
Citation: Zhang, F.; Petersen, M.;

Johnson, L.; Hall, J.; O’Bryant, S.E.

Hyperparameter Tuning with High

Performance Computing Machine

Learning for Imbalanced Alzheimer’s

Disease Data. Appl. Sci. 2022, 12,

6670. https://doi.org/10.3390/

app12136670

Academic Editors: Nasro Min-Allah

and Ubaid Abbasi

Received: 18 May 2022

Accepted: 29 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Hyperparameter Tuning with High Performance Computing
Machine Learning for Imbalanced Alzheimer’s Disease Data
Fan Zhang 1,2,* , Melissa Petersen 1,2, Leigh Johnson 1,3, James Hall 1,2 and Sid E. O’Bryant 1,2

1 Institute for Translational Research, University of North Texas Health Science Center,
Fort Worth, TX 76107, USA; melissa.petersen@unthsc.edu (M.P.); leigh.johnson@unthsc.edu (L.J.);
james.hall@unthsc.edu (J.H.); sid.obryant@unthsc.edu (S.E.O.)

2 Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
3 Department of Pharmacology and Neuroscience, University of North Texas Health Science Center,

Fort Worth, TX 76107, USA
* Correspondence: fan.zhang@unthsc.edu; Tel.: +1-817-735-2947

Abstract: Accurate detection is still a challenge in machine learning (ML) for Alzheimer’s disease
(AD). Class imbalance in imbalanced AD data is another big challenge for machine-learning algo-
rithms working under the assumption that the data are evenly distributed within classes. Here, we
present a hyperparameter tuning workflow with high-performance computing (HPC) for imbalanced
data related to prevalent mild cognitive impairment (MCI) and AD in the Health and Aging Brain
Study-Health Disparities (HABS-HD) project. We applied a single-node multicore parallel mode to
hyperparameter tuning of gamma, cost, and class weight using a support vector machine (SVM)
model with 10 times repeated fivefold cross-validation. We executed the hyperparameter tuning
workflow with R’s bigmemory, foreach, and doParallel packages on Texas Advanced Computing Center
(TACC)’s Lonestar6 system. The computational time was dramatically reduced by up to 98.2% for the
high-performance SVM hyperparameter tuning model, and the performance of cross-validation was
also improved (the positive predictive value and the negative predictive value at base rate 12% were,
respectively, 16.42% and 92.72%). Our results show that a single-node multicore parallel structure
and high-performance SVM hyperparameter tuning model can deliver efficient and fast computation
and achieve outstanding agility, simplicity, and productivity for imbalanced data in AD applications.

Keywords: hyperparameter tuning; high-performance computing; machine learning; imbalanced
data; mild cognitive impairment; Alzheimer’s disease

1. Introduction

Over the last few years, machine learning (ML) has become an important research
topic in the high-performance computing (HPC) community. HPC provides a large amount
of opportunities, in terms of environments and resources, to help accelerate the process
of ML. The ML community has also started to utilize the performance of HPC for better
parallelization and scalability. For example, the number of articles on ML and HPC has
reached 321,000,000 according to the search results from Google. However, applying ML
and HPC to Alzheimer’s disease (AD) research is still relatively new. There was only
1 hit [1] from a PubMed search of ML, HPC, and AD (and 84 hits from Google), although
the number of publications pertaining to ML and AD has greatly increased, from 294 in
2020 to 1582 in 2022.

Alzheimer’s is the most common cause of dementia, accounting for 60–80% of demen-
tia cases. Its prevalence rate is about 11% among those aged 65 and older [2,3]. Collecting
AD data while staying as close as possible to the prevalence rate in the population may cre-
ate imbalanced data, which makes ML challenging [4]. For example, the Health and Aging
Brain Study-Health Disparities (HABS-HD) data used here contained 1328 normal controls
and 377 mild cognitive impairments (MCIs) and ADs [5–14]. In our preliminary analysis,

Appl. Sci. 2022, 12, 6670. https://doi.org/10.3390/app12136670 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136670
https://doi.org/10.3390/app12136670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3502-1808
https://doi.org/10.3390/app12136670
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136670?type=check_update&version=1

Appl. Sci. 2022, 12, 6670 2 of 11

all positive samples in the testing set were classified wrongly as normal, although our
training set had almost 100% sensitivity and specificity. This was because the model learned
from the imbalanced training set contained biases and made prediction too sensitive to the
majority class, which consisted of normal controls for our HABS-HD data.

There are three ways to solve the imbalanced dataset problem: (1) downsampling,
(2) upsampling, and (3) class weight optimization. Downsampling involves randomly
removing observations from the majority class. Upsampling is the process of randomly
duplicating observations from the minority class. However, downsampling will almost
always lose information, while upsampling may lead to overestimation of the model
performance and makes overfitting likely.

Hyperparameter tuning with class weight optimization has proven to be efficient in
handling imbalanced data [15–17]. For example, John et al. worked with machine learning
algorithms and imbalanced big data and found that, regardless of the classifier or encoding
technique for categorical features, classifiers with tuned hyperparameters could yield better
results than those with default values when classifying highly imbalanced big data [17].
Kong et al. compared hyperparameter optimization to default hyperparameters for both
classification algorithms and resampling approaches and found that hyperparameter op-
timization could produce better results when classifying the imbalanced datasets [15].
Guido et al. presented a hyperparameter tuning method to improve model performance
for imbalanced data [16].

