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Abstract: In the past decade, autonomous vehicle systems (AVS) have advanced at an exponential
rate, particularly due to improvements in artificial intelligence, which have had a significant impact
on social as well as road safety and the future of transportation systems. However, the AVS is still
far away from mass production because of the high cost of sensor fusion and a lack of combination
of top-tier solutions to tackle uncertainty on roads. To reduce sensor dependency and to increase
manufacturing along with enhancing research, deep learning-based approaches could be the best
alternative for developing practical AVS. With this vision, in this systematic review paper, we broadly
discussed the literature of deep learning for AVS from the past decade for real-life implementation in
core fields. The systematic review on AVS implementing deep learning is categorized into several
modules that cover activities including perception analysis (vehicle detection, traffic signs and light
identification, pedestrian detection, lane and curve detection, road object localization, traffic scene
analysis), decision making, end-to-end controlling and prediction, path and motion planning and
augmented reality-based HUD, analyzing research works from 2011 to 2021 that focus on RGB
camera vision. The literature is also analyzed for final representative outcomes as visualization in
augmented reality-based head-up display (AR-HUD) with categories such as early warning, road
markings for improved navigation and enhanced safety with overlapping on vehicles and pedestrians
in extreme visual conditions to reduce collisions. The contribution of the literature review includes
detailed analysis of current state-of-the-art deep learning methods that only rely on RGB camera
vision rather than complex sensor fusion. It is expected to offer a pathway for the rapid development
of cost-efficient and more secure practical autonomous vehicle systems.

Keywords: autonomous controlling; deep learning; decision making; intelligent vehicle; perception;
self-driving

1. Introduction

Recently, the autonomous vehicle system (AVS) has become one of the most trend-
ing research domains that focus on driverless intelligent transport for better safety and
reliability on roads [1]. One of the main motives for enhancing AVS developments is
its ability to overcome human driving mistakes, including distraction, discomfort and
lack of experience, that cause nearly 94% of accidents, according to a statistical survey
by the National Highway Traffic Safety Administration (NHTSA) [2]. In addition, almost
50 million people are severely injured by road collisions, and over 1.25 million people
worldwide are killed annually in highway accidents. The possible reasons for these injuries
may derive from less emphasis on educating drivers with behavior guidance and poorly
developed drivers’ training procedures, fatigue while driving, visual complexities, that
is, human error, which can be potentially solved by adopting highly efficient self-driving
vehicles [3,4]. The NHTSA and the U.S. Department of Transportation formed the SAE
International levels of driving automation, identifying autonomous vehicles (AV) from
‘level 0′ to the ‘level 5′ [5], where levels 3 to 5 are considered to be fully AV. However, as of
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2019, the manufacturing of level 1 to 3 vehicle systems has been achieved but level 4 vehicle
systems are in the testing phase [6]. Moreover, it is highly anticipated that autonomous
vehicles will be employed to support people in need of mobility as well as reduce the costs
and times of transport systems and provide assistance to people who cannot drive [7,8]. In
the past couple of years, not only the autonomous driving academic institutions but also
giant tech companies like Google, Baidu, Uber and Nvidia have shown great interest [9–11]
and vehicle manufacturing companies such as Toyota, BMW and Tesla are already working
on launching AVSes within the first half of this decade [12]. Although different sensors
such as radar, lidar, geodimetric, computer views, Kinect and GPS are used by conventional
AVS to perceive the environment [13–17], it is indeed expensive to equip vehicles with
these sensors and the high costs of these sensors are often limited to on-road vehicles [18].
Table 1 shows a comparison of three major vision sensors based on a total of nine factors.
While the concept of driverless vehicles has existed for decades, the exorbitant costs have
inhibited development for large-scale deployment [19]. To resolve this issue and build a
system that is cost efficient with high accuracy, deep learning applied vision-based systems
are becoming more popular where RGB vision is used as the only camera sensor. The recent
developments in this field of deep learning have accelerated the potential of profound
learning applications for the solution of complex real-world challenges [20].

Table 1. Comparison of vision sensors.

VS VR FoV Cost PT DA AAD FE LLP AWP

Camera High High Low Medium Medium High High Medium Medium
Lidar High Medium High Medium High Medium Medium High Medium
Radar Medium Low Medium High High Low Low High Low

VS = Vision Sensor, VR = Visibility Range, FoV = Field of View, PT = Processing Time, DA = Distance
Accuracy, AAD = AI Algorithm Deployment, FE = Feature Engineering, LLP = Low-Light Performance,
AWP = All-Weather Performance.

In this systematic review paper, a broad discussion and survey of the implementation
of deep learning are applied to aspects of AVS such as vehicle detection (VD), traffic signs
and light identification (TSL), pedestrian detection (PD), lane detection and tracking (LDT),
traffic scene analysis (TSA), decision making (DM), end-to-end controlling and prediction
(E2EP), path and motion planning (PMP) and augmented reality-based HUD (ARH) ana-
lyzing research articles from 2011 to 2021 research articles on deep learning-applied AVS
to reduce the dependency on sensor fusion and the high cost of manufacturing and to
enhance the focus on developing a level 5 autonomous driving vehicle. We represent and
thoroughly discuss the best deep learning algorithms for each domain, provide solutions
to their limitations and analyze their performance for increasing practical implementation
concepts. Moreover, this systematic review explored the most complete and predominate
domains compared to other surveys from [21–33] (shown in Table 2) that indicates its
impact on AVS implementing deep learning where the review article covered all aspects
of the human–machine interface (HMI). The overall contribution of the research is set
out below:

• Analyzed recent solution of state-of-the-art deep learning algorithms for cost-efficient
AVS using RGB camera.

• Detailed literature review covering major domains and most subcategories to decrease
vision sensor complexities.

• Discussed the key advantages and disadvantages of deep learning methods applied
to AVS.
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Table 2. Comparison of existing studies.

Ref. Year
Survey Coverage

VD LRCD PD TSL E2EC TSA PMP DM ARH HMI

[21] 2019 4 X 4 X X X 4 4 X 4

[22] 2020 X X X 4 X 4 4 4 X X
[23] 2016 X X X X 4 X 4 X X X
[24] 2020 X X X X 4 X 4 X X 4

[25] 2018 X X X X 4 X 4 X X X
[26] 2018 X X X X 4 X 4 X X X
[27] 2021 X X X 4 4 X 4 4 X 4

[28] 2020 4 4 4 4 4 4 X X X 4

[29] 2018 X X 4 X X X X X X X
[30] 2020 4 4 4 X X X 4 X X X
[31] 2020 X 4 4 4 4 4 4 X X X
[32] 2021 X 4 X X X X 4 4 X X
[33] 2020 4 X X X 4 4 4 X X 4

Ours 2022 4 4 4 4 4 4 4 4 4 X

2. Methodology
2.1. Review Planning

The study is based on a systematic review methodology, an approach for analyzing
and evaluating accessible studies related to a particular issue of current research where
the core three phases are preparing the review, conducting the review, and creating a
report that summarizes the review. In this systematic review paper, the researchers have
included 142 papers containing deep learning and belonging to a different domain of
AVS. To finalize the papers, we initially focused on the entire domain of autonomous
driving, then we restricted our search to the usage of deep learning in AVS. Only papers
with full text in English from renowned journals, conferences and book chapters that
were published between 2011 and 2021 were selected. Due to an increase in the scope of
advanced autonomous transportation, we finally limited our search to the vision-based
application of deep learning in AVS, and the rest were rejected. We also took the most
complete edition to avoid dealing with duplication. The key plan and protocol of the
review includes source of data, searching criteria and procedure, research questions, data
selection and data extraction.

2.2. Sources of Data

Research papers were gathered from various famous research databases to incorporate
specific field and research questions. Irrelevant research papers that could not address
or endorse our research questions were dismissed. To achieve a broad coverage for the
literature review, we used the following databases as our key resources: Web of Science,
Scopus, IEEE Xplorer, ScienceDirect, MDPI, Springer, Wiley Library and ACM.

2.3. Research Questions

Research questions were formed to refine the survey and maintain the aim of the topic.
The following research questions are answered throughout the discussion in the different
sections of the paper.

• How does deep learning reduce sensor dependency?
• How are on-road objects detected and localized?
• What decision-making processes are solved for AVS?
• How does deep learning contribute to end-to-end controlling and path planning?
• How should final outcomes be represented in AR-HUD?
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2.4. Searching Criteria

To find research papers according to the methodology, a pattern was followed to
gather suitable papers which were mostly necessary for our study. We adopted a Boolean
searching method with multiple AND, OR in the advance search options of each data
source. During the search for the relevant papers, we selected “Autonomous Driving” and
“Autonomous Vehicle” or “Intelligent Vehicle” or “Self-Driving” and “Deep Learning” as
the main phrases. For a further refined search, various keywords were included to obtain
the desired research papers according to our aim in this review. The following queries were
developed based on Boolean operations:

• ((Autonomous Driving) OR (Autonomous Vehicle) OR (Intelligent Vehicle) OR (Self-
Driving) AND (Deep Learning) AND (Object) AND ([Vehicle] OR [Pedestrians] [Traffic
Sign] AND [Traffic Light]))

• ((Autonomous Driving) OR (Autonomous Vehicle) OR (Intelligent Vehicle) OR (Self-Driving)
AND (Deep Learning) AND ([Traffic Scene] OR [Localization] OR [Segmentation]))

• ((Autonomous Driving) OR (Autonomous Vehicle) OR (Intelligent Vehicle) OR (Self-
Driving) AND (Deep Learning) AND (Lane) AND ([Track] OR [Shift] OR [Segmentation]))

• ((Autonomous Driving) OR (Autonomous Vehicle) OR (Intelligent Vehicle) OR (Self-
Driving) AND (Deep Learning) AND (Control) AND ([Steering] OR [Motion]))

• ((Autonomous Driving) OR (Autonomous Vehicle) OR (Intelligent Vehicle) OR (Self-
Driving) AND ([Deep Learning] OR [Deep Reinforcement Learning]) AND (Decision
Making) AND ([Uncertainty] OR [Lane Keeping] OR [Overtaking] OR [Braking]
OR [Acceleration]))

• ((Autonomous Driving) OR (Autonomous Vehicle) OR (Intelligent Vehicle) OR (Self-
Driving) AND (Deep Learning) AND ([Augmented Reality] AND [Head Up Display]
OR [HUD]))

2.5. Searching and Extraction Procedure

The selection procedure for choosing papers includes four core iteration filtering
processes. As the aim of the study is to discuss implementation of deep learning and
comprehensive literature searches to analyze the frameworks and system designs, first, a
total of 760 papers were selected from eight data sources based on the queries mentioned
in the searching criteria (Section 2.4). Web of Science had the highest 151 and ACM had the
lowest 40 papers. Then, the selected papers had to be processed through an eligibility stage
where 209 duplicated papers were eliminated at first.

Furthermore, 121 papers were screened out during abstract scanning and 276 papers
were chosen after full text reading. In the next iteration, studies containing domains of deep
learning in relation to AVS were selected where all the papers were published between
2011 and 2021. The final dataset contains a total of 142 papers that covers the literature
on the implementation of deep learning methods for AVS. The structure of the whole
selection process is presented in Figure 1. Table 3 presents the final calculation for the
selection of 142 papers according to these steps and based on the most relatable topics and
in-depth analysis.

2.6. Analysis of Publication by Year

Out of 142 final papers for review, the studies published between 2011 and 2021 were
selected. The year 2019 had the highest number of selected research papers, with 31, which
is 17.9% of the total, and 2011 had the lowest number of papers (2). The distribution of
publication is visualized in Figure 2.
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Table 3. Paper selection from multiple sources.

Scheme 151 Primary Candidate Selected

Web of Science 151 72 24

IEEE Xplore 124 69 22

Scopus 72 47 20

ScienceDirect 94 51 19

ACM 40 32 7

Springer 96 53 21

Wily Library 71 44 8

MDPI 112 62 21

Total 760 430 142
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2.7. Analysis of Publication by Country

Among the 142 selected papers for the literature review, 56 countries contributed to
autonomous vehicle system development. Figure 3 shows the top 10 countries and the
number of papers they contributed before the final selection. The graphical representation
shows that China made the largest contribution, with 34 papers, and the USA contributed
21 papers, which was the second largest.
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2.8. Analysis of Publication Domains

The 142 final papers were selected based on five domains and five subdomains of
perceptions, shown in the literature taxonomy of AVS in Table 4, which were combined
to produce a complete system. Table 4 shows that the distribution of ‘Decision Making’
section has highest 20 papers, and ‘Path and Motion Planning’ and ‘AR-HUD’ have the
lowest 11 papers individually.
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Table 4. Literature taxonomy of AVS using deep learning approaches.

Domain Sub-Domain References

Perception

Vehicle Detection [34–45]

Traffic Sign and Light Recognition [46–59]

Pedestrian Detection [60–78]

Lane Detection and Tracking [44,79–101]

Traffic Scene Analysis [55,102–120]

Decision Making - [121–143]

End-to-End Controlling and Prediction - [144–163]

Path and Motion Planning - [164–175]

AR-HUD - [176–186]

To visualize the leading algorithms of each domain or subdomain, Figure 4 presents
the distribution of algorithms, where the reviewed algorithm-centered approaches have a
predominant role in AVS development. Figure 5 shows the dataset clustering which was
used for the reviewed approaches. Only the subdomains of perception showed dependency
on dataset, where “Traffic Sign and Light Recognition” and “Lane Detection and Tracking”
applied to 6 datasets each, and only 3 datasets were adopted in “Traffic Scene Analysis”.
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3. Analysis of Domain

Each domain was analyzed by reviewing several approaches and methods based on
evaluating and discussing advantages, disadvantages, outcomes and significance. The
following analysis of each domain was carried out with the aim of accelerating development
of level 4 or 5 AVS.

3.1. Perception
3.1.1. Vehicle Detection

The identification and detection of an on-road vehicle for AVS together form one of the
predominant and most challenging issues due to versions, combined fast multitasking and
visual difficulties. For fast and more accurate vehicle detection and recognition in different
and uncertain driving conditions, deep learning algorithms are analyzed in this section.

For instance, an online network framework for detecting and tracking vehicles was
proposed by Hu et al., who predicted full 3D vehicle bounding box mapping from a
monocular camera using both the environment and camera coordinates by reprojecting [34].
Eventually, the framework tracked the movement of instances in a global coordinate system
and revised 3D poses with a trajectory approximation of LSTM, implementing on a KITTI
dataset, where the outcomes surpassed the outcomes of LiDAR in long range [187]. In a
30 m range, LiDAR obtained 350.50 false negative and the method scored 395.33, while
vehicle detection was 11.3% higher, indicating the limitation of the framework. However, it
performed better in 50 m and 10 m, where the false negative scores were 857.08 and 1572.33
when the LiDAR-based method obtained false negative values of 1308.25 and 2445.30,
respectively. The decreased false negative in 10 and 50 m showed that the method was
able to overcome the performance of LiDAR using only camera and deep learning despite
reduced accuracy in some real-time implementations.

To tackle accuracy-based issues, improve slow detection and recognition speed, and
address the lack of categorization ability, Sang et al. introduced a novel YOLOv2_Vehicle
architecture [35]. For multiple scales of vehicles that influenced the detection framework,
normalization had been used for the improvement of the method of measuring losses for
boundary box length and width after clustering and bounding boxes applying k-mean
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++ algorithm to the training dataset [36] along with applying multilayer feature fusion to
boost the network extraction capabilities and repeatedly eliminating convolutional layers
in high layers. The method implementing the BIT dataset could obtain a mean average
precision (mAP) exceeding 94.78% in 0.038 s, which was found to be much faster and more
accurate than compared existing methods.

In another work, an AdaBoost combined with a pixel look-up features-based approach
was demonstrated by Ohn-Bar et al., where the methods included mining orientation, object
geometry and occlusion pattern by clustering, and 81.94%, 66.32%, 51.10% accuracy in easy,
moderate and hard scenarios, respectively, was obtained for vehicle detection. However,
performance decreased when a 70% overlap evaluation threshold was used instead of 50%
and during heavy occlusion [37]. Nonetheless, the method was inappropriate for rough
conditions as performance decreased when 70% overlap evaluation threshold was used
instead of 50%, and it showed poor accuracy in heavy occlusion.

Further, Chen et al. presented a new method to identify five distinct vehicle classes,
that is, car, van, bus, truck and tractor, using the AdaBoost and CNN algorithms applied to
CompCars and their custom dataset containing rear views of vehicles [38]. They employed
CNN as a function extractor with a Support Vector Machine (SVM) for training the features
separately, and further AdaBoost algorithms were applied for integration. They obtained
optimum results even with faulty images and high computing costs, with average accuracy
of 99.50% in 0.028 s, which was 13% higher than the other mentioned fusion methods, for
instance, SIFT + SVM, HoG + SVM and SURF + SVM. However, the method was only
deployed and considered in simple but low-quality images and daytime scenarios.

