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Abstract: The training of deep neural networks usually requires a lot of high-quality data with good 
annotations to obtain good performance. However, in clinical medicine, obtaining high-quality 
marker data is laborious and expensive because it requires the professional skill of clinicians. In this 
paper, based on the consistency strategy, we propose a new semi-supervised model for medical 
image classification which introduces a self-attention mechanism into the backbone network to learn 
more meaningful features in image classification tasks and uses the improved version of focal loss 
at the supervision loss to reduce the misclassification of samples. Finally, we add a consistency loss 
similar to the unsupervised consistency loss to encourage the model to learn more about the internal 
features of unlabeled samples. Our method achieved 94.02% AUC and 72.03% Sensitivity on the 
ISIC 2018 dataset and 79.74% AUC on the ChestX-ray14 dataset. These results show the effectiveness 
of our method in single-label and multi-label classification. 

Keywords: semi-supervised learning; medical image classification; intrinsic characteristic relation-
ship of samples; self-attention mechanism; self-ensembling model 
 

1. Introduction 
Large-scale deep neural networks have made great achievements in many computer 

vision tasks; for example, qualitative breakthroughs have been made in the fields of image 
classification [1], image recognition [2] and object detection [3]. This success should be 
attributed not only to the progress of deep learning methods but also to the large number 
of well-annotated data used for supervised learning. Annotating data is an expensive and 
time-consuming task for experts. For example, in the medical field, the annotation of 
many datasets requires not only the professional medical knowledge of senior experts but 
also the manual annotation of gigabytes of images, making it a tedious task. Compared 
with limited numbers of labeled images, a large number of original unlabeled images exist 
in reality. To make use of them more widely, a series of methods beyond traditional su-
pervised learning have been developed, such as semi-supervised learning [4,5], weakly 
supervised learning [6], and unsupervised learning [7]. In our research, we focus on the 
semi-supervised deep learning method, which learns from a small number of labeled data 
and a large number of unlabeled data and is used for medical image classification.  

For a long time, the medical field has been studying semi-supervised learning [8,9], 
aiming at reducing the tedious work of artificially marking data. In recent years, it has 
attracted wide attention and made remarkable progress in various large-scale computer-
vision natural image classification tasks [10]. The recent semi-supervised learning method 
in the field of medical image analysis can be roughly divided into three categories: (1) 
Adversarial-learning-based approach [11,12]: Dong et al. [13] introduced semi-supervised 
adversarial learning for lung segmentation. Diaz-Pintet al. [14] introduced the generative 
adversarial network into glaucoma assessment, where both labeled and unlabeled data is 
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used to train an image synthesizer for data augmentation. (2) Graph-based method [15]: 
Aviles-Rivero et al. [15] constructed a graph model of chest disease diagnosis given ex-
tremely limited labeled data and assigned labels to unlabeled samples by the method of 
label propagation. (3) Consistency-based method [16]: Li et al. [17] improved the π model 
[18] and used it for a semi-supervised skin lesion segmentation and transformation con-
sistency strategy. Cui et al. [19,20] strengthened the prediction consistency between the 
student model and the teacher model, and Su et al. [5] effectively improved the method 
based on consistency regularization by constraining the feature space to learn the features 
between different classes and different features within the same class. 

As for skin lesions, accurate classification is very important for clinical diagnosis. On 
account of the similarities among skin lesions, many studies have been carried out [21–24] 
to solve this problem. Early research work [25] mainly collected features by hand, such as 
shape, color, texture, etc., to distinguish different types of lesions. However, recent re-
search work mainly uses the remarkable feature extraction ability of the convolutional 
neural network to solve this problem. For example, Codella et al. [21] integrated CNNs, 
sparse coding, and a support vector machine for melanoma identification and achieved 
good results. Yu et al. [22] proposed a very deep network to distinguish melanoma from 
non-melanoma lesions. Zhang et al. [23] put forward a model to focus on semantically 
meaningful lesion areas using the self-attention ability of convolutional neural networks. 

