
����������
�������

Citation: Suljkanović, A.;

Milosavljević, B.; Ind̄ić, V.; Dejanović,

I. Developing Microservice-Based

Applications Using the Silvera

Domain-Specific Language. Appl. Sci.

2022, 12, 6679. https://doi.org/

10.3390/app12136679

Academic Editor: Arcangelo

Castiglione

Received: 2 June 2022

Accepted: 29 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Developing Microservice-Based Applications Using the Silvera
Domain-Specific Language

Alen Suljkanović 1,* , Branko Milosavljević 2 , Vladimir Ind̄ić 2 and Igor Dejanović 2,*

1 Typhoon HIL, 21000 Novi Sad, Serbia
2 Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; mbranko@uns.ac.rs (B.M.);

vladaindjic@uns.ac.rs (V.I.)
* Correspondence: alen.suljkanovic@typhoon-hil.com (A.S); igord@uns.ac.rs (I.D.)

Abstract: Microservice Architecture (MSA) is a rising trend in software architecture design. Ap-
plications based on MSA are distributed applications whose components are microservices. MSA
has already been adopted with great success by numerous companies, and a significant number of
published papers discuss its advantages. However, the results of recent studies show that there are
several important challenges in the adoption of microservices such as finding the right decomposition
approach, heterogeneous technology stacks, lack of relevant skills, out-of-date documentation, etc. In
this paper, we present Silvera, a Domain-Specific Language (DSL), and a compiler for accelerating
the development of microservices. Silvera is a declarative language that allows users to model the
architecture of microservice-based systems. It is designed so that it can be used both by inexperi-
enced and experienced developers. The following characteristics distinguish Silvera from similar
tools: (i) lightweight and editor-agnostic language, (ii) built with heterogeneity in mind, (iii) uses
microservice-tailored metrics to evaluate the architecture of the designed system, and (iv) automati-
cally generates the documentation. Silvera’s retargetable compiler transforms models into runnable
code and produces the documentation for each microservice in the model. The compiler can produce
code for any programming language or framework since code generators are registered as plugins.
We present a case study that illustrates the use of Silvera and also discuss some current limitations
and development directions. To evaluate Silvera, we conducted a survey based on A Framework for
Qualitative Assessment of DSLs (FQAD), where we focused on the following DSL characteristics:
functional suitability, usability, reliability, productivity, extendability, and expressiveness. Overall,
the survey results show that Silvera satisfies these characteristics.

Keywords: domain-specific languages; microservice architecture; model-driven engineering;
software architecture

1. Introduction

Microservice Architecture (MSA) is a rising trend emerging from the enterprise world.
This architectural style is defined by Lewis and Fowler [1] as “an approach to developing
a single application as a suite of small services, each running in its own process and
communicating using lightweight mechanisms, often an HTTP resource API”.

MSAs are particularly suitable for cloud infrastructures as they greatly benefit from
the elasticity and rapid provisioning of resources [2], but also for modernization of legacy
systems [3].

According to the survey published by the Eclipse Foundation, in 2018 (2018 Jakarta
EE Developer Survey Report—https://jakarta.ee/documents/insights/2018-jakarta-ee-
developer-survey.pdf (accessed on 13 October 2021)), about 46% of organizations developed
their applications in the form of microservices. A survey performed in 2019 (2019 Jakarta
EE Developer Survey Report—https://jakarta.ee/documents/insights/2019-jakarta-ee-
developer-survey.pdf (accessed on 13 October 2021)), again by the Eclipse Foundation,
shows that MSA is the leading architecture for implementing Java in the cloud.

Appl. Sci. 2022, 12, 6679. https://doi.org/10.3390/app12136679 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136679
https://doi.org/10.3390/app12136679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9598-9530
https://orcid.org/0000-0003-4551-9802
https://orcid.org/0000-0003-0636-0501
https://orcid.org/0000-0002-0414-1455
https://jakarta.ee/documents/insights/2018-jakarta-ee-developer-survey.pdf
https://jakarta.ee/documents/insights/2018-jakarta-ee-developer-survey.pdf
https://jakarta.ee/documents/insights/2019-jakarta-ee-developer-survey.pdf
https://jakarta.ee/documents/insights/2019-jakarta-ee-developer-survey.pdf
https://doi.org/10.3390/app12136679
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136679?type=check_update&version=1

Appl. Sci. 2022, 12, 6679 2 of 40

Although evidence shows an increase of distributed systems developed in the form of
MSA, studies presented in [3–5] show that it is still problematic to find skilled developers
familiar with microservices. Microservice developers need to familiarize themselves with
the variety of technologies and tools in a timely manner. Furthermore, supporting polyglot
programming may require additional tooling, processes, and knowledge [6]. Being polyglot
is an important characteristic of MSA as it gives developers the flexibility to choose the
technology stack and languages that work best for their needs. However, introducing
many languages and frameworks may actually decrease the overall understandability and
maintainability of the system. As shown by Wang et al. [7], some organizations already
regulate language diversity by restricting the number of programming languages used in a
microservice-based system to a few core languages. While this decreases the problems of
understandability and maintainability, a study performed by Baškarada et al. [4] shows
that the opportunity to use heterogeneous technology stacks was singled out by most
interviewees as one of the most significant drivers for MSA adoption.

Due to the higher complexity of MSA, migration of the monolithic legacy system
to MSA can cause high development costs. The empirical study performed by Lenar-
duzzi et al. [8] shows that the technical debt of microservices grows 90% slower than in the
corresponding monolithic legacy system. Lenarduzzi et al. [8] also recommend companies
define a set of service templates as a way to ease the development of new microservices,
but also not to delay important architectural decision making, as this will cause more effort
in the future. Having service templates helps, but developers are still required to manually
introduce the necessary changes to create a new microservice or to update the existing
microservices to comply with architectural changes.

Documenting MSA properly can also be a challenge. Frequent changes in the archi-
tecture often lead to wrong and out-of-date architecture models [9]. In addition, commu-
nication relationships between microservices and the specific APIs through which they
communicate are often missing from such models [9]. With the highly decentralized de-
velopment and design of microservices, it becomes challenging to maintain a centralized
reference of the architectural design [10,11]. Due to this, the system’s architecture deviates
from the original design over time.

The main contributions of this paper are as follows:

• We present Silvera, a Domain-Specific Language (DSL) (DSLs are expressive languages
tailored for a specific domain [12] (see Section 2.3)) and an extensible code generator
framework that aims to accelerate the development of microservices.

• We present a case study that shows that DSLs significantly accelerate the development
of MSA (Section 5.7.1).

• We also provide a description of the development process (Section 3.1) and the study
to assess the language based on quality characteristics defined by A Framework for
Qualitative Assessment of DSLs (FQAD) [13].

Silvera aims to satisfy the following: (i) the language is easy to use for both domain
experts and beginners, (ii) it supports well-known MSA design patterns as first-class
concepts, (iii) it supports heterogeneous technology stacks through an extensible code
generators framework, (iv) it provides automatic generation of architecture diagrams and
OpenAPI documentation, and (v) it uses microservice-tailored metrics to evaluate the
architecture of the designed system.

To assess the feature set of Silvera, we compare it to similar available tools and
frameworks in Section 2.4. The development process of Silvera, design decisions, used
development patterns, and the language abstract and concrete syntaxes are described in
Section 3. Silvera is based on well-established principles of Model-Driven Engineering
(MDE) which promote the active use of models throughout the software development
process, leading to an automated generation of the final application. The models can be
defined using general-purpose modeling languages (such as the UML), but DSLs are often
used for restricted, well-known domains. Users can use Silvera to model microservice-based
systems and automatically translate models into working applications. The transformation

Appl. Sci. 2022, 12, 6679 3 of 40

of the specification to a runnable code is performed by the compiler. The compiler supports
an arbitrary number of code generators where each code generator produces code for a
corresponding programming language and/or framework.

To better explain the language usage, we investigate building a small MSA application
in Section 4 that serves as a short demonstration of Silvera’s capabilities. Even though
small, the application is complete and demonstrates the implementation of almost all design
patterns supported in Silvera. The application model contains definitions of microservices,
their respective APIs, domain models, and description of inter-service communication.

Furthermore, to evaluate Silvera’s quality characteristics, we conducted a survey based
on FQAD where we focused on the following DSL characteristics: functional suitability,
usability, reliability, productivity, extendability, and expressiveness. The results of the study
and its limitation are discussed in Sections 5–7.

Silvera is a free and open-source project, and it is hosted on GitHub (Silvera project—
https://github.com/alensuljkanovic/silvera (accessed on 1 June 2022)).

The remainder of the paper is organized as follows. Section 2 presents related work.
Section 3 presents the implemented language, whereas Section 4 shows how Silvera can
be used during the implementation of microservice-based applications. Section 5 presents
results of the evaluation of Silvera language. Threats to validity are shown in Section 6.
Section 7 discussed the limitations of the current approach and implementation. Section 8
concludes the paper and discusses future improvements of Silvera.

2. Related Work
2.1. Comparison of MSA with Other Architectural Styles

The terms architecture and architecture description are introduced by ISO/IEC/IEEE
42010:2011 standard [14]. An architecture description expresses an architecture of a system-of-
interest [14]. Architecture encompasses fundamental concepts or properties of a system in its
environment embodied in its elements and relationships and in the principles of its design
and evolution [14]. Architecture descriptions are used by software teams to improve commu-
nication and cooperation among stakeholders, enabling them to work in a comprehended
and coherent manner. An architecture description comprises architecture views and models.
Gorski [15] presents the software architecture model 1+5 that encompasses various archi-
tectural views for modeling business processes, describing use cases and their realizations,
interaction and contract agreements between services, and deployment.

MSA is a service-based architecture, just like Service-Oriented Architecture (SOA). Even
though MSA and SOA represent very different architectural styles, they share many charac-
teristics. Services are a primary architecture component used to implement and perform
business and nonbusiness functionality in both MSA and SOA [16]. Both MSA and SOA are
generally distributed architectures and also lend themselves to more loosely coupled and
modular applications [16]. Furthermore, the implementation of a service is hidden behind
its publicly available API. Due to this, the implementation of a service can be entirely
changed without affecting the rest of the system as long as the API changes are backward
compatible [16].

Although MSA and SOA both rely on services as the main architecture component,
they vary greatly in terms of service characteristics [16]. Differences are shown in service
taxonomy (i.e., how services are classified within an architecture), service ownership, and
service granularity.

As shown in Table 1, microservices have limited service taxonomy. There are only two
service types: functional services and infrastructure services. Functional services implement
specific business operations or functions, whereas infrastructure services implement non-
functional tasks such as authentication, authorization, auditing, logging, and monitoring.
In MSA, infrastructure services are not exposed to the outside world and are only available
internally to other services [16]. On the other hand, in SOA, there are four types of services.
Business services are abstract, coarse-grained services that define core business operations.
These services are devoid of implementation details and usually only contain information
about a service name and expected inputs and outputs. Enterprise services are concrete,

https://github.com/alensuljkanovic/silvera

Appl. Sci. 2022, 12, 6679 4 of 40

coarse-grained services that implement the functionality defined by the business services.
These services are generalized and shared across the organization [16]. Enterprise services
can contain business functionality, but usually, they rely on application and infrastructure
services. Application services are fine-grained services that are bound to a specific application
context. They provide functionality not found in the enterprise services. Infrastructure
services implement the same tasks as in MSA. In addition, there is a significant difference
in service ownership as development teams are responsible for full support and devel-
opment of a service throughout its life cycle (also known as the “you build, you run it”
principle) [17]. Microservices are small, fine-grained services (hence “micro”), whereas
services in SOA range in size from very small to large enterprise services.

Table 1. Comparison of service characteristics in MSA and SOA.

Architectural Style Service Taxonomy Service Ownership

MSA
Functional services Application development teams

Infrastructure services Application development teams

SOA

Business services Business users.

Enterprise services Shared services team or architects.

Application services Application development teams.

Infrastructure services Application development teams or infrastructure services teams.

MSA and SOA also differ with regard to data sharing and service coordination. In the
case of data sharing, MSA promotes a style where microservices share as little data as
possible, whereas SOA promotes the diametrically opposed concept of sharing as much
data as possible [16]. For this reason, a microservice and its associated data represent a
single unit with minimal dependencies, which facilitates maintenance and deployment
of the microservice (i.e., microservice can be changed and redeployed without affecting
the rest of the system). Multiple services can be composed together as a new service. This
process is known as service composition. Service composition implies the existence of service
coordination. For service coordination, MSA focuses on service choreography, whereas
SOA relies on both service choreography and service orchestration [16]. The term service
orchestration refers to the coordination of multiple services through a centralized mediator,
whereas service choreography lacks the mediator [16]. Implementation of service coordination
is a non-trivial and error-prone task. However, there are several tools that allow developers
to automate this process [18,19]. As a result of this approach, microservices are responsible
for interaction with others [20]. Of course, one can still utilize orchestration; however,
this is not a typical approach [20]. Due to the mentioned differences, systems built on
SOA tend to be slower than microservices and require more time and effort to develop,
test, deploy, and maintain [16]. In addition, a service composition should be efficient with
minimal execution time and energy consumption. An approach for execution time and
energy efficient service composition is presented by Li et al. in [21]. The order of service
tasks execution is determined by a service scheduling [22]. Resource allocation is another
important process that affects the performance. The goal of resource allocation is to select
resources for component instances and determine the number of component instances
needed to meet performance and reliability requirements [22]. Usually, microservices have
more components with less functionality that require fewer resources.

MSA also differs from Monolithic Architecture (MA). In MA, components rely on the
sharing of resources of the same machine (memory, databases, or files) and are therefore
not independently executable [23]. Monolithic applications are usually internally split into
multiple services and/or components, but they are all deployed as a single solution. Unless
the application is becoming too big, monolithic applications are easier to develop [24].
However, large monolithic applications suffer from the following problems [17]: they are
difficult to maintain and evolve, it is hard to add or update libraries due to dependency hell,
change in only one module requires rebooting the whole application, etc. Microservices

Appl. Sci. 2022, 12, 6679 5 of 40

succeed in mitigating these problems and are gaining in popularity due to the follow-
ing characteristics:

• Size: Because microservices implement a limited amount of functionalities, their code
bases are small which limits the scope of a bug [17]. The small size also provides
benefits in terms of service maintainability and extendability. A small service can be
easily modified or rebuilt from scratch with limited resources and in limited time [25].

• Independence: Each microservice in MSA is operationally independent of others and
communicates with other microservices through their published interfaces [25]. This
has several benefits: (i) microservices are independently deployed, (ii) the new version
of microservice can co-exist with the old version, and the microservices that use the old
microservice can be gradually modified to use the new microservice [17], (iii) changes
in one microservice do not require the reboot of the whole system, and (iv) scaling
MSA implies deploying or disposing of instances of microservices with respect to their
load [26].

2.2. MSA Design Patterns

In this section, we define design patterns that will be used in the rest of the paper.
A design pattern is a reusable solution for a problem that occurs in a specific context.

Richardson [27] proposes a taxonomy and describes design patterns used in MSA. In
the rest of the paper, design patterns from the following categories will be considered:
Deployment patterns, Communication patterns, External API patterns, Reliability patterns,
and Service Discovery patterns. Each of the previously mentioned categories can contain
multiple different design patterns, as shown in Table 2.

