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Abstract: Industry 4.0 is pushing forward the need for symbiotic interactions between physical
and virtual entities of production environments to realize increasingly flexible and customizable
production processes. This holds especially for human–robot collaboration in manufacturing, which
needs continuous interaction between humans and robots. The coexistence of human and autonomous
robotic agents raises several methodological and technological challenges for the design of effective,
safe, and reliable control paradigms. This work proposes the integration of novel technologies from
Artificial Intelligence, Control and Augmented Reality to enhance the flexibility and adaptability of
collaborative systems. We present the basis to advance the classical human-aware control paradigm
in favor of a user-aware control paradigm and thus personalize and adapt the synthesis and execution
of collaborative processes following a user-centric approach. We leverage a manufacturing case study
to show a possible deployment of the proposed framework in a real-world industrial scenario.

Keywords: human–robot collaboration; augmented reality; cyber physical systems; knowledge
representation; planning and scheduling

1. Introduction

Human–robot collaboration (HRC) is expected to be a core element of future factories.
Combining the repeatability and tirelessness of robots with humans’ versatility and problem-
solving skills often boosts the flexibility and productivity of industrial processes. However,
the design of effective methodologies to steer the deployment of this new paradigm in real
production environments is an open challenge for both researchers and companies [1]. Ac-
cording to [2], work organization and technical solutions for Cyber–Physical Systems (CPS)
are supposed to evolve between two extreme alternatives: (i) the techno-centric scenario and;
(ii) the anthropo-centric scenario. In the techno-centric scenario, the technological aspects dom-
inate the organization of the work. In contrast, in the anthropo-centric scenario, human
workers control the work, and technology helps them make decisions.

Existing approaches to CPS (and, among them, HRC) oscillate between these two
extremes. However, human factors have gained more attention in the design of novel
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methodologies for personalized production dynamics based on the operators’ preferences,
technical skills, and health-related issues.

Regarding HRC, human factors have been considered at different levels [3]. For
example, optimization of human factors have been embedded into a task scheduler [4]; task
allocation have been exploited to reduce the workload of human workers [5,6]; task synergy
between human–robot tasks were optimized to reduce the cycle time [7]; human-aware
motion planners demonstrated to be preferable by human users [8]. The works mentioned
above mainly focus on the planning aspects of HRC. However, they disregard the complex
effect of human–robot communication on the user experience. A stuttering human–system
communication is often a major bottleneck to a fruitful collaborative process. For this
reason, the communication between the human operator and the system is an object of
intense study. In this regard, Augmented Reality (AR) is a striking tool able to overlay
instructions and knowledge from CPSs to the physical operator’s view [9].

Driven by this consideration, an EU-funded research project called SHAREWORK
(EU Horizon 2020—https://sharework-project.eu (accessed on 21 June 2022)) aims to pro-
vide an all-around approach to HRC, where robots and operators collaborate at different
cognitive and physical levels. A key objective of SHAREWORK is to make implicit and
explicit communications between robots and humans smooth and fruitful. Explicit commu-
nications leverage multi-modal technologies and, in particular, Augmented Reality tools.
Implicit communications require the robotic system to reason on the operator’s intentions
and act consequently. Therefore, task representation and planning are fundamental to
provide the robot with the necessary autonomy and suitable initiative.

This paper presents some of the results of the SHAREWORK project. In particular,
it presents the design methodology and deployment actions needed to provide a user-aware
approach to HRC that enhances the flexibility of HRC systems. In addition, human-aware
paradigms usually consider a one-fits-all solution, considering the human an anonymous agent.
Here, we go beyond this concept and propose a user-centric methodology to shape the robots’
behavior based on the specific characteristics of a single user (e.g., age, skills, experience) and
preferences (e.g., left-handed vs. right-handed) [10], i.e., implementing personalized robot
behavior that can better serve the human operator and, potentially, increase the technology
perception and acceptance. Therefore, we propose the integration of planning, perception
and communication into a unified technological framework.

An AI-based Knowledge Representation and Reasoning module encapsulates a user
model representing features of human workers that are relevant with respect to production
needs (e.g., match users’ skills to the requirements of production tasks). Combined AI-
based task and motion planning modules reason on this knowledge to coordinate human and
robot agents taking into account known skills and features of the worker, while pursuing
an optimization perspective. Furthermore, an AR-based human–system interaction module
realizes advanced interaction mechanisms to contextualize communication to and from
the worker to facilitate explicit human–robot communications and collaboration.

The paper is structured as follows: Section 2 illustrates aims and objectives of the SHARE-
WORK project, within which the methodology was developed; Section 3 discusses the user
models and the knowledge-based formalism to represent users and production informa-
tion; Section 4 shows how the framework embeds user-awareness, with a particular focos
on the planning and communication modules; Section 5 discusses the integration of the pro-
posed framework into a manufacturing scenario.

