
 

 
 

 

 
Appl. Sci. 2022, 12, 6713. https://doi.org/10.3390/app12136713 www.mdpi.com/journal/applsci 

Article 

Learned Semantic Index Structure Using Knowledge Graph 

Embedding and Density-Based Spatial Clustering Techniques 

Yuxiang Sun 1, Seok-Ju Chun 2 and Yongju Lee 1,* 

1 School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea; 

syx921120@gmail.com 
2 Department of Computer Education, Seoul National University of Education, Seoul 06639, Korea; 

chunsj@snue.ac.kr 

* Correspondence: yongju@knu.ac.kr; Tel.: +82-10-3532-5295 

Abstract: Recently, a pragmatic approach toward achieving semantic search has made significant 

progress with knowledge graph embedding (KGE). Although many standards, methods, and 

technologies are applicable to the linked open data (LOD) cloud, there are still several ongoing 

problems in this area. As LOD are modeled as resource description framework (RDF) graphs, we 

cannot directly adopt existing solutions from database management or information retrieval 

systems. This study addresses the issue of efficient LOD annotation organization, retrieval, and 

evaluation. We propose a hybrid strategy between the index and distributed approaches based on 

KGE to increase join query performance. Using a learned semantic index structure for semantic 

search, we can efficiently discover interlinked data distributed across multiple resources. Because 

this approach rapidly prunes numerous false hits, the performance of join query processing is 

remarkably improved. The performance of the proposed index structure is compared with some 

existing methods on real RDF datasets. As a result, the proposed indexing method outperforms 

existing methods due to its ability to prune a lot of unnecessary data scanned during semantic 

searching. 

Keywords: semantic search; learned semantic index; knowledge graph embedding; linked open 

data; clustering techniques 

 

1. Introduction 

Knowledge graph embedding (KGE) has emerged as a powerful deep learning 

technology that has achieved remarkable success in artificial intelligence. However, its 

techniques are rarely employed for semantic web applications [1]. Linked open data 

(LOD) have been rapidly growing over the past years, consisting of 1301 machine-

readable datasets with 16,283 links as of May 2021. The resource description framework 

(RDF) is a graph-based data model for LOD. The RDF Schema (RDF-S) provides 

mechanisms for describing groups of related resources and relationships between these 

resources. Web ontology language (OWL) is a semantic annotation markup language 

developed as a vocabulary extension of RDF. The same instances in different datasets are 

interlinked with owl:sameAs, which is a built-in OWL property. To the best of our 

knowledge, the research on how semantics are embedded and used to train neural 

network models to achieve instance matching in LOD is relatively meagre. 

Although numerous state-of-the-art methods are applicable to the LOD cloud, there 

are still many ongoing problems in this area. One challenge is the interaction between 

applications using different vocabularies or ontologies. Some annotations face the 

heterogeneity problem because no standard labelling method applies to all datasets. This 

problem can occur when identical entities are represented in different ways in multiple 

datasets. For example, “Benz E-250” and “Mercedes Benz E class 250” have the same 
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semantics but cannot be matched because they do not belong to the same synonym set. 

Consequently, an efficient method is needed for semantic searching. Owing to the massive 

size of the LOD cloud, it is practically impossible to perform this operation manually. 

Therefore, a semantic method for automatic classification and discovery is necessary. 

Word embedding is a strategy to efficiently represent natural language words in 

vector space. The purpose of word embedding is to obtain vector values corresponding to 

each word. Hence, similar words are located at closer distances. This method can be 

effectively applied to question answering or recommendation systems. Many studies are 

being conducted for effective word embedding, such as NNLM [2], Word2Vec [3], and 

GloVe [4]. Word embedding adopts a preprocessed corpus of text, whereas LOD are 

stored in the form of RDF graphs. Thus, the LOD cloud must use the graph embedding 

technique instead of word embedding. The RDF2Vec [5] is a method for graph embedding 

that extracts RDF sequence data and uses the Word2Vec model to embed entities in a low-

dimensional space. However, embedded vectors from RDF2Vec are not directly applied 

to the semantic search. 

