies have focused on central tendency
and its dispersion, such as mean ± SD or median ± IQR to describe MFC characteristics,
for fruitful future directions, lower percentiles (i.e., 0–5%) should be the focus for the most
dangerous instances [45].

Despite the importance of a sophisticated analytical approach for MFC data, the
fundamental direction is to provide sufficient MFC height, achieved most efficiently by
ankle dorsiflexion (Figure 3, right), such that 1◦ of ankle dorsiflexion elevates the MFC
by 0.3cm [46], but ageing is a factor that causes reduced dorsiflexion [47]. Enhanced
dorsiflexion at MFC is, therefore, the target for tripping prevention [48,49]

3.2. Biomechanics of Slipping and Coefficient of Friction (COF)

Slipping is the second leading cause of falls, but unlike tripping, backward and
sideways loss of balance can be consequences, often resulting in the worst type of injury:
hip fracture [40]. Downey et al. [50] reported that the one-year mortality of hip fractures is
22% for older individuals.

Biomechanically, slipping can be described as ‘horizontal foot velocity during the
stance phase’ when the foot is, in principle, in contact with the walking surface. After heel
contact, the foot stance is not supposed to move anteriorly, but when the foot contact’s force
outweighs the maximum available friction, the excess anterior force generates acceleration,
causing a slip. A slip can be defined by displacement, velocity or acceleration but needs
to be distinguished from a micro-slip, up to 3 cm horizontal displacement, following heel
contact as part of the regular gait cycle [51].

Friction has the ability to counter-match the shear force, but depending on the interface
quality, it has a maximum threshold above which the object (i.e., foot) can start moving.
The maximum available friction can be computed as

Maximum Friction = coefficient of friction (COF)×Normal Force

where COF indicates ‘slipperiness of the interface’ and Normal Force is the GRF component
perpendicular to the walking surface, therefore, the vertical GRF component in level
walking. As long as the maximum available friction is higher than the horizontal foot
contact force, a slip can be prevented, but in level walking, the alternative condition is
‘COF is higher than the certain threshold, known as the required coefficient of friction
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(RCOF)’ [52,53]. The RCOF is determined by walking patterns, more specifically, the ratio
of GRF between horizontal and vertical components.

RCOF =

∣∣∣∣GRFhor
GRFver

∣∣∣∣
Throughout the stance phase of the gait cycle, GRF characteristics continuously change,

but the initial peak RCOF is the marker for the risk of slipping widely varying between
individuals and walking patterns. Immediately following heel contact, the RCOF values
are often ‘noisy’ (Figure 4), usually disregarded from the slip-risk assessment. This noisy
part of RCOF probably reflects a micro-slip, a small movement of the heel (i.e., up to
3 cm) immediately following foot contact [51]. In short, a slip-resistant interface (i.e., shoe-
outsole and floor treatment) is required against the peak RCOF after heel contact (heel slip
risk in Figure 4).
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4. Biomechanics of Dynamic Balance

Even after tripping or slipping, falls can still be prevented as long as balance is restored.
‘Balance’ has been commonly used in many everyday contexts, but it was not until recently
that human balance was properly quantified based on biomechanical concepts. In the
simplest definition, balance is secured when COM is within BOS in the transverse plane [26].
This fundamental definition holds true as long as the body remains static, ensuring absolute
safety. This concept is, however, not practical in predicting falls risks. First, BOS in bipedal
human locomotion is defined as the foot contact area, plus the area between the two feet
during the double support phase [54]. Following this balance definition, human gait can be
viewed as a continuum of ‘balance loss and balance recovery’ by linking the single- and
double-limb supporting phases alternately [55]. It is, however, obvious that balance loss
during the single-support phase (when COM is outside BOS) is not necessarily related to
falls, but it can be rather functional for the purpose of walking (i.e., forward progression).
Hazardous balance loss needs to be clearly distinguished from functional requirements.
This issue can be overcome by considering virtual (projected) BOS that has been introduced
by Patla et al. [26], in that both foot positions in the transverse plane define the area
regardless of whether the foot is in contact with the walking surface (Figure 5). A balance
assessment can be relative to this virtual BOS to characterise a hazardous balance loss that
leads to falls. Second, in dynamic situations such as human walking, velocity needs to be
considered rather than looking only at positional relationships between COM and BOS.
Even in the same positional relationships, COM velocity can be a large determinant for
balance conditions in dynamic situations.



Appl. Sci. 2022, 12, 6660 6 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 14 
 

a hazardous balance loss that leads to falls. Second, in dynamic situations such as human 
walking, velocity needs to be considered rather than looking only at positional relation-
ships between COM and BOS. Even in the same positional relationships, COM velocity 
can be a large determinant for balance conditions in dynamic situations. 