2. The SHAREWORK Project

The SHAREWORK project developed a safe and effective control system for anthro-
pocentric HRC in fence-less environments. The project’s developments follow the SHARE-
WORK architecture, a modular, distributed, service-oriented architecture (SoA) that defines
a set of 15 different software and hardware modules designed as stand-alone, interacting
components communicating through well-defined interfaces. The architecture has been
designed to be fully interoperable and support various module configurations that can be

https://sharework-project.eu
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customized according to industrial needs. The SHAREWORK project architecture includes
modules that understand the environment and human actions through knowledge and sen-
sors, predict future state conditions, implement smart data processing, provide augmented
reality and gesture and speech recognition technology.

2.1. General Architecture and Module Overview

Figure 1 shows a high-level overview of the SHAREWORK architecture, depicting
the set of different modules and the high-level flow of information among them. The picture
highlights the interconnection of Workspace Cognition, Planning, and human–robot com-
munication composing the backbone of the architecture. Notwithstanding the modularity
of the proposed approach, the core modules are combined into a user-centric framework ori-
ented to user preferences and human factors at all levels (e.g., process representation, robot
motion, human communication). Not only the single modules are user-centric per se, they
are connected in such a way that the output of each module contain helpful information to
enhance the user-awareness of other modules. It is the case, for example, of the trajectories
planned by the Action and Motion Planner, which are visualized by the Human-System
Communication module, or the user profiles stored in the Knowledge Base, which instanti-
ates different communication interfaces based on the users’ preferences.

Figure 1. Overview of the SHAREWORK architecture.

In the following, we specifically focus on how each of the main modules support
user-awareness within the proposed framework:

• The Knowledge Base Module stores a formal representation of the current status of
the production environment based on the SHAREWORK ontology [11]. This module
aggregates and elaborate information gathered from other modules to infer contextu-
alized knowledge concerning for example situations/states of a worker, of the envi-
ronment, of a production process being executed.

• The Task Planning Module coordinates the worker and the robot to cooperatively
carry out production processes. In particular, this module synthesize a flexible tem-
poral schedule of the tasks the worker and the robot should perform by taking into
account uncertainty, safety and efficiency.

• The Action and Motion Planning Module receives a task from the Task Planning
Module and finds a sequence of feasible movements to execute it. It comprises an Ac-
tion Decomposition layer that converts a high-level task (e.g., pick an object, screw
a bolt) into a sequence of motion planning problems. Then, it uses a motion planning
algorithm to solve each problem and returns a sequence of trajectories that executes
the high-level task. To consider the user, the Action and Motion Planning Module
runs online; that is, all trajectories are calculated on the fly, just before their execution.
To do so, it exploits human tracking data, usually acquired through a vision system.
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This is necessary for two reasons: first, avoiding collisions and interference with
the user (who is moving in the cell); second, adapting to changes in the environment
(e.g., the user may move objects and tools during the work).

• The Human-System Interaction Module provides a bidirectional communication
framework between operators and the SHAREWORK system. By incorporating
various interface devices and sensors, a multi-modal interaction pipeline is structured
to facilitate communication of (i) data and goals to the system (by the user) and;
(ii) pending and current tasks, robot trajectories, event notifications, report results
to the operator (by the system). Communication channels include AR devices and
tablet interfaces. Supported by the knowledge base’s ontology, the human system
interaction module can be tailored to the operator’s preferences and needs to establish
an intuitive and user-aware working environment.

2.2. General Integration of Modules Supporting Personalized Collaboration

This section discusses how the modules introduced above work together for user-awareness.
Figure 2 shows the integration of these modules and the information and control flow.
Communication mechanisms and the exchange of messages/signals among the modules
rely on ROS (https://www.ros.org (accessed on 21 June 2022)). Each module indeed defines
a set of ROS topic and ROS services used to offer information/functionalities to and gather
the necessary information from other modules.

Human-System 
Interaction Interface 

- Module #9 -

Knowledge Base
- Module #1 -

Task Planner
- Module #6 -

Motion Planner
- Module #7 -

1. <user, goals, ..> = login() / registration()
2. select(goal, user) 

3. plan(goal, user, robot)

4.a.*.1 taskRequest(task)

4.a.*.2 feedback

4.b.*.1
taskRequest(task) /
motionRequest(traj)

4.b.*.2
feedback

System-User 
Interaction

System-Robot 
Interaction

Figure 2. Integration schema of the considered modules. First a user logs into the system through
the “Human-System Interaction Interface” and selects a production goal to perform (step 1 and 2).
The “Task Planner” module receives a planning request (step 3) and synthesizes a contextualized
collaborative plan to execute (step 4). Plan execution entails the simultaneous dispatching of multiple
requests (see the “*.1” tags of step 4) to the “Human-System Interaction Interface” and to the “Motion
Planner” asking the execution of planned tasks to the human and to the robot respectively. Every time
a task is dispatched to the robot or to the human the planner receives a feedback about its execution
(see the “*.2” tags of step 4) and adapts the plan to the observed state of the environment if necessary
(replanning).