In the context of chest disease diagnosis, the automatic diagnosis platform for 
ChestX-ray is also of far-reaching significance in clinical practice. The early research in 
this area was mainly based on manual classification, which largely depends on the quality 
of manually extracted features. With the emergence of large-scale datasets and the rise of 
deep neural networks, convolution neural networks have been used in recent research to 
solve this problem [24,26]. For example, Wang et al. [24] proved the effectiveness of using 
a multi-label learning framework to detect and even locate chest diseases from ChestX-
ray samples. After the ChestX-ray14 dataset was published, Rajpurkar et al. [27] proposed 
a more advanced model to detect 14 common chest diseases. However, these methods rely 
to a great extent on a large number of high-quality annotated data, and a semi-supervised 
model based on a graph recently proposed by Aviles-Rivero et al. [24,28] solves this prob-
lem well. 

In this paper, we propose a new semi-supervised model for medical image classifi-
cation. With the consistency-based strategy [29], our framework uses a self-attention 
mechanism [30] to weigh image features in convolutional neural networks in channel and 
space so that the model can learn by itself and focus on the features that play a key role in 
the task. At the same time, a sample intrinsic feature relationship loss similar to unsuper-
vised loss is introduced into the network, which helps to obtain extra information from 
unlabeled data. Finally, the improved version of focal loss [31] is introduced into the su-
pervision loss, aiming at focusing on the samples with incorrect judgment and making 
them fit the label value. Our contributions are as follows: 
1. We fully learn the features of unlabeled data by introducing a sample intrinsic feature 

consistency loss similar to unsupervised consistency loss inside the network which 
is effective for both single-label and multi-label classification tasks; 

2. Based on focal loss, a new loss function is introduced to supervision loss which can 
effectively notice samples with wrong classifications and pay more attention to the 
characteristics of samples that easily lead to wrong classification; 

3. We conduct experiments on two large medical datasets for skin lesion classification 
and chest diseases and the experimental results show that our model is effective and 
superior to the current semi-supervised learning method. 

2. Related Work 
This section describes some basic methods used in our proposed semi-supervised 

image classification framework. Specifically, Section 2.1 summarizes the previous semi-
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supervised models and analyzes their advantages and disadvantages. In Section 2.2 we 
introduce a self-attention mechanism inside the network to make it more autonomous so 
as to capture the features useful for the current task. Section 2.3 introduces the differences 
in the internal features of the samples and explores the internal semantic relations. Section 
2.4 introduces the previous supervised loss function used to mark data and describes its 
shortcomings before introducing focal loss. 

2.1. Semi-Supervised Learning Based on Consistency Regularization 
The consistency-based method involves using the information of unlabeled data ef-

fectively by making two prediction results for an image consistent through random en-
hancement. Most previous work has tried to design an effective method to generate a con-
sistent target close to the real mark of the image. For example, the π model directly takes 
the network output as the consistency target [18]. The Temporal Ensembling method [29] 
uses the exponential moving average (EMA) prediction result for unlabeled data as the 
consistency target, the quality of which can be improved because it comes from the set 
information of the previous period. However, the Temporal Ensembling method needs to 
integrate the information of the previous period, which requires a huge prediction matrix 
and makes training data-heavy. Therefore, the Mean Teacher [30] was brought into being. 
Instead of maintaining the exponential moving average (EMA) prediction, the Mean 
Teacher framework uses the exponential average weight of the student model to recon-
struct the teacher model. Since the teacher model comes from the integration of the stu-
dent model, its prediction can also produce a reliable consistency goal. Recently, some 
work has studied more effective image enhancement functions and how to generate more 
reliable consistency targets to improve the benefits of consistency regularization. For ex-
ample, Xie et al. [32–34] proved that using better image enhancement methods to create 
undisturbed samples can greatly improve the performance of model classification. By en-
hancing the local smoothness of the given input label distribution, the proposed virtual 
anti-disturbance [10] can prevent the model from straying further and further from the 
correct path because of the bad target by generating a more reliable consistency target [35] 
and can improve the existing consistency-based method by exploring the internal rela-
tionships among input data [36]. Different from the above work, our goal is to effectively 
strengthen the performance of the classifier by paying more attention to the main charac-
teristics of differences between different types of samples and introducing a parameter 
into the supervision loss to make the prediction result for each labeled sample closer to 
the real label. 