Moreover, one of the biggest issues was the low resolution of images in the real-
time traffic surveillance method due to either low-vision RGB cameras or environmental
features such as low light condition or foggy weather. For this problem, vehicles in low-
resolution images and videos were analyzed in terms of the efficiency of the CNN by
Bautista et al. [39]. The neural network used an activation function that worked in two
phases: first, the detection of high-level attributes; second, the detection of low-level
attributes. It tested the comportment of the model to detect vehicles with lower input
resolution at different levels, as well as the number and size of filters. Results demonstrate
that CNN was remarkably successful even with low resolution in the identification and
classification of vehicles with an average precision fit for real time applications.

Lee et al. showed a hierarchical system for detecting and tracking vehicles in an urban
area at night based on taillights [40]. The system focused primarily on effective detection
and pairing of taillights, considering their innate variety and observing all aspects of the
layers and interrelationships in a hierarchical framework which increases the efficiency of
vehicle detection and tracking in comparison with traditional methods, with recall of 78.48%
and precision of 90.78%. However, performance decreased for short-distance vehicles due
to headlight illumination of host vehicles. This approach could be considered as one the
most suitable methods for nighttime vehicle detection.

Hu et al. demonstrated a novel CNN architecture called scale-insensitive convolu-
tional neural networking (SI-Net) [41] to enhance the performance of vehicle detection for
autonomous vehicles, solving the issue of limited CNN-based vehicle detection [39]. The
framework improved the limitation-scale insensitive CNN, deploying context-aware region
of interest (ROI) pooling to preserve the real structure of small-scale objects. The state-of-
the-art method outperformed the others in terms of measuring, scoring 89.6%, 90.60% and
77.75% for accuracy in moderate, easy and complex moods, respectively, in 0.11 s execution
time on the KITTI benchmark as well as a custom highway dataset with different variance
of scaled objects. Thus, the method was able to maintain a good performance in multiple
traffic scenarios.

Targeting the runtime of previous works, Wang et al. combined anchor size, receptive
field and anchor generation optimization (AGO) with Fast R-CNN to ensure that an
acceptable number of vehicle features could be accessed by the network in the shortest
amount of time [42]. Using the anchor shape, it efficiently detects vehicles in large, medium
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and short fields of view with 87.2% average precision in 0.055 s. The anchor shape-based
detection process is a very coherent technique for AVS for reducing computational cost by
not taking the whole field of vision for processing.

In another work, which combined Faster R-CNN training parameters with a region
proposal network (RPN)-based approach, Suhao et al. implemented vehicle-type detection
in a real traffic area including MIT and Caltech datasets with ZF and VGG-16 networks
in multiple scenarios [43]. The research results increased the average accuracy of the
detection systems and the rate of detection compared with the CNN models. The proposed
architecture classified vehicles from three categories where they achieved the best accuracy:
84.4% for car, 83.8% for minibus and 78.3% for SUV using the VGG-16 model in 81 ms.
The execution cost of the proposed method outperformed Fast R-CNN and Faster R-CNN
applied to complex scenarios.

However, a lightweight YOLO network that was built with a YOLO v3 algorithm with
generalized IoU loss was combined with loss function as well as with the integration of
two different focal length cameras by Liu et al. to indicate less computer complexity for
AVS [44]. The method was implemented on their self-made dataset where the network
obtained 90.38% precision and 82.87% recall within 44.5 ms. This could be a milestone for
AVS in terms of a faster and more accurate method for different field of view and day or
nighttime implementation.

Leung et al. compared deep learning-based techniques for vehicle detection effi-
ciency [45], and proposed solutions for data collection along with the nighttime data
labelling convention to resolve different types of detection. The research also recommends
a framework based on a quicker region-based CNN model, which was precisely optimized,
merging with RestNet101, the VGG-16 model obtaining a mean average precision (mAP) of
84.97%. The experimental result showed a high detection accuracy in urban nighttime with
version lighting conditions including extreme low light and no lighting. Thus, this method
became one of the most suitable methods for AVS in challenging lighting conditions.

Overall, the Deep CNN and AdaBoost-based approach achieved 99.50% accuracy
in daytime (the highest) with the fastest computational time (0.028 s), but lightweight
YOLO and the quicker region-based CNN model showed practical outcomes in both
daytime and nighttime scenarios for vehicle detection. Multiple deep learning methods
showed efficient performance by improving slow detection, recognition and categorization,
enabling deployment in complex scenarios and night-time deployment with good accuracy,
even surpassing accuracy outcomes of LiDAR in terms of long field of view. However,
some challenges remained, for example, limited dataset of vehicle categories, performance
dropping in low light and rough weather conditions for some methods, low accuracy for
vehicle detection in short distance for headlight illumination at nighttime and fast execution
time in real-time implementation. An overview of the methods evaluated for the detection
and recognition of vehicles for AVS is provided in Table 5.

3.1.2. Traffic Sign and Light Recognition

One of the most important aspects of a safe and better decision-making process for
automotive driving system was traffic sign and light identification by regulating traffic,
monitoring and avoiding accidents through warning the drivers. Traffic sign and light
recognition systems follow a double-step process, detection and classification, where detec-
tion denotes correctly spotting the geometric position in the image and classification means
identification of the category in which the detected sign or light signal appears [28,188].

A bio-mechanism inspired novel architecture named Branch Convolutional Neural
Network (BNN) was proposed by Hu et al. for traffic sign recognition [46]. To improve the
recognition machine speed and accuracy, a branch-output mechanism which was placed
between pooling and convolutional layer and added to the framework. Furthermore,
instead of the initial output layer, the sign in the preceding branch was projected by
the BCNN that results perfect prediction in partial visibility of road signs with 98.52%
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accuracy based on German Traffic Sign Recognition Benchmark (GTSRB). For complex
visual scenarios, BCNN based approach worked very well for traffic sign recognition.

Table 5. Summary of multiple deep learning methods for vehicle detection.

Ref. Method Outcomes Advantages Limitations

[34] 3D vehicle bounding
box mapping

65.52% more
enhancement in 50 m

than LiDAR.

Exceeded the outcomes of
LiDAR in long range.

Unstable accuracy for certain
error properties.

[35,36] YOLO V2 and
K-mean ++ mAP 94.78% in 0.038 s. Faster detection

and recognition.
Trained with vehicle types

of data.

[37] AdaBoost with pixel
lookup features

81.94% accuracy in
best-case scenarios.

Improved result with
occlusion pattern

by clustering.

Performance decreased
when 70% overlap and

heavy occlusion.

[38] Deep CNN and
AdaBoost

99.50% accuracy
in 0.028 s.

Highest accuracy in daytime
and trained with

low-quality frames.

Not applicable in low-light
or complex scenarios.

[39] CNN with
Caffe framework

96.47% accuracy in
51.28 ms.

Fast classification in low
resolution input.

Higher execution time
compared to other methods.

[40] ANN and
Kalman Filter

Recall 78.48% and
precision 90.78% in

urban scenario.

Nighttime taillight-based
detection in urban area.

Decreased in performance
for headlight illumination in

short distance.

[41] SI-NET 90.60% accuracy in
best-case scenarios.

Improved the
limitation-scale insensitivity

of CNN.

Not applicable in poor
lighting, nighttime or

complex weather scenarios.

[42] Faster-RCNN
with AGO

87.2% average
precision in 0.055 s.

Enable to detect vehicle in
large, medium and

short field.

Not applicable in urban or
challenging

lighting conditions.

[43] Faster R-CNN
with RPN

Highest 84.4% accuracy
for car detection in

81 ms.

Outperformed Faster R-CNN
in terms of execution time.

Unsatisfactory accuracy
compared with the obtained

execution time.

[44] Lightweight
YOLO Network

86.81% and 78.91%
precision and recall

within 44.5 ms,
respectively.

Applicable in both day and
night scenarios in

multiple FoV.

Was not tested in urban or
crowded environment.

[45] Quicker
region-based CNN

84.97% mAP
nighttime scenarios.

Able to detect in low-light
and almost

no-light conditions.

Required huge manual
data labelling.

Jung et al. trained the 16 different forms of Korean traffic sign with LeNet-5 CNN
architecture for a real-time traffic sign recognition system where the training set had
25,000 positive and 78,000 false samples [47]. The method obtained up to 99.95% within a
fast-processing time. The applied color property-based CNN approach could be very effi-
cient for lightweight traffic sign detectors for AVS as well as achieving the highest accuracy.

An improved traffic sign recognition algorithm was demonstrated by Cao et al. for an
intelligent driving system [48]. For accurate detection spatial threshold segmentation, the
HSV color space was utilized, and traffic signs were identified accurately depending on
shape features and processed with LeNet-5 CNN architecture with Gabor kernel, which
was the primary convolutional kernel, and batch normalization was applied after the
pooling layer. The Adam model was also implemented as the optimizer algorithm. The
proposed methodology was applied to the German Traffic Sign Recognition Benchmark
and obtained 99.75% accuracy with 5.4 ms per frame on average, which was higher in
both sectors than [189,190], where the accuracies were 98.54% in 22 ms and 95.90 in 5.4 ms,
respectively, adopting HoG + PCA and multilayer perceptions methods.
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On the other hand, the parallel architecture weighted multi-convolutional neural
network took 4.6 ms more to process but still achieved constant high efficiency, scoring
99.75% in GTSDB and 99.59% accuracy in the GTSRB dataset, where low and complex
lighted scenarios were also considered. Despite occasional accuracy drops for blurry vision,
this method could be one of the most suitable approaches for AVS [49].

To detect traffic signs, Wang et al. suggested a red bitmap extraction and SVM-
based method where the detected images were color-segmented and afterwards the shape
detection of ROI (ROI) was carried out on the basis of rim detail [50]. The methodology
scored recall values of 97% and 99% for danger and prohibitor for the GTSDB dataset,
respectively. This technique obtained good detection accuracy, but the major limitation was
that this method was only applied to red circular signs.

Zhang et al. demonstrated a modified YOLO V2 algorithm to develop an improved
Chinese traffic sign detection system, as well as constructing the database [51]. In order to
create a single convolutional network, they used several 1 × 1 convolutional layers for the
intermediary and fewer convolutional layers for the top layers. Fine grid was also used to
separate images with the goal of identifying small-sized road signs. Their technique was
found to be the outcome of the CCTSDB and GTSDB databases, where AUC values for
mandatory and danger signs were 96.81%, 94.02% and 96.12% in 0.017 s.

Another approach applied CapsNet, which resolved the major limitation of CNN, that
is, loss of max pooling layer retaining spatial relations [52]. The approach obtained 98.72%
accuracy for recognizing traffic light with shape. It can be a useful method-based approach
for AVS’s traffic sign-recognition methods.

Furthermore, a unified deep convolutional traffic light-identification feature for au-
tomated driving systems was proposed by Bach et al., based on Faster R-CNN that was
suitable for detection of traffic lights, and the recognition and classification of types or
states [53]. They achieved 92% average precision applying on a large-scale dataset named
DriverU traffic light. When the width was greater than 8 px and smaller than these, it scored
93% for average precision. However, there were still limitations for suitable number of false
positives which can be reduced by applying RNN or an integrated approach. DeepTLR was
the real-time vision-dependent, in-depth and deeply convoluted traffic light-identification
and classification system that did not require position details or temporal principles; these
were proposed by Weber et al. [54].

On the basis of the single-frame assessment of a challenging collection of urban scenes,
the authors presented noteworthy outcomes, showing that in regular images, DeepTLR
achieves frame rates of up to 33 Hz. DeepTLR also ran at frame rates of up to 33 Hz.
DeepTLR also ran at frame rates of 13 Hz on images with a resolution of 1280 × 960 pixels.
The capacity for more transport lights was high in the architecture, scoring 93.5% F1 score
for 1280 × 960 resolution and 88.1% F1 score for 640 × 480 in 80 ms and 28.8 ms.

Li et al. developed a framework of robust traffic-light recognition with fusion detection
in complex scenes [55]. To increase accuracy for each traffic light type and the creation
of a fusion detective framework, a set of enhanced methods was adopted based on an
optimized channel function (OCF) system after using aspect ratio, field, location and traffic
lights background as prior knowledge to minimize computational redundancy and create a
task model for the identification of traffic light. Furthermore, they utilized the detection
knowledge of the previous system to change the original ideas, which further increased the
accuracy. The framework was applied to a VIVA dataset where a combination of multi-size
detectors, bulb detectors and fuzzy detectors were implemented, which improved the
AUC indicator, with 7.79% for red, 9.87% for red left, 11.57% for green and 3.364% for
green left, compared with general ACF on VIVA validation dataset and achieved an AUC
indicator of 91.97% for red light and 89.32% for green light on the channel-modified LARA
validation dataset.

In addition, to reduce complexity, Lee et al. adopted the concept of upper-half clipping
frame so that the model could pick only those frames that would allow it to recognize
traffic lights rather than taillights [56]. The system was built based on a YOLO algorithm
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and obtained 42.03% mAP and 49.1% mAP enhanced, and improved results applied to
the Bosch-TL and LISA-TL datasets, but the author did not consider nighttime scenarios.
Other than this issue, the method was exceptionally successful for traffic signs and light
identification systems for AVS.

Behrendt et al. implemented YOLO for 3D localization and tracking of traffic lights [57].
A wide field of view was considered, and the YOLO-based approach was deployed in the
Bosch-TL dataset. The method showed 99% accuracy in just 0.06 ms. However, the method
required huge pre-labelled data which created an obstacle to fluent performance.

In this section, both traffic signs and traffic light detection and recognitions are dis-
cussed and summarized in Table 6, for which most of the deep learning approaches were
trained with the GTSRB dataset. Among all the deep learning methods, LetNet-5-based
CNN on self-made dataset with spatial threshold segmentation with the HSV color space
and Gabor filter on the GTSRB dataset performed best for traffic-sign recognition despite
reduction in performance in a complex environment and detection of separated signs due
to the proposed region. In addition, the YOLO method-based approached obtained highest
accuracy in the fastest time for traffic-light detection with recognizing inner signs despite
having pre-labelled data dependency.

Table 6. Summary of multiple deep learning methods for traffic sign and light recognition.

Ref. Method Outcomes Advantages Limitations

[46] BCNN
98.52% accuracy for

low visibility of
road signs.

Branch-output mechanism
enhanced recognition speed

and accuracy.

Implementation from
moving platform was

not tested.

[47] LetNet-5 based CNN 99.95% accuracy.
Lightweight color segmentation
before classification, improved

processing speed.

Detected two traffic signs for
having different location of

proposed region.

[48] CNN with Gabor filter Accuracy of 99.75%
in 5.4 ms.

Obtained highest accuracy and
enhanced the performance

of LetNet-5.

Performance decreased in
complicated backgrounds.

[49] Weighted multi CNN Highest 99.75%
accuracy in 10 ms.

Classification in high-speed
driving and outperformed in

low-light conditions.

Struggled to classify in
challenging blurry
vision condition.

[50] SVM Recall score 97% and
99% for two cases.

Faster detection of prohibitory
and danger signs in poor

illumination.

Only applied to red
circular signs.

[51] YOLO V2 Highest 96.81% AUC
values in 0.017 s.

Faster and simple
processing pipeline.

Decrease in performance for
small traffic signs.

[52] CapsNet 98.72% accuracy. Resolved loss of max pooling to
boost CNN’s performance.

Did not consider complex
lighting condition

[53] Fast R-CNN 100% recall and 92%
average precision.

Detected traffic light as well as
indicating signs. Showed high false positive.

[54] DeepTLR Highest 93.5% F1 score. Did not require position details
or temporal principles. Lower precision rate.

[55] OCF 11.5% improved AUC
value for green light.

Better detection in complex
scenes with low luminous

objects combining.

Unsatisfied accuracy for red
left traffic light identification.

[56] YOLO
42.03% and 49.16%

mAP higher on
two datasets.

Took upper half of frame to
eliminate search area and

vehicle taillights.

Did not deploy in nighttime
traffic scene where reflection

creates confusion.

[57] YOLO 99% in 0.06 s.
3D localization and tracking of

traffic lights in large field
of view.

Required more labelling.
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3.1.3. Pedestrian Detection

Effectively detecting and localizing pedestrians on roads in various scenarios was one
of the major vision-based problems for autonomous driving systems. A study shows that
only in the USA has the fatality rate for road crossing increased up to 30% in seven years
from 2009. In 2016, a total of 6000 pedestrians were killed, which is a record in the last three
decades [58]. Moreover, based on vulnerable road users in the ASEN region, 13% of the
deaths on roads are related to pedestrians [59]. In order to prevent deaths, the detection
and localization of pedestrians have become a major focus of the study of autonomous
vehicles. Several studies have been successfully conducted on reducing accident cases and
creating a sustainable and more accurate approach to autonomous driving systems.