Although the semantic web community has achieved tremendous success by the 

LOD project, many researchers argue that semantic technologies have little impact on the 

real world [6]. In this regard, the KGE technology provided by Google is highly regarded 

as an example combining concepts and practicalities of the semantic web. The knowledge 

graph represents the relationships between the head and tail nodes in the form of <h, r, t>, 

where h, r, and t are the head, relation, and tail, respectively. Here, we must consider how 

the nodes and relations can be represented as vectors. The TransE model [7] proposed that 

the sum of the head and relation vectors should be maximally equal to the tail. Therefore, 

the purpose of the score function is to make h + r = t. If all triples satisfy this condition, the 

nodes and relations can be embedded. 

The TransE model shows excellent performance in 1:1 relations, but problems are 

raised in cases such as 1:N, N:1, and N:N. The TransH model [8] solved the TransE 

problem by projecting the relations onto the hyperplane. In practice, however, entities 

(head, tail) and relations are different objects, so the TransR model [9] proposed an idea 

to embed entities and relations in separate spaces. The ConvE model [10] performed a 2D 

convolution on embedding vectors and applied nonlinearity to enhance the vector 

representation. Recently, significant progress has been achieved in applying KGE to entity 

matching and link discovery tasks [11]. In this article, we propose a novel learned index 

structure using KGE and spatial clustering techniques for semantic search. The 

contributions of this study are as follows: 

 We propose a learned index structure of the LOD cloud using KGE models, and 

algorithms of join query processing based on our index structure are discussed. 

 The LOD stored in the form of RDF graphs can be automatically classified using the 

embedded model and density-based spatial clustering algorithm. 

 Embedded vectors can quickly be matched to semantically similar clusters by 

comparing vector similarity between a given query and cluster centroids, thereby 

significantly reducing irrelevant traversal for complex semantic search. 

 Experiment results verify that this improved representation outperforms the state-

of-the-art LOD index structures. 

The rest of this paper is organized as follows. In Section 2, we describe related work. 

In Section 3, we present a new learned semantic index structure for semantic search. In 

Section 4, the experimental evaluation is described. Finally, in Section 5, conclusions are 

drawn, and future research direction is suggested. 

2. Related Works 

2.1. Indexing Techniques for RDF Data 

Traditional RDF indexing techniques only focus on optimizing index structures to 

improve retrieval efficiency. There are two main strategies for RDF indexing—reducing 
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data dimensions and adopting multidimensional index structures. The former mainly 

uses ordering or transformation techniques to convert RDF data into a lower-dimensional 

space. The advantage is that the converted data are simpler and provide better storage 

performance. However, it is necessary to preprocess the raw data before retrieval. In 

addition, the entire index structure needs to be refreshed to perform insert or update 

operations. Therefore, the maintenance cost is quite expensive. By contrast, building a 

multidimensional index structure to retrieve RDF data is more common and widely used. 

Multidimensional index structures are mainly divided into the data- and space-

partitioning-based index structures, which are subdivided into the feature- and distance-

based index structures. Table 1 shows their detailed classification and description. 

Table 1. Index techniques for RDF data. 

 Dimension Reduction Multidimensional Index Structure 

 Ordering Transforms 
Data Partitioning Space Partitioning 

Feature Distance Feature Distance 

Characteristic 
Convert RDF data into lower dimensional 

space 
Build the multidimensional index structure 

Advantage Excellent storage performance Efficient query processing 

Weakness 
Need refresh entire index structure when new 

data are inserted 

High spatial complexity with the increase of data 

volume 

Related 

work 

Tentris [12], 

DISE [13] 

DiStRDF [14], 

TripleID-Q [15] 
SPT+VP [16],  axonDB [17], HTStore [18],  Vp-tree [19] 

2.2. Storage Structure for LOD 

There are three alternative approaches. The first is maintaining independent data 

copies in a centralized registry, benefiting from convenient conditions for efficient query 

processing—called the centralized approach. The second approach is based on accessing 

distributed data on the fly using a link traversal—called the distributed approach. The 

distributed approach performs queries over multiple SPARQL endpoints that publishers 

provide for their LOD datasets. The third is the index approach for efficient query 

processing over LOD resources. The LOD index structures are similar to traditional 

database query processing techniques. Existing data summaries and approximation 

techniques may be adapted to develop an index structure for LOD queries. 