2.2. Self-Attention Mechanism 
At present, the attention mechanism [30,37,38] has been applied to various tasks in 

computer vision, such as image classification [38,39] and object segmentation [40]. The 
channel attention module [37] enhances the channel relationship by squeezing and ex-
panding the block, thus adaptively recalibrating each channel of the current image fea-
tures according to the current task and then integrating the obtained channel attention 
weight with the original feature map to effectively utilize some features that play a key 
role in the current task. Based on the channel attention mechanism, a spatial attention 
module [38] can be added, which can more comprehensively judge each pixel in a picture 
in each channel and capture them, which is relevant to the current task. Here, the channel 
attention module runs in series with the spatial module. Park et al. [30] proposed that the 
channel and spatial attention modules should be run in parallel and that the obtained 
channel and spatial relation matrix should be added and fused with the original feature 
map. In this way, the model can pay more attention to the features that play a decisive 
role in the current task to improve the discrimination ability of the model. 
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2.3. Consistency Paradigm of Sample Relationship 
In the previous research work on semi-supervised learning based on consistency reg-

ularization, the features of labeled and unlabeled samples were learned as much as possi-
ble by forcing the two most different predicted values of samples through different dis-
turbances, and no more attention was paid to the semantic relationships between samples. 
On the premise that human diagnosis usually makes reliable decisions based on previous 
cases, Liu et al. [36] introduced a novel sample relationship consistency paradigm matrix, 
which constructed a case-level Gram matrix to simulate the structured relationship be-
tween different samples. Given a small batch of input samples with B samples, the activa-
tion feature graph of the L layer is defined as  F୪ ∈ R୆×ୌ×୛×େ, where H and W are the 
spatial dimensions of the activation feature graph, and C is the number of channels. Then, 
the activation feature graph is reshaped into  A୪ ∈ R୆×ୌ×୛×େ, and its Gram matrix is cal-
culated as follows: 

Gl= ቀA൫xi,θ,η൯lቁ × ቀA൫xi,θ,η൯lቁ
T
 (1)

where A(xi, θ, η)୪ represents the activation feature graph of the layer of each sample, re-
spectively, which means the semantic relationship of this sample in the convolutional neu-
ral network. Finally, the sample relationship matrix normalized by Lଶ  can be defined as: 

Rl= ቆ
G1

l

∥G1
l ∥

,⋯⋯,
GB

l

∥GB
l ∥

ቇ (2)

This encourages the model to explore additional semantic information from unla-
beled data, but we think that matrix  G୪ may lose some characteristic information because 
of its multiplication relationship and the reduction in the number of dimensions. 

2.4. Supervision Loss 
In recent semi-supervised classification models, the classification loss for labeled data 

always makes the predicted value of the sample closer to the labeled value by minimizing 
cross-entropy loss [39]. However, the cross-entropy function calculates the total loss of 
each batch in the sample, so the probability of the sample which may cause individual 
misjudgment approaching the real label in the later training process is low. Both focal loss 
[31] and reduced focal loss [40] pay more attention to misclassified samples by adding 
weight in front of the cross-entropy function. In the subsequent training process, they can 
effectively reduce the loss and make them closer to the real labels. More importantly, the 
performance of the classifier model will gradually improve with the training rounds. We 
think that the “fixation” of the weighting factor will weaken the classification effect of the 
model with the increase in the number of training rounds. 

3. Method 
Figure 1 describes our semi-supervised learning framework for medical image clas-

sification which integrates attention mechanisms and the intrinsic relationship character-
istics of samples into student and teacher models. This enables the model to spontane-
ously capture features that are more significant in the current classification task and ex-
tract richer intrinsic information from samples of unlabeled data. Finally, the improved 
focus loss is introduced into the supervision loss, so that the minimization goal of the 
model is mainly dominated by misjudged samples, which effectively improves the per-
formance of the model. 
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Figure 1. Overview of our semi-supervised framework for medical image classification. The 
teacher’s weight θ′ is updated to the exponential moving average (EMA) of the student’s weight 
θ. The objective function of optimizing the student model includes the supervised loss (Ll) on the 
marked set and two unsupervised consistency losses (L୧୤୰ and L୳) on the unlabeled set and the 
marked set, respectively. By minimizing the three losses, the whole framework can fully mine the 
features of labeled samples and unlabeled ones, thereby accurately classifying them. 