HPC provides great opportunities to look into the imbalanced data problem while
accelerating hyperparameter tuning efficiently [18,19]. In our previous work, we found
that HPC could be used to significantly reduce computational time while maintaining the
necessary accuracy for balanced AD data [1]. However, applying the workflow from [1] to
imbalanced big data may cause an out-of-memory problem because the addition of a third
parameter causes the memory usage to increase by x times, where x is the length of the
class weight (normally, x is between 10 and 100). Loading the big imbalanced data chunk-
by-chunk and then tuning it partially will not result in the same best parameters for all
the chunks. Therefore, in this paper, we describe a hyperparameter tuning workflow with
HPC and memory management for imbalanced data relating to prevalent mild cognitive
impairment and Alzheimer’s disease in the HABS-HD project. We applied a single-node
multicore parallel mode to hyperparameter tuning of gamma, cost, and class weight for a
support vector machine (SVM) model with 10 times repeated fivefold cross-validation. We
executed the hyperparameter tuning workflow with R’s bigmemory, foreach, and doParallel
packages in Texas Advanced Computing Center (TACC)’s Lonestar6 system. The com-
putational time was dramatically reduced by up to 98.2% for the high-performance SVM
hyperparameter tuning model and the performance of cross-validation was also improved
(the positive predictive value and the negative predictive value at base rate 12% were,
respectively, 16.42% and 92.72%).

2. Materials and Methods
2.1. High-Performance Computing Structure

We used TACC’s Lonestar6 system for the hyperparameter tuning. Lonestar6 is the
newest system in TACC’s Lonestar series of high-performance computing systems, which
are deployed specifically to support Texas researchers. The system provides a balanced
set of resources to support simulation, data analysis, visualization, and machine learning.
Lonestar6 hosts 560 compute nodes with 5 TFlops of peak performance per node and
256 GB of DRAM (Table 1). The inter-node communication in Lonestar6 is supported by a
Mellanox HDF Infiniband network, with capacities as high as 200 Gb/s.

Appl. Sci. 2022, 12, 6670 3 of 11

Table 1. Node specifications for Lonestar6.

CPU 2× AMD EPYC 7763 64-Core Processor (“Milan”)
Total cores per node 128 cores on two sockets (64 cores/socket)
Clock rate 2.45 GHz (Boost up to 3.5 GHz)
RAM 256 GB (3200 MT/s) DDR4
Local storage 144 GB /tmp partition on a 288 GB SSD

2.2. R Pseudocode for Parallel SVM Hyperparameter Tuning

We submitted a single-node multicore parallel code to request 1 node (#SBATCH-
N 1) with 128 tasks (#SBATCH-n 128). Before running foreach() in parallel (v1.5.2), we
registered a parallel backend with registerDoParallel() in doParallel() (v1.0.17) (Figure 1). It is
the easiest backend on most multicore systems. On Linux and Macintosh machines it uses
fork system call, and on Windows machines it uses snow backend. It chooses automatically
for the system.

Memory management is another important aspect in high-performance computing.
On the one hand, embarrassingly, parallel problems require parallels solution because
of the volume of data rather than the complexity of the algorithm. On the other hand,
using more cores on a single node implies that each core has access to less memory. Using
machine learning with high-performance computing can create problems when loading the
data into RAM or the system may sometimes perform an operation for some data and then
throw errors and stop working. To solve these problems, we used the bigmemory package
(v4.5.36) to relieve the stress on system RAM and a combination of the doParallel (v1.0.17)
and foreach (v1.5.2) packages for parallelized computation and, thus, faster computation
(Figure 1).

2.3. 10 Times Repeated Fivefold Cross-Validation

We adopted 10 times repeated fivefold cross-validation [1] to reduce the noisy esti-
mation of the optimal parameters of the ML model caused by a single run of the fivefold
cross-validation [20]. Briefly, the fivefold cross-validation procedure where data samples
are shuffled and stratified is repeated 10 times, and the mean performance across all folds
from all runs is then used for the hyperparameter tuning.

2.4. Performance Measurement

In order to evaluate the performance of the hyperparameter tuning, we considered
the following eight metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision/PPV = TP/(TP + FP) (2)

Sensitivity = TP/(TP + FN) (3)

Specificity = TN/(TN + FP) (4)

NPV = TN/(TN + FN) (5)

PPV12 =
Sensitivity ∗ 12%

Sensitivity ∗ 12% + (1− Specificity) ∗ (1− 12%)
(6)

NPV12 =
Specificity ∗ (1− 12%)

Specificity ∗ (1− 12%) + (1− Sensitivity) ∗ 12%
(7)

and the area under the curve (AUC). Abbreviations: PPV, positive predicted value; NPV,
negative predicted value; TP, true positive; FP, false positive; FN, false negative; TN,
true negative; PPV12, positive predicted value at the base rate of 12%; NPV12, negative
predicted value at the base rate of 12%.