We have proposed extended multidimensional histograms (MDH*) for LOD storage 

and indexing [20]. The MDH* aims to support efficient join query processing with a 

compact storage layout. The first step of building MDH* is to transform the RDF triples 

into numerical numbers. These numbers are points in the n-dimensional data space, 

whose coordinates correspond to three-dimensional cubes. The coordinates are inserted 

sequentially and aggregated into regions. Each region maintains a list of resources. Each 

resource in the list is added with two additional occurrences to improve the join query 

performance. 

2.3. Word Embedding 

Embedding means a series of processes that transforms natural languages into 

machine-understandable vectors, converting words into vectors, and inserting them into 

vector space. The semantic similarity can be calculated from the spatial distance between 

vectors. For example, “car/truck/motorcycle” related to vehicle, “pianos/saxophones” 

related to music, and “chicken/black-bean-sauce/ramen” related to cooking can be 

clustered and represented as nearby vectors. This is because the purpose of word 

embedding is to find vector values corresponding to each word so that similar words are 

located at a closer distance. Various techniques have been developed, such as NNLM, 

Word2Vec, GloVe, and FastText. In particular, the Word2Vec method was published by 
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Google’s research team; its basic structure consists of CBOW and Skip-Gram. The CBOW 

method uses peripheral words to predict a single target word, whereas Skip-Gram is 

trained to predict surrounding words. Skip-Gram is more effective than CBOW because 

it can obtain more learning data from a corpus. Using these techniques, it can be inferred 

that if words frequently appear together, they have similar meanings. It is possible to learn 

to position vectors of words with similar meanings close. 

2.4. KGE 

Existing studies for KGE include TransE, TransH, TransR, and DistMult models [21]. 

Bordes et al. [7] proposed the TransE model. They treated the predicate in each triple as a 

mapping from subjects to objects and adjusted the corresponding vectors of head 

(subject), relation (predicate), and tail (object) to make h + r = t. This model has few 

parameters, low computational complexity, good performance, and scalability on large-

scale sparse data. However, the model only applies to a 1:1 relationship and cannot 

represent 1:N or N:1 relationship. 

To address this issue, the TransH model was proposed. The TransH model proposes 

that an entity has different representations in different relationships. The triangular 

closure relationship is broken by using a projection. The algorithm does not strictly 

require h + r = t but only needs to satisfy the projection collinear of head and tail nodes on 

the relational plane. In addition, tail nodes are replaced for N:1 relationship, and head 

nodes are replaced for 1:N relationship, satisfying h⊥ + r = t⊥ . 

The abovementioned two models assume that entities and relationships are 

embedded in the same space. However, an entity may have multiple properties, hence 

there are cases where heads, tails, and relations are not in the same space. To solve this 

problem, the TransR model was designed. Its basic principle is to divide the whole space 

into entity and relation spaces. The head and tail nodes in the entity space are mapped to 

relation space via a relation matrix projection operation by projecting entities from entity 

space to the corresponding relation space and then building translations between 

projected entities. Figure 1 shows the entity and relation space of the TransE, TransH, and 

TransR models. 

 

Figure 1. Entity and relation space of TransE, TransH, and TransR. 

The abovementioned three models can be collectively referred to as translation-based 

models. Moreover, bilinear-based models, such as RESCAL [22], DistMult, and complex 

[23], as well as neural network-based models, such as ConvE, have been investigated for 

deep learning. 

3. Learned Semantic Index Structure 

In this section, we propose a learned semantic index structure using KGE and 

density-based spatial clustering techniques. Algorithms of SPARQL join query processing 

based on our index structure are discussed. 
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3.1. Architecture of Learned Semantic Index Structure 

We propose a hybrid LOD storage strategy combining the index and distributed 

approaches. The index approach offers better performance, but the queried data might 

not be current because LOD has changed considerably. The distributed approach provides 

recent data, but the query execution is slower because data must be transmitted via the 

network. Our proposed approach may solve these problems. By using a learned semantic 

index structure, our method can retrieve distributed LOD datasets efficiently. 