3.1. Channel and Spatial Attention Mechanisms 
As depicted in Figure 2, in this paper, we add the attention mechanism proposed in 

[30] to the convolutional neural network, which is divided into two modules: channel at-
tention and spatial attention. In terms of channel attention, we define the module as: 

Mc(F) = BN൫W1൫W0AvgPool(F) + b0൯ + b1൯ (3)

where F ∈ Rୌ×୛×େ is the input image, H and W are the length and width of the input 
feature map, and C is the number of channels of the input feature map. W଴ ∈ Rେ/୰×େ, b଴ ∈
Rେ/୰, Wଵ ∈ Rେ/େ×୰, bଵ ∈ Rେ. Firstly, the input characteristic map is reshaped to F ∈ Rଵ×ଵ×େ 
through AvgPool(F) , and then through W଴  and Wଵ , successively, the calibrated 
weighting matrix Mୡ(F) of each channel is adaptively obtained through extrusion and 
expansion. The spatial attention module is as follows: 

Ms(F)= ൭f3
1×1 ቆf2

3×3 ൬f1
3×3 ቀf0

1×1(F)ቁ൰ቇ൱ (4)

 
Figure 2. The attention module structure of this paper consists of two modules: channel attention 
and spatial attention. The two modules run in parallel, and the weighed matrixes of each channel 
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of the sample features and of each image pixel in the channel are obtained spontaneously and then 
integrated into the original sample features. 

At first, the input sample F ∈ Rୌ×୛×େ is subjected to a 1 × 1 convolution for dimen-
sion reduction, then two 3 × 3 cavity convolutions to increase its receptive field, and, fi-
nally, a 1 × 1 convolution is performed to obtain the weighting matrix Mୱ(F) of each pixel 
of each image in the calibrated channel. These are combined to generate the final attention 
feature map. 

M(F) = σ൫Mc(F) + Ms(F)൯ (5)

Since the two dimensions are different, they need to be adjusted to Rୌ×୛×େ first. The 
final characteristic diagram is as follows: 

F = ൫F + F × M(F)൯ (6)

The intrinsic feature channel hides the basic information of the convolution filter, 
which is helpful for the network model to learn more useful features for the current task. 

3.2. Loss of Consistency of Intrinsic Characteristics 
Inspired by the paradigm matrix of sample relation, which encourages the network 

to explore the semantic relationship between unlabeled samples to improve the expressive 
ability of the model, the activated feature graph from the deep layer contains more ad-
vanced semantic information than the activated feature graph from the middle. As shown 
in Figure 1, we use the intrinsic sample features before the classification level to construct 
an intrinsic relationship consistency loss similar to the unsupervised loss. Given a small 
batch of input samples containing B samples, we define the intrinsic feature graph before 
the classification level as F୪ ∈ R୆×ଵ×ଵ×େ, where 1 and 1 are the spatial dimensions of the 
active feature graph and C is the number of channels. After the intrinsic characteristics of 
the student model are standardized, the matrix is as follows: 

Kl = ቌ
F൫xi,θ,η൯

1
l

∥F൫xi,θ,η൯
1
l ∥

,⋯,
F൫xi,θ,η൯

B
l

∥F൫xi,θ,η൯
B
l ∥

ቍ (7)

Similarly, after the intrinsic characteristics of the teacher model are standardized, the 
matrix is: 

 Kl
’= ቌ

F൫xi,θ’,η’൯
1

l

∥F൫xi,θ’,η’൯
1

l
∥

,⋯,
F൫xi,θ’,η’൯

B

l

∥F൫xi,θ’,η’൯
B

l
∥

ቍ (8)

where F(xi, θ, η)୪ represents the intrinsic characteristic diagram of each sample, which 
means the internal relationship of this sample in the convolutional neural network, and 
the intrinsic characteristic relation matrix requires that the internal relationship character-
istics of the same sample should be consistent under different disturbances. Therefore, the 
loss function of the sample intrinsic relationship matrix is defined as: 