Appl. Sci. 2022, 12, 6670 4 of 11

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 11

and the area under the curve (AUC). Abbreviations: PPV, positive predicted value; NPV,

negative predicted value; TP, true positive; FP, false positive; FN, false negative; TN, true

negative; PPV12, positive predicted value at the base rate of 12%; NPV12, negative pre-

dicted value at the base rate of 12%.

Figure 1. Pseudocode for my_script.R.

3. Results

We downloaded the HABS-HD data from [10]; these data are available to the global

scientific community to foster a more advanced understanding of the biological, social,

 1 no_cores = detectCores() − 1 // set the number of

cores

 2 doParallel::registerDoParallel(cores=no_cores) // register parallel backend

 3 df=read.csv("abcd.csv") //load the data

 4 df$trait = as.factor(df$trait) //set target variable as a factor

 /* perform 10 times repeated 5-fold cross-validation splits on data */

 5 set.seed(123)

 6 df$fold = StratifiedTKCV(df$trait, k = 5, times = 10)

 /* Initialize hyperparameters */

 7 cost = 2^(−2:9)

 8 gamma = seq(0, 10, 0.05)

 9 class.weight = seq(0.99, 0.01, −0.01)

10 parms = expand.grid(cost = cost, gamma = gamma, class.weight = class.weight)

11 result = bigmemory::big.matrix(nrow(parms), 1)

 /* Loop through parameter values */

12 foreach(i = 1:nrow(parms), .combine = c) %dopar% do

13 | c = parms[i,]$cost

14 | g = parms[i,]$gamma

15 | w = parms[i,]$class.weight; w = c(w, 1-w)

 | /*10 times repeated 5-fold cross-validation */

16 | out = foreach(j = 1:max(df$fold), .combine = rbind) %do% do

17 | | train = df[df$fold != j,]

18 | | test = df[df$fold == j,]

19 | | model = svm(fml, data = train, cost = c, gamma = g, class.weight = w,

 | | probability = TRUE)

20 | | pred = predict(model, test, decision.values = TRUE, probability = TRUE)

 | | /* Measure performance for each fold */

21 | | confusion_matrix = table(pred, test$trait)

22 | | tp = confusion_matrix[1, 1]

23 | | tn = confusion_matrix[2, 2]

24 | | fp = confusion_matrix[1, 2]

25 | | fn = confusion_matrix[2, 1]

26 | | accuracy = (tp + tn)/(tp + tn + fp + fn)

27 | | accuracy

28 | end

29 | result[i,] = mean(out) // Average performance

30 | NULL

31 end

 /*Find the optimal hyperparameters */

32 i_best = which.max(result)

33 c_best = parms[i_best,]$cost

34 g_best = parms[i_best,]$gamma

35 w_best = parms[i_best,]$class.weight

Figure 1. Pseudocode for my_script.R.

Appl. Sci. 2022, 12, 6670 5 of 11

3. Results

We downloaded the HABS-HD data from [10]; these data are available to the global
scientific community to foster a more advanced understanding of the biological, social,
cultural, and environmental factors associated with MCI and AD. The HABS-HD data used
here contained 1328 normal controls and 377 MCIs and ADs (116 ADs and 261 MCIs). An
imbalance occurred in this classification (class imbalance index = 0.31 according to the
formula I = K ∗∑K

i=1(ni − 1/K)2, where K is the number of classes, and ni is the number
of instances of class i) because the MCI and AD group had a very low proportion in the
training data compared to the normal control group. Moreover, the MCI and AD group had
significantly more males (p = 8.95× 10−7 < 0.001) and significantly fewer years of education
(p = 2.60 × 10−7 < 0.001) than the normal control group. There was no significant difference
in age between the two groups (p = 0.002 > 0.001). Detailed demographic characteristics of
the cohort were presented in [10].

The following seventeen blood marker variables were chosen to predict the status of
prevalent MCI and AD: CRP, FABP3, IL_10, IL_6, Ab40, Ab42, Tau, NFL, PPY, sICAM_1,
sVCAM_1, TNF_alpha, GLP_1, Glucagon, PYY, Insulin, and HOMA_IR (Table 2). Age,
Gender, Hispanic (Hispanic or not), and Edu (years of education) were added as covari-
ates [9,11,14,21].

Table 2. Description for the 17 variables.

Variable Name Description Average Value Standard Deviation

CRP C-reactive protein (CRP) 41,567,738 67,325,201

FABP3 Fatty acid-binding
proteins (FABPs) 4953.23 2611.45

GLP_1 Glucagon-like
peptide-1 (GLP-1) 1.07 2.09

Glucagon Glucagon 49.46 49.98
IL_6 Human interleukin-6 (IL-6) 1.85 19.63

Insulin Insulin 233.35 287.24
PPY Pancreatic polypeptide (PPY) 400.87 491.56

PYY Peptide YY (PYY), also known
as peptide tyrosine tyrosine 35.46 38.33

sICAM_1 Intercellular adhesion
molecule 1 (ICAM-1/CD54) 2,354,989 2,759,979

sVCAM_1 Vascular cell adhesion
molecule 1 (VCAM-1/CD106) 3,681,600 4,361,946

TNF_alpha Human tumor necrosis factor
alpha (TNF-alpha) 3.57 15.14

Ab40 Aβ40 is a 40-amino
acid proteolytic 244.08 78.38

Ab42 Aβ42 is a 42-amino
acid proteolytic 11.7 3.71

Tau Tau 2.38 1.17
NFL Neurofilament light 18.47 14.08
IL_10 Human interleukin-10 0.42 0.64