For instance, Angelova et al. proposed a deep network named large-field-of-view
(LFOV) to perform complex image processing continuously for pedestrian detection and
localization [60]. The purpose of the proposed Large-Field-of-View deep network was
to understand, simultaneously and effectively, as well as to make classification decisions
in many places. The LFOV network processes vast regions at much higher speeds than
traditional deep networks and therefore can re-use calculations implicitly. With 280 ms
per image on the GPU and 35.85 on the average miss rate on the Caltech Pedestrian
Detection Benchmark, the pedestrian detection system showed a promising performance
for real-world deployment.

A vision based pedestrian detection and pedestrian behavior classification technique
was proposed by Zhan et al. [61], where YOLOv3-TINY was used for quick segmentation
and multitarget tracking of detected pedestrians with the DeepSort algorithm [62]. Finally,
to identify the behavior of pedestrians, an improved and customized AlexNet algorithm
was adopted. The proposed model performed efficiently in real time at a rate of 20 frames
per second along with a designed warning area binding each pedestrian.

Convolutional neural network is one of the most popular deep learning models and
has been adopted in several studies for pedestrian detection. Ghosh et al. used a novel
CNN architecture model for pedestrian detection [63]. To train the model, they applied
transfer learning as well as synthetic images using an uncovered region proposal of a
bounding box to avoid the annotation of pedestrians’ positions. It obtained a 26% missing
rate in CUHK08 and a 14% missing rate in the Caltech pedestrian dataset, where crowded
scenes were considered. The biggest advantage was that it required no explicit detection
while training and did not need any region proposal algorithm.

A similar concept was used by Wang et al., who combined part-level fully convolu-
tional networks (FCN) and CNN to generate a confidence map and pedestrian location
based on the aligned bounded box concept [64]. The proposed framework was compared
with CifarNet and achieved 6.83% improved outcomes.

A novel single shot detector method based on late-fusion CNN architecture was
introduced by Hou to analyze data of a multispectral system that performed with higher
accuracy at nighttime [65]. The combined architecture was applied to a KAIST multispectral
pedestrian benchmark where the late-fusion CNN architectures worked efficiently. In
terms of log average miss rate, it decreased by more than 10% and developed for suitable
deployment during both day and nighttime. As a result, it became one of the best practical
CNN-based pedestrian detectors of all the accepted AVS methods.

For identifying pedestrians in low resolution learning from low-level image features,
a single image-based novel resolution-aware CNN-based framework was proposed by
Yamada et al. [66]. The authors also developed a multiresolution image pyramid and
obtained the original input image to identify pedestrian size. Moreover, it learnt feature
extraction from a low-level image with resolution information and achieved 3.3% lower
log-average miss rate than CNN which made the architecture more acceptable for AVS.

In another work, Zhang et al. implemented an optimized multiclass pedestrian
identification system, using a Faster RCNN-based neural network [67]. The analysis
indicated that the framework for pedestrian detection in blurred fields of view were able
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to increase speed with average precision of 86.6%. This approach could be suitable for
distorted images for pedestrian detection tracking.

Dong et al. proposed a region proposal framework for pedestrian detection imple-
menting R-CNN combined with an ACF model, where the ACF model was applied to
produce only pedestrian class-bounding region, which was a very useful application for
autonomous vehicle systems [68]. Moreover, the proposed framework cost less execution
time during training and testing. Though most of the studies showed pedestrian detection
in the daytime or in clear weather, this task becomes more complex in low-light condition,
haze or fog because these create vision difficulties and this kind of condition causes a higher
number of accidents [69,70] and increases the possibility of traffic accidents by 13% [71].

Correspondingly, de-hazing algorithms were one of the solutions to fix vision problems
which can be implemented in detection of pedestrians in haze conditions. For instance,
a related approach for pedestrian detection in haze conditions was proposed by Ding
et al., implementing a synthesized haze version of the INRIA dataset using dark channel
prior-based linear SVM and HOG algorithm [72]. Nonetheless, the approach received
poor recall value, scoring 67.88% in predicting constant depths of input images. Although
the method is a good approach for pedestrian detection, the limitations could be solved
taking into account the pre-trained pedestrians’ depths in multiple haze environments.
Moreover, Huang et al. provided a Laplacian distribution model that featured a combined
HTE (haze thickness estimation) and IVR (image visibility restoration) for solving problems
of pedestrians [73]. Implementation of this algorithm could enhance the performance for
detecting pedestrians in haze conditions, but the most difficult haze conditions occur in
dim light conditions, where they achieved 4.1 mAP and 3.98 mAP based on expert and
ordinary view, respectively.

For alleviating the haze problem while detecting pedestrians, Li et al. [74] proposed
three approaches named Simple-YOLO, VggPrioriBoxes-YOLO and MNPrioriBoxes for
pedestrian detection based on YOLO [75]. Deep separable convolution and linear bottleneck
capabilities were implemented to minimize parameters and enhanced processing speed,
making the network far more usable. The average precision of their three methods was
78.0%, 80.5% and 80.5%, respectively, where precisions were 89.4%, 90.8% and 89.3%. The
lowest 22.2 FPS were 22.2, 81.7 and 151.9 applied to the combined data of their HazePerson
dataset and INRIA person dataset after dataset augmentation. Although this approach was
one of the preferable approaches for AVS to detect and localize pedestrians in day and night
haze conditions, the higher missing rate in complex scenarios was an issue which could
be resolved by adopting key point detection methods. Xu et al. proposed a ground plane
context aggregation network (GPCANet) for detecting pedestrians in ground plane areas
of Caltech, SCUT and EuroCity datasets, where the best result was achieved for the SCUT
dataset with 96.2% recall value, and obtained 25.29% and 25.10% log average miss rate
for the rest of the dataset serially [76]. However, it might have slightly higher log average
miss rate, but the outcomes were in crowded traffic complex scenarios, which made the
approach more practicable for AVS.

Moreover, CNN-based work was demonstrated with only 5.5% miss rate to localize
distracting pedestrians [77]. Similarly, CNN cascaded with AdaBoost was deployed for
pedestrians in night images [78]. It obtained a maximum 9% log-average miss rate, although
both methods are not evaluated in complex scenarios.

In summary, multiple deep learning methods were reviewed (shown in Table 7) where
a CNN-based method was deployed for faster pedestrian detection and localization where
the methods showed 94.5% success rate and provided an improved dataset built on the
Caltech dataset. FCN achieved 6.83% improved outcomes compared with CifarNet, while
in terms of estimating distance of pedestrians from the vehicle, it showed a higher missing
rate. Moreover, GPCANet performed best on the SCUT dataset, scoring 96.2% recall in
320 ms and deployed in diverse scenarios in both day and night conditions. However, it
scored a high missing rate and could not deal with complex scenes in terms of occluded
road objects. However, when of the other methods showed stable efficient outcomes,
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the main challenges remained for crowded traffic scenes and complicated visual and
weather conditions.

Table 7. Summary of multiple deep learning methods for pedestrian detection.

Ref. Method Outcomes Advantages Limitations

[60] DNN 35.85 on the average
miss rate.

Processed in large field images,
continuous detection in

complex scenes.

Higher missing rate with
comparatively
slow detection

[61] YOLOv3-TINY and
DeepSort

80.3% accuracy in
complex environment.

Designed faster warning area
bounding by each pedestrian

with direction labelling.

Only considered daytime
scenarios and

lower accuracy.

[63] CNN
26% and 14% missing

rates on two
datasets, respectively.

Did not require explicit
detection in crowded scenario.

Did not apply for motion
images or

real-time problems.

[64] Part-level FCN
and CNN

6.83% improved
outcomes compared

with CifarNet.

Estimated accurate distances
of pedestrians generating the
confidence map using FCN.

High missing rate for
practical implementation.

[65] SSD-based
late-fusion CNN

Decreased by more than
10% of log average

miss rate.

Most applicable in
nighttime implementation.

Slower detection and
complex parameter tuning.

[66] Resolution
aware-based CNN

3.3% lower log-average
miss rate than CNN.

Learnt feature extraction from
low-level image with

resolution information.

Was not applied in complex
traffic or

crowded environment.

[67] Faster R-CNN 86.6% average precision
in 0.104 s.

Outperformed on distorted
and blurry frames.

Did not consider low-light or
traffic scenarios.

[68] R-CNN with
ACF model

14.1%, 15.3%, 45.6%
miss-rate on

three datasets.

Reduced the number of region
proposals, and costs less time. —-

[72] Dark
channel-based SVM

81.63% precision and
67.88% recall.

Pedestrian detection and
position estimation from

haze condition.

Presumed constant depths in
input images.

[73] Laplacian
distribution model

4.1 mAP and 3.98 mAP
on expert and ordinary

view, respectively.

Pedestrian detection in
complex dim-light condition.

Was not applied in real-time
driving scenes.

[75] Multiple
YOLO methods

Highest average
precision 80.5%

in 81.7 ms.

Minimized number of
parameters and outperformed

state-of-art methods.

Early dependency on
preliminary boxes during

detection process.

[76] GPCANet 96.2% recall in 320 ms on
SCUT dataset.

Improved outcomes in both
day and night including far

FoV and crowded traffic.

Higher log average missing
rate for occluded
on-road objects.

[77] CNN Showed 5.5% miss rate.
Localized distracting

pedestrian and improved
detection annotations.

Did not test in cases for
crowded or complex scenes.

[78] CNN cascaded
with AdaBoost

Generated the maximum
9% log-average miss rate.

Combined thermal images for
nighttime detection.

Might fail in complex urban
traffic scenarios.

3.1.4. Lane Detection and Tracking

One of the core fundamentals for AVS was to identify lane and tracking curves in real
time where the controlling would depend on the lane and curves. Several studies have
been conducted on this field based on different camera visions implementing deep learning
and computer vision approaches considering color, texture, feature extraction in different
scenarios for lane detection, lane shifting, lane keeping and overtaking assisting.
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A road scene sectioning framework was adopted by Alvarez et al. using a CNN-based
algorithm to retrieve the 3D scene layout of the street image from noisy labels combining
online and offline learning [79]. The proposed method built with color plane fusion and
CNN was able to achieve 95.5% to extract a single image of a lane without manual labelling.
This CNN-based approach could be considered as the most efficient method for deploying
in unknown environments for AVS road-feature extraction.

However, for each pixel of the image, which was a path or a lane, authors Dong et al.
considered the visual road-detection challenge applying a U-Net-prior network with the
DAM (Domain Adaptation Model) to reduce the disparity between the training images
and the test image [80]. The proposed model was compared to other state-of-art methods
such as RBNet [191], StixeNet II and MultiNet [192], where the max-F measures were
94.97%, 94.88% and 94.88%, respectively, in 0.18 s, 1.2 s and 1.7 s. Their methodology
obtained 95.57% max F-measurement in 0.15 s faster and more accurately than others,
which indicates that their monocular-vision-based systems achieve high precision for a
lower running time.

Another kind of approach for storing processes of previous stages, a method based
on a combination of CNN and recurrent neural network (RNN), was proposed by Li et al.,
which was able to identify lane markers using geometry feedback with maximum 99%
AUC value [81]. However, since no image pre-processing was conducted, this process
took a lot of time in sorting unrelated image areas. In addition, these methods were either
time-consuming or inefficient in a true, dynamic world, which does not fulfil the maximum
efficiency restriction of a critical function.

The Bayesian method for estimating multihyperbola parameters splitting frames in
multiple patches was demonstrated by Fakhfakh et al. to recognize curved lanes under
difficult conditions using [82]. The lane line was represented on each component by a
hyperbola which was determined using the proposed Bayesian hierarchical model with an
average of 91.83% true positive rate (TPR) on the ROMA dataset. To sum up the theory,
it could be made more practical by adopting sampling techniques such as Hamiltonian
schemes to enhance the model’s performance.

Yang et al. suggested a substitution of image pre-processing to reduce the uncertainty
about lane state [83]. Their approach uses profound lane detection based on deep learning
as a substitute for practical lane detection with UNet encoder including high-grade GPU
processing. The paper also states that the CNN-based UNet with Progressive Probabilistic
Hough Transformation, UNet, Kalman filter were far more inefficient in terms of identifi-
cation than the feature-based approaches, such as Hough Transformation (HOG) for lane
tracking in real time [84–86].

For predicting lane line under the most challenging conditions, a spatiotemporal-
based hybrid architecture after encoding–decoding SCNN and ConvLSTM [87]. This is the
very first approach which improves temporal correlation with spatial relation of feature
extraction with 98.19% accuracy and 91.8% F1 score. However, although this is one of
the strongest approaches, the authors did not apply it to complex weather and nighttime
scenarios. Furthermore, to resolve instance level and complex fork and dense line-detection
issue, a novel approach was implemented, CondLaneNet, using recurrent instance module
applied to a CULane dataset [88]. The approach obtained an 86.10% F1 score while detecting
curve lane in complex scenarios despite the lack of proper refining of contextual features.

Multiple deep learning methods were studied regarding the lane curve tracking
system. For instance, Dorj et al. deployed circle equation models and parabola equations
to redesign the Kalman filter for curved lane tracking with a view to calculating curving
parameters in far field view [89]. Although the algorithm had an independent threshold
mechanism to compensate for various light conditions, such as low light, further research
was needed to identify lane reflections and shadows. The limitation of Dorj et al. was
solved in [90], where the authors applied a local adaptive threshold and RANSAC feedback
algorithm to prevent misdetection of the lane by estimating two-lane parameter-based
issues. Nevertheless, the algorithm did not allow a close-loop lane to maintain lane control
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while following the road lane, showing a slightly higher false positive rate (FPR) and slow
execution for processing in the CPU only. However, it achieved 99.9% precision, 98.9%
accuracy and 99.4% F-measurement in 0.677 fps complex visual and lighting conditions.

Similarly, for overcoming lane detection in complex shadow and lighting conditions
full of obstacles, a CNN-based method was presented by Wang et al. [91]. From an inverse
perspective, the application of a fixed transformation matrix generated errors as changes
occurred, allowing the predicted exhaust point to infinitely shift upward or downward.
The authors trained a neural network with a custom loss function that predicted the
transformable matrix parameter valued dynamically. The method was implemented on
the TuSimple dataset and obtained high accuracy for insufficient light, shadow, missing
lane and normal road compared to other deep learning methods, such as Spatial CNN,
CNN-FCN and UNet.

As an approach to preventing lighting condition problems for lane detection and
tracking, a novel CNN-based model was proposed by Ye et al. [92]. In the pre-processing
stage they adopted Yam angle prediction and filtering, followed by segmenting ROIs
implementing waveform generation that generated on average 99.25% accuracy in the
BIT dataset considering nine cases where day and nighttime accuracies were 99.34% and
98.66%, respectively, as well as a 1.78% average error rate for the Caltech dataset. However,
this methodology could be the most suitable candidate only if it is performed with similar
outcomes in real-life experiments of level 4 or 5 AVS.

A similar CNN-based approach combined with CNN-LSTM, SegNet and UNet was
applied by Zou et al. for lane detection from occlusion scenarios [93]. The method obtained
96.78% accuracy for SegNet and 96.46% for UNet within 46 ms, which was much faster than
the average of the other methods. With faster processing and high accuracy, this approach
could be considered as one of the most acceptable methods for AVS lane detection.

Jhon et al. proposed a lane-detection algorithm, which calculated the semantic road
lane by using the extra tree-based decision forest and DNN from a street scene where hue,
saturation, depth (HSD) combined with a deconvolutional network were fine-tuned [94].
In the final stage, a separate extra tree regressor was trained within each lane applying the
depths and the manually annotated lane marker locations on the image. The methodology
was applied to the TTI and TMD datasets, where it achieved 98.80% and 97.45% accuracy,
respectively, for lane detection.

Further, encoder–decoder dilated convolution and finely tuned improvements were
implemented by Chen et al. to create a modified CNN road lane detection system called
Lane Mark Detector (LMD) which increased the accuracy of the CamVid dataset to 65.2%,
obtained 79.6% class average accuracy and increased the test speed to 34.4 fps as well as
improved the inference time (29.1 ms) and smaller model size of 66 mb [95].

Moreover, Ghafoorian et al. used Embedding Loss-Driven Generative Adversarial
Networks (EL-GAN) for detecting road lanes [96]. This led to even more secure training
with stronger discrimination and stabilized the mechanism of adverse preparation. This
significantly stabilized the process of opposing training. EL-GAN was also applied to
the TuSimple dataset and achieved 96.39% accuracy despite requiring the tuning of a
suitable number of parameters. As the loss of embedding into classification boosted
the maximum efficiency of the lane marking method, it was one of the best and most
appropriate approaches for continuous lane detection and tracking.

Tracking lane during nighttime was one of the most difficult tasks of AVS. He et al.
solved the issue by developing a vision-based lane detection system, where they pre-
processed with a Gabor filter, continuing adaptive splay ROI and Hough transformation
to detect the lane marker [97]. Despite lacking an appropriate self-switching system for
defining lanes in all circumstances in pre-processing, the detection rates were 97.31% and
98.15% using two clips of Guangzhou where frame numbers were 3274 and 2231. However,
the method faced difficulties when tackling bright light reflection, missing lane marks and
lane cracks as well.
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Neven et al. formulated a solution using LaneNet and HNet for the problem of
lane detection with an instance segmentation problem in which each lane constituted its
own instance to be end-to-end trained [98]. In addition, to a set “bird’s-eye view”, they
introduced a learning transfer to the perspective, which was contingent on the image
and achieved 96.4% accuracy within 50 fps (frames per second) for the TuSimple dataset.
The method was robust enough to adjust the pitch of the ground plane by adapting the
transition parameters accordingly, which was the main reason for accurate visualization,
and detected lane and lane curves.