First of all, the Human-System Interaction Interface authenticates a particular worker
into the system and retrieves information about his/her user profile (e.g., data from pre-
vious sessions, preferences, known skills) and information about the production con-
text (e.g., known production goals, related production procedures, skills of the collabo-
rative robot). The worker decides the production goal to perform and sends a “starting
signal” to the Knowledge Base module through the Human-System Interaction Interface.
The generated message specifies the production goal and the ID of the user that takes part
to the process.

The Knowledge Base receives this signal through a subscribed ROS topic, contex-
tualizes knowledge (e.g., infer the subset of operations the worker and the robot can
actually perform) and configures the Task Planner by calling a dedicated ROS service.

https://www.ros.org


Appl. Sci. 2022, 12, 6839 5 of 22

This service specifically allows the Knowledge Base to automatically define the control
variables of the planning model according to the requested production goal and the profile
of the user (e.g., robot capabilities, operator skills, performance profile). The Task Planner
then synthesizes and executes an optimized task plan. During the execution, the module
dispatches task requests to the Human-System Interaction Interface and the Action and
Motion Planner to interact with the robot.

The Human-System Interaction Interface displays information on the tasks requested
to the human and waits for feedback from the operator. This ensures the correct dispatching
of the task plan to the human actor. Similarly, the Action and Motion Planner receives
tasks’ requests for the robot and puts them into action. After the execution of the task,
it sends feedback to the Task Planner to inform it about the outcome. The Human-System
Interaction Interface and the Action and Motion Planner offer a set of ROS Actions that
enable visualization and monitoring of human and robot tasks. For example, the Action
and Motion Planner informs the Human-System Interaction Interface on the future robot
trajectories so that they can be visualized on an interface (e.g., through AR).

2.3. Modular Deployment through Containerization

The modularity of the SHAREWORK architecture is also reflected in the software
packaging. The system is a ROS-based system. It uses the Docker toolset to increase
productivity, reduce the setup time in complex environments, and easily configure a cus-
tomized version of the SHAREWORK architecture. In particular, each module is packaged
in a separate Docker image and uploaded to a docker repository. An exception to this rule
is the software modules with specific run-time requirements (e.g., the Android application
of the Human-System Interaction module running on an Android tablet). By using the Docker
compose tool that enables the definition and execution of multi-container applications,
the SHAREWORK system can be configured to run in different configurations using an ap-
propriate configuration file. Then, a SHAREWORK instance can be created and started
with a single command.

3. Ontology-Based Model of Workers

HRC scenarios pursues a tight “teamwork” between the human and the robot requir-
ing shared view and “mutual understanding” of the objective, constraints, capabilities
and limitation of each other member as well as an implicit or explicit agreement about
the procedure to follow [12–14]. The ontological model supports the effective coordination
of human and robotic agents by providing a formal representation of: (i) production objec-
tives, tasks and operational constraints; (ii) worker and robot capabilities/skills; (iii) known
performances, preferences and physical/behavioral features of workers that may affect
the interactions with the robot and the resulting collaborative processes.

3.1. Context-Based Ontology for Collaborative Scenarios

The SHAREWORK Ontology for Human–Robot Collaboration (SOHO) has been intro-
duced in [11] as a general model characterizing collaborative dynamics between human
and robot agents acting in a manufacturing scenario. It therefore defines the formal model
(TBox) the Knowledge Base Module uses to build an abstraction of the production envi-
ronment (ABox) and infer/contextualized useful information. SOHO is organized into
a number of contexts, each defining concepts and properties that characterize an HRC
scenario with respect to a particular perspective. A knowledge base is structured in shape
of Knowledge Graphs (KGs) [15,16] and thus can be manipulated through standard se-
mantic technologies based on OWL [17]. Specifically, the Knowledge Base Module of
SHAREWORK has been developed using the open-source software library Apache Jena
(https://jena.apache.org (accessed on 21 June 2022)).

As shown in [11] the environment, behavior and production contexts describe re-
spectively: (i) physical entities and observable properties of a collaborative environment;
(ii) skills and capabilities of the human and robot; (iii) production goals, tasks, and con-

https://jena.apache.org
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straints of the HRC process. The behavior context uses the concept of Function [18] to
correlate production tasks with the low-level operations the worker and the robot can
actually perform (i.e., the functions).