HOMA_IR Homeostatic model assessment
for insulin resistance 1.9 2.92

We combined SLURM commands and R scripts to compare the computational time
for hyperparameter tuning under different numbers of cores for a single node in Lonestar6
(Figure 1). The computational time for hyperparameter tuning for imbalanced data was
inversely proportional to the number of cores for a single node (Figure 2a). For a single
node, when we increased the number of cores from 1 to 128, the computational time was
reduced but not linearly (Figure 2a). There was an overhead that reduced the efficiency, and
not all of the tasks could be parallelized. The calculations of speedup vs. number of cores
followed Amdahl’s Law at a parallel proportion of 99% (Figure 2b). The computational time
initially spent for the hyperparameter tuning without using high-performance computing

Appl. Sci. 2022, 12, 6670 6 of 11

was 125.98 h. With 128 cores paralleled, the computational time decreased by up to 98.2%
to 2.26 h. Measurement of the execution time for parallel SVM hyperparameter tuning was
undertaken with the Sys.time() function in R (v4.1.2) by taking the difference between the
times at the start and the end of the code chunk of the parallel SVM hyperparameter tuning.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 11

(a) (b)

Figure 2. (a) Computational time vs. number of cores and (b) speedup vs. number of cores for im-

balanced data.

We used the grid search method to find the optimal hyperparameters (gamma =

0.02, cost = 0.25, class.weight = [0.79, 0.21]). The boundaries for the two parameters, cost

and gamma, were extended to [0.25, 512] and [0, 10], respectively, following the sugges-

tion in [22], where the fine grid search had cost = [2, 32] and gamma = [2^(−7), 2^(−3)]. For

the imbalanced data, we set the boundary for class.weight from 0.99 to 0.01 through a

decrease of 0.01, which was equal to the class weight changing from [0.99, 0.01] to [0.01,

0.99].

For an imbalanced classification problem, the minority class is challenging to predict

because there are few examples of this class. In our example, the minority class was the

MCI and AD group and the majority class was the normal control group, which was

about 3.5 times larger than the minority class (1328/377 = 3.52). Without tuning of the

three hyperparameters, gamma, cost, and class.weight, the testing set in the 10 times re-

peated fivefold cross-validation failed to predict the characteristics of examples from the

MCI and AD group with a sensitivity of 0 and specificity of 100% (Table 3). The positive

predictive value and the negative predictive value at base rate 12% were, respectively,

NaN% and 88.00%, which would definitely not be acceptable for clinical applications.

After hyperparameter tuning, we successfully improved the differentiation of examples

from the minority class (MCI and AD group) from the majority class (normal control

group) with a sensitivity of 70.67% and specificity of 50.94% for the testing set in the 10

times repeated fivefold cross-validation (Table 4). The positive predictive value and the

negative predictive value at base rate 12% were, respectively, 16.42% and 92.72%, which

are acceptable for current clinical applications. Our results show that the hyperparameter

tuning workflow with high-performance computing machine-learning for imbalanced

Alzheimer’s disease data that we have presented can significantly reduce computational

time while correcting imbalances.

We also used mlr.tuneParams in the mlr package [23] with parallel hyperparameter

tuning in the Lonestar6 HPC system for comparison with our results. The grid search

ranges for the three hyperparameters, cost, gamma, and class.weight, were the same. The

10 times repeated fivefold cross-validation was also performed. After 2.76 h running in a

single-node 128 core parallel setup, the optimal hyperparameters were found at gamma =

125 125

0
2
4

8

14

26

60

0
2
4

8

14

26

60

1 4 8 16 32 64 128

Number of cores

C
o
m

p
u
ta

ti
o
n
a
l
ti
m

e
 (

H
o
u
rs

)

0 20 40 60 80 100 120 140

0
1

0
2

0
3

0
4

0
5

0
6

0

Number of Cores

S
p

e
e

d
u

p

Actual Speedup

Amdahl's Law Speedup

Figure 2. (a) Computational time vs. number of cores and (b) speedup vs. number of cores for
imbalanced data.

We used the grid search method to find the optimal hyperparameters (gamma = 0.02,
cost = 0.25, class.weight = [0.79, 0.21]). The boundaries for the two parameters, cost and
gamma, were extended to [0.25, 512] and [0, 10], respectively, following the suggestion
in [22], where the fine grid search had cost = [2, 32] and gamma = [2ˆ(−7), 2ˆ(−3)]. For the
imbalanced data, we set the boundary for class.weight from 0.99 to 0.01 through a decrease
of 0.01, which was equal to the class weight changing from [0.99, 0.01] to [0.01, 0.99].