Moreover, Kim et al. proposed a fast-learning environment using extreme learning
CNN (EL-CNN) combining extreme learning machine (ELM) calculating weights among
output and hidden layers in one iteration with CNN for lane marking extraction in complex
scenarios to overcome computing of large dataset [99]. It reduced training time 1/50 for the
KNU dataset, and 1/200 for the Caltech dataset compared to CNN. Experimental results
demonstrate that it obtained maximum weights effectively while maintaining performance
of 98.9% accuracy applied to the Caltech dataset.

In another work, Van Gansbeke et al. implemented ERFNet with differentiable least-
squares fitting (DLSF) for end-to-end lane detection [100]. The approach used dynamic
backpropagation to perform an experiment on a lane detection task that demonstrated
that, despite the poor supervision signal, the end-to-end approach exceeded a two-step
procedure, scoring 95.80% accuracy in 70 fps applied to the TuSimple dataset. The accuracy
was not the maximum, but the weight map did not require post processing for accurate
lane estimation.

Hou et al. proposed a lane detection CNN by self-attention distillation (SAD) which
had self-learning ability in the training phase and boosted the visual attention of multiple
layers in different networks and increased the efficiency of narrow-lane detection sys-
tems [101]. The method obtained 96.64% accuracy in the CULane, BDD100 K and TuSimple
datasets, although the hyperparameter adjustment was complicated by an insufficient
training process and loss functions.

In another work, Liu et al. used a lightweight YOLO network for lane curve detection
and tracking with 90.32% precision and 83.76% recall in 50.6 ms [44]. The method was
applied to a custom dataset which was evaluated for day and night scenarios. However,
the efficiency could be better suited to proper AVS if it solved the interruption of vehicles
during lane detection.

In conclusion, most of the approaches have performed well enough to be adopted
for practical implementation of AVS. However, modified CNN [92] was able to detect
lanes with highest accuracy for both day and nighttime, and the CNN-LSTM-based SegNet
and UNet combined approach was [93] able to segment roads within the fastest runtime.
The analysis presented some advantages of deep learning methods for lane and road
curve detection, for instance, training without manual labelling, reducing computational
complexing while in a single frame, lane detection where markers were not clear, in sharp
turns and even challenging weather and shadow or low-light conditions. On the other hand,
some methods showed huge dependency on dataset pre-labelling, which was inefficient
in the long field of view, resource hunger and even not being evaluated in urban traffic
scenarios or challenging road conditions. An overview of the deep learning methods
reviewed for the detection of lane and road curves is shown in Table 8.

3.1.5. Traffic Scene Analysis

Driving scene and driving behavior analysis of autonomous vehicle systems were
denoted as the understanding and classifying of driving environment and traffic scene. To
discuss the contribution of deep learning to understanding and analyzing complex traffic
scenes, several studies were conducted.
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Table 8. Summary of multiple deep learning methods for lane detection and tracking.

Ref. Method Outcomes Advantages Limitations

[79] Modified CNN 95.5% accuracy for
single frame.

Reduced dependency of manual
labelling and processing time in

single frame.

Deployment for testing did not
consider urban or

crowded scenarios.

[80] U-Net 95.57% max
F-measurement in 0.15 s.

Smooth segmentation of road surface
with multiple objects as obstacles.

Huge dependency on manual
pre-labelling.

[81] Multitask CNN and RNN Max AUC value of 99%.
Recognized region in complex traffic

and visualized spatially
distributed cues.

Higher computational cost and
inefficient for large field of view.

[82] Bayesian Model 91.83% true positive rate.
Automated curve detection in rural
and challenging roads with lower

error rate.

Lighting conditions were not
considered and slow processing.

[83] UNet and Kalman Filter 2.5% and 9.75% lateral
error generated in 10 ms.

Obtained less lateral error and
overcame slow feature extraction.

Limited to a simple close-loop
circle in TORCS simulator.

[88] CondLaneNet 86.10% F1 score. Solved the lane detection in fork and
dense scenarios.

Contextual features need to
be refined.

[90] RANSAC 99.9% precision and 99.4%
F-measurement.

Prevent misdetection by estimating
parameters when

illumination changes.

Slower execution, slightly high
FPR and did not consider urban

traffic road.

[91] CNN Obtained highest accuracy
(97.85%).

Outperformed in shadow and roads
with obstacles.

Created errors during shifting the
ground to predict

disappearing point

[92] Modified CNN Average 99.25% accuracy.
Most suitable deployment in two
datasets with faster runtime for

nine classes

Did not test in real-time
driving senses.

[93] CNN-LSTM with SegNet 96.78% accuracy in 46 ms. Raised performance in
occlusion scenarios.

Combined method of CNN and
RNN were resource hungry

and slow.

[94] Modified Decision forest
and DNN

98.80% and 97.45%
accuracy, respectively.

High accuracy in surface and
road detection. High computational cost.

[95] CNN 65.2% mIoU, 79.6% class
average accuracy.

Modified CNN to achieve low
complexity and maintained

similar accuracy.

Was not tested in crowded
traffic environment.

[96] EL-GAN 96.39% accuracy.
The loss of embedding in detector
boosted the performance closest to

the mark.

Required tuning of huge number
of parameters.

[98] LaneNet and HNet 96.4% accuracy within 19
ms.

Did not require post processing,
pixel-wise segmentation or fix

lane number.

Faced challenges in long field of
view while detecting curves.

[99] EL-CNN 98.9% accuracy.
Reduced training time 1/50 and 1/200

in KNU and Caltech datasets,
respectively.

Required matrix inversion for
better execution time in high

dimensional data.

[100] ERFNet-DLSF 95.80% accuracy.
Did not need post processing to
estimate line coordinates using

weight map.

Was not tested in urban or
complex lighting conditions.

[101] CNN with SAD 96.64% accuracy. Has self-learning ability and increased
the efficiency of narrow-lane detection.

Complex hyperparameter
adjustment for inadequate

training process.

[44] Lightweight
YOLO Network

90.32% precision and
83.76% recall in 50.6 ms.

Applicable in both day and night
scenarios and multiple fields of view.

High interruption for
obscured vehicles.

To contribute to this field for developing traffic scene analysis for AVS, Geiger et al.
proposed a novel method of generative probabilism to understand traffic scenes with
the Markov Chain Monte Carlo, which was used to deal with the dynamic relationship
between crossroads and feature presentation [102]. The human-inspired method took the
benefit from a wide range of visual cues through the form of vehicle directions, vanishing
points, semantic scene labels, scenario flow and grids rather than requiring sensor values
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such as LiDAR and GPS, where most of the standard methods struggled for most of the
intersections due to the lack of these attribute labels. Moreover, the method can accurately
identify urban intersections with up to 90% accuracy at 113 real-world intersections.

Another scene semantic segmentation approach is the High-Resolution Network
(HRNet) proposed by Wang et al. [103], where the method obtained 81.1% mIoU. HRNet
linked the high-to-low resolution convolution streams in parallel and transferred data
across repeatedly. The advantage of the method was that the resulting representation was
richer semantically and spatially. However, it required huge memory size due to high
resolution-wise segmentation. Additionally, the same author improved their previous
work applying contrastive loss to previous architecture (HRNet), which explored pairwise
pixel-to-pixel dependencies applied to the Cityscape dataset and obtained 1.1% higher
mIoU [104]. Although the proposed method demonstrated effective performance, which is
applicable for top-tier AVS, it was unable to achieve success during contrastive learning
in few parts of the labelled dataset. To tackle this issue, Zhao et al. [105] presented a
contrastive approach following previous research [103,104] and proposing SoftMax tuning
rather than applying contrastive loss and cross-entropy at once. The authors demonstrated
three variants of label and pixel-wise contrastive losses by adopting DeepLabV3 with
ResNet-50 with 256 channels of convolution layers and bilinear resizing for input resolution
for semantic segmentation. This approach showed 79% and 74.6 mIoU, respectively, for
Cityscape and PASCAL VOC 2012 datasets but using 50% less labelled dataset. Thus,
powerful semantic segmentation with a fine-tuned pretrained method can be a major
pathway for higher level AVS for scene analysis.

Furthermore, to develop a scene recognition framework, Tang et al. demonstrated
GoogleNet for multi-stage feature fusion, named G-MS2F, segmented into three layers to
feature extractions and scoring scene understanding, that can be efficiently employed for
autonomous driving systems [106]. The framework obtained 92.90%, 79.63% and 64.06%
accuracy, respectively, when applied to the Scenel5, MIT67 and SUN397 datasets for image
scene recognition.

Similarly, a multiresolution convolutional neural network architecture was proposed
by Wang et al. for driving scene understanding in different scales where they used two
categories of resolution images in the input layer [107]. A combination of fine-resolution
CNN and coarse-resolution CNN was included for recording small and comparatively
large-scale visual frameworks. To obtain visual information with more accurate resolution
and enhanced spatial information, on an inception layer, three convolutional layers were
added. They implemented the architecture on the Place365 dataset where the lowest error
rate was 13.2%.

Moreover, a 2D-LSTM model was proposed to learn information from surrounding
context data of scene labels as well as spatial dependencies in [108] within a single model
that generated each image’s class probabilities. They obtained 78.52% accuracy when
deploying on the Standford background dataset.

Fu et al. introduced an integrated channel contextual framework and spatial contextual
framework as a contextual deconvolution network (CDN) that used both local and global
features [109]. In an attempt to optimize the visualization of the semantic data, the decoder
network utilized hierarchical supervision for multilevel feature maps in the Cityscapes
dataset and achieved 80.5% mean IoU.

Following the work, an optimized model of a deep neural network was proposed with
two distinct output directions by Oeljeklaus et al. Their method foresaw road topology
along with pixel-dense categorization of images at the same time, and lower computing
costs were offered in real-time autonomous applications via a proposed architecture com-
bined with a novel Hadamard layer with element-wise weights using Caffe and achieved
0.65 F1, 0.67 precision and recall 0.64 after fine-tuning the architecture with 10,000 it-
erations [110]. Although strong restrictions placed by the double-loss function on the
DNN feature maps caused difficulties in optimizing the process, research in relation to the
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Cityscapes dataset showed that a sufficient representation of traffic scene understanding
was achieved relying on broad traffic components.

In another work, Xue et al. presented a CNN with Overlapping Pyramid Pooling
(OPP) applied to sematic segmentation of city traffic area based on a fisheye camera with
wider vision [111]. The OPP was demonstrated for the exploratory study of the local, global
and pyramidal local context information to resolve the complicated scenario in the fisheye
image. Furthermore, they built novel zoom augmentation for augmenting fisheye images
to boost performance of the method where it scored 54.5 mIoU, which is higher than the
standard OPP-Net and Dilation10 method. This approach could be highly suitable for short
FoV traffic scene understanding in urban areas.

Pan et al. proposed Spatial CNN, a CNN-like framework for efficient spatial distribu-
tion of information through slice-by-slice message passing from the top hidden layer [112].
It was tested at two roles: lane recognition and traffic scene perception. The analysis
showed that the continuity of the long, small structure was appropriately preserved by
SCNN, while its diffusion effects have proven positive for large objects in semantic segmen-
tation. However, SCNN can master the spatial relationship for the structural production
and increase operating efficiency, showing that SCNN was 8.7% and 4.6% superior to the
recurrent neural network (RNN) focused on ReNet and MRF + CNN (MRFNet). It scored
68.2 mIoU for semantic segmentation and achieved 96.53% on the TuSimple Benchmark
Lane Detection Challenge combined with traffic scene analysis.

Mou et al. proposed a vision-based vehicle behavior prediction system by incorporat-
ing vehicle behavior structural information into the learning process, obtaining a discrete
numerical label from the detected vehicle [113]. The OPDNN (overfitting-preventing DNN)
was constructed using the structured label as final prediction architecture, and after more
than 7000 iterations, 44.18% more accuracy on-road vehicle action than CNN was achieved.
In addition, the method decreased the issue of overfitting in a small-scale training set and
was highly efficient for analysis of on-road vehicle behavior predicting turning angles.

In another work, Jeon et al. proposed a model built on the CNN and Long Short-
Term Memory (LSTM) networks to predict risk of accidents and minimize accidents and
analyzing traffic scenes differing conditions of driving such as lane merging, tollgate and
unsigned intersections [114]. They implemented a multi-channel occupancy Grid Map
(OGM) as a bird’s-eye view that ostensibly included the features of many interaction groups
to represent the traffic scene [85].

Additionally, the CNN was used to derive numerous inter-vehicle interactions from
the grid and to estimate possible time-serial predictions of the derived functions. For
instance, Lui et al. demonstrated a deep understanding of the vehicle-specific scene
understanding state-of-art in terms of using traffic environment as object joining automatic
scene segmentation and object detection, which reduced the person manipulation [55].
A SegNet network whose weight was initialized by the VGG19 network was used for
semantic segmentation on the Auckland traffic dataset [115].

Afterwards, a Faster RCNN-based approach transformed feature maps in the ROI
(ROI) and transferred those to the classification mode. It had an accuracy of 91% for sky
detect, 90% for bus lane, 86% for road, 70% for lane and 81% building classes applying
VGG19-SegNet. However, it suffered from false rate for not having a high-resolution
labelled dataset and a weak vehicle detection process.

Furthermore, two state-of-the-art versions of machine learning and deep learning
(DNN) were used by Theofilatos et al. to estimate the incidence of a crash in real time
where the dataset comprised historical accident information and combined current traffic
and weather information from Attica Tollway, Greece [116]. The method achieved accuracy,
precision, recall and AUC of 68.95%, 52.1%, 77% and 64.1%, respectively. The limitation
was the transferability while returning the parameters and the absence of good interplay
during comparison and insufficiently clarified unexpected heterogeneity. The possible
solution offered by the authors was to apply a sensitivity analysis that was not used when
applying a binary logistic model in their work to determine risk of crashes.
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Moreover, Huegle et al. proposed a Graph-Q and DeepScene-Q off-policy reinforce-
ment learning-based approach for traffic scene analysis and understanding applied to a
custom dataset [117]. The proposed method used dynamic awareness-based scene under-
standing for AVS, although it was not tested in a real driving environment and was unable
to track lanes while moving quickly.

With a view to understanding hazardous or damaged roads in a driving situation for
a smooth autonomous driving experience, deep learning approaches can also provide a
solution. Nguyen et al. used CNN architecture to identify damages and cracks in the road
that reduced false detection and without pre-processing, which helped to decrease compu-
tational time [118]. On the other hand, authors adopted a principal component analysis
(PCA) method and CNN to classify and sense damaged roads with their own dataset.

Another Deep CNN-based approach with discriminative features for understanding
road crack identification was developed by Zhang et al., which also could be a pathway to
implement in AVS [119]. The core advantage of the framework was self-learning features
that did not rely on manual labelling and geometrical pavement predictions. An alternative
method for autonomous road cracks alongside pothole detection was demonstrated by
Anand et al. as part of an analysis of traffic scene [120]. SegNet was applied with texture
that relied on features to separate roads from traffic scene in order to build a first division of
mask and concatenated with the second masking, which was created with a 2-canny edge
algorithm and dilation. Further, SqueezeNet was applied to the GAPs dataset along with
being prepared for deployment in a self-driving vehicle. Compared with a similar approach
of Zhang [119], it achieved higher precision, recall and F1 score, leaving one drawback
where it failed to recognize cracked road that was misinterpreted as under-construction
surface texture. For this outcome, the method of Anand et al. [120] was a more suitable
approach for identifying damage road surface.

In summary, deep learning approaches such as fine-resolution CNN and coarse-
resolution CNN, 2D-LSTM model RNN, HRNet, Deep CNN, Contextual Deconvolution
Network, DNN and CNN with pyramid pooling were analyzed which demonstrated
high-accuracy traffic-scene understanding from a crowded movable platform, showed less
model complexity, being applicable in different scales, avoiding confusion of ambiguous
labels by increasing the contrast among pixels, in some cases developing more expressive
spatial features and predicting risk of accident. However, some approaches were limited
for implementation because of the requirement of re-weighting, which was inapplicable in
uncertain environments, slower computational time, low accuracy and inability to focus on
objects in dim light and foggy vision. The overall summary is presented in Table 9.

3.2. Decision Making

As the world economy and technology have grown and developed, vehicular own-
ership has increased rapidly, along with over one million traffic incidents worldwide per
year. Statistics indicate that 89.8% of incidents took place because of wrong driver decision-
making [193]. To solve this issue with the concept of AVS, the decision-making process
was one of the key fields for studying a combined deep learning and deep reinforcement
learning-based approach to take humanlike driving decisions when accelerating and de-
celerating, lane shifting, overtaking and emergency braking, collision avoidance, vehicle
behavior analysis and safety assessment.