Lifr= ෍
1
B

 ∥Kl
’- Kl∥2

2

x∈{SL,SU}
   (9)

where x is the total set of labeled and unlabeled samples, while  Kl
’ and K୪ represent the 

intrinsic characteristic matrix of samples obtained under different weights and disturb-
ances, respectively. By minimizing the loss function model of the intrinsic characteristic 
matrix of samples, it will be encouraged to capture the intrinsic differentiation character-
istics among samples under different weights and disturbances and then help to obtain 
additional intrinsic information from unlabeled samples. In comparison, the feature map 
from the deep layer contains more advanced information than that from the middle. 
Therefore, the characteristic map before the last average pool layer is used to calculate the 
intrinsic characteristic matrix K୪ of the sample. 
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3.3. Semi-Supervised Learning Framework 
The semi-supervised loss function [18,30] previously used for classification tasks can 

be divided into two parts: the supervised loss of labeled samples and the unsupervised 
consistency loss of total samples. We express labeled datasets and unlabeled datasets as 
S୐ = {(x୧, y୧)}୧ୀଵ

୒  and S୙ = {x୧}୧ୀ୒ାଵ
୒ା୑ , respectively, where x୧  is an inputted two-dimen-

sional medical image, such as a skin lesion image or a chest disease image, and ݕ௜  is an 
artificially marked image real label using one-hot coding. The overall optimization objec-
tives of the whole framework are as follows: 

  min
θ

൭෍ LS൫f(xi;θ),yi൯
N

i=1
+ λLU൫{xi}i=N+1

N+M ;f(·),θ,η,θ’,η’൯൱ (10)

where Lୗ represents the supervised loss (cross-entropy loss) of labeled samples, L୙ rep-
resents the unsupervised consistency loss of total samples, f(∙)  represents the classifica-
tion network,  θ and θ′ are the parameter weights of the student model and teacher 
model, respectively, and η and ηᇱ, respectively, represent two different disturbances of 
the two models with the same input. λ  is a weighting factor used to weigh the supervised 
loss against the unsupervised loss. Its teacher model parameter weight θ′ is the exponen-
tial average of the student model weight θ, and the iterative training of teacher model 
weight with time is defined as: 

θt
’  = aθtି1

’ +(1 −  a)θt (11)

where a is the smoothing coefficient super-parameter that controls the weight update 
rate. In terms of unsupervised loss, to encourage the consistency of the outputs of the 
student model and the teacher model, we keep the traditional individual consistency 
mechanism [29] as follows: 

Lu= ෍ Eη,η’

N+M

i=1
∥f൫xi,θ

’,η’൯ −  f൫xi,θ,η൯∥2
2 (12)

In terms of supervision loss, focal loss [31] is defined as follows: 

FL൫pt൯ = −  ൫1 −  pt൯
γlog൫pt൯ (13)

p୲ is set to: 

pt= ൜
p          if y=1

1 − p     otherwise  (14)

p୲ marks the predicted probability value of the sample. In Figure 3, we introduce the 
super-parameter threshold on the basis of focal loss. Compared with this, the supervision 
loss is defined as follows: 

Ll = ൝
WC × L_w × ( − log൫pt൯ )    &      otherwise

WC × H_w × ( − log൫pt൯ )   &if pt>threshold
 (15)

where L_w = 1  and H_w = (1 −  ௧)ఊ, respectively, represent the weights that should be݌
given to the samples with wrong classification and correct classification. As the number 
of training rounds increases, the classification performance of the model will be continu-
ously improved and the value of p୲ will also increase (it will not exceed the predicted 
value of 1), so we set the threshold as follows: 

threshold = (1/N) + ൬lp −  
1
N

൰ /epochs × epoch  (16)
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Figure 3. A detailed description of our semi-supervised framework supervision loss. 

Since the categories of datasets are unbalanced, Wେ is the weight of each category in 
the total sample, while the tag predicts that the sum of each category is 1, N is the total 
number of categories of datasets, epochs is the total number of training rounds, and epoch 
is the current round. 

3.4. Total Loss Function and Details 
Our semi-supervised learning framework is based on the consistent regularization 

machine strategy [18], that is, two predicted values obtained by forcing the same samples 
to be similar in two random enhancement ways are used as labeled data. Finally, the over-
all optimization loss function of the whole framework can be described as follows: 

L = Ll + λ(Lu + Lifr) (17)

In the formula, the former item is the supervised loss of marked samples, and the 
latter item is the unsupervised loss, which is a super-parameter to balance the supervised 
loss and unsupervised loss. 