State-of-the-art RDF storage techniques may be adapted to develop an index 

structure for LOD queries. For instance, Sun et al. [24] proposed a hybrid index structure, 

which was a combination of R*-tree and k-d trees. The goal of this method is to support 

efficient join query processing without significant storage demand. The core task in 

building the index is to transform RDF triples into points in a three-dimensional space by 

applying hash functions (e.g., the hashCode() function in Java) to the individual 

components of the RDF triples. However, this method considers nothing about the data 

distribution and does not exploit common patterns prevalent in real-world data. 

Typically, existing LOD index structures only consider the found relevant resources. 

Thus, there is no guarantee that the resources actually provide the RDF triples that were 

originally searched for (i.e., false positives). This is because the hash function does not 

describe exact coordinates in the multidimensional space. The input of LOD index 

structures is generally a triple pattern, and they output a list of data resources that 

potentially contribute to the result. Thus, a large number of resources can contribute to 

each triple pattern. Because accessing too many resources over the LOD cloud is 

expensive, we need to investigate a novel index structure that can efficiently process 

queries over the distributed LOD. 

It is not the intention of this paper to discuss which index structure is appropriate for 

RDF storage. We describe instead an extension of the existing index structures which 

integrates two index structures for clusters and the centroid of each cluster. In the existing 

index structures, the most popular R*-tree and k-d tree are selected for our index structure. 

As the cost of developing a new index structure can be more expensive than the cost of 

simply extending an existing one, adding new features to the existing index structure is 

an excellent alternative. 

Figure 2 depicts a workflow for constructing our learned semantic index structure. 

Our main idea is to turn heterogeneous hash codes into homogeneous sets. The 

heterogeneity of indexing keys is the main reason for long query processing time. If keys 

become homogeneous, query processing time can significantly reduce. Turning 

heterogeneous indexing keys into homogeneous sets entails semantically embedding 

numeric vectors in the adjacent embedding space, which we demonstrate to be achievable 

using KGE techniques. 

The proposed framework comprises three steps. The first step is to perform 

embedded processing for LOD datasets to obtain vectors of triples. The projected head 

and tail nodes are mapped by a project matrix M(r) [9]. With the mapping matrix, the 

method builds the projected entities: 

 ℎ(𝑟) = ℎ𝑀(𝑟), 𝑡(𝑟) = 𝑡𝑀(𝑟) (1) 

Its score function is as follows: 

 𝑓𝑟(ℎ, 𝑡) = ‖ℎ(𝑟) + 𝑟 − 𝑡(𝑟)‖2
2

 (2) 

The second step is to cluster vectorized triples and obtain each cluster centroid from 

a density-based spatial clustering algorithm. Given a set of points in some space, it groups 

all neighbors within a given radius. The centroid of a cluster is defined as a point in the n-

dimensional data space found by averaging the measurement values along each 

dimension: 
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𝑥𝑖̅(𝑐) =
1

𝑁𝑐
∑ 𝑥𝑖𝑗

𝑛

𝑗∈𝑆𝑐

 (3) 

where Sc represents the set of indices of cluster c which contains Nc objects, and a cluster 

centroid  𝑥𝑖̅(𝑐) = (𝑥1̅̅̅(𝑐), 𝑥2̅̅ ̅𝑥(𝑐), ⋯ , 𝑥𝑛̅̅ ̅(𝑐)). Finally, R*-trees and a k-d tree are built for the 

clusters and their centroids, respectively. The main task of k-d tree is to determine the 

target cluster to reduce data scanning, whereas that of R*-tree is to quickly search the final 

results within the target cluster. As all data items in LOD are represented in triples of the 

form <subject, predicate, object>, the LOD cloud uses the RDF2Vec graph-embedding 

technique. Before RDF2Vec graph-embedding processing, however, the LOD datasets 

need to be preprocessed because these datasets are represented in the triple format. To 

perform RDF2Vec graph-embedding operations, Apache Jena [25] under the OpenKE [26] 

platform is employed to parse and sequence raw data. Figure 3 describes the overall 

architecture of our index structure schematically. 