For instance, the automated driving coordination problem was defined as a problem
of the Markov Decision Process (MDP) in the research of Yu et al., during the simulation of
vehicle interactions applying multi-agent reinforcement learning (MARL) with a dynamic
coordination graph to follow lead vehicles or overtaking in certain driving scenarios [121].
The advantage of the method was when most of the study focused on single vehicle policy,
the proposed mechanism resolved the limitation of coordination problem in autonomous
driving during overtaking and lane-shifting maneuvers, obtaining higher rewards than
rule-based approaches.
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Table 9. Summary of multiple deep learning methods for traffic scene analysis.

Ref. Method Outcomes Advantages Limitations

[55] VGG-19 SegNet Highest 91%
classification accuracy.

Efficient in specified scene
understanding, reducing the

person manipulation.

Showed false rate for not having
high-resolution labelled dataset.

[102] Markov Chain
Monte Carlo

Identify intersections with
90% accuracy.

Identified intersections from
challenging and crowded

urban scenario.

Independent tractlets caused
unpredictable collision in

complex scenarios.

[103] HRNet 81.1% mIoU. Able to perform semantic
segmentation with high resolution. Required huge memory size.

[104] HRNet + contrastive loss 82.2% mIoU. Contrastive loss with pixel-to-pixel
dependencies enhanced performance.

Did not show success of
contrastive learning in limited

data-labelled cases.

[105] DeepLabV3
and ResNet-50

79% mIoU with 50% less
labelled dataset.

Reduce dependency on huge labelled
data with softmax fine-tuning. Dependency on labelled dataset.

[106] Multistage Deep CNN Highest 92.90% accuracy. Less model complexity and three times
less time complexity than GoogleNet.

Did not demonstrate for
challenging scenes.

[107] Fine- and
coarse-resolution CNN 13.2% error rate. Applicable at different scale. Multilabel classification from scene

was missing.

[108] 2D-LSTM with RNN 78.52% accuracy.
Able to avoid the confusion of

ambiguous labels by increasing
the contrast.

Suffered scene segmentation in
foggy vision.

[109] CDN Achieved 80.5%
mean IoU.

Fixed image semantic information and
outperformed expressive

spatial feature.

Unable to focus on each object in
low-resolution images.

[110] DNN with
Hadamard layer

0.65 F1 score, 0.67
precision and 0.64 recall.

Foresaw road topology with
pixel-dense categorization and less

computing cost.

Restrictions by the double-loss
function caused difficulties in

optimizing the process.

[111] CNN with
pyramid pooling Scored 54.5 mIoU. Developed novel image augmentation

technique from fisheye images. Not applicable for far field of view.

[112] Spatial CNN 96.53% accuracy and
68.2% mIoU.

Re-architected CNN for long
continuous road and traffic scenarios.

Performance dropped significantly
during low-light and

rainy scenarios.

[113] OP-DNN 91.1% accuracy after
7000 iterations.

Decreased the issue of overfitting in
small-scale training set.

Required re-weighting for
improved result but inapplicable

in uncertain environment.

[114] CNN and LSTM 90% accuracy in 3 s. Predict risk of accidents lane merging,
tollgate and unsigned intersections.

Slower computational time and
tested in similar kinds of

traffic scenes.

[116] DNN 68.95% accuracy and
77% recall.

Determined risk of class from
traffic scene.

Sensitivity analysis was not used
for crack detection.

[117] Graph-Q and
DeepScene-Q

Obtained p-value
of 0.0011.

Developed dynamic
interaction-aware-based scene

understanding for AVS.

Unable to see fast lane result and
slow performance of agent.

[118] PCA with CNN High accuracy for
transverse classification.

Identified damages and cracks in the
road, without pre-processing.

Required manual labelling which
was time consuming.

[119] CNN 92.51%, 89.65% recall and
F1 score, respectively.

Automatic learning feature and tested
in complex background.

Had not performed in real-time
driving environment.

[120] SegNet and SqueezedNet Highest accuracy (98.93%)
in GAPs dataset.

Identified potholes with
texture-reliant approach.

Failed cases due to confusing with
texture of the restoration patches.

In another work, the Driving Decision-Making Mechanism (DDM) was built by Zhang
et al., using an SVM algorithm, optimized with the weighted hybrid kernel function and
a Particle Swarm Optimization algorithm to solve decision-making issues including free
driving, tracking car and lane changing [122]. The proposed decision-making mechanism
obtained 92% accuracy optimizing an SVM model compared with RBF kernel and BPNN
model, where the evaluated performance shows that free driving achieved 93.1% and
tracking car and lane changing achieved 94.7% and 89.1% accuracy, respectively, in different
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traffic environments within 4 ms for average reasoning time. The authors presented a
hypothesis when analyzing the results: for driving decisions, road conditions have nearly
no effect on heavy traffic density. Despite achieving good accuracy, some limitations
were mentioned, such as not applying to real-world driving environments and not yet
investigating critical driving scenes such as sudden presence of pedestrians or objects.

This issue of [122], was solved by Fu et al., who proposed autonomous braking,
analyzing a lane-changing behavior decision-making system for emergency situations,
implementing an actor-critic-based DRL (AC-DRL) with deep deterministic policy gradient
(DDPG) and setting up a multi-object reward function [123,124], obtaining 1.43% collision
rate. The authors mentioned that using a large training dataset online can be tough and
expensive, and the continuous action function decreased the convergence rate and can
quickly be lowered to the maximum local.

Moreover, to overcome the limitation of reinforcement learning in complex urban areas,
Chen et al. used model-free deep reinforcement learning approaches named Double Deep
Q-Network (DDQN), Twin Delayed Deep Deterministic Policy Gradient (TD3) and Soft
Actor-Critic (SAC) to obtain low dimensional latent states with visual encoding [125]. They
improved performance by implementing a CARLA simulator by altering frame dropping,
exploring strategies and using a modified reward and network design. The method was
evaluated in one of the most complicated tasks, a busy roundabout, and obtained improved
performance compared to baseline. In the 50 min test, the three approaches were able to
enter with high success rate but performance of DDQN and TD3 decreased after covering
a long distance. In the best case, SAC achieved 86%, 80%, 74%, 64%, 58% success rate for
first, second, third, desired exits and goal point, respectively, where DDQN and TD3 had
an almost zero success rate for desired exit and goal point arriving.

To avoid training complexity in a simulation environment, the DDPG algorithm with
actor-critic method was applied in [124] using deep reinforcement learning (DRL), consid-
ering three reward function braking scenarios: braking too early and too late, and too-quick
braking deceleration. The outcomes of their proposed methodology showed that the error
collision rate was 1.43% which was gained by evaluating the performance of the diverse
initial positions and initial speed strategies. The ratio of obtaining maximum deceleration
was 5.98% and exceeding jerk was 9.21%, which were much improved compared to DDPG
with steering and DQN with discrete deceleration.

A dueling deep Q-network approach was demonstrated by Liao et al. to make a
strategy of highway decision making [126]. The method was built for lane-changing
decisions to make a strategy for AVS on highways where the lateral and longitudinal
motions of the host and surrounding vehicles were manipulated by a hierarchical control
system. The outcomes showed that after 1300, 1700, 1950 episodes, the approach was able
to avoid collision after 6 h of training and 26.56 s of testing.

In another study, Hoel et al. introduced a tactical framework for a decision-making
process of AVS combining planning with a DRL-extended Alpha Go algorithm [127]. The
planning phase was carried out with a modification in the Monte Carlo Tree Search, which
builds a random sampling search tree and obtained a 70% success rate in highway cases.
The contrast between traditional MCTS and the variant in this search was that a neural
network formed through DRL aimed towards the search tree’s most major aspects and
decreased the essential sample size and helped to identify long temporal correlations with
the MCTS portion. However, the proposed process considered 20 simulation parameters
and 11 inputs to a neural network which were very efficient and made more suitable for
practical implementation.

Overtaking maneuvers for intelligent decision making while applying a mixed observ-
able Markov decision process was introduced by Sezer, solving overtaking maneuvers on
two-track roads [128]. In this paper, the author presented a new formulation for the issue
of double-way overtaking by the resources of the mixed observability MDP (MOMDP)
to identify the best strategy considering uncertainties. This was used for overcoming the
problem, and was illustrated by the active solvers’ growth and in cognitive technological
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advances by reducing time-to-collision (TTC) methods in different simulations. The method
surpassed nine periods, relative to both MDP and conventional TTC methods. However, the
limitation of proper discretion can also be considered with respect to the actual speed and
distance values. A higher number of states that were specifically connected for computing
and MOMDP algorithm tend to be required as the actual implementation hindrance.

To overcome the issue of vehicle overtaking which needs an agent to resolve several
requirements in a wide variety of ways, a multigoal reinforcement learning (MGRL)-based
framework was introduced to tackle this issue by Ngai et al. [129]. A good range of cases of
overtaking were simulated to demonstrate the feasibility of the suggested approach. When
evaluating seven different targets, either Q-Learning or Double Action QL was being used
with a fusion function to assess individual decisions depending upon the interaction of
the other vehicle with the agent. The hypothesis of the work was that this proposal was
very efficient at taking accurate decisions while overtaking, collision avoiding, arriving on
target timely, maintaining steady speed and steering angle.

Brännström et al. presented a collision-avoiding decision-making system adopting a
Bayesian network-based probabilistic framework [130]. A driver model enabled the devel-
oper to carry out early actions in many circumstances in which the driver finds it impossible
to anticipate the potential direction of other road users. Furthermore, both calculation and
prediction uncertainties were formally discussed in the theoretical framework, both when
evaluating driver adoption of an action and when predicting whether the decision-making
method could avoid collision.

Another important decision-making task is intelligent vehicle lane-changing policy.
Based on the area of acceleration and braking mechanism, a method was introduced by Zhu
et al. [131]. First, velocity and relative distance acceleration area was developed based on a
braking mechanism and acceleration was used as a safety assessment predictor and then, a
method for lane changing with the accelerating field was built, while the driver’s behaviors,
performance and safety were taken into consideration. In compliance with the simulation
findings, the use of lane-changing decision-making strategies based on the acceleration can
be optimized with driver behaviors for lane-change steps, including starting line, span and
speed establishing safety at the same time.

Although previous approaches presented a decision-making mechanism for lane
changing, most of them did not show DMS for behavior prediction while lane chang-
ing [132]. A fuzzy interface system with an LSTM-based method for AVS was proposed
by Wang et al. to analyze behavior of surrounding vehicles to ensure safety while lane
changing with 92.40% accuracy. The novelty of their work was the adjustment of motion
state dynamically in advance.

Li et al. proposed a framework for the analysis of the behavior, using a gradient-
boosting decision tree (GBDT), merging acceleration or deceleration behavior with the
data from the trajectory of the vehicle processed in the noise method on the U.S. highway
101 [133]. The partial dependency plots demonstrated that the effect on the fusion of
acceleration or deceleration in independent variables by understanding the key impacts
of multiple variables, was non-linear and thus distinct from the car tracking behavior
with 0.3517 MAD (Mean Absolute Deviation) value, which suggested that the adoption of
typical vehicle models in combination results cannot reflect characteristic behavior.

Further, DRL with Q-masking was applied by Mukadam et al. to make tactical
decisions for shifting lanes [134]. They introduced a system which provided a more
organized and data-efficient alternative to a comprehensive policy learning on issues where
high-level policies are difficult to formulate through conventional optimization or methods
based on laws. The success rate of 91% was 21% higher than human perception and the
0% collision was 24% lower than human perception. This method of DRL with Q-masking
worked best in the case of avoiding collision while lane shifting.

Similarly, Wang et al. adopted DRL but combined with rule-based constraints to
take lane-changing decisions for AVS in a simulated environment and MDP, which was
challenging for high-level policy to develop through conventional methods of optimization
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or regulation [135]. The training agent could take the required action in multiple situations
due to the environment of state representation, the award feature and the fusion of a high
level of lateral decision making and a rule-based longitudinal regulation and trajectory
adjustment. The method was able to obtain a 0.8 safety rate with superior average speed
and lane-changing time.

Chae et al. demonstrated an emergency braking system applying DQN [136]. The
problem of brake control model was conceived in Markov’s decision-making process
(MDP), where the status was provided by the relative location of the hazard and the speed
of the vehicle and the operating space specified as the collection of brake actions including
no braking, weak, medium and heavy braking operation, combining vehicle, pedestrian
and multiple road conditions scenarios, and the obtained collision rate decreased from
61.29% to 0% for a TTC value from 0.9 s to 1.5 s. As a result, this DQN-based approach was
selected as one of the most practical systems for SVM in terms of autonomous braking.

Furthermore, to analyze high-accuracy braking action from a driving situation declar-
ing four variables, that is, speed of host vehicle, time to collision, relative speed and
distance between host and lead vehicle, Wang et al. used hidden Markov and Gaussian
mixture-based (HMGM) approach [137]. The efficient technique was able to obtain high
specificity and 89.41% accuracy despite not considering kinematic characteristics of lead or
host vehicle for braking. However, the analysis of four variants while braking could be a
pathway to develop an improved version of braking decision making for AVS.

When most of the approaches had dependency on datasets, methods such as DRL that
combined DL and RL were extremely efficient for driving decision making in an unknown
environment. For example, Chen et al. developed a brain-inspired simulation based on
deep recurrent reinforcement Q-learning (DRQL) for self-driving agents with better action
and state space inputting only screen pixels [138]. Although the training process was long,
it resulted in better-than-human driving ability and Stanford driving agent in terms of
reward gain, which indicates that this approach was one of the most suitable for applying
in AVS.

Another DRL-based approach combined with automatically generated curriculum
(AGC), was extremely efficient for intersection scenarios with less training cost [139]. The
method obtained 98.69% and 82.1% mean average reward while intersection approaching
and traverse. However, the approach might lack proper finishing or goal researching
in some cases of intersection traverse, but it is still very efficient for not depending on
pre-trained datasets.

Similarly, continuous decision-making for intersection cases in top three accident-
prone crossing paths in a Carla simulator using DDPG and CNN surpassed the limitation
of single scenario with discrete behavior outputs fulfilling the criteria for safe AVS [140].
DDQG was utilized to address the MDP problem and find the best driving strategy by
mapping the link between traffic photos and vehicle operations through CNN that solved
the common drawback of rule-based RL methods deployed in intersection cases. The
method obtained standard deviation (SD) values for left turn across path opposite direction
and lateral direction, straight crossing path 0.50 m/s, 0.48 m/s and 0.63 m/s, respectively,
although it only considered lateral maneuvers and two vehicles in the intersection.

In contrast, approach was introduced by Deshpande et al. for dealing with behavioral
decision making for environments full of pedestrians [141]. Deep recurrent Q-network
(DRQN) was used for taking safe decisions to reach a goal without collision and succeeded
in 70% of cases. With the comparatively lower accuracy, this approach also could be very
appropriate if deep learning agents were added for better feature analysis.

For AVS navigation avoiding on-road obstacles, a double deep Q-learning (DDQN)
and Faster R-CNN in a stochastic environment obtained stable average reward value after
only 120 epochs with maximum 94% accuracy after 180,000 training steps with hyper-
parameter tuning [142]. However, this approach only considered vehicles in parallel and
did not show how DDQN and Faster R-CNN are fused. Moreover, the approach was still
unable to obtain stable performance in uncertain moments.
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Mo et al. demonstrated reinforcement learning agent and an MCTS-based approach to
reduce safe decision making and behaviors by safe policy search and risk state prediction
module [143]. This research assessed the challenge of decision making for a two-lane
overtaking situation using the proposed safe RL approach and comparing it with MOBIL
and DRQN. The proposed model outperformed MOBIL and DRQN by scoring 24.7%
and 14.3% higher overtaking rate with 100% collision-free episodes and highest speed.
Therefore, the proposed Safe RL could be a pathway for current AVS for risk-free trajectory
decision making.

In conclusion, decision making is the most vital part of an intelligent system, and to
obtain acceptable human-like driving decisions, multiple deep learning and deep reinforce-
ment learning methods were analyzed (shown in Table 10). The discussed approaches
where able to resolve severe limitations and outperformed in overtaking, braking, behav-
ioral analysis and significant segments of decision making for full AVS.

Table 10. Summary of multiple deep learning methods for decision-making process.

Ref. Method Outcomes Advantages Limitations

[121] MARL
Obtained higher

rewards than expert
rule-based approach.

Resolved the limitation of
coordination problem in

autonomous driving.

Individual learning of RL
agents involved high
computational cost.

[122] Weighted hybrid SVM Max 94.7% accuracy for
lane changing task.

Faster decision making in
different traffic conditions.

Yet to demonstrate for critical
and uncertain driving scenes.

[131,132] AC-DRL with DDPG 1.43% collision rate.
Autonomous braking system

while lane shifting with
high accuracy.