Deployment patterns provide a solution to the problem of packaging and deploying
microservices. Patterns such as Single Instance Per Host, Multiple Instances Per Host, Single
Instance Per Container, and Serverless are all deployment patterns. In the case of the Single
Instance Per Host and the Multiple Instances Per Host, a Host can be either a physical or
a virtual machine (VM). The most popular deployment pattern, both in industry and
academia, is the Single Instance Per Container, followed by the Single Instance Per Host, where
a host is a VM [28]. There are several reasons why containers are preferred over VMs [28]:
(i) creating and launching container images are often very fast, (ii) the same physical server
can hold more containers than VMs due to their size, and (iii) more than one container
can use a single operating system, which in turn reduces the overhead of licensing costs
compared to the VM.

Microservices must handle requests from external clients, but often they must col-
laborate to perform a certain task. The role of Communication patterns is to provide a
solution for a problem of communication between the parts of the system. The most
prevalent communication patterns in microservice-based systems are Remote Procedure
Call (RPC) and Messaging. With RPC, microservices can communicate either in a syn-
chronous or asynchronous manner, whereas with Messaging the communication is always
asynchronous. According to Aksakalli et al. [28], it is not possible to determine the most
popular communication pattern, since the selected pattern can change over time as the
system evolves.

How microservices will establish a connection is further described by Service Discovery
patterns. The Service Registry pattern ensures the existence of a service registry, which
represents a database that contains the data model of available microservices deployed
in the platform [29]. A service registry is a critical part of the system and must be highly
available. The responsibility for registering or unregistering a microservice within a service
registry can be put either on the microservice itself (Self-Registration) pattern or the third
party (Third-Party) pattern. Similarly, the responsibility for discovering a microservice can
be either on the client side (Client-Side Discover) pattern or on the server side (Server-Side
Discovery) pattern.

Appl. Sci. 2022, 12, 6679 6 of 40

Table 2. Microservice design patterns. Descriptions of all presented designed patterns are given
by Richardson [27].

Purpose Name Description

Deployment

Single instance per host Each service instance will be deployed to a
separate host.

Multiple instances per host Multiple service instances deployed to a sin-
gle host.

Single instance per container Each service instance will be deployed to a
separate container.

Serverless
Service instances are run by the deploy-
ment infrastructure that hides any concept
of servers.

Communication

Remote Procedure call Services use RPC-based protocol for commu-
nication.

Messaging Services communicate in asynchronous man-
ner, via passing messages.

External API
API gateway Provides a single entry point for all external

clients.

Back-end for front-end Provides a single entry point for each client
separately.

Reliability Circuit breaker Prevents a network or service failure from
cascading to other services.

Service discovery

Client-side discovery Client service obtains the location of the
server service.

Server-side discovery Client services’ send requests to the server
service via the router.

Service registry Contains service instances and their locations.

External API patterns describe exactly how external clients will communicate with
microservices. An API Gateway provides a single entry point for all external clients. To avoid
a single point of failure, multiple instances of an API gateway are usually deployed [28].
Additionally, a separate API gateway can be provided for each kind of client (web app,
mobile, etc.). This variation of an API Gateway pattern is a Back-End for Front-End pattern.

Microservices are built to fail [30]. The solution for the problem of preventing the
microservice failure to cascade to other microservices is provided by a Reliability pattern
named Circuit Breaker.

2.3. Domain-Specific Languages

Van Deursen et al. [31] define DSL as a programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive power focused on,
and usually restricted to, a particular problem domain. DSL does not attempt to address all
types of computational problems or not even large classes of such problems [32]. This
allows the language to be very expressive for problems that fall in the domain. DSLs foster
the building of a community of domain experts who speak the same language [33]. DSLs
whose domain, abstractions, and notations are closely aligned with how domain experts
(i.e., non-programmers) express themselves allow domain experts to easily read and often
write program code since it is not cluttered with irrelevant implementation details [12]. The
level of involvement of domain experts may vary. However, it is important for the DSL to
provide a syntax that can be read and comprehended by domain experts even if they do
not type the program directly. A DSL that domain experts can read can serve as a design
and implementation tool and as a requirements elicitation medium [34]. The empirical

Appl. Sci. 2022, 12, 6679 7 of 40

studies suggest that the use of DSLs increases flexibility, productivity, reliability, and
usability [35,36].

The study performed by Johanson and Hasselbring [37] shows that domain experts
achieve significantly higher accuracy and spend less time solving tasks when using their
DSL instead of the comparable GPL-based solution. A study performed by Kosar et al. [38]
shows that participants are more effective and efficient with DSLs than with GPLs, es-
pecially in domains where participants were less experienced. The study also suggests
that in cases where a DSL is available, developers will perform better when using the
DSL than using a GPL. In this study, we did not explicitly compare our DSL with GPLs,
but we showed that the use of DSLs gives good results compared to the direct use of the
technologies with which respondents were experienced.

2.4. Existing MSA Frameworks

In this section, we will briefly describe current state-of-the-art tools for describing the
architecture of distributed systems based on microservices.

MAGMA [39], AjiL [40], TheArchitect [41], Microbuilder [42], JHipster (JHipster—
https://www.jhipster.tech/jdl/ (accessed on 14 February 2021)), LEMMA [43], and Jolie [44]
are currently available tools for describing distributed systems based on microservices. The
main goal of these tools is to accelerate the development of microservices. By using these
tools, users can model their systems and use the model to generate runnable applications.

MAGMA (Maven Archetype for Generating Microservice Architectures) is a tool that is
based on the Maven build management system. It aims at accelerating the development of
microservices architectures (MSA) by generating infrastructure code that is: (i) specifically
configured for the target application domain; (ii) directly runnable; and (iii) extensible
with user-defined templates [39]. Users can easily create their systems through a simple
input wizard. Services such as discovery service, security service, user management service,
and resource service come pre-implemented in MAGMA and are all available in the input
wizard. The input wizard contains a small preview panel, which shows the architecture
of the system to be generated. Although it is easy to use, it can be troublesome and time-
consuming to setup MAGMA, especially for developers not accustomed to Maven. In
addition, since MAGMA generates only project shells for services defined through user-
defined templates, a domain model, together with an API and business logic, must be
implemented manually.

AjiL is a tool for creating and describing MSAs based on the Eclipse Modeling Frame-
work (EMF) (Eclipse Modeling Framework—https://www.eclipse.org/modeling/emf/
(accessed on 10 January 2021)). AjiL comprises a graphical editor and a template-based
code generator. The generator converts existing AjiL diagrams into runnable MSA, based
upon Java and the Spring framework [40]. AjiL’s graphical editor is nicely designed and
easy to use. Since AjiL comes with the same set of pre-implemented services as MAGMA,
modeling of MSA can be performed quickly. However, generating code from the model
is not straightforward. To generate code from a model, the model needs to be copied into
the generator project because there is no connection between the graphical editor and the
code generator. In addition, AjiL currently provides no mechanism for the integration of
manually added code with generated code.

TheArchitect is a rule-based system used for generating serverless microservices [41].
MSAs in TheArchitect are created by providing system requirements into TheArchitect’s
input wizard. The obtained information is processed by the predefined set of models
afterward. These models are subsequently analyzed by the code generator, which produces
the application code.

MicroBuilder is a tool for generating REST-based (REST–Representational State Trans-
fer) microservices [42]. It consists of two modules: MicroDSL and MicroGenerator. Mi-
croDSL is a domain-specific language (DSL) used to describe the architecture of the mi-
croservices. MicroGenerator uses the MicroDSL specifications to generate Java applications
based on the Spring framework.

https://www.jhipster.tech/jdl/
https://www.eclipse.org/modeling/emf/

Appl. Sci. 2022, 12, 6679 8 of 40

JHipster is a tool for generating, developing, and deploying web applications and
MSAs. MSAs in JHipster are modeled by using the JHipster domain language (JDL). Mod-
eling of microservices in JDL can be performed quickly due to its user-friendly syntax. JDL
specifications are transformed automatically into runnable Java applications by the JHipster
code generator. JHipster can be used online or installed locally with NPM (NPM—https:
//www.npmjs.com/ (accessed on 18 January 2022)), Yarn (Yarn—https://yarnpkg.com/
(accessed on 18 January 2022)), or Docker (Docker–https://www.docker.com/ (accessed on
18 January 2022)). However, the online version is quite limiting by default, and to achieve
the full experience, users must allow access to either GitHub or GitLab accounts. Installing
JHipster locally can be troublesome, but it is the preferred way.

LEMMA (Language Ecosystem for Modeling Microservice Architecture) is a set of
Eclipse-based modeling languages and model transformations for developing MSA [43].
These languages provide different modeling viewpoints for different roles in a microservice
development team [45]. By introducing explicit modeling viewpoints, LEMMA decom-
poses the system into smaller, more specialized parts. Because of this, each role is presented
only with the information relavant for that role [45]. Just like AjiL, LEMMA is also based
on the Eclipse ecosystem.

Jolie is a service-oriented programming language [44]. A service, in Jolie, is composed
of two parts: behavior and deployment. A behavior part defines the implementation of the
service’s functionalities, whereas the deployment part defines the necessary information
for establishing communication links between services [44]. The Jolie interpreter is imple-
mented in Java, and it comes with a Java API to interact with it.

Because both TheArchitect and MicroBuilder are not publicly available, unlike the rest
of presented tools (which are all open-source projects), we were unable to study them in
greater detail.

The comparison of available features in Silvera, MAGMA, AjiL, JHipster, LEMMA,
and Jolie is shown in Table 3, whereas a comparison of implemented microservice design
patterns is shown in Table 4. Table 4 contains only patterns implemented by at least one of
the tools.

Silvera is a lightweight language. Because of this, it can be used in any text editor,
whereas AjiL is tightly coupled with its GUI editor. The simple textual notation also enables
easier collaboration through version control systems. Silvera shares this characteristic
with JDL.

All tools presented in this section, except Jolie, implement the API Gateway pattern
from the External API group of patterns. Similarly, these tools also implement the Circuit
Breaker pattern from the Reliability group of patterns. In Jolie, these patterns are not imple-
mented as part of the language. However, Jolie offers composition primitives that can be
used for manual implementation of these patterns.

Unlike other tools presented in this section, both Silvera and LEMMA are built with
heterogeneity in mind. LEMMA provides a Technology Modeling Language (TML), where
users model custom technology aspects. The disadvantage of TML is that it does not
support versioning, meaning that only one version of the Technology Language is supported.
On the other hand, Silvera supports an arbitrary number of programming languages and
their versions (see Section 3.4). Various implementations of microservices, API gateways,
service registries, and message brokers can also be supported easily. This allows developers
to use the best tool for the job and also supports experimentation.

Silvera uses microservice-tailored metrics to evaluate the architecture of the designed
system. Besides TheArchitect, no other tool presented in this section supports architecture
evaluation. However, metrics used by TheArchitect are mainly derived from Object-Oriented
design and, as such, are not fully applicable to microservice-based systems [46]. Addition-
ally, in Silvera, users can easily provide custom evaluation functions (see Section 3.4.3).

https://www.npmjs.com/
https://www.npmjs.com/
https://yarnpkg.com/
https://www.docker.com/

Appl. Sci. 2022, 12, 6679 9 of 40

Table 3. Comparison of available features in Silvera with other tools.

Tool Textual Notation GUI Editor Arch. Evaluation Database Support Target Language

Silvera SilveraDSL no yes any any

MAGMA Java yes no MySQL Java

AjiL XML yes no MySQL,
MongoDB Java

JHipster JDL yes no

MySQL,
MongoDB,
PostgreSQL,
etc.

Java

LEMMA Several DSLs yes no MariaDB,
MongoDB

Java,
Python

Jolie Jolie yes no All supported by JDBC driver Java,
Javascript

Table 4. Comparison of microservice design patterns implemented in Silvera with other tools.

Tool Deployment Communication External API Reliability Service Discovery

Silvera Single instance per host,
Single instance per container

Remote Procedure call,
Messaging,
custom

API gateway Circuit breaker Client-side discovery,
Service registry

MAGMA Single instance per host,
Single instance per container - API gateway Circuit breaker Service registry

AjiL Single instance per host Remote Procedure call,
Messaging API gateway Circuit breaker Service registry

JHipster Single instance per host,
Single instance per container Remote Procedure call API gateway Circuit breaker Service registry

LEMMA Single instance per host,
Single instance per container

Remote Procedure call,
Messaging API gateway Circuit breaker Service registry

Jolie - Remote Procedure call,
Messaging - - -

Another characteristic that distinguishes Silvera from the rest of the presented tools
is the simple installation procedure. Silvera comes with a small number of dependencies
and is available at the Python Package Index (Python Package Index—https://pypi.org/
(accessed on 18 January 2022)). To install Silvera, use pip install silvera command (pip
is the package installer for Python, available at https://pypi.org/project/pip/ (accessed
on 18 January 2022)).

3. Silvera

In this section, we give an overview of the Silvera language.
Silvera is a declarative language developed for the domain of microservice software

architecture development. We call these types of DSL “technical DSLs” or “horizontal
DSLs”. The language is designed in a way that directly implements design patterns related
to the domain of MSA.

3.1. Implementation Phases

There are several approaches to the implementation of DSLs. These approaches were
first classified by Spinellis [47] in the form of a collection of design patterns. His work was
later extended by Mernik et al. [48]. The patterns are associated with the development
phases of DSLs, which results in the following classes of patterns:

• Decision patterns—which provide a set of common situations for which DSLs have
been successfully created in the past,

• Analysis patterns—which provide a set of guidelines on how to identify the problem
domain and gather the domain knowledge,

• Design patterns—which provide a set of guidelines on how to design a DSL,
• Implementation patterns—which provide a set of guidelines on how to choose the most

suitable implementation approach.

https://pypi.org/
https://pypi.org/project/pip/

Appl. Sci. 2022, 12, 6679 10 of 40

Silvera was developed in four successive phases: Analysis, Decision, Design, and Implementation.
Analysis phase. During the analysis phase, we used the analysis patterns from Table 5.

Table 5. Analysis patterns used during the domain analysis phase.

Pattern Name Description

Informal The domain is analyzed in an informal way [48].

Extract from code Mining of domain knowledge from legacy GPL code by inspection or by
using software tools, or a combination of both [48].

Most of the domain knowledge was gathered by analyzing the available literature, the
code, and documentation (Extract from Code) pattern of available systems. We analyzed the
domain in an informal way (Informal) pattern, and we gathered the literature mostly via
the snowballing approach. We gathered a body of relevant papers, searched the papers
that were in the reference list of these starting papers (Backward Snowballing [49]), and the
papers that cite these starting papers (Forward Snowballing [49]). The output of this phase
consisted of domain-specific terminology and semantics in more or less abstract form [48].

Decision phase. During this phase, we used the decision patterns from Table 6.

Table 6. Decision patterns used during the decision phase.

Pattern Name Description

Task automation pattern
GPL programming tasks that are tedious and follow the same pattern
can be generated automatically by an application generator (compiler)
for an appropriate DSL [48].

AVOPT pattern

DSL makes operations such as domain-specific analysis, verification, op-
timization, parallelization, and transformation of application programs
possible. These operations are usually not feasible in a GPL due to
complexity [48].