For comparison with the original paper, during the training period, we adopted the 
same image enhancement technology and set a series of parameters. For example, we 
adopted two random perturbation forms, including (1) image enhancement, random ro-
tation, translation, horizontal flipping, etc., to randomly transform each sample in each 
small batch. At the same time, the rotation angle was in the range of −10 to 10, the hori-
zontally and vertically translated pixels ranged from −2% to 2% of the image width, and 
the input was randomly flipped horizontally and vertically with a probability of 50%. (2) 
Dropout layer in the network: we added a random dropout layer before the last pool layer 
in each block of the densenet network [41] that we used, with a dropout rate of 0.2, which 
is only turned on in the training stage and is turned off in the verification and testing 
stages. 

4. Experiments 
In this section, we describe some experiments with two large public medical datasets, 

namely, the ISIC 2018 skin lesions dataset (single label) and the ChestX-ray14 chest dis-
eases dataset (multi-label), and then discuss the experimental results to evaluate our pro-
posed method. 

4.1. Parameter Setting 
As the following parameters have been mentioned in the previous model, for com-

parison with the original paper [36], we improve and recast our model based on SRC-MT 
common code and implement our method with densenet as the backbone of the network, 
which is trained by the Adam optimizer [42] with default parameter settings. We set the 
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batch size to 48, and each small batch contains 12 labeled samples and 36 unlabeled sam-
ples. In Equation (3), the parameter ݎ is set to 16 [30] and the self-attention module is 
placed in the pool layer behind each block of the network [30]. In Equation (11), the expo-
nential average attenuation rate ܽ is set to 0.99, just as mentioned in [28,29]. ߛ in Equa-
tion (15) is set to 2, and we imagine the trained classifier as the ideal situation. We set ݈݌ 
in Equation (16) to 1 and we define λ in Equation (17) as: 

λt = 1 × e൫-5(1-t/T)൯
2
     (18)

This is used to control the value of λ, to ensure that the training loss will not be dom-
inated by the unsupervised loss at the beginning of network training when the consistency 
target of labeled data is unreliable [10]. The learning rate is initialized to eିସ and decays 
exponentially with the power of 0.9 after each round. 

4.2. ISIC 2018 Dataset 
The ISIC 2018 dataset is used for single-label classification. It consists of 10,015 skin 

lesion examination images, which are labeled as instances of seven common skin lesions. 
We divide the dataset as follows: 70% for training, 10% for verification, and 20% for test-
ing. There are 60 rounds of training, and the ramp factor T is set to 30. Before training, we 
adjust each image in the dataset to a size of 224 × 224 and normalize it using the statistical 
data collected from the ImageNet dataset. We use DenseNet121 [4], which is pre-trained 
on ImageNet, as the backbone of our network, and use AUC—Accuracy, Sensitivity, and 
Specificity—to evaluate our model. 

Table 1 shows the classification performance of the latest semi-supervised framework 
with 20% of the labeled data (1400 images). As we can see, the self-training method has 
more advantages than other methods in terms of Specificity, while its indicators need to 
be improved. While SS-DCGAN improves AUC by 0.7%, which indicates that the GAN-
based method helps to improve the semi-supervised classification framework. On the 
other hand, the TCSE method indexes show that consistency regularization is effective in 
utilizing unlabeled data. However, TE integrates the forecasts of different periods and 
generates a more reliable consistency target, so it performs slightly better than TCSE. The 
performance of MT AUC proves its superiority in semi-supervised learning. SRC-MT im-
proves four indicators at the same time, which proves that SRC can make full use of un-
labeled data information. The AUC and Sensitivity indicators for our method show that 
it helps the model to make more effective use of unlabeled data and improve the classifi-
cation of positive samples, while the improved performance of negative samples is poor. 

Table 1. Performance comparison between the ISIC 2018 dataset and previous examples of semi-
supervised learning. 