For an imbalanced classification problem, the minority class is challenging to predict
because there are few examples of this class. In our example, the minority class was the
MCI and AD group and the majority class was the normal control group, which was
about 3.5 times larger than the minority class (1328/377 = 3.52). Without tuning of the
three hyperparameters, gamma, cost, and class.weight, the testing set in the 10 times
repeated fivefold cross-validation failed to predict the characteristics of examples from the
MCI and AD group with a sensitivity of 0 and specificity of 100% (Table 3). The positive
predictive value and the negative predictive value at base rate 12% were, respectively,
NaN% and 88.00%, which would definitely not be acceptable for clinical applications.
After hyperparameter tuning, we successfully improved the differentiation of examples
from the minority class (MCI and AD group) from the majority class (normal control
group) with a sensitivity of 70.67% and specificity of 50.94% for the testing set in the
10 times repeated fivefold cross-validation (Table 4). The positive predictive value and the
negative predictive value at base rate 12% were, respectively, 16.42% and 92.72%, which
are acceptable for current clinical applications. Our results show that the hyperparameter
tuning workflow with high-performance computing machine-learning for imbalanced
Alzheimer’s disease data that we have presented can significantly reduce computational
time while correcting imbalances.

Appl. Sci. 2022, 12, 6670 7 of 11

Table 3. Performance for testing set in 10 times repeated fivefold cross-validation without hyperpa-
rameter tuning.

Actual

Predicted ADMCI NC
ADMCI 0 0

NC 75 265
Precision/PPV NaN%

Accuracy 77.94%
Sensitivity 0.00%
Specificity 100.00%

NPV 77.94%
AUC 59.21%

PPV12 NaN%
NPV12 88.00%

Table 4. Performance for testing set in 10 times repeated fivefold cross-validation after hyperparame-
ter tuning.

Actual

Predicted ADMCI NC
ADMCI 53 130

NC 22 135
Precision/PPV 28.96%

Accuracy 55.29%
Sensitivity 70.67%
Specificity 50.94%

NPV 85.99%
AUC 64.73%

PPV12 16.42%
NPV12 92.72%

We also used mlr.tuneParams in the mlr package [23] with parallel hyperparameter
tuning in the Lonestar6 HPC system for comparison with our results. The grid search ranges
for the three hyperparameters, cost, gamma, and class.weight, were the same. The 10 times
repeated fivefold cross-validation was also performed. After 2.76 h running in a single-
node 128 core parallel setup, the optimal hyperparameters were found at gamma = 0.02,
cost = 32, and class.weight = [0.81, 0.19] and the final performance for the testing set ex-
hibited the following values: sensitivity = 60.00%, specificity = 57.36%, PPV12 = 16.10%,
and NPV12 = 91.32%). Compared to the paralleled mlr.tuneParams method, our hyper-
parameter tuning workflow could not only better adjust the imbalance bias with higher
sensitivity, a higher positive predictive value and negative predictive value at base rate
12%, and slightly lower specificity, but also ran 18.1% faster.

4. Discussion

The HABS-HD project [9,14] collected data with unchanged prevalence of AD and MCI
in the population. About 1 in 9 of those aged 65 and older (11%) in the United States has
AD [3]. A study of a nationally representative sample of people aged > 65 years from the
United States yielded a prevalence for MCI of approximately 12% to 18% [24]. The HABS-
HD dataset contains 1328 normal controls and 377 MCIs and ADs (prevalence rate = 22.1%
and class imbalance index = 0.31). A previous workflow [1] for hyperparameter tuning
with HPC could have encountered an out-of-memory problem for the big imbalanced
HABS-HD data. This study aimed to (1) solve the out-of-memory problem, (2) improve
the model performance for imbalanced data, and (3) increase computation efficiency. We
achieved the three goals by incorporating the bigmemory, foreach, and doParallel packages
together with a single-node multicore parallel setup in the Lonestar6 HPC system. By
switching to Lonestar6, we improved computation efficiency, which was up to four times

Appl. Sci. 2022, 12, 6670 8 of 11

faster than that in Talon3 [1]. Each compute node in Lonestar6 has two AMD EPYC 7763
64-core processors (Milan) and 256 GB of DDR4 memory. In contrast, each node in Talon3
has only two 2.4 GHz Intel Xeon E5-2680 v4 14-core processors and 64 GB memory. As
an example, after loading into Lonestar6, the oasis longitudinal dataset from [1] only took
23.298 s and 12.119 s to complete for 28 cores and 128 cores, respectively, which was four
times faster than Talon3 (which took 40 s).

4.1. Handling Imbalanced Data

Imbalanced data refer to outcome classes that appear with different frequencies. Such
data pose a challenge for prediction since the default parameters of machine-learning
algorithms are designed for balanced data. This can result in poor predictive performance,
specifically for the minority class. For example, as shown in Table 2, in our binary clas-
sification problem for MCI and AD, the minority class (MCI and AD) appeared with a
22% probability. Applying a machine-learning algorithm naively without considering this
class imbalance might lead to the algorithm always predicting the majority class (normal
control), which here automatically resulted in 77.94% accuracy.