The decision to create a new DSL stemmed from the fact that we wanted to auto-
matically generate the infrastructure code (Task Automation) pattern and also to be able
to perform domain-specific analysis and evaluation of the designed microservice-based
system (AVOPT) pattern.

Design phase. This phase can be characterized along two orthogonal dimensions: the
relationship between the DSL and existing languages and the formal nature of the design
description [48]. During this phase, we used patterns shown in Table 7.

Table 7. Design patterns used during the design phase.

Pattern Name Description

Language invention A DSL is designed from scratch with no commonality with existing
languages [48].

Informal DSL is described informally [48].

Formal DSL is described formally using an existing semantics definition method
such as attribute grammars, rewrite rules, or abstract state machines [48].

The easiest way to design a DSL is to base it on the existing language. DSLs built
this way are called Internal DSLs. The advantage of this approach is that no new language
infrastructure has to be built, but the downside is the limited flexibility since a DSL has to
be expressed by using concepts of the host language [50]. Another approach is to create a
so-called External DSL. An external DSL is a completely independent language built from
scratch. As external DSLs are independent of any other language, they need their own
infrastructures such as parsers, linkers, compilers, or interpreters [50]. Silvera is an external
DSL with no relationships with any existing languages (Language Invention) pattern.

Appl. Sci. 2022, 12, 6679 11 of 40

Mernik et al. [48] distinguish between informal and formal designs. In an informal
design, the language specification is usually in some form of natural language [48]. In a
formal design, a language syntax is usually specified via regular expression and grammar,
whereas a semantic is specified via attribute grammars, rewrite systems, and abstract
state machines [48]. The formal design has several benefits [48]: (i) brings problems to
light before the DSL is actually implemented and (ii) can be implemented automatically
by language development tools, which significantly reduces the implementation effort.
Silvera’s syntax specification is defined in the form of PEG (Parsing Expression Grammar)
grammar (Formal) pattern. However, Silvera’s semantic specification is defined by code
generators (Formal) pattern.

Implementation phase. In this phase, we considered multiple implementation patterns,
as shown in Table 8.

We chose Compiler Application Generator pattern over other patterns, such as Interpreter,
Embedding, Extensible Compiler/ Interpreter, and Commercial-Off-The-Shelf approach. A disad-
vantage of this approach is the higher cost of building the compiler from scratch. However,
this approach also yields advantages such as closer syntax to the notation used by domain
experts, good error reporting [48], and minimized user effort to write correct programs [51].
The patterns Compiler/Application Generator pattern and Interpreter offer similar advantages
and disadvantages [48], but we chose the former due to execution speed.

Table 8. Implementation phase patterns considered during the implementation phase.

Pattern Name Description

Interpreter
DSL constructs are recognized and interpreted using a standard fetch–
decode–execute cycle. This approach is appropriate for languages having
a dynamic character or if execution speed is not an issue [48].

Compiler/application generator
DSL constructs are translated to base language constructs and library
cells. A complete static analysis can be performed on the DSL pro-
gram/specification [48].

Embedding DSL constructs are embedded in an existing GPL (the host language) by
defining new abstract data types and operators [48].

Extensible compiler/ interpreter

A GPL compiler/interpreter is extended with domain-specific optimiza-
tion rules and/or domain-specific code generation. While interpreters
are usually relatively easy to extend, extending compilers is hard unless
they were designed with extension in mind [48].

Commercial-Off-The-Shelf (COTS) Existing tools and/or notations are applied to a specific domain [48].

3.2. Silvera Abstract Syntax

In this section, we present the abstract syntax of the Silvera language. Silvera’s abstract
syntax is specified in the form of a metamodel. The simplified version of the metamodel,
for brevity, is presented in Figures 1 and 2.

The main concept of the Silvera metamodel is the Model, which consists of one or
more modules (Module). A module enables users to logically organize their Silvera code.
Each module can consist of declarations of microservices (ServiceDecl), API gateways (API-
Gateway), service registries (ServiceRegistryDecl), configuration servers (ConfigServerDecl),
dependencies (Dependency), message pool (MessagePool), or message brokers (MessageBro-
ker). Each declaration can be identified by its name which is unique at the module level.
The unique identifier for a declaration within the model is its fully qualified name (FQN),
which is calculated by the following formula:

< module_path > . < module_name > . < declaration_name > (1)

A module can reference declarations from another module by importing it.
For each microservice, it is possible to define its name, API, deployment strategy, com-

munication style, whether the microservice should be registered within a service registry,
and whether it should draw external configuration data from a configuration server.

Appl. Sci. 2022, 12, 6679 12 of 40

Figure 1. The simplified version of the Silvera metamodel (part 1).

Figure 2. The simplified version of the Silvera metamodel (part 2).

Appl. Sci. 2022, 12, 6679 13 of 40

The API (APIDecl) declaration consists of function definitions and the definition of
service-specific objects used for modeling microservice business entities. Each function
definition consists of a function name, function parameters, return type, and annotation
(optional), whereas the definition of the service-specific object (TypeDef) is given by its
name and one or more fields (TypeField). Every field has its name and a data type, but can
also have a special ID attribute, which is used to identify fields during serialization and
deserialization of messages in a binary format and to ensure backward compatibility for
newer versions of the API. For that reason, once assigned, an ID attribute should not
be changed.

In Silvera, each microservice has a particular communication style. Communication
style defines a protocol used to send and receive messages. Currently, it is possible to choose
between RPC-based and messaging-based communication styles. The format of messages
that can be sent and received from a microservice is defined by its API. Microservices
that use RPC to call methods from other microservices must define those microservices as
dependencies. RPC-based communication is synchronous by default, but Silvera supports
asynchronous RPC communication as well.

Since microservices can fail at any time, MSAs must be designed to cope with fail-
ures [1]. The failure of one microservice should not take down the whole system. One of
the design patterns that helps in mitigating such problems is the Circuit Breaker pattern
(see Section 2.2), which is directly supported in Silvera. Failure recovery must be defined
for every API function that the start microservice calls from the end microservice. Table 9
shows failure recovery strategies supported by Silvera.

Table 9. Failure recovery strategies supported by Silvera.

Strategy Name Description

fail_fast An exception will be raised in the client if an API call fails
(default behavior)

fail_silent Returns an empty response

fallback_static Returns default values

fallback_stubbed Response is a compound object where each field has either a default
value or a value determined from the request state

fallback_cache Returns a cached version of response if present, otherwise returns an
empty response such as fail_silent

fallback_method Defines a method that will be called in case the original method fails

When using a messaging-based communication style, microservices communicate
asynchronously (via passing messages). Every message type (Message) used within the
system is defined in the message pool (MessagePool). The Message pool is globally available
and can be referenced from any module. Messages are delivered to their destinations by
message brokers (MessageBroker). Every message broker contains one or more message
channels (MessageChannel). The message broker creates message channels, and each channel
can have multiple consumers and/or producers. The consumer is every microservice that
reads messages from a channel. Analogously, the producer is a microservice that puts
messages inside the channel. Message channels in Silvera are typed, which means that
each channel is dedicated to a specific message type. Messages can only be consumed or
produced by API methods. For a microservice to send a message, its API method must
be registered as a publisher to a channel whose specific purpose is to communicate that
kind of message. Likewise, to receive a message of a particular type, its API method must
be registered as a consumer of a channel that contains a given message type. The method
can be registered as a consumer with an @consumer annotation and as a publisher with an
@producer annotation. The method can, at the same time, be both consumer and producer.

Appl. Sci. 2022, 12, 6679 14 of 40

Message channels are logical addresses in the messaging system; how they are actually
implemented depends on the messaging system product and its implementation.

In MSA, client applications usually need to collect data from more than one mi-
croservice. If the communication is direct, the client needs to communicate with multiple
microservices to collect the data. Such communication is inefficient and increases the
coupling between the client and the microservices [27]. An alternative is to implement
an API Gateway. An API gateway represents a single entry point for all clients, and it can
handle requests in one of two ways: (a) requests are routed to the appropriate service,
and (b) requests are fanned out to multiple microservices. In Silvera, an API gateway is a
special service implemented in the form of an APIGateway object. Its attribute gateway_for
determines which microservices will be put behind the gateway. In the current implemen-
tation of Silvera, the API gateway only serves as a router of requests. In the future, we plan
to expand on this implementation by providing security features, implementing the API
Composition [27] pattern and adding the option to restrict services’ APIs to a certain set of
operations. The API Composition pattern uses an API composer, or aggregator, to implement
a query by invoking individual microservices that own the data and then combine the
results by performing an in-memory join [27].

In Silvera, each microservice can define its specific deployment requirements. De-
ployment is managed by the Deployment object, with the following attributes: version, url,
port, lang, packaging, host, replicas, and restart_policy. Attribute version defines a version of
a microservice. Attributes url and port define a location of a microservice on a computer
network. Attributes lang and packaging define a programming language in which the
microservice will be implemented and in which form it will be used (source or binary). At-
tribute host defines whether a microservice will run on a physical host, virtual machine, or
inside a container, whereas attribute replicas defines a number of instances of a microservice.
Finally, the attribute restart_policy defines when a microservice should be restarted (after
failure, always, etc.). This attribute can be currently used only if the host is a container.

A service registry is a special service that contains information about a number of
instances and locations of each microservice in the system. In Silvera, the service reg-
istry is implemented in the form of ServiceRegistryDecl object. This object contains the
following attributes: tool—which defines which tool will be used as a service registry,
client_mode—which defines whether the service registry could be registered within another
service registry. Since it is a special type of microservice, a service registry can also be
deployed in various ways by using the Deployment object. The microservice is registered
within the service registry by providing a reference to a ServiceRegistryDecl object to its
service_registry attribute.

In Silvera, microservices can draw configuration files from an external configuration
server. The configuration server is implemented in the form of a ConfigServerDecl object.

3.3. Silvera Concrete Syntax

In this section, we present the concrete syntax of the Silvera language. Concrete syntax
defines how the abstract syntax concepts are presented to the user [12]. It is possible to
create multiple concrete syntaxes (textual, graphical, etc.) for a single abstract syntax.
Silvera’s concrete syntax is provided in the form of textual notation. In Section 3.3.1,
we have shown an excerpt from the grammar. We omitted some parts of the rules for
brevity. The full version of the grammar is available on GitHub (Silvera grammar—https:
//github.com/alensuljkanovic/silvera/blob/master/silvera/lang/silvera.tx (accessed on
1 June 2022)).

https://github.com/alensuljkanovic/silvera/blob/master/silvera/lang/silvera.tx
https://github.com/alensuljkanovic/silvera/blob/master/silvera/lang/silvera.tx

Appl. Sci. 2022, 12, 6679 15 of 40

3.3.1. Microservice Declaration

In Listing 1, we show a simplified grammar rule for a microservice declaration. Some
parts are omitted for brevity.

Listing 1. An excerpt of the grammar rule for a microservice declaration.

1 ServiceDecl:
2 ’service’ name=ID ’{’
3 (’config_server’ ’=’ config_server=FQN)?
4 (’service_registry’ ’=’ service_registry=FQN)?
5 (deployment=Deployment)?
6 ’communication_style’ ’=’ comm_style=CommunicationStyle
7 (api=APIDecl)?
8 ’}’
9 ;

The ServiceDecl rule starts with the keyword service followed by the attribute n
ame matched by the textX built-in rule ID that further follows the literal string match “{”
(line 2). The body of the microservice declaration starts with the definition of two optional
variables. First, we have a variable that keeps reference towards the configuration server. Its
definition starts with the config_server keyword followed by the literal string match “=”,
after which comes the attribute config_server matched by the rule FQN (line 3). Second,
we have a similarly defined variable that keeps reference towards the service registry (line
4). Then the optional variable assignment matched by the rule Deployment (line 5) follows.
Next, we have the definition of communication style CommunicationStyle (line 6). In the
end, another optional attribute api is matched by the rule APIDecl (line 7). The closing
curly brace ends the microservice declaration.

Listing 2 shows how to define a simple User microservice in Silvera. User microservice
is registered within ServiceRegistry (line 3), and it communicates with the rest of the
system by using RPC (line 4). This microservice is deployed inside a container, and it listens
to HTTP requests on the 8080 HTTP port. Since the host attribute is not defined in the de
ployment section, its default value will be applied—http://localhost, accessed on 1 June
2022. The API of this microservice consists of the User domain object and several publicly
available methods. CRUD methods for the User domain object are generated automatically
due to the @crud annotation. This annotation represents a shortcut, and the same effect
can be achieved by using @create, @read, @update, and @delete annotations. In addition
to the CRUD methods, we have three additional methods listUsers, userExists, and u
serEmail. All API methods for this microservice are exposed over REST. URL mapping
for each of the methods will be auto-generated based on the microservice URL, method
name, and HTTP method defined by the corresponding @rest annotation. For example, the
method listUsers can be accessed with the following URL: http://localhost:8080/user/
listusers, accessed on 1 June 2022. It is, however, possible to set custom URL mapping for
the API method by using the mapping attribute of the annotation: @rest(method=GET,map
ping=<user_defined_mapping>). This attribute, however, is not currently available when
using CRUD annotations.

http://localhost
http://localhost:8080/user/listusers
http://localhost:8080/user/listusers

Appl. Sci. 2022, 12, 6679 16 of 40

Listing 2. An example that shows how to define a service.

1 service User {
2
3 service_registry=ServiceRegistry
4 communication_style=rpc
5
6 deployment{
7 version="0.1"
8 port=8080
9 host=container
10 }
11
12 api{
13 @crud
14 typedef User[
15 @id str username
16 @required str password
17 @required @unique str email
18
19 int age //optional
20]
21
22 @rest (method=GET)
23 list<User> listUsers ()
24
25 @rest(method=GET)
26 bool userExists (str username)
27
28 @rest (method=GET)
29 str userEmail(str username)
30 }
31 }

3.3.2. Service Registry Declaration

Listing 3 shows how to define a service registry named ServiceRegistry. This service
registry is generated as a Eureka service registry (line 2) that will not register itself within
another service registry (line 3). ServiceRegistry listens for requests at the 9091 HTTP
port at http://registry.example.com, accessed on 1 June 2022 and is deployed inside a
container (line 8). The current version of the registry is 0.0.1.

Listing 3. An example that shows how to define a service registry.

1 service-registryServiceRegistry{
2 tool=eureka
3 client_mode=False
4 deployment {
5 version="0.0.1"
6 port=9091
7 url="http://registry.example.com"
8 host=container
9 }
10 }

http://registry.example.com
http://registry.example.com

Appl. Sci. 2022, 12, 6679 17 of 40

3.3.3. API Gateway Declaration

Listing 4 shows how to define an API gateway named EntryGateway. The EntryGa
teway provides a single entry point to the system, and the user only needs to remember
the URL of the gateway. For each microservice behind the gateway, an URL mapping is
provided. For example, to call the listUsers method from the User microservice, a user
needs to use the following call: http://entry.example.com:9095/api/u/listusers, accessed
on 1 June 2022. The EntryGateway is also registered within ServiceRegistry.

Listing 4. An example that shows how to define an API gateway.

1 api-gateway EntryGateway {
2
3 service_registry=ServiceRegistry
4
5 deployment {
6 version="0.0.1"
7 port=9095
8 url="http://entry.example.com"
9 }
10
11 communication_style=rpc
12
13 gateway-for{
14 User as /api/u
15 }
16 }

3.3.4. Declaration of Microservice Dependency

Listing 5 shows how to define a dependency between Order and User microservices.
In this particular example, the Order microservice requires userExists and userEmail
methods from the User microservice. For each requirement, a failure recovery strategy
is defined (a fallback_static strategy for the userExists method and a fail_silent
strategy for the userEmail method).