Method 
Metrics 

AUC Sensitivity Accuracy Specificity 
Self-training [8] 90.58 67.63 92.37 93.31 
SS-DCGAN [14] 91.28 67.72 92.27 92.56 

TCSE [17] 92.24 68.17 92.35 92.51 
TE [30] 92.70 69.81 92.26 92.55 
MT [18] 92.96 69.75 92.48 92.20 

SRC-MT [39] 93.58 71.47 92.54 92.72 
Ours 94.02 72.03 92.61 91.78 

We also studied the influence of the different percentages of labeled data, as shown 
in Table 2: under the settings of 5%, 10%, and 20% labeled data, our method achieved 
94.02% AUC and 72.03% Sensitivity, but the results were not clear for the other two indi-
cators. These results demonstrate the impact of our method with different labeling ratios 
for the data. 
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Table 2. Performance comparison of our methods on the ISIC 2018 dataset with different percent-
ages of labeled data. 

Method 
Percentage Metrics 

Labeled Unlabeled AUC Sensitivity Accuracy Specificity 
Upper bound 100% 0 95.43 75.20 95.10 94.94 

SRC-MT 5% 95% 87.61 62.04 88.77 89.36 
Ours 5% 95% 89.56 64.32 88.56 88.96 

SRC-MT 10% 90% 90.31 66.29 89.30 90.47 
Ours 10% 90% 91.24 67.56 89.56 90.16 

SRC-MT 20% 80% 93.58 71.47 92.54 92.72 
Ours 20% 80% 94.02 72.03 92.61 91.78 

Figure 4 shows the AUC indicators of our method for each category of the ISIC 2018 
dataset, in which the AUC performance of our method reaches 95% in most categories, 
and the worst performance in Melanoa and Benign keratosis, which may be due to the 
small number of inter-class characteristics making it difficult for the model to accurately 
identify it. 

 
Figure 4. AUC performance of each category for the ISIC 2018 dataset. 

4.3. ChestX-ray14 Dataset 
The ChestX-ray14 dataset is used for multi-label classification. It contains 112,120 

frontal chest X-rays of 30,805 unique patients, each of which is marked with one or more 
common chest diseases out of a total of 14. In order to make a fair comparison with the 
previous methods, we divided them into a training set, a verification set, and a test set 
with the proportions 70%, 10%, and 20%. They were a total of 20 rounds of training, and 
the slope factor T was set to 10. Before training, we adjusted each image in the dataset to 
the size of 384 × 384 and normalized it using the statistical data collected from the 
ImageNet dataset. As this dataset is much larger than ISIC 2018 dataset, DenseNet169 pre-
trained on ImageNet was adopted as our network backbone. Referring to the previous 
work [15], we only used AUC as our model evaluation index. 

Table 3 compares the performance of the previous method with ours under the dif-
ferent percentages of labeled data. The observation shows that GraphXNET performs par-
ticularly well with 20% labeled data, but its fluctuations with labeled data are very large, 
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indicating that it largely depends on the size of labeled samples. SRC-MT is not only su-
perior to the GraphXNET method but also more “stable” given the same scale change of 
labeled data. However, our method has better AUC performance than SRC-MT in each 
percentage marking stage, and its stability has not decreased. 

Table 3. AUC performance comparison of semi-supervised models with different markers on the 
ChestX-ray14 dataset. 

Label Percentage 2% 5% 10% 15% 20% 
GraphXNET [15] 53 58 63 68 78 

SRC-MT 66.95 72.29 75.28 77.76 79.23 
Ours 68.24 73.65 77.62 78.35 79.74 

Table 4 compares our method with MT and SRC-MT to analyze the impact on multi-
label classification tasks. As we have observed, with 20% labeled data, our method 
achieves 79.74% AUC, which is better than that of MT 78.83% and SRC-MT 79.23%. 
Among 14 kinds of chest diseases, there may be some differences among the categories 
due to the imbalance of sample classification, but they are generally good, which can 
prove the effectiveness of our proposed method for multi-label classification. 

Table 4. Semi-supervised model’s AUC performance with respect to different categories in the 
ChestXray-14 dataset. 