 
Figure 5. (Top left) Dynamic balance characteristics at MFC—tripping-related COM indicated by a 
circle, XCOM indicated by X, (bottom left) inverted pendulum model during single support; (right) 
dynamic balance characteristics at heel contact—slipping related; MOS = margin of stability COM 
indicated by a circle, XCOM indicated by X. ART = available response time, COM = centre of mass. 
XCOM = COM + COMvelocity + √g/l, where g = gravitational acceleration and l = limb length; MOS 
= BOS—XCOM as illustrated above. 

4.1. Margin of Stability (MOS) 
A spatial description of dynamic balance can be provided by the margin of stability 

(MOS), as illustrated in Figure 5. The fundamental concept of MOS is the distance between 
the extrapolated centre of mass (XCOM) and the BOS boundary relevant to the particular 
balance loss type. 

MOS = BOS − XCOM 

In the calculation of dynamic balance, XCOM is the projected COM position based 
on current velocity factors, therefore, differentiating ‘moving’ COM from the static condi-
tion. Falls direction can be determined by which BOS boundary COM is likely to cross. 
Tripping and slipping are the primary causes of forward and backward balance loss, re-
spectively [40]. Although the MOS concept may appear to ignore vertical COM infor-
mation, the calculation of XCOM requires the limb length, accounting for the vertical 
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dynamic balance characteristics at heel contact—slipping related; MOS = margin of stability COM
indicated by a circle, XCOM indicated by X. ART = available response time, COM = centre of mass.
XCOM = COM + COMvelocity +

√
g/l, where g = gravitational acceleration and l = limb length;

MOS = BOS—XCOM as illustrated above.

4.1. Margin of Stability (MOS)

A spatial description of dynamic balance can be provided by the margin of stability
(MOS), as illustrated in Figure 5. The fundamental concept of MOS is the distance between
the extrapolated centre of mass (XCOM) and the BOS boundary relevant to the particular
balance loss type.

MOS = BOS− XCOM

In the calculation of dynamic balance, XCOM is the projected COM position based on
current velocity factors, therefore, differentiating ‘moving’ COM from the static condition.
Falls direction can be determined by which BOS boundary COM is likely to cross. Tripping
and slipping are the primary causes of forward and backward balance loss, respectively [40].
Although the MOS concept may appear to ignore vertical COM information, the calculation
of XCOM requires the limb length, accounting for the vertical kinematic factor for dynamic
balance. As in Figure 5 (left bottom), inverted pendulum gait mechanics [55] account for
the arch-like COM motion path.

XCOM = COM +
COMvel√

g
l
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Originally, the most traditional concept for dynamic balance was viewed in the trans-
verse plane (Figure 5) [55] with resultant anterior–posterior and medio–lateral components
together. However, MOS studies do not focus on actual (resultant) COM movement in the
transverse plane due to attempts to conduct sagittal and/or frontal plane analyses [56–60].
Viewing MOS in the sagittal or frontal plane, however, masks the actual COM movement
direction and has absolutely no advantages over a transverse plane analysis. Even when
there is sufficient anterior MOS, for example, balance can still be destabilised in the medio–
lateral directions and vice versa. MOS should thus be considered in the transverse plane
(Figure 5) and utilising the actual COM direction but not in the sagittal or frontal plane.

4.2. Available Response Time (ART)

In addition to the spatial definition of dynamic balance, available response time (ART)
is used to describe the temporal balance. The concept for computing the estimated time of
COM to cross the BOS boundary is simple.

ART =
(BOS−COM)

COMvel

Again, an important consideration is to identify the relevant BOS boundary and
balance loss directions [41,61].

5. Fall Prevention Strategies

Gait biomechanics attributes age-associated falls risks to changes in gait patterns,
most fundamentally recognised as a slower walking speed, a shorter step length, a larger
step width and prolonged double support time [38]. Ageing also negatively alters various
neuromotor systems, such as a slower reaction and the loss of fine-movement control [62,63],
all of which are combined together to increase the likelihood of falls. For older adults,
Yardley et al. [64] reported that fall prevention strategies should be easy to implement and
affordable, immediately affecting and supporting active walking; otherwise, they would
not be followed for a long time even if they were effective. This section introduces fall
prevention strategies that may cover all of these aspects: footwear, exercise and technology-
based interventions.

5.1. Footwear Intervention

Footwear is an essential consideration for fall prevention, with various potential effects
on reducing the risk of tripping and slipping. In short, tripping prevention can focus on
increasing swing foot clearance (i.e., MFC) by modifying the footwear geometry, while
shoe-outsole modifications can provide sufficient friction to minimise slipping. Menant
and colleagues [65,66] investigated the effects of shoes on gait biomechanics and associated
falls risks. Their research outcomes were largely in agreement with previous reports about
‘safe footwear’.