 

Figure 2. Workflow for constructing the learned semantic index structure. 

 

Figure 3. Overall architecture of the learned semantic index structure. 

3.2. SPARQL Join Query Algorithms for Learned Semantic Index 

SPARQL is a standard query language for the RDF data model. As SPARQL 

statements can be represented as graphs, we transform SPARQL into a query graph to 
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perform query processing. There are two types of SPARQL queries—single and join triple 

pattern queries. Processing queries with a single triple pattern is straightforward. When a 

query consists of multiple triple patterns that share at least one variable, we call it a join 

triple pattern query. In SPARQL queries, there are eight triple patterns: (?s, ?p, ?o), (s, p, 

o), (s, p, ?o), (?s, p, o), (s, ?p, o), (s, ?p, ?o), (?s, ?p, o), and (?s, p, ?o). SPARQL queries can 

be divided into seven different join types [27]: star (only subject–subject join), chain (only 

subject–object join), directed cycle (only subject–object), tree (subject–subject and subject–

object), cycle (subject–subject and subject–object), single (only subject or object), and 

complex (random combination). 

The nearest neighbor (NN) algorithm finds the nearest vectors to a given query 

pattern; this is also called similarity or proximity search. Applying this algorithm to high-

dimensional spaces deteriorates performance because the distance between NNs can be 

large. Thus, much research has focused on finding approximations of the exact NNs. In 

this study, an approximate NN algorithm is presented to find k approximate nearest 

vectors in embedding space to a query pattern by using k-d tree. We can measure the 

similarity between each triple vector and a query vector through vector similarity (e.g., 

cosine similarity and Euclidean distance). Several experiments demonstrated that the 

Euclidean distance similarity provides excellent accuracy. Therefore, we adopt the 

Euclidean distance between two vectors in embedding space as the measure of relevance. 

Let a vectorized triple v and query q have coordinates (v1, …, vn) and (q1, …, qn), 

respectively, in n-dimensional embedded space, then the distance d(v, q) between v and q 

is given by: 

𝑑(𝑣, 𝑞) = √∑(𝑣𝑖 − 𝑞𝑖)
2

𝑛

𝑖=1

 (4) 

In this study, the density-based spatial clustering of applications with noise 

(DBSCAN) model was adopted to cluster similar semantic vectors. The DBSCAN model 

is a well-known, unsupervised machine learning tool for clustering [28]. The DBSCAN 

creates clusters based on dense regions while marking points that lie alone in low-density 

regions as outliers. In DBSCAN, the density is detected via core points that are quite 

sensitive to input parameters: ϵ  is the radius of the neighborhood, and minPts is the 

minimum number of points constrained within ϵ  radius. To ensure that all vectors cluster 

without noise vectors, minimum samples are set to 1. 

There are two key points for complex join queries: join ordering and selecting the 

most suitable join algorithm [29]. Algorithm 1 shows a detailed illustration of our 

SPARQL join query algorithm for semantic search. In the process of a query pattern, 

different join algorithms—hash join, nested loop join, and sort-merge join—are combined 

to replace the traditional single join query algorithm, because, in the actual experiments, 

we found that the use of different join algorithms has a certain impact on the actual join 

query performance. For example, when we want to perform a join calculation on results 

of two subqueries A and B, using the nested loop join algorithm is suitable if the data 

volume of A and B is relatively small. However, using the hash join algorithm has better 

performance if the query result of A is very large. The most suitable query type for hash 

join is the star query. However, a serious weakness of the simple hash join is the poor 

performance for complex non-star queries. We propose a hybrid join search algorithm that 

combines the hash join for star and the nested loop join for non-star queries. In line 2, we 

judge whether a query (e.g., a complex query type Q = (?s, p1, o1) ⋈ (?s, p2, o2) ⋈ (?s, p3, ?o) 