Listing 5. Defining dependency between Order and User microservices.

1 dependency Order -> User {
2 userExists[fallback_static]
3 userEmail[fail_silent]
4 }

3.3.5. Switching from RPC to Messaging Communication

So far, we have shown how to define microservices that use the RPC mechanism to
communicate. In the text that follows, we will show how to change communication style
from RPC to messaging.

First, the message pool and a message broker need to be defined. Listing 6 shows how
to define the message pool with one message group —UserMsgGroup. This message group
contains three message types: UserAdded, UserUpdated, and UserDeleted. Each message
has two fields: userId and userEmail.

http://entry.example.com:9095/api/u/listusers
http://entry.example.com

Appl. Sci. 2022, 12, 6679 18 of 40

Listing 6. An excerpt of the grammar rule for microservice declaration.

1 msg-pool{
2 group UserMsgGroup [
3 msg UserAdded [
4 str userId
5 str userEmail
6]
7 ...
8]
9 }

Listing 7 shows how to define a message broker named Broker. This message broker
has three typed message channels: EV_USER_ADDED_CHANNEL channel for the UserAdded
message, EV_USER_UPDATED_CHANNEL channel for the UserUpdated message, and EV_USER
_DELETED_CHANNEL channel for the UserDeleted message. When instantiating a channel,
the FQN of a message must be used.

Listing 7. An example that shows how to define a message broker.

1 msg-broker Broker {
2
3 channel EV_USER_ADDED_CHANNEL(UserMsgGroup.UserAdded)
4 channel EV_USER_UPDATED_CHANNEL(UserMsgGroup.UserUpdated)
5 channel EV_USER_DELETED_CHANNEL(UserMsgGroup.UserDeleted)
6 }

Listing 8 shows how the User microservice should be changed to use the messaging
communication style. In the example, the User microservice publishes a message every time
a user is added, updated, or deleted. Not only CRUD methods can produce or consume
messages; regular API functions can use @producer and @consumer annotations that use
the same syntax as shown in the example.

Listing 8. User microservices that uses messaging communication style.

1 serviceUser {
2 ...
3 communication_style=messaging
4 ...
5
6 api {
7 @create(UserMsgGroup.UserAdded -> Broker.EV_USER_ADDED_CHANNEL)
8 @read
9 @update(UserMsgGroup.UserUpdated ->
10 Broker.EV_USER_UPDATED_CHANNEL)
11 @delete(UserMsgGroup.UserDeleted ->
12 Broker.EV_DELETED_DELETED_CHANNEL)
13 typedef User [
14 ...
15]
16 ...
17 }
18 }

Appl. Sci. 2022, 12, 6679 19 of 40

3.4. Compiler

Silvera compiler consists of two logically separated parts: front-end and back-end.
The front-end further consists of modules for analysis and evaluation, whereas the back-end
is comprised of a set of language-specific code generators.

3.4.1. Front-End

The compiler’s front-end performs lexical analysis, parsing, semantic analysis, and trans-
lation to an intermediate representation. The parser is produced by textX [52] based on the
Silvera grammar. The textX is an open-source tool for fast DSL development in Python that
is IDE agnostic and provides a fast round-trip from grammar change to testing [52]. Since
DSLs are susceptible to changes [48], we chose textX because it provides easy language
evolution. The parser created by textX parses Silvera programs and creates a graph of
Python objects (model) where each object is an instance of a corresponding class from the
metamodel. This way, instead of an Abstract Syntax Tree (AST), textX returns a Model object
(Section 3.2).

The front-end detects both syntax and semantic errors. Since Silvera is IDE-independent,
errors are detected only during the compilation time. Syntax errors are detected early on,
during parsing, by textX, which comes with extensive error reporting and debugging
support [52].

Before the Model object is passed to the compiler’s back-end, it is processed by the
communication resolving processor (CRP) and the architecture evaluation processor (AEP). Since
microservices created in Silvera can have multiple communication styles, the primary
purpose of the CRP is to validate the Silvera model according to the corresponding commu-
nication style and enrich the model with communication-style-specific information needed
by the compiler’s back-end. Each communication style comes with a specific CRP.

The purpose of the AEP is to provide a metrics-based evaluation of the microservices-
based system implemented in Silvera. Evaluation metrics applicable to microservice-based
systems are defined by Bogner et al. [46]. Even though the AEP is an independent module,
by utilizing it in the front-end, we are implementing the AVOPT pattern (see Section 3.1).
This way, evaluation results can be used by the back-end to generate optimized applications.

For the evaluation, the AEP is using the following metrics: Weighted Service Interface
Count (WSIC), Number of Versions per Service (NVS), Services Interdependence in the System
(SIY), Absolute Importance of the Service (AIS), Absolute Dependence of the Service (ADS),
and Absolute Criticality of the Service (ACS).

WSIC(S) [53] is the number of exposed API functions of microservice S. Lower values
for WSIC are more favorable for the maintainability of a microservice. As absolute values
for this metric are not conclusive on their own [46], the system-wide average WSICAVG is
calculated. By comparing values with the average, the largest microservices in the system
can be identified and potentially split.

NVS(S) [53] is the number of versions of microservice S currently used in the system.
A large NVSAVG value indicates high complexity and bears down on the maintainabil-
ity [46].

SIY [54] is the number of microservice pairs that are bi-directionally dependent on
each other. According to [54], interdependent pairs should be avoided as they attest to poor
services’ design. If such pairs exist, it can be a feasible solution to merge each of them into
a single microservice [46].

AIS(S) [54] is the number of consumer microservices that depend on the microservice
S. AIS of every microservice is compared to a system-wide AISAVG, which can be used to
identify very important microservices in the system.

ADS(S) [54] is the number of microservices that microservice S depends on. Again,
ADSAVG is calculated and can be used for comparison.

ACS(S) combines AIS(S) and ADS(S) to find the most critical and potentially prob-
lematic parts of the system. According to [54], the most critical microservices are those that
are called from many different clients as well as those that invoke a lot of other microservices.

Appl. Sci. 2022, 12, 6679 20 of 40

Evaluation is performed during the model compilation or on command (silvera ev
aluate <path_to_model_dir>). At the end of the evaluation, the AEP creates a detailed
report file that contains calculated values for each microservice.

If needed, Silvera allows developers to register custom AEPs as plugins (see Section 3.4.3).

3.4.2. Back-End

After the front-end processes the Model object, the object is being passed to the com-
piler’s back end as an input.

The back-end of the Silvera compiler iterates over each module in the model and
passes declarations (Decl objects) to code generators. The number of code generators is
not limited. The Silvera compiler offers a possibility to register custom code generators
as plugins.

For every REST-based microservice, the back-end generates an OpenAPI document
named openapi.json. OpenAPI files provide information about where to reach an API,
which operations are available, what are the expected inputs and outputs, etc.

The built-in code generator. The built-in code generator uses template-based model-
to-text transformations to produce the Java applications based on the Spring Boot (Spring
Boot—https://spring.io/projects/spring-boot (accessed on 24 December 2021)) framework.
The template-based code generation is a synthesis technique that produces code from high-
level specifications called templates [55]. A template is an abstract representation of the
textual output it describes. It has a static part, text fragments that appear in the output “as
is”, and a dynamic part embedded with splices of meta-code that encode the generation
logic [55]. Templates lend themselves to iterative development as they can be easily derived
from examples. Each declaration has a corresponding set of templates. The appropriate set
of templates is chosen based on the declaration type and its target programming language.
In the case of the built-in code generator, the target language is always Java 17. Once
the appropriate set of templates is chosen, the code generator analyses the declaration
and extracts relevant data. The data are subsequently used to fill the dynamic parts of
the template.

The built-in code generator generates a Spring Boot application for every microservice
present in the model. Most of the code is generated automatically; however, in some
cases, developers must implement business logic manually. To ensure that the manually
added code is preserved between successive code generations, the built-in code generator
implements the generation gap pattern [56]. The implementation of this pattern ensures
that manually written code can be added non-invasively using inheritance, where the
manually added classes inherit the generated classes. A guide on adding manual changes
to the generated code is part of Silvera’s documentation (Introduce manual changes to
the generated code—https://alensuljkanovic.github.io/silvera/compilation/#introduce-
manual-changes-to-the-generated-code (accessed on 1 June 2022)).

We adhered to the best practices defined by Hofmann et al. [57], so each generated
Spring Boot application has the following modules: domain, controller, repository, and service.
Microservices that use messaging communication style contain two additional modules:
config and messages.

The domain module contains classes that specify the application’s domain model
(business entities). These classes are derived from the type definitions (typedefs) located
in the microservice’s API. The service module contains classes that specify applications’
business rules. These modules contain two sub-modules: base and impl. The base module
contains a definition of the Java interface with methods defined in API, whereas the impl
module contains a class that implements the base interface. The impl module is different
from the rest of the generated modules because files in the impl module preserve manual
changes in the code between successive code generations. In contrast, the rest of the
generated files are always rewritten.

The repository module contains the implementation of the Repository pattern in the
form of MongoRepository provided by MongoDB. Currently, the built-in code generator by

https://spring.io/projects/spring-boot
https://alensuljkanovic.github.io/silvera/compilation/#introduce-manual-changes-to-the-generated-code
https://alensuljkanovic.github.io/silvera/compilation/#introduce-manual-changes-to-the-generated-code

Appl. Sci. 2022, 12, 6679 21 of 40

default supports only MongoDB. However, support for an arbitrary database can be added
either by extending the existing code generator or by registering a new one.

All messages defined in the message pool are generated as classes in the messages
module. Messages are sent through the network as JSON objects.

The config module contains classes used to define how the generated microservice
application will communicate with a message broker. These classes are: (i) the KafkaConfig
class that defines how the application is registered within the Kafka cluster, and (ii) the
MessageDeserializer class that defines how messages received as JSON objects will be trans-
formed into message objects defined in the messages module. MessageDeserializer is optional
and will be generated only if the application consumes messages from the message broker.

The controller module contains a class that specifies the REST API of the generated
microservice application. The class contains methods that belong to both the public and
internal API of the microservice. Methods from the internal API are private and cannot be
accessed from the outside.

In addition to the modules mentioned above, pom.xml and bootstrap.properties files are
generated for each microservice. The file bootstrap.properties is used to setup Spring Boot
applications, whereas Maven uses pom.xml files to manage dependencies.

API gateways and service registries are also generated as separate Spring Boot ap-
plications. The API gateway is generated as a Zuul Proxy (Netlix Zuul—https://github.
com/Netflix/zuul (accessed on 24 December 2021)) server. Zuul is a gateway service
developed by Netflix, and it provides dynamic routing, monitoring, resiliency, security, etc.
Generated code for the API gateway is simple because it contains only one class with the
main function and the application.properties file, which defines how the API gateway will
perform request routing and whether it will contact the service registry to retrieve the URL
of the corresponding microservice. The service registry is also a simple application, with
one class with the main function and the bootstrap.properties file.

The built-in code generator produces a special run script and a Docker file (if the
deployment host is set to the container) for each microservice, API gateway, or service
registry. The run script utilizes Maven to produce and run the jar file.

3.4.3. Customization Support

Silvera allows users to register new AEP or code generators as plugins. Both are
registered in the same way, so for brevity, we will only describe the registration process for
the new code generator.

A custom code generator needs to be implemented in Python. Silvera uses the pkg
_resources module from setuptools (Python’s setuptools module—https://setuptools.
readthedocs.io/en/latest/ (accessed on 24 December 2021)) and its concept of extension
point to declaratively specify the registration of the new code generator. Extensions are
defined within the project’s setup.py module. All Python projects installed in the environ-
ment that declare the extension point will be discoverable dynamically.

The registration of a new code generator is performed in two steps. The first step
is to create an instance of the GeneratorDesc class. An instance of the GeneratorDe
sc class contains information about the code generator’s target language, description,
and the reference towards the function that should be called to perform code generation.
As shown in Listing 9, this function has three parameters: Decl object, a path to the directory
where code will be generated, and a flag that shows whether the code generator is run in
debug mode.

https://github.com/Netflix/zuul
https://github.com/Netflix/zuul
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/

Appl. Sci. 2022, 12, 6679 22 of 40

Listing 9. Implementation of a GeneratorDesc object and the prototype of the generate function.

1 from silvera.generator.gen_reg import GeneratorDesc
2
3 def generate(decl, output_dir, debug):
4 """Entry point function for code generator.
5
6 Args:
7 decl(Decl): can be declaration of service registry or config
8 server.
9 output_dir(str):outputdirectory.
10 debug(bool): True if debug mode activated. False otherwise.
11 """
12 ...
13
14 python = GeneratorDesc(
15 language_name="python",
16 language_ver="3.7.4",
17 description="Python 3.7.4 codegenerator",
18 gen_func=generate
19)

The second step is to make the code generator discoverable by Silvera. To do this, we
must register the GeneratorDesc object in the setup.py entry point named silvera_gene
rators, as shown in. Listing 10.

Listing 10. Making the new code generator discoverable by Silvera by using silvera_generators
entry point.

1 from setuptools import setup
2
3 setup(
4 ...
5 entry_points={
6 ’silvera_generators’:[
7 ’python = pygen.generator:python’
8]
9 }
10)

Silvera provides a command (silvera list-generators) that lists all registered
generators in the current environment.

4. Eat and Drink Microservice Architecture Use Case

In this section, we present a case study in which we have used Silvera to specify the
architecture of the Eat and Drink application. The Eat and Drink is a distributed application
for ordering food and drinks. We used Silvera to model the architecture of the Eat and
Drink and to produce runnable Java code. In Section 4.1, we describe each microservice in
the system, whereas in Section 4.3 we present the structure of the generated Java code. We
will also compare the number of lines of code needed to specify the architecture of Eat and
Drink in Silvera to the number of lines of code needed to specify the same Eat and Drink
application in Java programming language.

Appl. Sci. 2022, 12, 6679 23 of 40

4.1. Eat and Drink Microservice Architecture

In this section, we describe each microservice present in the Eat and Drink and how
they interact.

The Eat and Drink application consists of only five microservices and serves as a
short demonstration of Silvera’s capabilities. In the future, we plan to test Silvera on
real industrial use cases (see Section 8). Microservices that compose the Eat and Drink
application are shown in Table 10. APIs of all microservices are based on REST and can be
used by external users. The architecture of the Eat and Drink application is illustrated in
Figure 3.

To provide a single entry point for external users, we defined EntryGateway as an API
gateway. All microservices are discoverable via the ServiceRegistry. In the following text,
we describe the domain model and the API of each microservice in the system.

The User microservice has only one entity—User with the following attributes: user-
name, password, and email. The API of the User microservice consists of CRUD methods
and three additional methods: (i) listUsers—which retrieves data for all users in the system,
(ii) userExists—which checks if the user with a given username exists in the system, and
(iii) userEmail—which retrieves the user’s email.