We performed and compared three different methods for handling the problem of
imbalanced data for MCI and AD: (1) downsampling the normal control group, (2) up-
sampling the MCI and AD group, and (3) hyperparameter tuning. First, we randomly
subsampled the majority class to reach the size of the minority class and obtained the fol-
lowing performance: sensitivity = 0.586, specificity = 0.528, PPV12 = 0.145, NPV12 = 0.903,
and AUC = 0.616. Second, we randomly sampled from the minority class to reach the
size of the majority class and achieved the following performance: sensitivity = 0.440,
specificity = 0.660, PPV12 = 0.150, NPV12 = 0.896, and AUC = 0.576. The third method
was the hyperparameter tuning method that we presented in the Results section, which
outperformed the two resampling methods (downsampling and upsampling). This was
consistent with the findings from [15]. Our results also demonstrated that the gamma, c,
and class.weight values were key hyperparameters that could be used to train the most
optimal SVM model using the RBF kernel for imbalanced data.

4.2. Memory Optimization

Running large datasets in parallel may result in the system running out of memory.
The length of gamma was 201, the length of cost was 12, and the length of class.weight was
99. The total number of iterations for our hyperparameter tuning with 10 times repeated
fivefold cross-validation was n(cost) × n(gamma) × n(class.weight) × 5 × 10, which was
equal to 12× 201× 99× 5× 10 = 11,939,400. The size of the matrix for foreach to return was
11,939,400 × 10, which added up to 911 Mb RAM calculated by the object_size() function in
the pryr package (v0.1.5). When monitoring our parallelization using the top command, the
memory usage was too close to the Lonestar6′s memory ceiling, which is 256 G, especially
when forking 128 cores. We applied the bigmemory package [25] to save memory. The
bigmemory package is used to implement massive matrices and support their manipulation
and exploration [25]. The data structures can be allocated to shared memory, allowing
separate cores on the same node to share access to a single copy of the matrix [25]. In order
to avoid R crashes, we used the describe and attach.big.matrix functions to access the shared
memory. Further memory optimization and management was undertaken for the foreach
expression. Retrieving values for foreach to combine with the rbind in a loop is known to be
rather slow. The poor performance is caused by the need to repeatedly re-allocate memory
for the growing data frame. Therefore we optimized the foreach expression by avoiding
having rbind in a loop and returning a NULL value, which led to a greater performance
gain (Figure 2).

4.3. Multinode Parallel

When using TACC’s Lonestar6, we could parallelize the jobs with multiple cores on a
single node or multiple nodes. The computational times for the total of 128 cores on one,

Appl. Sci. 2022, 12, 6670 9 of 11

two, and three nodes were 2.265, 2.267, and 2.276 h, respectively. With the total number of
cores unchanged, when the number of nodes was increased from 1 to 3, the computational
performance actually decreased slightly. Distributing jobs on multiple nodes was slower
than on a single node when the total number of cores remained unchanged. The loss in
performance from a single node to multiple nodes may have been due to the expected
switching from shared memory to inter-node transports.

Further, we performed experiments using all available cores in two and three nodes.
The computational times were reduced to 2.226 h with 256 cores in two nodes (a reduction
of 1.7% from 2.265 h with 128 cores in one node), and 2.204 h with 384 cores in three nodes
(a reduction of 2.69% from 2.265 h with 128 cores in one node). The costs were 2, 4, and
6 SUs for 128 cores in one node, 256 cores in two nodes, and 384 cores in three nodes,
respectively. We defined the performance as 1 divided by the computation time, and the
performance cost ratio as the performance divided by the cost. The performance cost ratio
was reduced from 0.2208 for 128 cores in one node by 49.12% to 0.1123 and by 65.74% to
0.0756 for 256 cores in two nodes and 384 cores in three nodes, respectively. Moving from a
multinode to a single-node parallel setup, we could achieve a comparable computational
time with nearly double the performance cost ratio.

5. Conclusions

The HABS-HD project collected unbalanced data from a real population. The data
accurately represented the real population but posed challenges for machine learning with
AD. We presented a hyperparameter tuning workflow with single-node multicore parallel
high-performance computing and R’s bigmemory, foreach, and doParallel packages to improve
prediction performance and computational efficiency for big imbalanced data relating to
MCI and AD. Our results showed that the hyperparameter tuning workflow with HPC for
big imbalanced data could correct the imbalance bias and reduced computational time by
98.2%, and it outperformed both the traditional downsampling and upsampling methods.
Our results also showed that a single-node multicore parallel setup could achieve compa-
rable computational time with a better performance cost ratio compared to a multinode
parallel setup. The workflow can be applied in other fields with big imbalanced data that
require accurate prediction and quick computation.

Author Contributions: Conceptualization, F.Z. and S.E.O.; Formal analysis, F.Z., M.P. and S.E.O.;
Investigation, F.Z., M.P., L.J. and S.E.O.; Methodology, F.Z.; Software, F.Z., M.P. and S.E.O.; Validation,
F.Z., M.P. and S.E.O.; Writing—original draft, F.Z., M.P., L.J., J.H. and S.E.O. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Institute on Aging of the National Institutes of
Health under Award Numbers R01AG058537, R01AG054073, R01AG058533, and 3R01AG058533-02S1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets for this study can be found at https://apps.unthsc.edu/
itr/ (accessed on 28 June 2022).

Acknowledgments: The authors acknowledge the Texas Advanced Computing Center (TACC) at
the University of Texas at Austin in collaboration with the University of North Texas for providing
the Lonestar6 computational and data analytics resources that contributed to the research results
reported within this paper.