Complexity with large
training dataset and

decreased the
convergence rate.

[125] DDQN, TD3, SAC
In best case SAC

achieved 86%
success rate.

Decreased sample complexity
with visual encoding.

Lack of exploration caused
failure cases of DDQN

and TD3.

[126] Dueling DQN
Able to avoid collision

after lowest
1300 episodes.

Develop lane-changing
decision-making strategy for

AVS on highway.

Still needed to improve
training process for feasible
decision making strategy.

[127] Monte Carlo
Tree Search

70% success rate for
highway exist case.

Combines planning stage to
make efficient driving decision

on highway.

Required huge training
samples and did not consider

lead vehicles’ behavior.

[128] MOMD + SARSOP
91.67% les collision and

25.9% enhanced
response rate.

Efficient overtaking decision
without rule-based system and

optimum actions.

Did not consider real-time
speed and distance value.

[129] MGRL
Almost 100% safety
index to reach goal
without collision.

Outperformed overtaking,
collision avoiding, arriving at

seven RL goals.

Insignificant performance to
keep lane while overtaking.

[130] Bayesian network
Higher driver

acceptance while
avoiding pedestrians.

Collision avoidance with path
prediction and

threat assignation.

Testing in real and
challenging driving scene

was not mentioned.

[131] Polynomial trajectory
Better lateral and

steering angle than
ground truth.

Able to perform emergency
braking decision at

safe distance.

Only performed best in
straight-road scenario.

[132] LSTM with
Fuzzy Logic 92.40% accuracy. Decision based on the behavior

of surrounding vehicles.

Urban or real-life traffic
conditions were
not considered.
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Table 10. Cont.

Ref. Method Outcomes Advantages Limitations

[133] GBDT Calibration approach
scored 0.3517 MAD.

Understand the key impacts of
multiple variables on
acceleration of fusion.

Implemented on old dataset
and driver features were

not analyzed.

[134] DRL using Q-masking
91% success rate with

24% lower
collision rate.

Effective on high-level policies
learning through

conventional optimization.

Did not analyze real-time
and complex

road challenges.

[135] Rule-based DQN policy
Safety rate 0.8 on

average speed and
lane-changing time.

Productive data alternative to
end-to-end policy learning on
challenge for high-level policy.

Required explicit driving
path while training that

caused low performance in
complex scenes.

[136] DQN Collision rate decreased
from 61.29% to 0%.

Efficient and quick emergency
braking in

complex environment.

Ambiguous training and
environment setting.

[137] HMGRM
Achieved specificity

97.41% and
89.41% accuracy.

Highly accurate braking action
from driving situation.

Analysis of kinematic
characteristics for both host

and lead vehicle
was missing.

[138] DRQN
Obtained maximum
64.48% more reward

than human.

Did not require a labelled
dataset and only took screen

pixel as input.
Training time consuming.

[139] AGC based DRL
98.69% higher average

mean reward
at intersection.

Efficient on intersection
scenarios and reduced DRL

training time.

Showed few collisions and
unfinished cases during

intersection traverse.

[140] CNN + DDPG Lowest 0.48 SD for left
turn across path.

Overcame drawback of single
scenario with discrete behavior

in intersections.

Only considered
lateral maneuvers.

[141] DRQN 70% success rate for
collision free episodes.

Tackled high-level behavioral
decision in pedestrian-filled

environment.
Low accuracy.

[142] DDQL and FRC
Maximum 94%
accuracy with
stable reward.

Applied for four driving
decision for navigation

avoiding obstacle.

Limited decision making for
vehicles in parallel sides.

[143] RL + MCTS 100% collision
free episodes.

Outperformed DRQN and
MOBIL method for safe

lane shifting

Did not consider
urban scenarios.

3.3. End-to-End Controlling and Prediction

End-to-end controlling is one of the major fields of study for AVS. Human mistakes
were the main cause of road accidents, and fully autonomous vehicles can help reduce
these accidents.

To improve the control system of AVS analyzing driving scenarios for lane changing,
An et al. [144] proposed a system that tried to approximate driver’s actions based on the data
obtained from an uncertain environment that were used as parameters while transferring to
parameterized stochastic bird statecharts (stohChart(p)) in order to describe the interactions
of agents with multiple machine learning algorithms. Following that, a mapping approach
was presented to convert stohChart(p) to networks of probabilistic timed automata (NPTA)
and this statistical model was built to verify quantitative properties [145]. In the learning
case, weighted KNN achieved highest accuracy combined with the proposed method
considering training speed and accuracy, where it achieved 85.5% accuracy in 0.223 s and
in the best case, time cost for probability distribution time for aggressive, conservative and
moderate driving styles was 0.094, 0.793 and 0.113 s, respectively. The authors categorized
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their work into learning phase, modelling phase and quantitative analyzing phase in order
to develop the driving decision-taking phase.

A method was demonstrated by Pan et al. to control independently at high speeds
using human-like imitation learning, involving constant steering and acceleration mo-
tions [146]. The dataset’s reference policy was derived from a costly high-resolution model
predictive controller, which the CNN subsequently trained to emulate using just low-cost
camera sensors for observations. The approach was initially validated in ROS Gazebo sim-
ulations before being applied to a real-world 30 m-long dirt track using a one-fifth-scale car.
The sub-scale vehicle successfully learnt to navigate the track at speeds of up to 7.5 m/s.

Chen et al. focused on a lane-keeping end-to-end learning model predicting steering
angle [147]. The authors employed CNN to the current NVIDIA Autonomous Driving
Architecture, where both incorporated driving image extraction and asserting steering
angle values. To test the steering angle prediction while driving, they considered the
difference among ground truth angle which was generated by human drivers vs. predicted
angle where they acquired higher steering prediction accuracy with 2.42 mean absolute
error and suggested for data augmentation for training to achieve a better performance.

In another work, a technically applied system of multitask learning in order to estimate
end-to-end steering angle and speed control, was proposed in [148]. It was counted as one
of the major challenging issues for measuring and estimating speed only based on visual
perceptions. Throughout their research, the authors projected separation of speed control
functions to accelerate or decelerate, using the front-view camera, when the front view
was impeded or clear. Nevertheless, it also showed some shortcomings in precision and
pre-fixed speed controls. By combining previous feedback speed data as a complement
for better and more stable control, they improved the speed control system. This method
could be stated to solve error accumulation in fail-case scenarios of driving data. They
scored 1.26◦ Mean Absolute Error (MAE) in estimating real-time angles along with 0.19 m/s
and 0.45 MAE on both datasets for velocity prediction. Thus, the improved result made
the method one of the most applicable versions of CNN and data-driven AV controlling.
While driving, people identify the structures and positions of different objects including
pedestrians, cars, signs and lanes with human vision. Upon recognizing several objects,
people realize the relation between objects and grasp the driving role. In the spatial
processing of single images by the application of three-dimensional vectors, CNN has
certain shortcoming in the study of time series. However, this issue cannot be overcome
using CNN alone.

To solve this limitation Lee et al. demonstrated an end-to-end self-driving control
framework combining a CNN and LSTM-based time-series image dataset applied in a
Euro Truck simulator [149]. The system created a driving plan which takes the changes
into account over time by using the feature map to formulate the next driving plan for the
sequence. Moreover, NVIDIA currently has succeeded in training a ConvNet for converting
raw camera images into control steering angles [150]. It resolved end-to-end control by
predicting steering angle without explicating labels with approximately 90% autonomy
value and 98% autonomous of the testing period. This approach was one of the most
demonstrated approaches that boosted research of AVS applying deep learning methods.

A similar method, deep ConvNet, was used by Chen et al. to train for directly
extracting the identified accessories from the front camera [151]. A basic control system,
based on affordance principles, provided steering directions and the decision to overtake
proceeding vehicles. Rather than using lane-marking detection methods as well as other
objects to assess indirect activity specifications of the car, a variety of driving measures
allowances were specified. This method included the vehicle location, the gap to the
surrounding lane markers and records of previous car driving. While this was a very
trendy concept, for many reasons it may be challenging to handle traffic with complex
driving maneuvers and make a human-like autonomous vehicle controlling system.

To deploy a human-like autonomous vehicle speed-control decision-making system
Zhang et al. proposed a double Q-network-based approach utilizing naturalistic driving
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data built on the roads of Shanghai inputting low dimensional sensor data and high-
dimensional image data obtained from video analysis [152]. They combined deep neural
networks and double Q-learning (DDQL) [194–196] to construct the deep Q-network (DQN)
model which was able to understand and make optimal control decisions in simultaneous
environmental and behavioral states. Moreover, real-world data assessment reveals that
DDQN can be used on a scale to effectively minimize these unreliable DQN problems,
resulting in more consistent and efficient learning. DDQN had increased both in terms
of interest precision and policy efficiency. The model performed 271.13% better than
DQN in terms of speed-control decision making. Even so, the proposed approach could
be more applicable to an unknown driving environment with combined CNN agent for
feature extraction.

Chi et al. formulated a ST-LSM network that incorporates spatial and temporal data
from previously multiple frames from a camera’s front view [153]. Several ST-Conv layers
were used in the ST-LSTM model to collect spatial information and a layer of Conv-LSTM
was used to store temporarily data at the minimal resolution on the upper layer. However,
the spatial and temporal connection among various feature layers was ignored by this end-
to-end model. They obtained a benchmarking 0.0637 RMSE value on the Udacity dataset,
creating the smallest 0.4802 MB memory and 37.107 MB model weight. The limitation of
the paper was that all present end-to-end driving models were only equipped by focusing
on the ground truth of the current frame steering angle, which indicated a lack of further
spatiotemporal data.

Furthermore, to obtain a better control system, the previous issue was tackled, and
an end-to-end steering control system was implemented by Wu et al. by concatenating
future spatiotemporal features [154]. They introduced the encoding for an advanced
autonomous driving control system of spatiotemporal data on a different scale for steering
angle approximation using the Conv-LSTM neural framework with a wide-spectrum
spatiotemporal interface module. Sequential data were utilized to improve the space-
time expertise of the model during development. This proposed work was compared
with end-to-end driving models such as CgNet, NVIDIA’s PilotNet [155] and ST-LSTM
Network [153], where the root mean square error (RMSE) was 0.1779, 0.1589 and 0.0622,
respectively, and showed the lowest RMSE value of 0.0491 to predict steering angles, which
was claimed to be more accurate than an expert human driver. Thus, this approach was
applicable for a level 4 or 5 autonomous vehicle control system.

Moreover, a deep neural network-based approach with weighted N-version Program-
ming (NVP) was introduced for resilient AV steering controlling [156]. Compared to the
other three networks (chauffeur, autumn, rambo), the proposed network showed 40%
less RMSE retrieving steering angles in clear, rain, snow, fog and contrast lighting condi-
tions. However, there was a high failure rate for the large developing cost for training an
individual DNN model.

Aiming to build a vehicle motion estimation system for diversity awareness while
driving, Huang et al., via latent semantic sampling [157], developed a new method to
generate practical and complex trajectories for vehicles. First, they expanded to include
semantic sampling as merging and turning the generative adversarial network (GAN)
structure with a low-dimensional semantic domain, formed the space and constructed it. It
obtained 8% improvement on the Argoverse validation dataset baseline. They therefore
sampled the estimated distribution from this space in a way which helped the method to
monitor the representation of semantically different scenarios.

A CNN and state-transitive LSTM-based approach was demonstrated with multi-
auxiliary tasks for retrieving dynamic temporal information from different driving scenarios
to estimated steering angles and velocity simultaneously [158]. The method applied the
vehicle’s current location to determine the end-to-end driving model sub-goal angle to
boost the steering angle estimation accuracy, which forecasted that the efficiency of the
driving model would improve significantly. The combined method obtained 2.58◦ and
3.16◦ MAE for steering angle prediction and 0.66 m/s and 0.93 m/s speed MAE in GTA
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V and Guangzhou Automotive Cooperate datasets, respectively. Nevertheless, it showed
a slow response in unknown environment, so this method might not be applicable in
practical implementation.

In a similar manner, Toromanoff et al. presented a CNN-based model for lateral
control of AVS using a fisheye camera with label augmentation technique for accurate
corrections labelling under lateral control rule to tackle ceases of lateral control error in
wide FoV [159]. This method compares with pure offline methods where feedback was
not implemented from a prediction which resulted in 99.5% and 98.7% autonomy in urban
areas and highways after training with 10,000 km and 200 h driving video.

On the other hand, Smolyakov et al. reduced a huge number of parameters of CNN to
avoid overfitting along with helping to find dependency on data sequence and implement
in a CarND Udacity Simulator for predicting steering angles. However, the obtained
unsatisfactory result was comparable to other reviewed results, where the accuracy was
78.5% [160].

Similarly, a CNN-based approach was applied for both lateral and longitudinal mo-
tion controlling of AVS obtaining 100% autonomy on e-road track on TORCS simulator.
Although it had performed very well, contributing to both kinds of motion controlling, it
lacked training data for practical implementation and memory consumption for training
two different neural networks for speed and steering angle prediction. This method could
be better approached by implementing in real scenarios with a good amount of training
data [161].

In another proposal, a reinforcement learning-enabled throttle and brake control
system was proposed by Zhu et al. [162], focusing on a one leader and one follower
formation. A neural dynamic programming algorithm evaluating with trial-and-error
method was directly applied for adopting near-optimal control law. The control policy
included the necessary throttle and brake control commands for the follower according to
the timely modified corresponding condition. Simulation experiments were carried out
using the well-known CarSim vehicle dynamic simulator to show the reliability of the
approach provided.

To overcome traditional sensor-based pipeline for controlling AVS where there is a
tendency to learn from direct mapping, Xiao et al. demonstrated multimodal end-to-end
AVS applying conditional imitation learning (CIL), taking an RGBD image as raw data
in a Carla simulator environment [163]. The CNN-based CIL algorithm was evaluated in
different weather modes to identify the performance for end-to-end control. The success
rate of controlling in one turn and dynamic environment were 95% and 84%, respectively,
which could be boosted through early fusion by changing the number of color channels from
three (RGB) to four (RGBD). However, performance dropped almost 18.37% and 13.37%
during controlling AVS with RGB image input for one turn and dynamic environment,
respectively, in a new map of Carla simulators which could be considered as uncertain area

In brief, most of the deep learning approaches for end-to-end controlling and motion
predications were based on CNN, showing efficient outcomes suitable for practical level
4 or 5 AVS. Most of the methods were deployed for estimating continuous steering angle
and velocity, some controlling approaches taking into account resolving blind spot, gap
estimation, overcoming slow drifting, both lateral and longitudinal motion controlling with
methods such as multimodal multitask-based CNN, CNN-LSTM, Deep ConvNet, ST-LSTM,
neural dynamic programming-based reinforcement learning with actor-critic network and
RL. These methods faced challenges, such as noise created by human factor reasoning
speed changes causing lower accuracy, only equipped by focusing on the ground truth of
the current frame steering angle and not applying in a practical or complex environment.
The overall summary of discussed methods is presented in Table 11.



Appl. Sci. 2022, 12, 6831 33 of 51

Table 11. Summary of multiple deep learning methods for end-to-end controlling and prediction.

Ref. Method Outcomes Advantages Limitations

[144] Hybrid weighted KNN Gained 85.5% accuracy in
0.223 s in best case.

Performed safe control during
lane changing in

uncertain environment.

Unsafe driving behavior and
did not consider

complex conditions.

[146] CNN + LSTM +
State method

Successfully learnt to
navigate the track at

speeds of up to 7.5 m/s.

High-speed driving control
and robustness to
compound errors.

Trained only for elliptical
racetracks with no

other vehicles.

[147] CNN with comma.ai
Obtained appropriate

steering angles with 2.42
mean absolute error.

Able to overcome slow drifting
from human driving data.

Improper dataset for
practical implementation.

[148] Multimodal-based
CNN

Scored 1.26◦ MAE for
angles and 0.45◦ MAE

for velocity.

Accurate estimation
continuous steering angles

and velocity.

Noise of human factor for
speed changes caused

lower accuracy.

[149] CNN and LSTM
Almost similar steering

prediction value as
ground truth.

Resolved the limitation of
CNN and blind-spot problem.

Lack of driving data collection
from vehicle.

[150] ConvNet
90% autonomy value and

98% autonomous
approximately.

Required fewer training data
with no manual
decomposition.

Robustness were not successful
in internal processing phase.

[151] Deep ConvNet
0.033◦ and 0.025◦ steering
angle MAE on GIST and

Caltech baseline.

Considered lane gap and
records of previous

car driving.
Only tested on simple cases.

[152] DDQN 271.13% better than DQL
for speed control.

Make optimal control
increasing precision and

policy efficiency.

Measured few errors on
uneven roads.

[153] ST-LSTM Network
Obtained 0.0637 RMSE
value on Udacity with

model weight.

Implemented in challenging
lighting conditions.

Only focused on the ground
truth of steering angle.

[154] Spatiotemporal
Conv-LSTM

Showed lowest RMSE
value 0.0491 to predict

steering angles.