The Meal microservice has two entities: Meal and Ingredient. Each meal has its name,
price, description, and a list of ingredients. For each ingredient, it is possible to specify a
name and a measure. The API of the Meal microservice consists of CRUD methods defined
for Meal entity and methods such as: (i) listMeals—which retrieves all meals from the
database, (ii) mealExists—which for a given meal name checks if the meal exists in the
database, (iii) mealPrice—which for a given meal name returns its price, and (iv) getIngredi-
entsForAMeal—which for a given meal name returns the list of the ingredients needed to
prepare the meal.

The Storage microservice has only one entity—Ingredient with attributes name and
measure. The API of the Storage microservice consists of CRUD methods defined for
the entity and two additional methods: (i) list—which retrieves the information about
all ingredients from the database, and (ii) takeIngredient—which, if possible, takes the
ingredient from the storage.

Table 10. Microservices that compose Eat and Drink application and their descriptions.

Microservice Description

User Provides user-related operations.

Meal Provides means for adding meals to the menu.

Order Provides means for creating orders.

Storage Contains information about availability of ingredients used for preparing a meal.

EmailNotifier Notifies users about the order status via email.

The Order microservice has two entities: Order and OrderItem. Every order has infor-
mation about the user who created the order, a list of OrderItem entities, and a calculated
price. OrderItem contains information about the meal that is ordered, such as the meal name
and the amount. The API of the Order microservice contains CRUD methods for the Order
entity and the listOrders method, which retrieves all orders from the database. Methods
createOrder, updateOrder, and deleteOrder publish corresponding messages to the message
broker after they are successfully completed. These messages are used by the EmailNotifier
microservice to notify the user about the order status.

The EmailNotifier microservice has one Notification entity that contains an order ID
and a user’s email as attributes. The API of this microservice has listNotifications and
listHistoryForUser methods. The first method retrieves all notifications from the database,
whereas the second method retrieves notifications only for a selected user. In addition to
these publicly available methods, this microservice also contains three internal API methods:

Appl. Sci. 2022, 12, 6679 24 of 40

(i) orderCreated, (ii) orderUpdated, and (iii) orderDeleted. These methods are triggered after an
order in the Order microservice is created, updated, or deleted.

Figure 3. The architecture of the Eat and Drink application. Solid, black connections represent
dependencies. The label on dependency connection shows which method is required by dependent.
Green, dashed connections represent service registrations. Orange, dashed connections represent a
message publishing, and labels on these connections represent messages that are being published.

4.2. Eat and Drink Architecture Evaluation

Silvera evaluated the Eat and Drink application during compilation. As shown by
Table 11, there are a few outliers for metrics WSIC, AIS, and ADS.

WSIC values for microservices User and Meal are larger than the system average.
Lower WSIC values are more favorable for the maintainability of a service. However,
after we compared the APIs of all services in the system, we decided that the current
implementation of User and Meal is good enough for this use case.

Table 11. The results of metrics-based evaluation of Eat and Drink application.

Metric System
Average User Meal Storage Order EmailNotifier

WSIC 3.2 4 5.5 3 1 2.5

NVS 1 1 1 1 1 1

AIS 0.6 1 1 1 0 0

ADS 0.6 0 0 0 3 0

ACS 0 0 0 0 0 0

The microservice Order depends on three other microservices: User, Meal, and Stor-
age. Based on the ADS value calculated for the Order microservice, we can see that this
microservice could be problematic due to high coupling with its dependencies. However,
this is expected since the Order microservice is a central part of the application where the
main business logic is implemented. Since no other microservice depends on the Order
microservice, its AIS and ACS values are both 0.

Microservices: User, Meal, Storage, and EmailNotifier have no dependencies towards
other microservices, hence the zeros for their ADS and ACS values.

Appl. Sci. 2022, 12, 6679 25 of 40

4.3. Eat and Drink Code Generation

As stated in Section 3.4, the Silvera compiler can have an arbitrary number of code
generators, each specialized for a particular programming language or framework. In the
case of Eat and Drink, we used the built-in code generator.

For each microservice in Eat and Drink, we compared the number of automatically
generated lines of Java code and the number of manually added lines of Java code. First,
we generated the code and counted the number of generated lines of code. We used cloc
(cloc—https://github.com/AlDanial/cloc (accessed on 15 January 2021)) to calculate the
number of lines of code for each microservice application. Then, we added the manual
implementation where needed and ran cloc again to calculate the differences. As shown by
Table 12, the majority of the code was generated automatically, whereas a small amount of
code needs to be manually written.

Table 12. The comparison of the number of automatically generated lines of code and manually
written lines of code for the Eat and Drink application.

Service Silvera Java Maven Sum % Generated

Generated
LOC

Manually
Added
LOC

Generated
LOC

Manually
Added
LOC

Generated
LOC

Manually
Added
LOC

Total

User 19 159 8 77 0 236 8 244 96.72

Meal 26 204 10 77 0 154 10 164 93.9

Storage 16 142 9 77 0 154 9 163 94.48

Order 37 523 27 81 0 162 27 189 85.71

EmailNotifier 24 379 59 81 4 162 63 225 72

ServiceRegistry 10 11 0 62 0 124 0 124 100

EntryGateway 23 14 0 60 0 120 0 120 100

Kelly and Tolvanen [58] have shown that DSLs lead to better quality applications
because of two main reasons. First, DSLs can include correctness rules of the domain
that ensure that the user cannot create illegal specifications. Elimination of bugs in the
beginning is far better than finding and correcting them later [58]. Second, code generators
automatically convert DSL specifications to a lower abstraction level (normally code),
and the generated result does not need to be edited afterward. A study by Kieburtz et al. [59]
compared the reliability of the software built manually and by using the DSL approach.
The study compared the number of failed tests for the manual approach and the DSL
approach and showed that the DSL approach yielded significantly fewer errors.

Based on these studies and the results from Table 12, we can conclude that Silvera,
while accelerating the development of microservice-based distributed systems, also leads to
better quality applications. The improved quality comes as a result of: (a) correctness rules
built into Silvera that ensure that the user cannot create illegal specifications, and (b) the fact
that most of the code is generated automatically and does not need to be edited afterward.

To check Silvera’s performance, we compiled the Eat and Drink compilation 10 times
in a row and collected the results with the built-in Linux shell time command. Results
showed that it takes approximately 0.5 s to compile the application (The test was executed
on a laptop with Intel Core™ i7-6700HQ CPU and 8 Gb of RAM).

5. Evaluation of Silvera

In addition to the Eat and Drink application presented in Section 4, we developed
multiple applications to test Silvera. However, to achieve an objective assessment of the
language, we needed feedback from users that were not involved in the development of Sil-
vera. Therefore, we conducted a survey based on the FQAD framework [13] to understand
whether we achieved our goals. FQAD is based on the ISO/IEC 25010:2011 standard, and it
defines a set of quality characteristics that should be considered when creating a DSL. Many
stakeholders can be involved in the assessment of the DSL. Each stakeholder forms a per-
spective of what characteristics the DSL should have [13]. Stakeholders can choose between

https://github.com/AlDanial/cloc

Appl. Sci. 2022, 12, 6679 26 of 40

the following characteristics: functional suitability, usability, reliability, maintainability,
productivity, extendability, compatibility, expressiveness, reusability, and integrability.
The evaluation is based on the methodology presented by Wohlin et al. [60], whereas
reporting is based on work presented by Jedlitschka et al. [61].

5.1. Scoping

The scope of the experiment was set by defining its goals [60]. Here we follow the
GQM template for goal definition, originally presented by Basili and Rombach [62].

The goal of the study was to analyze Silvera for the purpose of evaluation with respect
to the following DSL quality characteristics: functional suitability, usability, reliability,
productivity, extendability, and expressivenes. The perspective is from the researcher’s
point of view. The study was run using students and software developers with experience
in MSA or software architectures in general.

5.2. Hypotheses

Before we shared the survey with participants, we defined the following hypotheses.

Hypothesis 1. Silvera is not appropriate for the specification of MSA. Alternative Hypoth-
esis H11: Silvera is appropriate for the specification of MSA.

Hypothesis 2. Silvera language elements are not understandable. Alternative Hypothesis
H12: Silvera language elements are understandable.

Hypothesis 3. The concepts and notation of the Silvera language are not learnable and
rememberable. Alternative Hypothesis H13: The concepts and notation of the Silvera language
are learnable and rememberable.

Hypothesis 4. Silvera is not appropriate for users’ needs when developing MSA. Alterna-
tive Hypothesis H14: Silvera is appropriate for users’ needs when developing MSA.

Hypothesis 5. Silvera does not protect users against making errors. Alternative Hypothesis
H15: Silvera protects users against making errors.

Hypothesis 6. Silvera does not shorten the time needed to develop MSAs. Alternative
Hypothesis H16: Silvera shortens the time needed to develop MSAs.

Hypothesis 7. Silvera does not reduce the number of human resources used to develop
MSAs. Alternative Hypothesis H17: Silvera reduces the number of human resources used to
develop MSA.

Hypothesis 8. Silvera does not provide one and only one good way to express every con-
cept of interest. Alternative Hypothesis H18: Silvera provides one and only one good way to
express every concept of interest.

Hypothesis 9. Each construct in Silvera is not used to represent exactly one distinct con-
cept in the domain. Alternative Hypothesis H19: All constructs in Silvera represent exactly one
distinct concept in the domain.

Hypothesis 10. Silvera contains conflicting elements. Alternative Hypothesis H110: Silvera
does not contain conflicting elements.

Hypothesis 1 tests the appropriateness of Silvera. Appropriateness is a sub-characteristic
of the functional suitability. Functional suitability refers to the degree to which a DSL is
fully developed [13]. DSL should contain all necessary functionality from the domain and
should not contain nor include functionality that is not in the domain [13].

Appl. Sci. 2022, 12, 6679 27 of 40

Hypotheses 2–4 test the comprehensibility, learnability, and likeability/user perception,
respectively. In FQAD, these characteristics are sub-characteristics of usability, which is
defined as “the degree to which a DSL can be used by specified users to achieve specified
goals” [13].

Hypothesis 5 tests the reliability of Silvera. Kahraman and Bilgen [13] define reliability
of a DSL as “the property of a language that aids producing reliable programs (model
checking ability/preventing unexpected relations)”.

Hypotheses 6 and 7 test the productivity. Productivity is a characteristic related to the
amount of resources expended by the user to achieve specified goals [13].

Hypotheses 8–10 test the uniqueness, orthogonality, and conflicting elements, respec-
tively. In FQAD, these characteristics are sub-characteristics of expressiveness, which is
defined as “the degree to which a problem solving strategy can be mapped into a program
naturally” [13].

5.3. Selection of Participants

The target population of the study was software developers with experience in design-
ing microservices. We also included developers that had significant experience in software
architectures in general, but with lesser experience with microservices.

Participants were selected based on their availability and willingness to participate in
the study. We did not offer any incentives for participation. All participants were identified
through authors’ professional networks. Participants were given 3 days to complete the
study. Participants completed the study at their homes, so that they could work at their
own pace. Participants were provided with video tutorials (Silvera tutorials—https://
www.youtube.com/playlist?list=PLY6VwunTqUKdCudkeFkWXuUcRRcZrpSkL (accessed
on 4 April 2022)), documentation (Silvera documentation—https://alensuljkanovic.github.
io/silvera/ (accessed on 1 June 2022)), examples (Silvera examples—https://github.com/
alensuljkanovic/silvera-demo (accessed on 4 April 2022)), and authors’ email where they
could ask questions. After studying the provided materials, participants were asked to
implement a small microservice-based application both using the Silvera and manually
(see Section 5.4).

This survey was not anonymous for two reasons. First, we wanted to make sure that
each participant could only participate in the survey once. Second, we needed to be able to
contact participants and ask for further explanations if they were needed. All participants
were informed about the terms of participating in the survey, and we guaranteed that
personal data would not be shared with third parties.

5.4. The Task

The task given to the participants is defined as follows:

Implement a distributed system based on microservices for publishing scientific papers.
The system contains the following microservices: User, SciPaper, and Library.

The User microservice allows users to register and log in. When registering, a user pro-
vides a username (ID), password (mandatory), first name (mandatory), last name (manda-
tory), and email (optional). To log in, the user must provide a username and password.

The SciPaper microservice allows logged-in users to write new scientific papers. Each
paper has an author, a title, and an arbitrary number of sections. Each section has its name
and content. This microservice has a special method, publish, which, for a given paper
ID, publishes a PUBLISH_PAPER message to a message broker. The message contains the
paper’s ID, paper’s title, and author.

The Library microservice has a method that listens to the PUBLISH_PAPER message and
keeps data provided via a message in the database. This microservice also has a public
method that lists all data from the database.

The user is not aware of the application’s architecture and uses the API gateway as an
entry point. All services are registered in the service registry.

https://www.youtube.com/playlist?list=PLY6VwunTqUKdCudkeFkWXuUcRRcZrpSkL
https://www.youtube.com/playlist?list=PLY6VwunTqUKdCudkeFkWXuUcRRcZrpSkL
https://alensuljkanovic.github.io/silvera/
https://alensuljkanovic.github.io/silvera/
https://github.com/alensuljkanovic/silvera-demo
https://github.com/alensuljkanovic/silvera-demo

Appl. Sci. 2022, 12, 6679 28 of 40

Even though the task is simple, it covers all the basic concepts of Silvera. To success-
fully solve the task, participants needed to learn how to define a microservice and its API,
an API gateway, and a service registry. Then, they needed to determine how to register
a microservice within the service registry and how to make the microservice available in
the API gateway. To successfully implement the business logic, participants needed to use
both messaging and RCP communication styles. For the messaging communication style,
they needed to define messages and a message pool. To make the RPC work, participants
needed to define dependencies between the appropriate microservices.

The task needed to be implemented both in Silvera and manually. In the case of
manual implementation, participants had the freedom to choose a programming language,
framework, and tooling in which they implemented the task. Participants were asked to
record the time needed to complete each implementation.

5.5. The Questionnaire

Once the example was implemented, participants were asked to answer the online
questionnaire, which consisted of 13 questions with answers presented in the form of a
five-level Likert scale. Participants could select only one answer. The questions were split
into the following groups: Experience, Functional suitability, Usability, Reliability, Productivity,
Extendability, and Expressiveness. The questions are presented in Table 13.

Table 13. The survey questions. All questions were closed type, and only one answer could be
provided.

No. Question Group Question

Q1 Experience How would you describe your previous experience in designing
a software architecture?

Q2 Experience How would you describe your previous experience in designing
MSAs?

Q3 Experience How would you describe you previous experience with CASE
tools?

Q4 Functional suitability Silvera is appropriate for microservice architecture specification
needs.

Q5 Usability Silvera language elements are understandable.

Q6 Usability The concepts and notation of Silvera language are learnable and
rememberable.

Q7 Usability Silvera meets the user’s needs for MSA specification.

Q8 Reliability Silvera protects users against making errors via built-in valida-
tion.

Q9 Productivity Silvera shortens the time needed to develop MSAs.

Q10 Productivity Silvera reduces the amount of human resources used to develop
MSAs.

Q11 Expressiveness Silvera provides one and only one good way to express every
concept of interest.

Q12 Expressiveness Each construct in Silvera is used to represent exactly one distinct
concept in the domain.

Q13 Expressiveness Silvera does not contain conflicting elements.