⋈ (s4, p4, ?o)) is one of the possible SPARQL triple patterns. In line 4, the nearest points are 

calculated from the NN algorithm between each subquery pattern and centroids in k-d 

tree, if the Euclidean distance between them is shortest, the corresponding R*-tree will be 

searched by the mapping list. In line 6, each subquery’s search results will be added to the 

result list. From line 10, a hybrid join search algorithm is processed. The hybrid join search 
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algorithm consists of two parts: result segmentation and join operation. If there are two 

or more search results in the ResultList, the complex query statement will be split and 

combined into multiple result pairs. For instance, the complex query type Q can be split 

and combined into two result pairs, i.e., star((?s, p1, o1) ⋈ (?s, p2, o2)) and chain((?s, p3, ?o) 

⋈ (s4, p4, ?o)). In line 13, we initialize ResultList before the join operation to ensure that its 

query result is up-to-date. From lines 14 to 19, we perform the join operation for each 

result pair; if it is star type, then the hash join algorithm is used, otherwise the nested loop 

join algorithm is applied. This looping operation is done until the final result is obtained. 

After obtaining the final results, a recursive uniform resource identification (URI) lookup 

process is performed using link traversal techniques. 

Algorithm 1. SPARQL join query algorithm for semantic search. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

# Example: a complex query type Q = (?s, p1, o1) ⋈ (?s, p2, o2) ⋈ (?s, p3, ?o) ⋈ (s4, p4, ?o) 

If Q is a standard SPARQL triple pattern  

 For each subquery in Q 

     If distance between subquery and centroids in k-d tree is shortest Then 

  Search the corresponding R*-tree by mapping list 

  Adding search results to ResultList 

     Else break 

 End For 

End If 

# Hybrid join search algorithm  

While (two or more search results in ResultList) 

 ResultList is split and combined into multiple result pairs 

 Initialize ResultList 

 For each result pair 

     If result pair is star type Then 

  ResultList ← Procedure HASH_JOIN(result pair) 

     Else:  

  ResultList ← Procedure NESTED_LOOP_JOIN(result pair) 

 End For 

End While 

4. Experimental Evaluation 

Based on experiments, we compared the proposed method with some existing 

popular methods. We should consider the issue of how to select the most suitable strategy 

for storing RDF data. For this, we investigated the balancing between two performance 

metrics, i.e., query response time and index load time [30]. The objective of the 

experiments was to show that we could achieve excellent join query performance with 

retrieval accuracy. We compared the learned semantic index structure, which we refer to 

as LearnS, with Quad [31], Darq [32], Dams [33], Midas [34], and Two-step [24]. Quad is 

an existing centralized approach, and Darq is a distributed approach; Dams is a recently 

proposed distributed approach, which combines adaptive hashing and the master-slave 

model; Midas is an index-based approach; and Two-step is a hybrid approach combining 

R*-tree and k-d trees. This evaluation is conducted on a server system with a 3.6-GHz Intel 

i7 CPU and 8 GB of memory. All programs were written in Python and Java languages on 

a server running Windows 10. 

We used the LUBM (Lehigh University BenchMark) dataset [35] to obtain realistic 

results. The LUBM dataset is the most widely used benchmark dataset in the semantic 

web community. The LUBM dataset contains 230,061 triples, 38,334 subjects, 17 

predicates, and 29,635 objects, and its size is 36.7 MB. The LUBM dataset offers well-

designed test queries that fully cover features of a traditional reasoning system. However, 

LUBM does not support all join query types, so we extended the original version to 

support above seven different join types. We used 12 different benchmark join queries 
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provided by [36], and we additionally made two chain and one cycle benchmark join 

queries based on the LUBM dataset. Thus, we provided 15 different join queries 

supporting all join query types. Among the 15 queries, 6 queries (Q1, Q3, Q4, Q5, Q11, 

and Q13) are star queries. Chain (Q6 and Q10), directed cycle (Q2), cycle (Q15), tree (Q9), 

single (Q14), and complex (Q7, Q8, and Q12) queries are 2, 1, 1, 1, 1, and 3, respectively. 