Overcome the limitation
of [153].

Did not test in
busy environment.

[156] DNN
Showed on average 40%

less RMSE retrieving
steering angles.

Predicted steering angles in
multiple conditions.

High developing cost for
training individual

DNN model.

[157] GAN
8% improvement for
Argoverse validation

dataset baseline.

Better trajectory building
layers while motion prediction.

Had not tested in real time and
only used simple semantics.

[158] CNN and
state-transitive LSTM

Predicted 2.58◦ and 3.16◦

MAE for steering angle.

Used current position and
subgoal angle for steering

angle prediction.

Slow prediction rate in
unknown environment.

[159] CNN

Achieved 99.5% and 98.7%
accuracy in urban areas

and
highways, respectively.

Solved lateral controlling using
fisheye camera.

Autonomy dropped while
sharp turning.

[160] CNN Achieved 78.5% accuracy.
Reduced parameters of CNN

to avoid overfitting on
data sequence.

Noticeable performance drop.
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Table 11. Cont.

Ref. Method Outcomes Advantages Limitations

[161] CNN Obtained 100% autonomy
on e-road track on TORCS.

Showed both lateral and
longitudinal motion control.

Lack of training data and
memory consuming.

[162] RL with ACN Robust throttle and brake
value of the host vehicle.

Learned controlling policy
while following lead vehicle.

Environmental surroundings
were not stated.

[163] CIL 84% success rate in
dynamic environment.

Demonstrated successful
multimodal approach in

four cases.

Up to 18.37% performance
drop in unknown map.

3.4. Path and Motion Planning

Precipitation-based autonomous navigation including path and motion planning in
an unknown or complex environment is one of the critical concerns for developing AVS.
To tackle the current problem and analyze the contribution, multiple deep learning and
deep reinforcement learning (DRL) combined methods for path and motion planning are
reviewed in this section.

Initially, You et al. focused on the issue of path planning of autonomous vehicles in
traffic in order to repeat decision making by replicating the optimum driving technique of
expert drivers’ actions for lane changing, lane and speed maintenance, acceleration and
braking in MDPs on highways [164]. The optimal control policy for the proposed MDP
was resolved using deep inverse reinforcement learning (DIRL) and three MaxEnt IRL
algorithms by utilizing a reward function in terms of a linear combination of parameterized
function to solve model-free MDP. The trajectory proposals were executed at the time of
overtaking and the policy recovery was reduced to 99%, even though there was insufficient
evidence for the reflection of stochastic behavior.

To solve limitations of rule-based methods for safe navigation and better intersection
problems for AVS, a vision-based path and motion planning formula was used by Isele et al.,
adopting DRL [165]. Each wait action was proceeded by another wait or go action, meaning
that each pathway was a series of waiting decisions that concluded in a go decision as well
as the agent not being permitted to wait after the go action had been chosen. The method
secured a success rate for forward, right, left and turn and challenge of 99.96%, 99.99%,
99.78% and 98.46%, respectively, which was 28% faster than the TTC (time-to-collision)
method, although performance decreased three times and average time doubled during
this challenging situation.

Zhang et al. proposed a risk analysis and motion planning system for autonomously
operated vehicles focused on highway scenario motion prediction of surrounding vehi-
cles [166]. An interactive multiple model (IMM) and constant turn rate and acceleration
(CTRA) model were used for surrounding vehicle motion prediction, and model predictive
control (MPC) was used for trajectory planning that scored 3.128 RMSE after 5 s dur-
ing motion prediction. Although it was designed for connected AVS, it is efficient for
vision-based approaches.

Another approach, local and global path planning methodology, was presented in an
RoS-based environment for AVS by Marin-Plaza et al., where they used the Dijkstra and
time elastic bands (TEB) method [167]. The path planning model was able to reach the goal
with modest error by calculating Euclidean distance for comparing local and global pan
waypoints, where it scored 1.41 m, which is very efficient. However, it was applicable only
if the model was not specifically calibrated for the vehicle’s kinematics or if the vehicle
was out of track, and did not consider complex scenarios. In another work, Islam et al.
established a vision-based autonomous driving system that relied on DNN, which handled
a region with unforeseen roadway hazards and could safely maneuver the AVS in this
environment [168]. In order to overcome an unsafe navigational problem, they presented
object detection and structural segmentation-based deep learning architecture, where it
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obtained an RMSE value of 0.52, 0.07 and 0.23 for cases 1 to 3, respectively, and 21% safety
enhancement adding hazard avoiding method.

Ma et al. proposed an efficient RRT algorithm that implemented a policy framework
based on the traffic scenes and an intense search tree extension strategy to tackle traditional
RRT problems where it faced a meandering route, an unreliable terminal state and sluggish
exploration, and established more sustainable motion planning for AVS [169]. In addition,
the integrated method of the proposed fast RRT algorithm and the configuration time space
could be adopted in complex obstacle-laden environments to enhance the efficiency of the
expected trajectory and re-planning. A significant set of experimental results showed that
the system was much quicker and more successful in addressing on-road autonomous driv-
ing planning queries and demonstrating its better performance over previous approaches.

In another work, an optimum route planner integrated with vehicle dynamics was
designed by Gu et al. implementing an artificial potential field to provide maximum
workable movement that ensured the stability of the vehicle’s path [170]. The obstacles
and road edges were typically used with constraints and not with any arbitrary feature
in this method in the optimal control problem. Therefore, when designing the optimum
route using vehicle dynamics, the path-planning method was able to treat various obstacles
and road structures sharply in a CarSim simulator. The analysis showed that the method
reduced computational costs by estimating convex function while path planning. A similar
method was proposed by Wahid et al., where they used an artificial potential field with
adaptive multispeed scheduler for a collision-avoidance motion planning strategy [171].

Cai et al. demonstrated a novel method combining CNN, LSTM and state model
which was an uncertainty-aware vision-based trajectory generation network for AVS’s
path-planning approach in an urban traffic scene [172]. The work was divided into two
major parts: the first one was a CNN bottleneck extractor, and the second component
included a self-attention module for calculating recurrent history and an LSTM module for
processing spatiotemporal characteristics. Finally, they designed the probable collision-free
path planning with speeds and lateral or longitudinal locations for the next 3.0 s after taking
image stream and state information in the past 1.5 s considering as input. The method
obtained more centralized error distribution and lower error medium.

For safe navigation for AVS in road scenarios with obstacles, a model prediction
control-based advanced dynamic window (ADW) method was introduced by Kiss et al. [173].
The method demonstrated differential drive that reached the destination location ignoring
the desired orientation and did not require any weighted objective function.

A motion planning model based on the spatiotemporal LSTM network (SLN), which
had three major structural components, was proposed by Bai et al. It was able to produce
real-time feedback based on the extraction of spatial knowledge [174]. First, convolutional
long-term memory (Conv-LSTM) was applied in sequential image databases to retrieve
hidden attributes. Secondly, to extract spatiotemporal information, a 3D CNN was used,
and precise visual motion planning was displayed constructing a control model for the AV
steering angle with fully connected neural networks. The outcome showed almost 98.5%
accuracy and better stable performance compared with Hotz’s method [147]. Nonetheless,
the method was found to minimize state after generating overfitting on antecedent data for
time-series data of previous steps, causing more computational cost and time.

Another motion planning avoiding-obstacle-based approach was proposed in a simu-
lation environment [175]. The motion planning method had the ability to infer and replicate
human-like control thinking in ambiguous circumstances, although it was difficult to estab-
lish a rule base to tackle unstructured conditions. The approach was able to execute 45.6 m
path planning with 50.2 s.

In conclusion, very few works have adopted a perception-based path and motion
planning for AVS but the existing research adopting deep inverse reinforcement learning
and MaxEnt IRL, deep Q-network time-to-go method, Dijkstra and time elastic bands
method, DNN, advance RRT, artificial potential field, ADW using model predictive control
and fuzzy logic made a remarkable contribution, with high accuracy, collision-free path
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planning, 21% safety enhancement adding hazard-avoiding method planning motion in
a multilane turn-based intersection. Nevertheless, these methods were not practically
implemented or theoretical, and some of the high-performing approaches were not tested
in a real-life environment with heavy traffic. An overview of the deep learning methods
selected for analysis to improve AVS is presented in Table 12.

Table 12. Summary of multiple deep learning methods for path and motion planning.

Ref. Method Outcomes Advantages Limitations

[164] DIRL 99% policy recovery
within less data length.

Avoid cost function and
manual labelling.

Insufficient training data for
stochastic

behavior representation.

[165] DRL with TTC 28% faster than
TTC method.

Solved limitation of
rule-based

intersection problems.

Performance decreased three
times during

challenging situation.

[166] IMM with MPC
Score 3.128 RMSE after

5 s during
motion prediction.

Considered motions of
surrounding vehicles.

Lower accuracy in far
predicted horizon.

[167] Dijkstra and TEB
method

Obtained efficient
Euclidean

distance 1.41 m.

Reach goal with
modest error.

Applicable only if vehicle was
out of track in

simple scenarios.

[168] DNN

21% safety
enhancement adding

hazard-avoiding
method.

Safe navigation adding
hazard detection and

segmentation method.

Tested only on simple
open highway.

[169] Advance RRT
Took 5 ms and 48 ms
for path selection and

path generation.

Novel cost function to select
path and

obstacle-avoiding feature.

Limited to
non-rule-based approach.

[170,171] Artificial potential field
Visualized potential

field in nine
different scenarios.

Reduce computational cost
by estimating

convex function.

Effects of local minimum issue
that led AV to be stuck in

a position.

[172] CNN + LSTM +
State method

Lower error medium
and more centralized

error distribution.

Vehicle motion planning
predicted in multilane

turn-based intersection.

Did not consider traffic light
and weather condition for
performance evaluation.

[173] ADW with MPC
Reached destination
location ignoring the
desired orientation.

Did not require any
weighted objective function.

Limitation occurred with
constrained kinematics.

[174] 3D-CNN
Almost 98.5% average

accuracy and
stable outcome.

Able to learn time-serial
features from

traffic environment.

Minimized state after
generating overfitting on

time-series data.

[175] Fuzzy logic 45.6 m path planning
with 50.2 s.

Human-like control thinking
in ambiguous circumstances.

Difficult to establish a rule
base to tackle

unstructured conditions.

3.5. AR-HUD

Augmented reality (AR) in head-up display (HUD) or displaying in windshield for
autonomous driving system as a medium of final visualizing of activities outcomes from the
deep learning approach was overlayed with an autonomous driving system. The AR-based
vehicular display system was essential for driving situation awareness, navigation and
overall deployment as a user interface.

Yoon et al. demonstrated an improved forward collision alert system detection of
cars and pedestrians fused into the HUD with augmented reality through using stereo
cameras and visualized early alerts where SVM classifier was applied for object recognition
and obtained an F1 score of 86.75% for car identification and 84.17% for pedestrian iden-
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tification [176]. The limitation of the work was noticed when the observed object moved
rapidly and the car suddenly turned; it was visualized with delay. The proposed system
yet needed to optimize efficiency and acceleration which in diverse vehicle conditions
responds robustly to different and high speeds.

An analysis showed personal navigation with AR navigation assist equipped for use
with a volumetric 3D-HUD and utilizing its parameters. An interface was developed for
assisting to turn faster by locating turn points quicker than during regular navigation [177].
The interface also helped to maintain user eyes and to fix them more precisely on the
driving environment after analyzing traffic scenes with deep learning algorithm with
proper registration of applications via spatial orientation of AR views on interface. On
the basis of the results, however, the inadequate perception of the depth of a specified 2D
HUD distance is obvious and the navigation system’s AR interface was ineffective without
a 3D HUD.

An automatic AR based on a road tracking information method registration was
introduced by Yoon et al., with a SIFT matching function and homography measurement
method, which defined matching between camera and HUD providing the driver’s view
was positioned to the front, which detected vehicle and pedestrians and converted them
into AR contents after projective transformation [178]. This solution was good enough for
daytime performance but had limitations at nighttime. Nevertheless, the procedure had
the ability to automate the matching without user interference, but it is inconvenient while
projecting outcomes which occurred due to misreading local correspondence.

Park et al. demonstrated an AR-HUD-based driving safety instruction by identifying
vehicle and pedestrians using the INRIA dataset [179]. The identification method was built
using SVM and HOG with 72% and 74% in fps accuracy and detected partial obstacles,
respectively, applying a billboard sweep stereo (BSS) algorithm. The detected vehicles
and pedestrians were overlapped on the HUD with the AR technique. Despite detecting
obstacles in sunny and rainy scenarios, it was not deployed for nighttime scenarios.

In order to integrate outcomes with AR, the system was divided into two parts by
Rao et al., 3D object detection and 3D surface reconstruction, to develop object-level 3D
reconstruction using Gaussian Process Latent Variable Model (GPLVM) with SegNet and
VPNet for in-vehicle augmented reality UI and parking system [180]. Their AR-based
visualization system was built with monocular 3D shaping, which was a very cost-efficient
model and needed only a single frame in the input layer.

Furthermore, a new traffic sign-recognition framework based on AR was constructed
by Abdi and Meddeb to overlay traffic signs with more recognizable icons overlapped
in an AR-HUD to increase the visualization of a driver aiming to improve safety [181].
The Haar Cascade detector and the verification of the theory using BoVW were combined
with the relative spatial data between visual words, which had proven to be a reasonable
balance between resource efficiency and overall results. A classifier with an ROI and
allocated 3D traffic sign was subsequently developed using a linear support vector machine
that required less training and computation time. During the decision-making process,
this state-of-the-art methodology influenced the distribution of visual attention and could
be more consistent with the improved approach of deep learning recognition relying on
the GPU.

Addressing the challenge of overtaking an on-road slow vehicle, a see-through effect-
based marker-less real-time driving system had been demonstrated by Rameau et al.,
applying AR [182]. To overcome the occlusion and produce a seamless see-through effect, a
3D map of the surroundings was created using an upper-mounted camera and implement-
ing an in-vehicle pose predictor system. With up to 15 FPS, they presented a faster novel
real-time 2D–3D tracking strategy for localization of rear in a 3D map. For the purpose
of decreasing bandwidth usage, the ROI was switched to the rear car impacted by an
occlusion conflict. This tracking method on AR-HUD showed great efficiency and easy
adoption capability for vehicle displaying systems.
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To reduce the accident cases, Abdi et al. proposed augmented reality-based head-up
display providing more essential surrounding traffic data as well as increasing interactions
between drivers and vehicles to enhance drivers’ focus on the road [183]. A custom deep
CNN architecture was implemented to identify obstacles and final outputs will be projected
in the AR head-up display. For AR-based projection in HUD, firstly, pose prediction of
targeted ROIs were carried out and obtained 3D coordinates with points after achieving
camera projection matrix to recognize AR 3D registration. This step created a 6-DOF pose of
translation and rotation parameters which will be helpful for motion estimation calculation
with planar homograph. Afterwards, the RANSAC method was applied to compute the
homograph matrix, and OpenGL real camera was synchronized with a virtual camera that
showed a projection matrix to map 2D points utilizing 3D surface points and developed a
marker-less approach.

Lindemann et al. demonstrated an augmented reality-based windshield display
system for autonomous vehicle with a view to assisting driving situation awareness in
city areas and increase automated driving level from level 4 to 5 [184]. This AR-based
windshield display UI was developed based on deep learning-applied object detection to
enhance situation awareness, aiming at both clear and lower-visibility conditions where
they obtained very different situation awareness scores in low-visibility conditions in
disabled windshield display but failed to obtain a good score when windshield UI was
enabled. Nevertheless, it worked significantly better in clear weather conditions.

Park et al. presented a 2D histogram of oriented gradient (HOG) tracker and an online
support vector machine (SVM) re-detector based on training of the TLD (tracking-learning-
detector) functional vehicle tracking system for AR-HUD using equi-height mosaicking
image (EHMI) [185]. The system initially performed tracking on the pre-computed 2D HOG
EHMI, when the vehicle was identified in the last frame. If the tracking failed, the system
started re-detection using an online learning-based SVM classification. The tracking system
conducted online learning frequently after the vehicle had been registered and minimized
the further calculation necessary for tracking as the HOG descriptor for EHMI was already
determined in the detection phase. The technique was perfect for deploying in various
lighting and occlusion scenes since it adopted online learning. Refining the algorithm to
make optimized hardware or embedded device and to identify other dangerous obstacles
effectively in road scenes, this lightweight architecture-based proposed work could be a
more acceptable approach for faster tracking and visualizing in HUD.

To represent driving situation awareness data, Park et al. introduced a vehicle
augmented-reality system that deducts drivers’ distractions with an AR-based windshield
of the Genesis DH model from Hyundai motors [186]. The system presented driving
conditions and warned a driver using a head-up monitor via the augmented reality. The
system included a range of sub-modules, including vehicle and pedestrian recognition
based on the deep learning model of [179], vehicle state data, driving data, time to collision
(TTC), hazard evaluation, alert policy and display modules. During most experiments, on
the basis of TTC values and driver priority, the threat levels and application of augmented
EHMI was already determined in the detection phase.