For questions from the Experience group, users were able to select answers ranging
from one, Inexperienced, to five. Experienced. For the rest of the questions, answers ranged
from 1, Strongly disagree, to 5, Strongly agree. At the end of the questionnaire, we added a
special field where participants could leave their comments. The data collected from the
Likert scale in the study are quantitative.

Appl. Sci. 2022, 12, 6679 29 of 40

5.6. Order and Completeness Rules

Before the survey started, we defined the following rules to prepare the environment.
Task implementation order. Each participant implemented the task (Section 5.4) twice.

One group of participants was instructed to use Silvera first, whereas the other group
was instructed to first implement the task manually in the programming language of their
choice. We used randomized design to assign participants to one of these groups. This
way, we avoided the effect of participants performing better in the second round of task
implementation because of their familiarity with the problem. The participants submitted
implementations after every round.

Task completeness. To make sure that the study results were valid, we checked if
submitted task implementations were functional. We created a set of automated tests that
were performed for every submitted implementation. These tests were used to calculate
the task completeness and were not shared with the participants.

5.7. Analysis and Results

In total, 50 people were invited to participate in the survey, of which 24 accepted the
invitation. However, only 18 participants completed the survey. Of the participants, 4
were developers with at least 3 years of working experience, and 14 were students in their
last year of bachelor studies. As shown in Table 14, the experience of participants varied,
with ∼33% of participants declaring themselves as relatively experienced or experienced
in designing software architectures, ∼17% declaring themselves as relatively experienced
or experienced in designed MSA, whereas ∼5.5% of participants declaring themselves as
relatively experienced or experienced with CASE tools. Since we wanted to make sure that
Silvera can be easily used by developers inexperienced with MSA, the participants met the
study requirements.

Table 14. Percentages of responses (n = 18) for Experience group of questions.

Question Inexperienced
(%)

Relatively
Inexperienced
(%)

Medium
Experienced
(%)

Relatively
Experienced
(%)

Experienced
(%)

Q1: How would you de-
scribe your previous expe-
rience in designing a soft-
ware architecture?

5.55 5.55 55.55 27.77 5.55

Q2: How would you de-
scribe your previous expe-
rience in designing a mi-
croservice software archi-
tecture?

33.33 33.33 16.67 11.11 5.55

Q3: How would you de-
scribe your previous expe-
rience with CASE tools?

50.00 38.89 5.55 5.55 0

5.7.1. Performance Results

In Table 15, we show the performance results with regard to effectiveness and effi-
ciency. All study participants implemented the task (Section 5.4) both with Silvera and
manually (see Table 15). Participants needed assistance 10 times, resulting in a mean of
0.98, as depicted in Table 15. All assistance was performed verbally (online), during which
the participants were instructed to pause the clock.

The mean task completion time when using Silvera was just below 3.5 h. On av-
erage, participants implemented the task ∼124% faster when using Silvera than when
implementing the same task manually. We used R language to perform a paired sam-
ples t-test to compare the means of two samples of implementation durations. We tested
if Silvera indeed accelerates the implementation of MSAs, and we obtained a p-value
(p-value = 5.539 × 10−5) that was less than the significance level (α = 0.01). The test statis-
tic and effect size values were V = −5.185483 and 0.91, respectively. Because the participants’

Appl. Sci. 2022, 12, 6679 30 of 40

expertise in MSAs varied to a great extent, high standard deviation values for the task
completion times were expected.

The completeness was measured by running the set of automated tests. As depicted
in Table 15, both approaches yielded similar results, with Silvera having an average task
completion rate of ∼95% compared to the ∼91% of the manual approach. While the
maximum task completion rate was the same for both approaches, the minimum completion
rate was slightly higher for the manual approach. Values for the minimum completion rate
were lower than expected because some participants did not name their functions as stated
in the task, which caused the failure of some of the automated tests. The median value was
the same for both approaches. However, the mode value (the most commonly occurring
value) showed that the task completion rate was 100% for the majority of participants when
using Silvera. Indeed, 50% of the participants had a task completion of 100% when using
Silvera, as opposed to 33.33% with the manual approach. We did not calculate the mode
value for columns related to time because all time durations reported by users were unique.

Table 15. Performance results (effectiveness and efficiency).

Mean Median Mode Std. Dev. Min Max

Task completion rate—Silvera 94.84% 89.26% 100% 8.06% 71.42% 100%

Task completion rate—manual 91.26% 89.26% 85.71% 7.96% 78.57% 100%

Number of assistances 0.55 2 0 0.98 0 3

Time to implement the task—Silvera (hh:mm:ss) 03:21:56 03:08:12 - 01:16:07 01:13:24 06:45:23

Time to implement the task—manual (hh:mm:ss) 07:30:31 06:00:05 - 03:48:31 02:55:25 17:23:20

As hown in Table 16, the majority of participants agreed that Silvera is functionally
suitable for the specification of distributed systems based on microservices. However,
participants also pointed out the following problems:

• Syntax error. One participant reported that the generated code could not be compiled
due to a syntax error. This was caused by faulty template implementation and was
fixed immediately.

• Code formatting. A few participants complained about the formatting of the generated
code. In some cases, the spacing between lines of code was too big. We addressed this
problem, and we will pay special attention to the code formatting in the future.

• Underutilized Spring Boot frame. Some participants noted that Spring Boot comes with
built-in features that could simplify some parts of the generated code. For example,
we could use Feign client to implement the communication between microservices.

• Notation consistency. One participant commented that he was confused with the mixed
usage of brackets and braces. We plan to take this into account in future versions of
the tool.

• Documentation. One participant commented that video tutorials and documentation
are not up-to-date. Video tutorials were recorded for the previous version of Silvera,
but we did, however, describe all the backward-incompatible changes both in videos
and the documentation. Still, we will address this issue in the future.

Table 16. Percentages of responses (n = 18) for Functional suitability, Usability, Reliability, Productivity,
Extendability and Expressiveness groups of questions.

Question Strongly
Disagree (%)

Disagree
(%)

Neutral
(%) Agree (%) Strongly Agree

(%)

Q4: Silvera is appropriate for MSA
specification needs. 0 0 5.56 72.22 22.22

Q5: Silvera language elements are
understandable. 0 0 0 27.78 72.22

Appl. Sci. 2022, 12, 6679 31 of 40

Table 16. Cont.

Question Strongly
Disagree (%)

Disagree
(%)

Neutral
(%) Agree (%) Strongly Agree

(%)

Q6: The concepts and notation of
Silvera language are learnable and
rememberable.

0 0 0 33.33 66.67

Q7: Silvera meets the user’s needs for
MSA specification. 0 0 11.11 55.56 33.33

Q8: Silvera protects users against
making errors via built-in validation. 0 0 11.11 61.11 27.78

Q9: Silvera shortens the time needed
to develop a microservice software
architecture.

0 0 5.56 33.33 61.11

Q10: Silvera reduces the amount of
human resources used to develop the
microservice software architectures.

0 5.56 11.11 66.67 16.67

Q11: Silvera provides one and only
one good way to express every
concept of interest.

0 11.11 22.22 55.56 11.11

Q12: Each construct in Silvera is used
to represent exactly one distinct
concept in the domain.

0 0 11.11 77.78 11.11

Q13: Silvera does not contain
conflicting elements. 0 0 5.56 72.22 22.22

5.7.2. Descriptive Statistics

We used the R language [63] to calculate the central tendency and dispersion of the
responses. The median value (50%-percentile) for each question is either 4 or 5, as shown
in Table 17. The mode value is also either 4 or 5, depending on a question. Median and
mode values imply that the data is symmetrically distributed [60]. Low values for Inter-
Quartile Range (IQR) indicate that there is a consensus among participants that Silvera
satisfies the following DSL quality characteristics: functional suitability, usability, reliability,
productivity, extendability, and expressiveness.

Table 17. Analysis of central tendency and dispersion of the responses (n = 18). Values for me-
dian and mode show the central tendency, while Inter-Quartile Range (IQR) shows the dispersion of
the responses.

Question Quantiles Mode IQR0(%) 25(%) 50(%) 75(%) 100(%)

Q4: Silvera is appropriate for MSA
specification needs. 3 4 4 4 5 4 0

Q5: Silvera language elements are
understandable. 4 4.25 5 5 5 5 0.75

Q6: The concepts and notation of
Silvera language are learnable and
rememberable.

4 4 5 5 5 5 1

Q7: Silvera is appropriate for needs
of MSA specification. 3 4 4 5 5 4 1

Q8: Silvera protects users against
making errors. 3 4 4 4.75 5 4 0.75

Q9: Silvera shortens the time needed
to develop a microservice software
architectures.

3 4 5 5 5 5 1

Q10: Silvera reduces the amount of
human resource used to develop the
microservice software architectures.

2 4 4 4 5 4 0

Appl. Sci. 2022, 12, 6679 32 of 40

Table 17. Cont.

Question Quantiles Mode IQR0(%) 25(%) 50(%) 75(%) 100(%)

Q11: Silvera provides one and only
one good way to express every con-
cept of interest.

2 3 4 5 5 4 1

Q12: Each construct in Silvera is
used to represent exactly one dis-
tinct concept in the domain.

3 4 4 4 5 4 0

Q13: Silvera does not contain con-
flicting elements. 3 3 4 4 5 4 0

5.7.3. Hypothesis Testing

We used R language to perform a one-sample Wilcoxon signed-rank test [64] on our
hypotheses. The one-sample Wilcoxon test is a rank-based test that calculates the difference
between the observed and default values. We chose this test because the Likert scale data
is ordinal and cannot be normally distributed. For each question in the questionnaire,
we tested if the test result was greater than the default value of 3. In order to control the
study-wide error rate, we used Bonferroni correction. For the Bonferroni correction, we
multiplied the raw p-value by n to compute the corrected p-value, where n is the number of
hypothesis tests in the study. In Table 18, we present the results of the test.

According to the data presented in Table 18, the p-value for each question is less than
the significance level (α = 0.05). Based on the results, we can reject the null Hypotheses
(1–10) and accept the alternative Hypotheses (H10–H110). Thus, we can conclude that
Silvera satisfies the following DSL quality characteristics: functional suitability, usability,
reliability, productivity, extendability, and expressiveness.

Table 18. The corresponding test statistic, p-value and effect size for every question from groups
Functional suitability, Usability, Reliability, Productivity, Extendability and Expressiveness.

Question Test Statistic p-Value Effect Size

Q4: Silvera is appropriate fo MSA specification needs. V = 153 0.0008 0.98

Q5: Silvera language elements are understandable. V = 171 0.0006 1.00

Q6: The concepts and notation of Silvera language are
learnable and rememberable. V = 171 0.0006 0.99

Q7: Silvera is appropriate for needs of MSA specification. V = 136 0.002 0.93

Q8: Silvera protects users against making errors. V = 153 0.002 0.94

Q9: Silvera shortens the time needed to develop a
microservice software architectures. V = 129 0.001 0.96

Q10: Silvera reduces the amount of human resource used
to develop the microservice software architectures. V = 92 0.004 0.86

Q11: Silvera provides one and only one good way to
express every concept of interest. V = 136 0.045 0.68

Q12: Each construct in Silvera is used to represent
exactly one distinct concept in the domain. V = 153 0.0008 0.97

Q13: Silvera does not contain conflicting elements. V = 120 0.0007 0.98

Appl. Sci. 2022, 12, 6679 33 of 40

6. Threats to Validity

The aim of our study was to develop a language that will accelerate the development
of microservices. Although the study conducted a thorough survey, there are some threats
to validity that we will discuss in this section. We distinguish between threats to construct
validity, internal validity, and external validity.

6.1. Construct Validity

Hypothesis guessing. Even though participants were not aware of the hypotheses, still,
they could have answered the questionnaire in a way that would favor Silvera. Before the
survey, we encouraged participants to give honest answers because that is the only way for
Silvera to improve, and we feel that this threat was mainly mitigated.

Evaluation apprehension. A form of human tendency is to try to look better when being
evaluated which confounds the outcome of the experiment [60]. The fact that the study
was not anonymous could also affect the evaluation apprehension. To avoid this threat
to validity we informed participants that were were not evaluating them; rather, we were
evaluating Silvera. In addition, participants were not aware of other participants nor their
results during the survey (each participant worked at their own home and at their own
pace) to avoid any form of competition between them. In the future, we plan to enforce
anonymity in contributions to further reduce evaluation apprehensions.

6.2. Internal Validity

Maturation. To answer the questionnaire, participants first needed to familiarize
themselves with Silvera either by watching the tutorials or by reading the documentation
and going through examples. After that, they needed to implement a simple task. All these
steps required a significant portion of their time and could lead to boredom and disinterest.
To mitigate this, we designed the task to be as simple as possible but also structured the
documentation so that participants could quickly setup the environment and solve the task
(see Section 5.4).

Instrumentation. In Section 4.3 we showed that most of the code for the presented
use-case is generated automatically by Silvera and does not need to be edited afterwards.
Nevertheless, the ratio between the amount of generated code and the manually written
code depends on both the developer’s coding style and level of expertise. In addition,
results may vary depending on the tool used to count the number of lines in the code. Fur-
thermore, even though the presented use-case covered all concepts of Silvera, the number
of manual changes may be different for a different microservice-based system.

6.3. External Validity

Selection. While conducting the survey, we managed to gather only 18 participants
to evaluate Silvera. That might be due to the significant time needed for participants to
familiarize themselves with Silvera to complete the questionnaire. In addition, we aimed to
select participants with previous experience in working with microservices, but participants’
experience varied. Therefore, the survey may yield different results in the case of a larger
number of participants, or in case of a larger number of more experienced participants.

Setting. The complexity of the task performed by participants during the survey may
also affect survey results. The task was designed to be simple but still to cover all basic
concepts of Silvera (see Section 5.4). That allowed all participants to complete the task in a
reasonable time. However, a simple task could affect the results in many ways. For example,
whether the DSL is appropriate for the domain (H01) and DSL’s usability (H02 − H04) are
better tested on more complex tasks. Additionally, the number of errors in simple tasks is
less than in more complex tasks due to fewer LOC. Thus, how Silvera protects users from
making mistakes (H05), productivity gains, (H06) and resource allocation (H07) could be
better perceived in the case of a more complex task. Lack of IDE support could also affect
the results of the study. Participants could use the arbitrary text editor to create Silvera
programs, but since Silvera is not integrated with any of them, errors can be discovered

Appl. Sci. 2022, 12, 6679 34 of 40

only during the compilation. To mitigate this, we paid special attention to error reporting
and performance (see Section 4.3) when developing Silvera. This enabled participants to
quickly discover and fix errors. However, we plan to add IDE support in the future to
enhance the user experience (see Section 8).

Due to presented threats to external validity, we cannot claim that the results of the
study can be generalized to other participant populations or settings. To mitigate this, we
plan to perform more detailed studies in future (see Section 8).

7. Study Limitations

In this section, we discuss the limitations of the current approach and implementation.
In addition, we give some ideas for future work.

7.1. Decentralized Development

Silvera performs at its best if the whole application is described in the model. However,
Silvera is not necessarily a centralized solution. Some teams may opt for Silvera during the
development of MSA, whereas others may choose the manual approach. This approach has
several limitations since the information about the system can be dispersed over several
Silvera models or manually implemented microservices.

Lack of information about dependencies. Microservices defined outside of the Silvera
model cannot be set as dependencies of microservices from the model. Because the AEP
(see Section 3.4.1) relies on dependencies, the results of the architecture evaluation will be
incomplete or incorrect. Silvera generates a code for communication between the microser-
vices based on the dependencies. In this case, such code needs to be added manually.