Method Fully Supervised MT SRC-MT Ours 
Labeled 100% 20% 20% 20% 

Unlabeled 0 80% 80% 80% 
Atelectasis 77.32 75.12 75.38 76.12 

Cardiomegaly 88.85 87.37 87.70 88.06 
Effusion 82.11 80.81 81.58 81.77 

Infiltration 70.95 70.67 70.40 70.57 
Mass 82.92 77.72 78.03 78.86 

Nodule 77.00 73.27 73.64 74.23 
Pneumonia 71.28 69.17 69.27 69.56 

Pneumothorax 86.87 85.63 86.12 86.32 
Consolidation 74.88 72.51 73.11 73.84 

Edema 84.74 82.72 82.94 83.13 
Emphysema 93.35 88.16 88.98 90.02 

Fibrosis 84.46 78.24 79.22 80.43 
Pleural Thickening 77.34 74.43 75.63 75.61 

Hernia 92.51 87.74 87.27 87.86 
Average AUC 81.75 78.83 79.23 79.74 

4.4. Discussion of Parameters (lp) 
The parameter lp in the supervision loss indicates the prediction probability value 

for the model pair and each category after the training. As shown in Table 5, we also stud-
ied the influence of lp hyperparameters in Equation (16) in different conditions. Generally 
speaking, we adopted different lp values in the range of 0.6 to 1.0 and examined the per-
formance of our network model with 20% labeled data. It can be seen that, with the lp 
range at 0.8, our model performance is not very sensitive to lp values, and that the larger 
the lp value is, the better the model’s performance. Therefore, we set the value of lp to 1 
in the experiment. 

Table 5. Effects of different lp parameter values on the performance of our semi-supervised model 
on the ISIC 2018 dataset. 
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Parameter (lp) 
Metrics 

AUC Sensitivity Accuracy Specificity 
0.6 92.24 68.34 91.06 89.65 
0.7 92.70 69.75 91.54 90.86 
0.8 93.55 71.54 91.98 91.24 
0.9 93.86 71.87 92.24 91.66 
1.0 94.02 72.03 92.61 91.78 

5. Discussion 
We conduct experiments on the ISIC 2018 dataset and the ChestX-ray14 dataset and 

compared them with existing semi-supervised learning methods. Specifically, the experi-
mental results for the two datasets show that, compared with the original methods, our 
method has improved AUC and Sensitivity, and the AUC performance on the ChestX-
ray14 dataset also proved significant. However, for the ISIC 2018 dataset, the Accuracy 
and Specificity results were not so ideal. 

The above experimental results show that it is a good idea for us to automatically 
capture important features by adding a self-attention mechanism to the backbone network 
and to weight the supervision loss of labeled samples by exploring intrinsic feature rela-
tionships among samples and introducing super-parameters related to the performance 
of the classifier. However, the experimental results for Accuracy and Specificity show that 
our method still has shortcomings and we think that the reason for this result may be that 
the ISIC 2018 dataset has a small number of samples and uneven distribution of positive 
and negative samples. In the future, we can try to manually generate some images to rec-
tify the imbalance of samples in the hope that we can achieve a good performance on all 
indicators. 

In real life, many datasets may have only a small portion of labeled data, with most 
of the data remaining unlabeled. Existing semi-supervised models can classify these data. 
However, we have improved the AUC and Sensitivity metrics by improving the existing 
methods, and we think that our proposed loss of intrinsic feature consistency and im-
provement of supervisory loss are still meaningful contributions. 

6. Conclusions 
In the present work, we have studied the problem of semi-supervised learning in 

medical image classification that aims to reduce the manual labeling of medical image 
data. We introduced the self-attention mechanism into the backbone network to focus 
more on the features that are more relevant to the current task and used the improved 
version of focal loss to narrow the gap between wrongly classified and correctly labeled 
samples at the supervision loss point and recommended the intrinsic feature consistency 
loss of the sample to make more effective use of the unlabeled data. Compared with ex-
isting semi-supervised learning methods, our experimental results for two datasets show 
that our method achieved 94.02% and 72.03% on AUC and Sensitivity indicators, but its 
Accuracy and Specificity scores were not so good. This shows that our method still has 
some shortcomings, but it is worth discussing exploring the intrinsic characteristic rela-
tionships among samples and controlling the weighting of sample loss by introducing a 
super-parameter that varies with the performance of the classifier model. In addition, the 
proposed consistency loss and supervised loss functions of sample intrinsic characteristics 
can also be combined with other semi-supervised methods. 
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