In this section, a combination of deep learning algorithms and their outcomes were
visualized as the final task of AVS showing them in an AR-based HUD for better driving
assistance. AR-HUD was adopted due to visualization in front display for early warning,
navigation, object marking by overlapping, ensuring safety and better tracking. Although
these studies had successful demonstrations, some major limitations were detected when
analyzing the studies, such as visual delay for the case of sudden turn or rapid-moving
objects, misreading of local correspondence, high computational cost while 3D shaping,
visualizing challenges in extreme contrast and distraction for complex UI. Table 13 provides
a summary of the section.
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Table 13. Summary of multiple deep learning methods for AR-HUD.

Ref. Purpose Methods Advantages Limitations

[176] Early warning SVM
Improved collision alert system
detecting cars and pedestrians

fused into the HUD.

Visualization delay while
observing rapid moving and

sudden turning of vehicle.

[177] Navigation Custom deep learning
based scene analysis.

Helped to turn faster and more
confidently locating turn points

quicker.

The insufficient depth
perception of the defined 2D
HUD distance was apparent.

[178] Object marking SIFT and homography
measurement method.

Detected road objects are
converted into AR contents after

projective transformation.

Automatic matching ability is
inconvenient due to misreading

of local correspondence.

[179] Safety SVM, HoG and BSS
algorithm.

Applicable in sunny and rainy
scenarios for overlapping of

detected objects and obstacles.

Poor detection accuracy and not
applicable for nighttime

scenarios.

[180] Assistance GPLVM with SegNet
and VPNet.

3D shaping cost-efficient model
and needs only single frame in

input layer.

Computational complexity is
higher for algorithm fusion.

[183] Safety Haar cascade detector
with BoVW method.

Overlay traffic signs with more
recognizable icons in AR-HUD

to improve safety.

Lack of implementation in
complex scenarios.

[182] Tracking 2D–3D tracking
strategy with ROI.

Assist overtaking an on-road
slow vehicle via marker-less

real-time driving system.

The detection methods for
deployment in the real-life field

had yet to become apparent.

[183] Safety CNN and RANSAC.
Providing more essential

surrounding traffic data to
increase interactions and focus.

Was not deployed in complex
traffic scenarios or nighttime

environments.

[184] Safety
Custom deep learning

applied object
detection.

Boost situation awareness
aiming at both clear and

lower-visibility conditions

Failed to achieve good
visualization in lower-visibility

conditions.

[185] Tracking TLD using SVM.
Applicable in various lighting
and occlusion scenes, since it

adopted online learning.

Required a very wide range of
views.

[186] Safety and awareness SVM and HoG.
Enhanced a driver’s intuitive

reasoning and minimized driver
distraction calculating TTC.

Not computation cost efficient
and complex UI.

4. Evaluation Methods

In this section, commonly used evaluation metrics throughout the systematic review
are presented in Table 14. Several evaluation techniques with equations and description
are shown which will give a better understanding, as evaluation techniques are different
from the reviewed methodology.
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Table 14. Evaluation techniques.

Ref. Technique Equations Remarks

[40,44,50,53,72,76,82,90,
110,116,119,120,137] Sensitivity/TPR/Recall (R) R = TP

TP+FN
TP is the true positive and FN is

the false negative detection.

[40,44,67,72,90,110,116,
119,120] Precision (P) P = TP

TP+FP FP is the false positive detection.

[54,80,88,90,110,119,120,
176] F1 Score F1 = 2 ∗

(
R×P
R+P

)
-

[37–39,41,43,46–
49,52,57,60,61,64,79,91–
94,96,98–101,106,108,112–
114,118,120,122,137,142,
144,152,179]

Accuracy Accuracy = XPred
XGT

XPred is the number of successes
and XGT is the ground truth.

[95,103–105,111,112] mIoU
IoU =

Region o f intersection
Region o f union

mIoU = 1
k+1

k
∑
n

TP
TP+FP+FN

-

[34,63,77] FNR FNR = FN
TP+FN -

[35,42,45,56,73,75,92] mAP
mAP =

1
n

k=n
∑

k=1
((R(k)− R(k + 1)) ∗ P)

k denotes each episode and n is
the total episodes.

[65,66,68,76,78] Log Average Miss
Rate (LogAMR) LogAMR = exp

(
1
n

n
∑

i=1
ln ai

) ai is the series positive values
correlated with the missing rate.

[51,55,81,116] Area Under Curve (AUC) AUC =
∫

TPR d(FPR) TPR is the true positive rate, and
FPR is the false positive rate.

[83,89,131] Lateral Error ∆y = ∆yr + (L ∗ εr)
∆yr is center of gravity, εr is yaw
angle towards the road and L is

the distance.

[121,138,139,142] Reward (r)
r =


min(t1, t2)

i f l = 1 and d1, d2 > 3
min(t3, t4)

i f l = 2 and d1, d2 > 3
−5 else

where, tn = dn−dsn
vn

tn is dimension of state, dn is
measured distance, dsn is safe

distance, l is overtaking lane and
vn is the longitudinal velocity.

Here, n = 1,2 refers host and lead
vehicle in driving lane and n = 3,4

refers to overtaking lane.

[123,126,128,130,136] Collision Rate (Crate) Crate =
Ncol
Clap

Ncol is the total collision number
while completing total Clap laps.

[102,124,127,134,165] Success Rate (SR) SR = Success Counts
Total Test Number ∗ 100% -

[129,135] Safety Index (SI) s = Nwc
Nep

Nwc is total episode without
collision and Nep is the

total episodes.

[133,147,148,151,158] MAD/MAE MAE/MAD = 1
n

n
∑

i=1
|xi − x̂i|

xi and x̂i are the real and
predicted value, respectively, and

n is the total episodes.

[137] Specificity (SPC) SPC = TN
FP+TN TN is the true negative value.

[150,159] Autonomy value (Av) Av =
(

1−
(

Ni
Te

)
∗ 6
)
∗ 100%

Ni is total interventions and Te is
elapsed time.

[153–156,166–168] RMSE RMSE =

√
∑n

i=1(xi−x̂i)
2

n

xi is the ground truth and x̂i is the
predicted truth.

[117] p-Value Z =
y′−y0√
y0(1−y0)

c

y′ is the sample proportion, y0 is
the assumed proportion, n is

sample size.
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5. Case Study
5.1. AVS in Roundabout Cases

A roundabout is one of the most difficult scenarios for driving with AVS due to tight
time constraints on vehicle behavior because of the yield and merging of maneuvers with
high-quality vision requirements for estimating the state of other vehicles, and multi-factor
decision-making based on these state estimations. It is particularly tough to forecast the
actions of other cars in a roundabout due to the availability of numerous exit locations as
discrete options mixed with continuous vehicle dynamics. The entry risk at roundabouts
grows with decreasing distance as the ego vehicle must account for cars in the circle passing.
Okumura et al. proposed a neural network to map observations to actions in a roundabout
that are handled as a combination of turns in order to emphasize the deep learning-based
AVS for roundabout cases [197]. This method concentrated on route planning and speed
estimation for the roundabout, as well as detection, tracking and generating predictions
about the environment using sensor fusion, but ignored interactions between cars.

This method concentrated on route planning and speed estimation for the roundabout,
as well as detection, tracking and generating predictions about the surroundings using
sensor fusion, but ignored interactions between cars [198]. This could be improved by a
strategy for forecasting whether a vehicle will exit the roundabout based on its anticipated
yaw rate. In a roundabout scenario, the projected yaw rate is a significant indication of
whether a car will turn next to the ego vehicle. Although the system was proved to be
capable of human-like judgments for a certain roundabout situation, only the center of
mass and velocity were calculated to quantify detection of turning cars. This method may
be a viable solution for the roundabout research of [197]; however, it may result in errors in
roundabouts with no traffic lights or heavy traffic.

One of the main reasons of vision-based AVS is to reduce the dependency in terms
of safety and collision-free driving; therefore, combined multi-thread architecture of al-
gorithms such as Spatial CNN (SCNN) and Deep Recurrent Q-Network (DRQN) could
be a major solution for roundabout cases. The spatial features of SCNN for traffic scene
understanding in dense traffic conditions as well as the ability of extreme efficient traffic
scene-analysis demonstration incorporating multi-threading with self-decision making
improved DRL approaches such as DRQN or DDQL could be a vast improvement in the
research of AVS in roundabout cases.

5.2. AVS in Uncertain Environmental Cases

Even at the current development level, it is challenging for AVS to operate au-
tonomously in unknown or uncertain environments. The uncertainty may be because
of variable traffic conditions, unknown terrain, unmarked or untrained settings, or even
a situation including an extended obstruction. In an unexpected driving environments,
even the performance of Waymo, the self-driving vehicle of Google, is at a conditional
level 4 of autonomy based on NHTSA autonomous functions, and Tesla’s self-driving
vehicles are only at level 2 of autonomy. In contrast, the authors of one study addressed
safety issues posed by ambiguity in DL approaches: insufficient training data, locational
shift, inconsistencies between training and operating parameters, and uncertainty in pre-
diction [199]. The most controversial incident occurred when a Tesla Model S was involved
in a deadly collision in which the driver was killed when its autopilot system failed to
notice a tractor-trailer 18-wheeler that turned in front of the vehicle [200]. To reduce un-
intended occurrence in unknown or uncertain situations and environments, it might be
possible to develop level 4 or 5 AVS with safe perception analysis, path planning, decision
making and controlling by removing dependence on labelled data and adopting deep
reinforcement learning-based approaches. Moreover, several techniques, such as those
in [83,128,130,144,172], which were effective in avoiding collision, lane shifting, detection,
and safe decision making in unknown or dynamic situations, can be a means of reducing
the constraints in uncertain environments.
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6. Discussion

Deep learning is fast becoming a successful alternative approach for perception-based
AVS as it reduces both cost and dependency on sensor fusion. With this aim in mind, total
categories of primary domains of AVS were reviewed in this paper to identify efficient
methods and algorithms, their contributions and limitations.

From the study, it was found that recent deep learning algorithms obtained high
accuracy while detecting and identifying road vehicle types, and in some cases, the results
surpassed LiDAR’s outcome in both short and long range for 3D bounding vehicles [34].
Moreover, some recent methods such as YOLO V2 [35], deep CNN [38], SINET [41] and
Faster R-CNN [42] achieved high accuracy within a very short period of time from low-
quality training images to challenging nighttime scenarios. However, there were several
limitations, for example, in certain lighting conditions and higher execution costs. Fol-
lowing that, a massive contribution to lane and curve detection along with tracking was
presented by studies where 95.5% road scene extraction was demonstrated, for example,
in [79], for lane edge segmentation without manual labelling using a modified CNN ar-
chitecture. As discussed in previous sections, challenges such as higher computational
cost [81], insufficient for far field of view [82], not testing in complex scenarios [79] and
poor luminance made some proposals tough for practical implementation in present AVS.

In addition, a good amount of attention was given to developing safe AVS systems for
pedestrian detection. Multiple deep learning approaches such as DNN, CNN, YOLO V3-
Tiny, DeepSort R-CNN, single-shot late-fusion CNN, Faster R-CNN, R-CNN combined ACF
model, dark channel prior-based SVM, attention-guided encoder–decoder CNN outper-
formed the baseline of applied datasets that presented a faster warning area by bounding
each pedestrian in real time [61], detection in crowded environments, and dim lighting
or haze scenarios [62,72] for position estimation [72], minimizing computational cost and
outperforming state-of-the-art methods [120]. The approaches offer an ideal pedestrian
method once their technical challenges have been overcome, for example, dependency on
preliminary boxing during detection, presumption of constant depths in input image and
improvement to avoid missing rate when dealing with a complex environment.

Moreover, to estimate steering angles, velocity alongside controlling for lane keeping
or changing, overcome slow drifting, take action on a human’s weak zone such as a
blind spot and decreasing manual labelling for data training, multiple methods, such as
multimodal multitask-based CNN [148], CNN with LSTM [149] and ST-LSTM [153], were
studied in this literature review for AVS’s end-to-end control system.

Furthermore, one of the most predominant segments of AVS, traffic scene analysis, was
covered to understand scenes from a challenging and crowded movable environment [102],
improve performance by making more expensive spatial-feature risk prediction [112] and
on-road damage detection [120]. For this purpose, HRNet + contrastive loss [104], Multi-
Stage Deep CNN [106], 2D-LSTM with RNN [108], DNN with Hadamard layer [110],
Spatial CNN [112], OP-DNN [113] and the methods mentioned in Table 9 were reviewed.
However, there are still some limitations, for instance, data dependency or relying on
pre-labelled data, decreased accuracy in challenging traffic or at nighttime.

Taking into account all taxonomies as features, the decision-making process for AVS
was broadly analyzed where driving decisions such as overtaking, emergency braking,
lane shifting with collision and driving safety in intersections adopting methods such
as deep recurrent reinforcement learning [127], actor-critic-based DRL with DDPG [123],
double DQN, TD3, SAC [124], dueling DQN [126], gradient boosting decision tree [133],
deep RL using Q-masking and autonomically generated curriculum-based DRL [139]. De-
spite solving most of the tasks for safe deployment in level 4 or 5 AVS, challenges remain,
such as complex training cost, lack of proper surrounding vehicles’ behavior analysis and
unfinished case in complex scenarios. Some problems remain to be resolved for better
outcomes, such as the requirement of a larger labelled dataset [57], struggle to classify in
blurry visual conditions [49] and small traffic signs from a far field of view [51], background
complexity [48] and detecting two traffic signs rather than one, which occurred for different



Appl. Sci. 2022, 12, 6831 43 of 51

locations of the proposed region [47]. Apart from these, one of the most complicated
tasks for AVS, only vision-based path and motion planning were analyzed by reviewing
approaches such as deep inverse reinforcement learning, DQN time-to-go method, MPC,
Dijkstra with TEB method, DNN, discrete optimizer-based approach, artificial potential
field, MPC with LSTM-RNN, advance dynamic window using, 3D-CNN, spatio-temporal
LSTM and fuzzy logic, where solutions were provided by avoiding cost function and
manual labelling, reducing the limitation of rule-based methods for safe navigation [164]
and better path planning for intersections [165], motion planning by analyzing risks and
predicting motions of surrounding vehicles [166], hazard detection-based safe naviga-
tion [168], avoiding obstacles for smooth planning in multilane scenarios [169], decreasing
computational cost [170] and path planning by replicating human-like control thinking in
ambiguous circumstances. Nevertheless, these approaches faced challenges such as lack
of live testing, low accuracy in far predicted horizon, impaired performance in complex
situations or being limited to non-rule-based approaches and constrained kinematics or
even difficulty in establishing a rule base to tackle unstructured conditions.

Finally, to visualize overlaying outcomes generated from the previous methods su-
perimposed on the front head-up display or smart windshield, augmented reality-based
approaches combining deep learning methods were reviewed in the last section. AR-HUD
based solutions such as 3D surface reconstruction, object marking, path overlaying, re-
ducing drivers’ attention, boosting visualization in tough hazy or low-light conditions by
overlapping lanes, traffic signs as well as on-road objects to reduce accidents using deep
CNN, RANSAC, TTC methods and so on. However, there are still many challenges for
practical execution, such as human adoption of AR-based HUD UI, limited visualization
in bright daytime conditions, overlapping non-superior objects as well as visualization
delay for fast moving on-road objects. In summary, the literature review established for
vision-based deep learning approaches of 10 taxonomies for AVS with discussion of out-
comes, challenges and limitations could be a pathway to improve and rapidly develop
cost-efficient level 4 or 5 AVS without depending on expensive and complex sensor fusion.

7. Conclusions

The results of the mixed method studies in the field of implementation and application
of deep learning algorithms for autonomous driving systems help us to achieve a clear
understanding of the future of transportation. These results prove that it has the ability to
provide intelligent mobility for our constantly evolving modern world as deep learning
was one of the key components to resolve the limitations and bottlenecking of traditional
techniques. Despite containing a good number of studies on autonomous driving systems,
only a few make an impact on recent developments in the autonomous driving industry. To
overcome this challenge and build a safer and more secure sensor-independent transporta-
tion system with the aim of building infrastructure of futuristic smart cities, in this paper,
through a systematic review of the literature, studies of AV were selected that used deep
learning and the field was reviewed in terms of decision making, path planning and navi-
gation, controlling, prediction and visualizing the outcomes in augmented reality-based
head-up displays. We analyzed the existing proposal of deep learning models in real-world
implementation for AVS, described the methodologies, designed the flow of solutions for
the limitations of other methodologies, and compared outcomes and evaluation techniques.
Nevertheless, as the research field of autonomous driving systems is still growing, many
of the theoretical methodologies were not applied practically, but along with the research
trend of this expanding field, these are potentially excellent solutions that require further
development. Thus, the large-scale distributions of the paper in the major areas of au-
tonomous driving systems will be essential for further research and development of the
autonomous vehicle industry into a cost-efficient, secure intelligent transport system.
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