A service registry is not part of the model. In this case, the service registry is inside another
model or implemented manually. Microservices that are defined in the model where the
service registry is not defined cannot be automatically registered within the service registry.
Because of this, the code for the registration of the microservice needs to be added manually.

An API gateway is not part of the model. In this case, the API gateway configuration needs
to be updated manually in case of API changes of a microservice developed in Silvera.

Incomplete API gateway definition. In this case, the API gateway and some microservices
are in separate models, or some of them are implemented manually. Microservices that are
defined in other models or manually are not visible to the API gateway. Because of this,
the API gateway configuration needs to be updated manually in case of API changes.

Missing message definitions. If there are multiple Silvera models or some microservices
are implemented manually, each part of the system may have only a small subset of the
complete message set. Due to Silvera’s validation, it is impossible to define the message
producer or consumer if the message is not defined within the model’s message pool.
Because of this, each message pool needs to be updated with the missing messages. Since
each model has its own message pool, one team is in charge of one model/message pool.
Teams could communicate which messages are used through the documentation. While
this approach solves the problem of missing messages, it may create another problem where
the same message, due to redundancy, needs to be updated in multiple message pools.

While we have workarounds for the problems mentioned above, in the future, we
plan to investigate how we can solve these problems systematically. For example, if the
application is implemented via multiple Silvera models, we could add a mechanism for
importing declarations (microservices, service registries, and others) from other models.
This mechanism must work in cases where models are on remote machines and should not
deteriorate the performance.

7.2. Lack of IDE Support

DSLs are most effective when supported by specialized tooling including, but not lim-
ited to, an integrated development environment (IDE) with editors tailored for the language.

Silvera currently lacks an IDE support. In case of complex models, this can signifi-
cantly affect the user experience. Adding features such as auto-complete, go to definition,
or documentation on hover for a programming language takes significant effort. Tradi-

Appl. Sci. 2022, 12, 6679 35 of 40

tionally, this work had to be repeated for each development tool, as each tool provides
different APIs for implementing the same feature. To support multiple IDEs, we plan to
add support for the Language Server Protocol (LSP) (The Language Server Protocol—https:
//microsoft.github.io/language-server-protocol/overviews/lsp/overview/ (accessed on
18 May 2022)). The LSP standardizes the way in which a language server, which provides
language data, and development tools communicate. For all textX-based DSLs, the lan-
guage server is provided through text–LS (textX–LS—https://github.com/textX/textX--LS
(accessed on 18 May 2022)) open–source project, and LSP support only needs to be added
on the client side (text editor or IDE).

7.3. Business Logic Not Part of the Model

Due to its pluggable compiler back-end, Silvera can support an arbitrary number of
code generators. Each code generator can produce the code for a specific target language.
This allows users to quickly switch the implementation of a microservice from one target
language to another (e.g., from Java to Python). However, business logic in the case of
specific API methods still needs to be implemented manually. Since this is performed on
the code level, these changes are not visible on the model level.

There are two approaches that we can take to allow the definition of the business
logic in the model. First, we could expand Silvera with action language—an imperative
language used for action definitions. This language should support the usual constructs
such as declarations, statements, and expressions. A conventional critique of DSLs is that
they require the redesign of such things as statements and expressions, which is hard to
get right and complete [32]. Second, we could provide an option to embed the code of the
target language in the model. This would give complete access to the full expressivity of
the target language but would also hamper portability between different target languages.

7.4. Additional Microservice Design Patterns

In Section 2.2, we descibed most MSA design patterns currently implemented in
Silvera. However, the number of implemented design patterns can be increased. In this
section, we will discuss the patterns that are arguably missing.

Security. Although there are many advantages of using MSA in developing distributed
systems, security is still one of the biggest challenges [65]. However, several important
security properties emerge as side effects of microservice design [66]: (i) microservices
usually have a smaller code base, which leads to a smaller attack surface, (ii) malicious
changes introduced by an attacker to a specific microservice instance are unlikely to persist
past redeployment, if microservice is immutable, (iii) microservices only access the data and
services they need, which limits the damage should an individual service be compromised,
and (iv) heterogeneity of technologies protects microservices against low-level exploitation.
Still, the following security practices are implemented in the industry [66]: (i) Mutual
Transport Layer Security (MTLS) with a self-hosted Public Key Infrastructure (PKI) as a
method to protect all internal service-to-service communication, and (ii) Security tokens
for local authentication. Currently, Silvera generates a code where these practices need to
be implemented manually. Users can mitigate this by overriding a built-in code generator
or registering a new one; however, we plan to expand Silvera to generate a code with all
existing security best practices.

Data management. Transactions that span multiple microservices need to be imple-
mented manually. This comes as a direct consequence of the inability to express the business
logic in Silvera models (see Section 7.3). Once the business logic becomes part of the model,
we can implement the support for design patterns such as Saga [30] and Command Query
Responsibility Segregation (CQRS) [27], and API composer [27]. Additionally, microser-
vices are designed to be stateless. Stateless microservices facilitate autonomy and isolation.
However, distributed applications usually must maintain a global state (as shown by [67]).
How a DSL can be used to negotiate a global state and reach a consensus in MSA is shown
in [68].

https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://github.com/textX/textX--LS

Appl. Sci. 2022, 12, 6679 36 of 40

7.5. Expanding Silvera

A DSL does not attempt to address all types of computational problems, not even
large classes of problems from a particular domain [32]. A DSL is very expressive for the
problems that fall in the domain and cannot be used for other problems. The language may
be inadequate even for the problems that are on the edge of the domain. This gray area
typically puts pressure on the DSL to grow beyond its (original) domain [32].

It is challenging to anticipate the set of concepts needed over the lifetime of a pro-
gramming language since these concepts are often dependent on the new platforms that
programs must interact with.

Silvera is designed in a way that allows it to grow over time to accommodate the
needs of the domain of MSA. New modeling concepts can be added by expanding the
grammar and the compiler. However, this can also be a problem. By introducing a large
number of new concepts, the language may become bloated which can significantly affect
its learnability and maintainability. Still, adding support for a specific technology or
framework on the compiler level is easier as code generators can be registered as plugins
(see Section 3.4.3).

7.6. The Built-In Code Generator

Model-to-text transformations. The built-in code generator (see Section 3.4.2) uses
template-based model-to-text transformations to produce the Java applications based on
the Spring Boot framework. A significant drawback of template-based code generation
is that syntax checks can only be performed after generating a complete output file [12].
In addition, the generator does not have access to the structure of the generated code.
This makes it impossible to apply transformations, e.g., instrumentation, to the generated
code [32]. We chose the template-based approach because it allowed us to have a working
code generator quickly. However, this is not the only approach. Users can use whatever
approach suits their needs to implement generators and register them as plugins (see
Section 3.4.3).

A feature not implemented for a target platform. There is always a possibility that the
built-in code generator does not cover some of the features available in the Spring Boot
framework. In this case, users can expand the existing generator or implement a new
code generator.

7.7. Architecture Evaluation Metrics

Silvera uses specifically designed service-based systems metrics [46] to evaluate the
modeled architecture. These metrics can be applied to microservices also [46].

To the best of our knowledge, these metrics have not been empirically evaluated across
multiple industrial use-cases to determine if they are complete and appropriate for MSA.
WSIC(S) and NVS(S) were evaluated in only one use-case but in the context of SOA [53].
AIS(S), ADS(S), and ACS(S) metrics roughly correspond to “class coupling” and “object
coupling” metrics from the Object-oriented programming. There are several empirical studies
where “class coupling” and “object coupling” metrics are evaluated [69].

Several other sets of metrics that were either designed for MSA or are applicable to the
style [70–72] could be used during the evaluation. Additionally, experienced developers
may disregard the evaluation results on purpose. For example, a microservice can depend
on many other microservices because it contains the implementation of the main business
logic. Developers may even invent their own set of metrics that are applied in their projects.

To enable usage of a different set of evaluation metrics, Silvera allows developers to
register custom AEPs as plugins (see Section 3.4.3).

7.8. Unit Tests

Having unit tests is crucial when developing software. Writing or updating the unit
tests can be tedious work if the microservice is frequently changed.

Appl. Sci. 2022, 12, 6679 37 of 40

In the current implementation, Silvera is not generating unit tests. By generating unit
tests, Silvera could further reduce the need for manual intervention.

8. Conclusions and Future Work

In this paper, we have presented Silvera —a domain-specific language for modeling
distributed systems based on microservices. When creating Silvera, we had several goals
in mind. The first goal was to provide a simple notation for writing microservice specifica-
tions that is easy to learn, use, and comprehend for both experienced and inexperienced
developers. A simple but semantically rich notation would provide a faster way to develop
MSA systems. The second goal was to support heterogeneous technology stacks. Our aim
was to allow developers to use the best tool for the job and also encourage experimentation.
Frequent changes in MSA systems often lead to obsolete documentation. Hence, our third
goal was to provide automatic generation of documentation. Finally, our fourth goal was
to provide a mechanism for users to evaluate the architecture of the created systems.

We have accomplished our goals. Specifications written in Silvera are transformed
to Java code by the Silvera compiler. To support multiple programming languages as a
target, the compiler allows users to register custom code generators written in Python.
For every microservice, Silvera generates documentation in form of an OpenAPI document.
In addition, Silvera comes with an architecture evaluation processor inside the compiler
that provides a metrics-based evaluation of the microservices-based system implemented
in Silvera. If needed, custom evaluation processors can be registered as plugins.

We provided an example of how Silvera can be used in Section 4. To obtain objective
evaluation results, we conducted a survey based on the FQAD framework. After analyzing
the survey results, we concluded that Silvera satisfies required DSL quality characteristics.

In the future, we plan to perform more detailed studies with a larger number of
participants. More specifically, we want to know how Silvera performs in a team setting,
where each team will be given a specific microservice to implement, and how metrics-based
evaluations help with improving the system. In addition, we would like to test Silvera in
systems with very large numbers of microservices.

We plan to expand Silvera in several ways. We plan to support security for security and
authentication services. In case of messaging-based communication, we plan to support
the collection of lost messages (Dead Letter Queue) and error messages (Error Queue).
Additionally, we will increase the number of supported target languages by adding new
code generators. In addition, we will look into the possibility of modeling a business logic
directly in Silvera.

To enhance the user experience, we plan to implement IDE support with features such
as auto-complete, go to definition, documentation on hover, and others.

Silvera is a free and open-source project hosted on GitHub, and it is provided under
the terms of the MIT license.

Author Contributions: Conceptualization, A.S. and I.D.; methodology, A.S., V.I. and I.D.; software,
A.S.; validation, A.S., B.M., V.I. and I.D.; investigation, A.S., B.M., V.I. and I.D.; writing—original draft
preparation, A.S.; writing—review and editing, B.M., V.I. and I.D.; visualization, A.S.; supervision,
B.M. and I.D.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Silvera source code, examples, documentation and video materials
are available at https://alensuljkanovic.github.io/silvera/, accessed on 2 June 2022. Additional
information is available from corresponding authors upon a reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

https://alensuljkanovic.github.io/silvera/

Appl. Sci. 2022, 12, 6679 38 of 40

References
1. Fowler, M.; Lewis, J. Microservices. 2014. Available online: https://www.martinfowler.com/articles/microservices.html

(accessed on 30 April 2017).
2. Di Francesco, P.; Malavolta, I.; Lago, P. Research on architecting microservices: Trends, focus, and potential for industrial adoption.

In Software Architecture (ICSA), Proceedings of the 2017 IEEE International Conference on Software Architecture (ICSA), Gothenburg,
Sweden, 3–7 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 21–30.

3. Fritzsch, J.; Bogner, J.; Wagner, S.; Zimmermann, A. Microservices migration in industry: Intentions, strategies, and challenges.
In Proceedings of the 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), Cleveland, OH, USA,
29 September–4 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 481–490.

4. Baškarada, S.; Nguyen, V.; Koronios, A. Architecting microservices: Practical opportunities and challenges. J. Comput. Inf. Syst.
2018, 60, 1–9. [CrossRef]

5. Bogner, J.; Fritzsch, J.; Wagner, S.; Zimmermann, A. Microservices in industry: Insights into technologies, characteristics, and
software quality. In Proceedings of the 2019 IEEE International Conference on Software Architecture Companion (ICSA-C),
Hamburg, Germany, 25–26 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 187–195.

6. Knoche, H.; Hasselbring, W. Drivers and barriers for microservice adoption-a survey among professionals in germany. Enterp.
Model. Inf. Syst. Archit. (EMISAJ)—Int. J. Concept. Model. 2019, 14, 1–35.

7. Wang, Y.; Kadiyala, H.; Rubin, J. Promises and challenges of microservices: An exploratory study. Empir. Softw. Eng. 2021,
26, 1–44. [CrossRef]

8. Lenarduzzi, V.; Lomio, F.; Saarimäki, N.; Taibi, D. Does migrating a monolithic system to microservices decrease the technical
debt? J. Syst. Softw. 2020, 169, 110710. [CrossRef]

9. Kleehaus, M.; Matthes, F. Challenges in Documenting Microservice-Based IT Landscape: A Survey from an Enterprise Architecture
Management Perspective. In Proceedings of the 2019 IEEE 23rd International Enterprise Distributed Object Computing Conference
(EDOC), Paris, France, 28–31 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 11–20.

10. Bushong, V.; Abdelfattah, A.S.; Maruf, A.A.; Das, D.; Lehman, A.; Jaroszewski, E.; Coffey, M.; Cerny, T.; Frajtak, K.; Tisnovsky, P.;
et al. On Microservice Analysis and Architecture Evolution: A Systematic Mapping Study. Appl. Sci. 2021, 11, 7856. [CrossRef]

11. Waseem, M.; Liang, P.; Shahin, M. A systematic mapping study on microservices architecture in devops. J. Syst. Softw. 2020,
170, 110798. [CrossRef]

12. Voelter, M.; Benz, S.; Dietrich, C.; Engelmann, B.; Helander, M.; Kats, L.C.; Visser, E.; Wachsmuth, G. DSL Engineering:
Designing, Implementing and Using Domain-Specific Languages; CreateSpace Independent Publishing Platform 2013. Available
online: dslbook.org (accessed on 20 June 2022).

13. Kahraman, G.; Bilgen, S. A framework for qualitative assessment of domain-specific languages. Softw. Syst. Model. 2015,
14, 1505–1526. [CrossRef]

14. ISO/IEC/IEEE. ISO/IEC/IEEE Systems and Software Engineering—Architecture Description; ISO/IEC/IEEE 42010:2011(E) (Revision
of ISO/IEC 42010:2007 and IEEE Std 1471-2000); IEEE: Piscataway, NJ, USA, 2011; pp. 1–46. [CrossRef]

15. Górski, T. The 1+5 Architectural Views Model in Designing Blockchain and IT System Integration Solutions. Symmetry 2021,
13, 2000. [CrossRef]

16. Richards, M. Microservices vs. Service-Oriented Architecture; O’Reilly Media: Newton, MA, USA, 2015.
17. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, today, and

tomorrow. arXiv 2016, arXiv:1606.04036.
18. Autili, M.; Di Salle, A.; Gallo, F.; Pompilio, C.; Tivoli, M. CHOReVOLUTION: Service choreography in practice. Sci. Comput.