Conflicts of Interest: S.E.O. has multiple pending and issued patents on blood biomarkers for
detection and precision medicine therapeutics of neurodegenerative diseases. He is a founding
scientist of and owns stock options in Cx Precision Medicine, Inc. The other authors declare no
conflict of interest.

https://apps.unthsc.edu/itr/
https://apps.unthsc.edu/itr/

Appl. Sci. 2022, 12, 6670 10 of 11

References
1. Zhang, F.; Petersen, M.; Johnson, L.; Hall, J.; O’Bryant, S.E. Accelerating Hyperparameter Tuning in Machine Learning for

Alzheimer’s Disease With High Performance Computing. Front Artif Intell 2021, 4, 798962. [CrossRef] [PubMed]
2. Alzheimer’s Association. Alzheimer’s Disease Facts and Figures. Available online: https://www.alz.org/alzheimers-dementia/

facts-figures (accessed on 21 March 2022).
3. Hudomiet, P.; Hurd, M.D.; Rohwedder, S. Dementia Prevalence in the United States in 2000 and 2012: Estimates Based on a

Nationally Representative Study. J. Gerontol. B Psychol. Sci. Soc. Sci. 2018, 73, S10–S19. [CrossRef] [PubMed]
4. Iram, S.; Vialatte, F.-B.; Qamar, M.I. Chapter 1—Early Diagnosis of Neurodegenerative Diseases from Gait Discrimination to

Neural Synchronization. In Applied Computing in Medicine and Health; Al-Jumeily, D., Hussain, A., Mallucci, C., Oliver, C., Eds.;
Morgan Kaufmann: Boston, MA, USA, 2016; pp. 1–26.

5. Hall, J.R.; Johnson, L.A.; Zhang, F.; Petersen, M.; Toga, A.W.; Shi, Y.; Mason, D.; Rissman, R.A.; Yaffe, K.; O’Bryant, S.E.; et al.
Using Fractional Anisotropy Imaging to Detect Mild Cognitive Impairment and Alzheimer’s Disease among Mexican Americans
and Non-Hispanic Whites: A HABLE Study. Dement. Geriatr. Cogn. Disord. 2021, 50, 266–273. [CrossRef]

6. Hall, J.R.; Wiechmann, A.R.; Johnson, L.A.; Edwards, M.L.; O’Bryant, S.E. Levels of alpha-2 Macroglobulin in cognitively normal
Mexican- Americans with Subjective Cognitive Decline: A HABLE Study. Curr. Neurobiol. 2019, 10, 22–25. [PubMed]

7. Johnson, L.A.; Edwards, M.; Gamboa, A.; Hall, J.; Robinson, M.; O’Bryant, S.E. Depression, inflammation, and memory loss
among Mexican Americans: Analysis of the HABLE cohort. Int. Psychogeriatr. 2017, 29, 1693–1699. [CrossRef] [PubMed]

8. King, K.S.; Vintimilla, R.M.; Braskie, M.N.; Wei, K.; Hall, J.R.; Borzage, M.; Johnson, L.A.; Yaffe, K.; Toga, A.W.; O’Bryant, S.E.; et al.
Vascular risk profile and white matter hyperintensity volume among Mexican Americans and non-Hispanic Whites: The HABLE
study. Alzheimer’s Dement. 2022, 14, e12263. [CrossRef] [PubMed]

9. O’Bryant, S.E.; Zhang, F.; Petersen, M.; Hall, J.R.; Johnson, L.A.; Yaffe, K.; Braskie, M.; Vig, R.; Toga, A.W.; Rissman, R.A.; et al.
Proteomic Profiles of Neurodegeneration Among Mexican Americans and Non-Hispanic Whites in the HABS-HD Study.
J Alzheimer’s Dis. 2022, 86, 1243–1254. [CrossRef] [PubMed]

10. O’Bryant, S.E.; Johnson, L.A.; Barber, R.C.; Braskie, M.N.; Christian, B.; Hall, J.R.; Hazra, N.; King, K.; Kothapalli, D.; Large, S.; et al.
The Health & Aging Brain among Latino Elders (HABLE) study methods and participant characteristics. Alzheimer’s Dement.
2021, 13, e12202. [CrossRef] [PubMed]

11. O’Bryant, S.E.; Zhang, F.; Petersen, M.; Hall, J.; Johnson, L.A.; Yaffe, K.; Braskie, M.; Rissman, R.A.; Vig, R.; Toga, A.W.; et al.
Neurodegeneration from the AT(N) framework is different among Mexican Americans compared to non-Hispanic Whites:
A Health & Aging Brain among Latino Elders (HABLE) Study. Alzheimer’s Dement. 2022, 14, e12267. [CrossRef]

12. Vintimilla, R.; Hall, J.; Johnson, L.; O’Bryant, S. The relationship of CRP and cognition in cognitively normal older Mexican
Americans: A cross-sectional study of the HABLE cohort. Medicine 2019, 98, e15605. [CrossRef] [PubMed]

13. Vintimilla, R.; Reyes, M.; Johnson, L.; Hall, J.; O’Bryant, S. Cardiovascular risk factors in Mexico and the United States:
A comparative cross-sectional study between the HABLE and MHAS participants. Gac. Med. Mex. 2020, 156, 17–21. [CrossRef]
[PubMed]

14. O’Bryant, S.E.; Petersen, M.; Hall, J.; Johnson, L.; Team, H.-H.S. Metabolic Factors Are Related to Brain Amyloid Among Mexican
Americans: A HABS-HD Study. J. Alzheimer’s Dis. 2022, 86, 1745–1750. [CrossRef] [PubMed]

15. Kong, J.; Kowalczyk, W.; Nguyen, D.A.; Bäck, T.; Menzel, S. Hyperparameter Optimisation for Improving Classification under
Class Imbalance. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China,
6–9 December 2019; pp. 3072–3078.