Additionally, we considered the LinkedGeoData dataset [37] to provide a more solid 

experiment. LinkedGeoData is a large spatial knowledge base, which has been derived 

from OpenStreetMap for Semantic Web. It interlinks geo-data with other knowledge bases 

in the LOD cloud. LinkedGeoData contains 2,207,295 triples, 552,541 subjects, 1320 

predicates, and 1,308,214 objects. Its size is 327 MB. 

4.1. Join Query Performance 

To evaluate the join query performance of the proposed learned semantic (LearnS) 

index structure, we performed 15 SPARQL join queries that expressed the above seven 

join query types. Figure 4 illustrates the join query performance for various join query 

types. Experiment results show that the query performance of LearnS was always 

superior to those of other methods. This is mainly due to the learned indexing structure, 

which prunes a lot of unnecessary data scans during the join query. But we can see that 

Q4 approach performance was exceptionally slightly worse than Quad. The Darq and 

Midas approaches performed considerably worse than the Quad, Dams, Two-step, and 

LearnS approaches because of considerably larger intermediate results and more time for 

I/O and CPU. Although Darq and Dams are distributed approaches, Dams adopts the 

distributed semi-join query to minimize join query numbers without inter-

communicating with endpoints, so it greatly reduces the communication cost. This 

characteristic has also been verified in the LinkedGeoData dataset. The Quad approach 

showed slightly worse performance than the Dams, Two-step, and LearnS approaches 

because Quad needs to load six B+-trees to support all access query patterns and 

decompress intermediate results in a short time. However, the Two-step approach 

considers only an R*-tree with k-d trees without storing all possible access combinations. 

The Two-step approach performed worse than LearnS because it is based on the hash 

function that does not describe exact coordinates in the multidimensional space; it 

contains a number of false hits not fulfilling the query condition. However, the LearnS 

approach turns heterogeneous hash codes into homogeneous sets of the adjacent 

embedding space. It further reduces the intermediate results using the clustering 

techniques described in Section 3.2. 
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Figure 4. Join query performance for various join query types on LUBM dataset. 

Figure 5 shows the join query performance on the LinkedGeoData dataset. In this 

figure, join query types only focus on the most common star, complex, chain, and cycle 

types. This figure shows that experimental results for LinkedGeoData are almost identical 

to the experimental results for LUBM. Under the LUBM dataset, the join query 

performance of the LearnS, Dams, and Two-step approaches achieved better results than 

those of the other methods. Similarly, under the LinkedGeoData dataset, the query 

performance of LearnS always beat the performance of other methods. However, the 

performance gap between LearnS and Two-step was particularly prominent in the chain 

type. 
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Figure 5. Join query performance for various join query types on LinkedGeoData dataset. 

4.2. Index Building Time 

The efficiency of the LearnS approach is not only reflected in join search but also in 

the building time. Figure 6 shows the building time of mainstream index structures. As 

Quad needs to build six B+ tree indexes, its time cost is the highest. The Two-step 

approach adopts the combination of R*-tree and k-d trees. Due to its hash-based semantic 

representation, the space complexity of indexing is higher than LearnS. Hence, it needs 

more building time than LearnS. The Midas and Darq approaches are index-based and 

distributed retrieval systems. However, the former uses k-d tree as its main index 

structure, hence its index building time is significantly lower than the latter. Dams, 

compared to Midas, spends more time because it does hash partitioning RDF data into 

multiple slave nodes. 

  

(a) (b) 

Figure 6. Building time for various index structures. (a) LUBM dataset, (b) LinkedGeoData dataset. 

4.3. Semantic Clustering Performance 

We measured the semantic clustering performance by employing Recall (R), 

Precision (P), and F-measure (F). The measure R is a measure of completeness, whereas P 

is a measure of exactness or fidelity. An inverse relationship exists between R and P 

wherein it is possible to increase only one at the cost of reducing the other. Usually, R and 

P measures are not discussed in isolation; both are combined into a single measure, such 

as F, which is the weighted harmonic mean of R and P. We consider these measures for 

semantic search. Let Ω be the set of relevant resources, C (correct) be the number of 

returned relevant resources, I (incorrect) be the number of returned irrelevant resources, 

and M (missing) be the number of missing relevant resources. We define: 

 𝑅 =
𝐶

𝐶 + 𝑀
      𝑃 =

𝐶

𝐶 + 𝐼
    and   𝐹 =  

2𝑃 × 𝑅

𝑃 + 𝑅
 (5) 

where the size of Ω is equal to C + M. 