Program. 2020, 197, 102498. [CrossRef]
19. Serhani, M.A.; El-Kassabi, H.T.; Shuaib, K.; Navaz, A.N.; Benatallah, B.; Beheshti, A. Self-adapting cloud services orchestration

for fulfilling intensive sensory data-driven IoT workflows. Future Gener. Comput. Syst. 2020, 108, 583–597. [CrossRef]
20. Cerny, T.; Donahoo, M.J.; Trnka, M. Contextual understanding of microservice architecture: Current and future directions. ACM

SIGAPP Appl. Comput. Rev. 2018, 17, 29–45. [CrossRef]
21. Li, J.; Zhong, Y.; Zhu, S.; Hao, Y. Energy-aware service composition in multi-Cloud. J. King Saud-Univ.-Comput. Inf. Sci. 2022,

in press. [CrossRef]
22. Gorski, T.; Woźniak, A.P. Optimization of business process execution in services architecture: a systematic literature review. IEEE

Access 2021, 9, 111833–111852. [CrossRef]
23. Bucchiarone, A.; Dragoni, N.; Dustdar, S.; Larsen, S.T.; Mazzara, M. From monolithic to microservices: An experience report from

the banking domain. IEEE Softw. 2018, 35, 50–55. [CrossRef]
24. Namiot, D.; Sneps-Sneppe, M. On micro-services architecture. Int. J. Open Inf. Technol. 2014, 2, 24–27.
25. Dragoni, N.; Lanese, I.; Larsen, S.T.; Mazzara, M.; Mustafin, R.; Safina, L. Microservices: How to make your application scale.

arXiv 2017, arXiv:1702.07149.
26. Gabbrielli, M.; Giallorenzo, S.; Guidi, C.; Mauro, J.; Montesi, F. Self-reconfiguring microservices. In Theory and Practice of Formal

Methods; Springer: Berlin/Heidelberg, Germany, 2016; pp. 194–210.
27. Richardson, C. Microservice Patterns; Manning Publications: Shelter Island, NY, USA, 2017.
28. Karabey Aksakalli, I.; Çelik, T.; Can, A.; Tekinerdogan, B. Deployment and communication patterns in microservice architectures:

A systematic literature review. J. Syst. Softw. 2021, 180, 111014. [CrossRef]

https://www.martinfowler.com/articles/microservices.html
http://doi.org/10.1080/08874417.2018.1520056
http://dx.doi.org/10.1007/s10664-020-09910-y
http://dx.doi.org/10.1016/j.jss.2020.110710
http://dx.doi.org/10.3390/app11177856
http://dx.doi.org/10.1016/j.jss.2020.110798
dslbook.org
http://dx.doi.org/10.1007/s10270-013-0387-8
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.3390/sym13112000
http://dx.doi.org/10.1016/j.scico.2020.102498
http://dx.doi.org/10.1016/j.future.2020.02.066
http://dx.doi.org/10.1145/3183628.3183631
http://dx.doi.org/10.1016/j.jksuci.2022.04.014
http://dx.doi.org/10.1109/ACCESS.2021.3102668
http://dx.doi.org/10.1109/MS.2018.2141026
http://dx.doi.org/10.1016/j.jss.2021.111014

Appl. Sci. 2022, 12, 6679 39 of 40

29. Houmani, Z.; Balouek-Thomert, D.; Caron, E.; Parashar, M. Enhancing microservices architectures using data-driven service
discovery and QoS guarantees. In Proceedings of the 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID), Melbourne, VIC, Australia, 1–14 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 290–299.

30. Newman, S. Building Microservices; O’Reilly Media: Newton, MA, USA, 2015.
31. Van Deursen, A.; Klint, P.; Visser, J. Domain-specific languages: An annotated bibliography. ACM Sigplan Not. 2000, 35, 26–36.

[CrossRef]
32. Visser, E. WebDSL: A case study in domain-specific language engineering. In International Summer School on Generative and

Transformational Techniques in Software Engineering; Springer: Berlin/Heidelberg, Germany, 2007; pp. 291–373.
33. Kosar, T.; Lu, Z.; Mernik, M.; Horvat, M.; Črepinšek, M. A Case Study on the Design and Implementation of a Platform for Hand

Rehabilitation. Appl. Sci. 2021, 11, 389. [CrossRef]
34. Dejanović, I.; Dejanović, M.; Vidaković, J.; Nikolić, S. PyFlies: A Domain-Specific Language for Designing Experiments in

Psychology. Appl. Sci. 2021, 11, 7823. [CrossRef]
35. Wile, D. Lessons learned from real DSL experiments. In Proceedings of the 36th Annual Hawaii International Conference on

System Sciences, Big Island, HI, USA, 6–9 January 2003; IEEE: Piscataway, NJ, USA, 2003; p. 10.
36. Gray, J.; Karsai, G. An examination of DSLs for concisely representing model traversals and transformations. In Proceedings of

the 36th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 6–9 January 2003; IEEE: Piscataway,
NJ, USA, 2003; p. 10.

37. Johanson, A.N.; Hasselbring, W. Effectiveness and efficiency of a domain-specific language for high-performance marine
ecosystem simulation: A controlled experiment. Empir. Softw. Eng. 2017, 22, 2206–2236. [CrossRef]

38. Kosar, T.; Gaberc, S.; Carver, J.C.; Mernik, M. Program comprehension of domain-specific and general-purpose languages:
Replication of a family of experiments using integrated development environments. Empir. Softw. Eng. 2018, 23, 2734–2763.
[CrossRef]

39. Wizenty, P.; Sorgalla, J.; Rademacher, F.; Sachweh, S. MAGMA: Build management-based generation of microservice infrastruc-
tures. In Proceedings of the 11th European Conference on Software Architecture: Companion Proceedings, Canterbury, UK,
11–15 September 2017; ACM: New York, NY, USA, 2017; pp. 61–65.

40. Sorgalla, J. Ajil: A graphical modeling language for the development of microservice architectures. In Proceedings of the
Microservices 2017 Conference, Extended Abstracts, Odense, Denmark, 25–26 October 2017.

41. Perera, K.; Perera, I. A Rule-based System for Automated Generation of Serverless-Microservices Architecture. In Proceedings of
the 2018 IEEE International Systems Engineering Symposium (ISSE), Rome, Italy, 1–3 October 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 1–8.

42. Terzić, B.; Dimitrieski, V.; Kordić, S.; Milosavljević, G.; Luković, I. Development and evaluation of MicroBuilder: A Model-Driven
tool for the specification of REST Microservice Software Architectures. Enterp. Inf. Syst. 2018, 1–24. [CrossRef]

43. Sorgalla, J.; Wizenty, P.; Rademacher, F.; Sachweh, S.; Zündorf, A. Applying Model-Driven Engineering to Stimulate the Adoption
of DevOps Processes in Small and Medium-Sized Development Organizations. SN Comput. Sci. 2021, 2, 1–25. [CrossRef]

44. Montesi, F.; Guidi, C.; Zavattaro, G. Service-Oriented Programming with Jolie. In Web Services Foundations; Springer: Berlin/Hei-
delberg, Germany, 2014; pp. 81–107.

45. Rademacher, F.; Sachweh, S.; Zündorf, A. Aspect-oriented modeling of technology heterogeneity in microservice architecture. In
Proceedings of the 2019 IEEE International Conference on Software Architecture (ICSA), Hamburg, Germany, 25–29 March 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 21–30.

46. Bogner, J.; Wagner, S.; Zimmermann, A. Automatically measuring the maintainability of service-and microservice-based systems:
A literature review. In Proceedings of the 27th International Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement, Gothenburg, Sweden, 25–27 October 2017; pp. 107–115.

47. Spinellis, D. Notable design patterns for domain-specific languages. J. Syst. Softw. 2001, 56, 91–99. [CrossRef]
48. Mernik, M.; Heering, J.; Sloane, A.M. When and how to develop domain-specific languages. ACM Comput. Surv. (CSUR) 2005,

37, 316–344. [CrossRef]
49. Jalali, S.; Wohlin, C. Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the 2012

ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, Lund, Sweden, 20–21 September
2012; IEEE: Piscataway, NJ, USA, 2012; pp. 29–38.

50. Fowler, M. Domain-Specific Languages; Addison-Wesley Professional: Boston, MA, USA, 2010.
51. Kosar, T.; Martı, P.E.; Barrientos, P.A.; Mernik, M. A preliminary study on various implementation approaches of domain-specific

language. Inf. Softw. Technol. 2008, 50, 390–405. [CrossRef]
52. Dejanović, I.; Vaderna, R.; Milosavljević, G.; Vuković, Ž. TextX: A Python tool for Domain-Specific Languages implementation.

Knowl.-Based Syst. 2017, 115, 1–4. [CrossRef]
53. Hirzalla, M.; Cleland-Huang, J.; Arsanjani, A. A metrics suite for evaluating flexibility and complexity in service oriented

architectures. In Proceedings of the International Conference on Service-Oriented Computing; Springer: Berlin/Heidelberg, Germany,
2008; pp. 41–52.

54. Rud, D.; Schmietendorf, A.; Dumke, R. Product metrics for service-oriented infrastructures. In Proceedings of the 16th International
Workshop on Software Measurement and DASMA Metrik Kongress; IWSM/MetriKon: Potsdam, Germany, 2006; pp. 161–174.

55. Syriani, E.; Luhunu, L.; Sahraoui, H. Systematic mapping study of template-based code generation. Comput. Lang. Syst. Struct.
2018, 52, 43–62. [CrossRef]

http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.3390/app11010389
http://dx.doi.org/10.3390/app11177823
http://dx.doi.org/10.1007/s10664-016-9483-z
http://dx.doi.org/10.1007/s10664-017-9593-2
http://dx.doi.org/10.1080/17517575.2018.1460766
http://dx.doi.org/10.1007/s42979-021-00825-z
http://dx.doi.org/10.1016/S0164-1212(00)00089-3
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1016/j.infsof.2007.04.002
http://dx.doi.org/10.1016/j.knosys.2016.10.023
http://dx.doi.org/10.1016/j.cl.2017.11.003

Appl. Sci. 2022, 12, 6679 40 of 40

56. Vlissides, J. Pattern Hatching: Design Patterns Applied; Addison-Wesley Longman Ltd.: Boston, MA, USA, 1998.
57. Hofmann, M.; Schnabel, E.; Stanley, K. Microservices Best Practices for Java; IBM Redbooks: Armonk, NY, USA, 2017.
58. Kelly, S.; Tolvanen, J.P. Domain-Specific Modeling: Enabling Full Code Generation; Wiley–IEEE Computer Society Pr.: Hoboken, NJ,

USA, 2008.
59. Kieburtz, R.B.; McKinney, L.; Bell, J.M.; Hook, J.; Kotov, A.; Lewis, J.; Oliva, D.P.; Sheard, T.; Smith, I.; Walton, L. A software

engineering experiment in software component generation. In Proceedings of the IEEE 18th International Conference on Software
Engineering, Berlin, Germany, 25–30 March 1996; IEEE: Piscataway, NJ, USA, 1996; pp. 542–552.

60. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering: An Introduction;
Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2000.

61. Jedlitschka, A.; Ciolkowski, M.; Pfahl, D. Reporting Experiments in Software Engineering. In Guide to Advanced Empirical Software
Engineering; Springer: Berlin/Heidelberg, Germany, 2008; pp. 201–228.

62. Basili, V.R.; Rombach, H.D. The TAME project: Towards improvement-oriented software environments. IEEE Trans. Softw. Eng.
1988, 14, 758–773. [CrossRef]

63. R Core Team R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013.
64. Woolson, R. Wilcoxon signed-rank test. Wiley Encyclopedia of Clinical Trials; Wiley: Hoboken, NJ, USA, 2007; pp. 1–3.
65. Ghosh, A.; Mukherjee, A.; Misra, S. SEGA: Secured Edge Gateway Microservices Architecture for IIoT-based Machine Monitoring.

IEEE Trans. Ind. Inform. 2021, 18, 1949–1956. [CrossRef]
66. Yarygina, T.; Bagge, A.H. Overcoming security challenges in microservice architectures. In Proceedings of the 2018 IEEE

Symposium on Service-Oriented System Engineering (SOSE), Bamberg, Germany, 6–29 March 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 11–20.

67. Belafia, R.; Jeanjean, P.; Barais, O.; Le Guernic, G.; Combemale, B. From Monolithic to Microservice Architecture: The Case
of Extensible and Domain-Specific IDEs. In Proceedings of the 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), Fukuoka, Japan, 10–15 October 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 454–463.

68. El-Ghareeb, H.A. Neutrosophic-based domain-specific languages and rules engine to ensure data sovereignty and consensus
achievement in microservices architecture. In Optimization Theory Based on Neutrosophic and Plithogenic Sets; Elsevier: Amsterdam,
The Netherlands, 2020; pp. 21–43.

69. Aggarwal, K.; Singh, Y.; Kaur, A.; Malhotra, R. Empirical Study of Object-Oriented Metrics. J. Object Technol. 2006, 5, 149–173.
[CrossRef]

70. Athanasopoulos, D.; Zarras, A.V.; Miskos, G.; Issarny, V.; Vassiliadis, P. Cohesion-driven decomposition of service interfaces
without access to source code. IEEE Trans. Serv. Comput. 2014, 8, 550–562. [CrossRef]

71. Engel, T.; Langermeier, M.; Bauer, B.; Hofmann, A. Evaluation of microservice architectures: A metric and tool-based approach.
In International Conference on Advanced Information Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 74–89.

72. Haupt, F.; Leymann, F.; Scherer, A.; Vukojevic-Haupt, K. A framework for the structural analysis of REST APIs. In Proceedings of
the 2017 IEEE International Conference on Software Architecture (ICSA), Gothenburg, Sweden, 3–7 April 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 55–58.

http://dx.doi.org/10.1109/32.6156
http://dx.doi.org/10.1109/TII.2021.3102158
http://dx.doi.org/10.5381/jot.2006.5.8.a5
http://dx.doi.org/10.1109/TSC.2014.2310195

	Introduction
	Related Work
	Comparison of MSA with Other Architectural Styles
	MSA Design Patterns
	Domain-Specific Languages
	Existing MSA Frameworks

	Silvera
	Implementation Phases
	Silvera Abstract Syntax
	Silvera Concrete Syntax
	Microservice Declaration
	Service Registry Declaration
	API Gateway Declaration
	Declaration of Microservice Dependency
	Switching from RPC to Messaging Communication

	Compiler
	Front-End
	Back-End
	Customization Support

	Eat and Drink Microservice Architecture Use Case
	Eat and Drink Microservice Architecture
	Eat and Drink Architecture Evaluation
	Eat and Drink Code Generation

	Evaluation of Silvera
	Scoping
	Hypotheses
	Selection of Participants
	The Task
	The Questionnaire
	Order and Completeness Rules
	Analysis and Results
	Performance Results
	Descriptive Statistics
	Hypothesis Testing

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Study Limitations
	Decentralized Development
	Lack of IDE Support
	Business Logic Not Part of the Model
	Additional Microservice Design Patterns
	Expanding Silvera
	The Built-In Code Generator
	Architecture Evaluation Metrics
	Unit Tests

	Conclusions and Future Work
	References