16. Guido, R.; Groccia, M.C.; Conforti, D. A hyper-parameter tuning approach for cost-sensitive support vector machine classifiers.
Soft Comput. 2022. [CrossRef]

17. Hancock, J.; Khoshgoftaar, T.M. Impact of Hyperparameter Tuning in Classifying Highly Imbalanced Big Data. In Proceedings of
the 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA,
10–12 August 2021; pp. 348–354.

18. Liu, Y.; Li, X.; Chen, X.; Wang, X.; Li, H.; Ali, R. High-Performance Machine Learning for Large-Scale Data Classification
considering Class Imbalance. J. Sci. Program. 2020, 2020, 16. [CrossRef]

19. Guo, J.; Nomura, A.; Barton, R.; Zhang, H.; Matsuoka, S. Machine Learning Predictions for Underestimation of Job Runtime on HPC
System; Springer: Cham, Switzerland, 2018; pp. 179–198.

20. Zhang, F.; Petersen, M.; Johnson, L.; Hall, J.; O’Bryant, S.E. Recursive Support Vector Machine Biomarker Selection for Alzheimer’s
Disease. J Alzheimer’s Dis 2021, 79, 1691–1700. [CrossRef] [PubMed]

21. O’Bryant, S.; Petersen, M.; Hall, J.; Johnson, L.; Yaffe, K.; Braskie, M.; Toga, A.W.; Rissman, R.A.; Rissman, for the HABLE study
team. Characterizing plasma NfL in a community-dwelling multi-ethnic cohort: Results from the HABLE study. Alzheimers
Dement 2022, 18, 240–250. [CrossRef] [PubMed]

22. Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Classification; National Taiwan University: Taipei,
Taiwan, 2003.

23. Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, Z.M. mlr: Machine learning in R.
JMLR 2016, 17, 5938–5942.

http://doi.org/10.3389/frai.2021.798962
http://www.ncbi.nlm.nih.gov/pubmed/34957393
https://www.alz.org/alzheimers-dementia/facts-figures
https://www.alz.org/alzheimers-dementia/facts-figures
http://doi.org/10.1093/geronb/gbx169
http://www.ncbi.nlm.nih.gov/pubmed/29669104
http://doi.org/10.1159/000518102
http://www.ncbi.nlm.nih.gov/pubmed/31061568
http://doi.org/10.1017/S1041610217001016
http://www.ncbi.nlm.nih.gov/pubmed/28629481
http://doi.org/10.1002/dad2.12263
http://www.ncbi.nlm.nih.gov/pubmed/35229016
http://doi.org/10.3233/JAD-210543
http://www.ncbi.nlm.nih.gov/pubmed/35180110
http://doi.org/10.1002/dad2.12202
http://www.ncbi.nlm.nih.gov/pubmed/34189247
http://doi.org/10.1002/dad2.12267
http://doi.org/10.1097/MD.0000000000015605
http://www.ncbi.nlm.nih.gov/pubmed/31083252
http://doi.org/10.24875/GMM.M19000316
http://www.ncbi.nlm.nih.gov/pubmed/32026882
http://doi.org/10.3233/JAD-215620
http://www.ncbi.nlm.nih.gov/pubmed/35253763
http://doi.org/10.1007/s00500-022-06768-8
http://doi.org/10.1155/2020/1953461
http://doi.org/10.3233/JAD-201254
http://www.ncbi.nlm.nih.gov/pubmed/33492292
http://doi.org/10.1002/alz.12404
http://www.ncbi.nlm.nih.gov/pubmed/34310015

Appl. Sci. 2022, 12, 6670 11 of 11

24. Alzheimer’s Association. Mild Cognitive Impairment (MCI). Available online: https://www.alz.org/alzheimers-dementia/
what-is-dementia/related_conditions/mild-cognitive-impairment (accessed on 16 June 2022).

25. Kane, M.; Emerson, J.W.; Weston, S. Scalable Strategies for Computing with Massive Data. J. Stat. Softw. 2013, 55, 1–19. [CrossRef]

https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment
https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment
http://doi.org/10.18637/jss.v055.i14

	Introduction
	Materials and Methods
	High-Performance Computing Structure
	R Pseudocode for Parallel SVM Hyperparameter Tuning
	10 Times Repeated Fivefold Cross-Validation
	Performance Measurement

	Results
	Discussion
	Handling Imbalanced Data
	Memory Optimization
	Multinode Parallel

	Conclusions
	References