A shoe insole is a direct interface for the foot and influences gait control mechanics.
Nagano and Begg [49] introduced ISEAL technology, which supports ankle dorsiflexion
and eversion, especially in the heel. As in Figure 6 (top left), the specific heel geometry
combined with texture installation succeeded in increasing MFC and guiding the foot’s
centre of pressure (COP) to stabilise balance [38]. Maki et al. [67] devised a shoe insole called
SoleSensor©, installing tubes peripherally to trigger cutaneous receptors when the foot
COP travels toward the BOS boundary and to promote afferent feedback for faster reaction
speed to avoid balance loss. Another type of shoe insole consideration is the incorporation
of additional cushioning effects to reduce plantar foot pressure. Custom moulding is also
common for shoe insoles, often utilising 3D foot scanning systems to maximise the contact
area between the foot and the shoe insole. Such foot-pressure-redistribution techniques may
not directly reduce falls risks but can protect the foot from deformity and pain, possibly
helping to sustain dynamic balance. The custom moulding of shoe insoles, however,
may not always solve foot problems but, rather, could exacerbate the condition. If a foot
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deformity exists, merely scanning the foot results in moulding the shape of the damaged
foot and makes it rather difficult to overcome these problems.
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Figure 6. (Top left) Texture installation on the insole to guide centre of pressure movement;
(bottom left) application of electrical muscle stimulation on dorsiflexors; (right) foot corrector for
dorsiflexors’ training.

Contrary to a shoe-insole intervention to reduce the risk of tripping, slip prevention
can be summarised as ‘COF greater than RCOF’, but attempts to reduce RCOF may not
be practical. A lower RCOF can be achieved with smaller horizontal and greater vertical
GRF components. Such walking patterns can be characterised by ‘stomping’ but cannot
be recommended as everyday gait adaptations due to potential damages to lower limb
joints. Shoe modification for slip prevention is, for this reason, almost limited to the outsole
structure by providing sufficient friction.

For slip prevention, the horizontal foot contact force must be smaller than the friction
between the two interfaces: the walking surface and shoe outsole. The indicator of ‘slip-
periness’ and coefficient of friction (COF) is determined mostly by materials and surface
conditions (i.e., contamination), but there is no single best outsole material for reducing the
risk of slipping. Polyurethane (PU) is, for example, slip-resistant, particularly against a con-
taminated surface compared to other materials, but effects can wear off relatively in a short
period of time [68,69]. Thermal plastic rubber (TPR) is generally not slip-resistant; however,
TPR can be useful on an icy surface. On a dry surface, natural rubber is the optimal material,
but it is questionable whether we need to consider falls from slipping when the surface
is not slippery. Softer outsole materials generally provide higher COFs but can wear off
and lose their slip resistance quicker. Considering the lifespan of footwear, extremely soft
outsoles may not be cost-effective. Outsole treads can be another consideration, but further
research should be undertaken to effectively reduce the risk of slipping [70].
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Footwear intervention potentially has various advantages, but there are a few cautions
to consider because many types of commercially available footwear could possibly cause
adverse effects on foot health and safe walking. For example, shoe insoles with elevated
heels are commonly available on the market but can cause foot pressure to concentrate on
the metatarsal regions and could eventually deform the foot [38]. As with high heels, an
elevated heel is not optimal for everyday walking [65]. Second, asymmetrical footwear is
difficult to justify without appropriate fitting and expert advice. The fundamental concept
of footwear intervention should aim for a symmetrical gait style, but some prefabricated
commercial footwear products, including shoe insoles and shoe outsoles, have incorporated
asymmetrical features, which could potentially cause various lower-limb joint problems
with long-term use.

5.2. Exercise Intervention

Exercise intervention has been reported to be effective at enhancing seniors’ health
and at reducing falls risks [71]. It is, however, important to focus on motivational issues
that are related to individuals’ health statuses. Without sufficient physical, psychological
and social health, older adults are unlikely to engage in exercise continuously [72,73]. For
this reason, factors for encouraging voluntary participation must be considered, such as
ease of engagement, some sort of immediate effects and cost affordability [60].

Exercise prescription generally follows the same principle as that of the younger
populations. Muscle development is, for example, based on the ‘overload principle’ and
‘supercompensation’ [74]. Differences, however, exist in various physiological conditions
such as sarcopenia, bone density, maximal aerobic capacity and pathological conditions
(e.g., cardiovascular dysfunctions, hypertension, diabetes, etc.) [75,76]. It is essential
to account for age-associated health declines to prevent adverse results of exercise for
older adults.