Table 2 and Figure 7 enumerate the semantic clustering performance for various 

embedding methods in the case of random semantic search. We conducted an additional 

experiment focusing on the performance of clustering algorithms, such as DBSCAN and 

K-means. The K-means clustering algorithm is mainly applicable to spherically 

distributed data. The experiment results showed that the translation-based models—

TransE and TransR—were better than the bilinear-based models—RESCAL, DistMult, 

and complex—and the neural network-based model—ConvE. In particular, our LearnS 

demonstrates excellent performance on P, R, and F. The main reason is that this model 
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solves the problem of annotation heterogeneity by projecting entities from entity space to 

corresponding relation space and applying the density-based spatial clustering algorithm. 

In general, there was an inverse relationship between recall and precision. In Figure 7, 

however, TransH, RESCAL, DistMult, and complex show poor results for both. This 

figure shows that ConvE also has a slightly poor performance in these measures. 

Although the ConvE model has shown its superiority in knowledge graph completion by 

using two-dimensional convolution techniques to extract the feature vector of triples, the 

semantic clustering effect is unsatisfactory. From Table 2, we can also observe that the 

DBSCAN method exhibit better performance than the K-means method. Figure 8 shows 

that all LUMB data are converted into the three-dimensional space. The TransR and 

LearnS models showed the excellent clustering performance compared with other 

methods. 

Table 2. Evaluation of semantic clustering performance. 

Models 
Precision (P) 

DBSCAN (K-Means) 

Recall (R) 

DBSCAN (K-Means) 

F-Measure (F) 

DBSCAN (K-Means) 

TransE 0.335 (0.250) 0.903 (0.865) 0.489 (0.388) 

TransH 0.130 (0.060) 0.240 (0.080) 0.168 (0.068) 

TransR 0.365 (0.340) 0.955 (0.901) 0.511 (0.402) 

RESCAL 0.280 (0.250) 0.220 (0.182) 0.246 (0.210) 

DistMult 0.210 (0.334) 0.160 (0.287) 0.182 (0.308) 

complex 0.325 (0.310) 0.221 (0.268) 0.263 (0.287) 

ConvE 0.340 (0.335) 0.480 (0.425) 0.398 (0.375) 

LearnS 0.386 (0.345) 0.970 (0.930) 0.552 (0.503) 

 

 
(a) 
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(b) 

Figure 7. Semantic clustering performance based on DBSCAN and K-means. (a) Semantic clustering 

performance based on DBSCAN. (b) Semantic clustering performance based on K-means. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

Figure 8. Visualization of the embedded LUMB dataset. (a) TransE, (b) TransH, (c) TransR, (d) 

RESCAL, (e) Complex, (f) DistMult, (g) ConvE, (h) LearnS. 

5. Conclusions and Future Work 

Efficient query processing for the LOD cloud is one of the most challenging 

requirements in the semantic web community. In this paper, we have proposed a learned 

semantic index structure to semantically store, index, and query LOD. We presented a 

SPARQL join query algorithm based on the learned index structure for semantic search. 

In addition, we proposed the extension of the DBSCAN and NN algorithm. Our index 

structure consists of two levels—one for determining the target cluster (i.e., k-d tree) and 

the other for searching final results (i.e., R*-trees). Contrary to several earlier 

investigations on this subject, which only considered applying hash functions, we 

consider embedding and clustering techniques. Searching approximate NNs is to find k 

approximate nearest vectors in embedding space to a query pattern by using k-d tree. The 

experiment results demonstrate that our method significantly improves the join query 

performance compared with state-of-the-art LOD index structures. As future work, it is 

desirable to discuss in detail the construction cost of our index structure in terms of time, 

memory, and storage space. The maintenance cost due to update operations also should 

be discussed. We will be also focused on the investigation of precision and recall 

performance for the other various index structures. 
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