As repeatedly emphasised, dorsiflexion is the key ankle motion that provides sufficient
swing foot clearance at MFC and prevents tripping [46]. In addition, dorsiflexion supports
‘defined’ heel contact at the beginning of a stance phase, which is effective at reducing foot
contact impact [77]. Tibialis anterior is the primary muscle activating ankle dorsiflexion,
and exercise intervention should, therefore, focus on dorsiflexor muscle groups. Figure 6
(right) introduces the use of an apparatus called ‘foot corrector’ that can effectively train
both the dorsiflexors and the plantarflexors.

Another important element of exercise intervention is so-called ‘core training’ to
stabilise bodily COM by toning the muscles around the pelvis–trunk region [78,79]. In
this concept, the strengthening of trunk stabilisers can help COM to be steadily positioned
within BOS.

5.3. Technology-Based Intervention

A number of technology-based interventions are available, but one promising method
is electrical stimulation, which can enhance the necessary muscles through improved
neuromotor control [80,81]. Electrical stimulation is commercially available as electrical
muscle stimulation (EMS) or transcutaneous electrical nervous stimulation (TENS). These
portable devices trigger motor neuron excitation and their associated muscle contractions
via electrical signals. Depending on the system, stimulation patterns, including intensity,
frequency and rhythm, can be controlled to provide the optimal effects [82]. There are many
advantages to electrical stimulation, including (i) cost-effectiveness, (ii) passive treatment
option—not requiring physical burdens and being suitable for frail populations, and (iii)
few known adverse side effects (e.g., excessive use not being recommended and allergic
reactions to electrodes’ gel in rare cases). There are unlimited potentials in this application,
and much is still to be uncovered, but a straightforward application is attachment to
the tibialis anterior (i.e., dorsiflexors), as in Figure 6 (bottom left). As explained above,
strengthening the dorsiflexors could increase the swing foot clearance and reduce the risk
of tripping [46].
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This mechanism has been incorporated into some active orthoses utilising a footswitch
to activate the electrical stimulation of dorsiflexors. In a previous report [83], a footswitch
was installed at the heel to detect heel contact and heel off, providing electrical stimulus
to the tibialis anterior from heel off until heel contact. In a healthy gait, however, the
dorsiflexors should be active primarily during the swing phase, from toe off to heel con-
tact [84]. Multiple footswitches should be, therefore, installed on both the heel and toe
to detect heel contact and toe off. It is also important to note that dorsiflexors have two
peaks: slightly before mid-swing and immediately after heel contact [85]. The intensity of
electrical stimulation on the tibialis anterior should therefore be controlled to assist with
achieving optimal ankle kinetic requirements [86,87].

Another type of active system is the wearable cyborg (active exoskeleton) such as
Hybrid Assistive LimbTM (HALTM, Prof. Sankai University of Tsukuba/CYBERDYNE
Inc.). It is a motor-driven exoskeleton system to produce the wearer’s intended motions
through the actuation of HAL’s motors by converting efferent neuro-signals, whether
erratic or faint, into tangible movements that meet the intention of its wearer through
processing. (Figure 7) [88]. While this type of wearable cyborg can assist people while
it’s being worn, it can re-establish the lost connection between the efferent motor signals
and the afferent sensory signals of the body’s ori ginal biofeedback loop of patients with
severe movement dysfunctions (e.g., spinal cord injury, post-stroke syndromes), by acting
as a non-invasive external medium through coupling with the ‘intention movement‘ of the
wearer (i.e., interactive biofeedback theory). While this theory was proven through several
clinical trials, Further research is required to test whether the use of wearable cyborgs
provides learning effects of lower limb control and reduces falling risks.
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6. Conclusions

Fall prevention is urgently required for a sustainable ageing society, and biomechanical
approaches identified tripping and slipping as the two primary causes of hazardous balance
loss. Minimum foot clearance (MFC) and the required coefficient of friction (RCOF) are
key parameters used to predict the risk of tripping and slipping, respectively. Controlling
the centre of mass and establishing an effective base of support can be useful for main-
taining dynamic balance, leading to fall prevention. Dynamic balance can be quantified
by a margin of stability (MOS) and available response time (ART) to assess individuals’
capacity for balance recovery. Various intervention strategies for fall prevention include
optimum footwear, adequate exercise and technology-based approaches. A biomechanical
understanding of falls among older adults can be applied to practical solutions to reduce
falls risks. While a biomechanical understanding of each element is important, it is first
necessary to picture the overall framework of gait analysis for fall prevention among
older adults.
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