3.2. Functions and Production Requirements

The goal of SOHO is to characterize production objectives, human and robot capa-
bilities and thus contextualize operations they can perform to carry out production tasks
collaboratively. The concepts Cobot and HumanWorker are defined as a specialization of
the DUL:Agent. The acting qualities of each agent are represented by means of Capability
and Function. Capabilities characterize competencies that agents have according to their
structures and skills. For example, a human worker can perform welding operations if she
is skilled in that task. Similarly, a robot can perform “pick and place” of objects if it is
endowed with a gripper. Figure 3 shows an excerpt of SOHO pointing out the taxonomical
structure of the concepts representing different types of production tasks.

Figure 3. Excerpt of SOHO showing the taxonomical structure of production tasks. In particular
the picture shows the integrated taxonomy of functions introduced in [18].

While capabilities do not depend on the features of a production context, the concept
of Function characterizes low-level production tasks humans and robots should perform
in a manufacturing environment. SOHO integrates the Taxonomy of Functions defined
in [18] and defines different types of Function according to the effects they have on
DUL:Quality of objects. The instances of Function a generic agent can perform can be
dynamically inferred according to actual capabilities of that agent. Namely, the model of
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Function proposed in [18] is extended to correlate them to the set of Capability needed
to correctly perform them. The separation between functions and capabilities supports
contextual reasoning since functions contextualize general agents’ capabilities with respect
to the needs of a production scenario.

Function v ProductionTask u
∃ DUL:isDescribedBy.ProductionNorm u
∃ canBePerdformedBy.DUL:Agent u
∃ hasEffectOn.DUL:Quality u
∃ hasTarget.ProductionObject u
∃ requires.ProductionObject u
∃ requires.Capability

(1)

The description of a production process follows a task-oriented approach. The top-
level element is the ProductionGoal which defines the general objectives of a produc-
tion context. Each ProductionGoal is associated with a number of ProductionMethod
(at least one method for each goal is necessary) specifying production and operational
constraints. Each ProductionMethod always refers to one ProductionGoal and is com-
posed by a hierarchical organization of ProductionTask. The ontology defines three
types of tasks: (i) ComplexTask (either disjunctive or conjunctive); (ii) SimpleTask and;
(iii) Function. A ComplexTask is a ProductionTask (i.e., an instance of DUL:Method)
representing a compound logical operation. The hierarchical structure is enforced by
the property hasConstituent which associates ComplexTask with either SimpleTask or
other ComplexTask.

ComplexTask v ProductionTask u
∃ DUL:hasConstituent.(ComplexTask t SimpleTask) u
∃ DUL:isDescribedBy.OperativeConstraint

(2)

A SimpleTask represents a leaf of the hierarchical structure of a ProductionMethod.
This concept describes primitive production operations that could be carried out leveraging
the functional capabilities of the agents. A SimpleTask requires the execution of a number
of Function instances by the agents.

SimpleTask v ProductionTask u
∃ DUL:hasConstituent.Function u
∃ DUL:hasConstituent.SimpleWorkpiece u
∃ DUL:isDescribedBy.(InteractionModality t OperativeConstraint)

(3)

The execution of a task should comply with operational constraints that are repre-
sented as ExecutionNorm. Two main types of execution norms can be defined: the concept
OperativeConstraint describes norms requiring the sequential or parallel execution of
tasks; the concept of InteractionModality instead characterizes norms about how agents
should cooperate to carry out a task.

3.3. Human Factor and User Model

The current work specifically focuses on the Human Factor context and elaborates
on its correlations with the behavior and the production contexts. Figure 4 shows part of
the taxonomic structure defined to represent behavioral and physical features of workers.
Such concepts define the variables composing the user model and therefore characterize
the representational space of qualitative aspects of a worker (i.e., types of DOLCE:Quality).
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(a) (b)

Figure 4. Excerpt of SOHO concerning the variables of the user model: (a) it shows concepts modeling
qualities associated with the physical body of a worker; (b) it shows concepts modeling the qualities
associated with the behavior of a worker.

Concepts characterizing the qualities of the physical body of a worker, Figure 4a,
model physical, health, and cognitive parameters. Information about these variables
enables the detection and monitoring of anomalous or dangerous working conditions,
such as bad ergonomics, body position in hazardous areas or mental, and physical fatigue.
Concepts concerning the qualities of the behavior of a worker, Figure 4b, instead model
his/her performance in a given production scenario (e.g., the expertise level or the average
time taken to perform a task).

The concept WorkerExpertiseLevel estimates “how much knowledgeable” a worker
is about a particular production scenario. On the one hand, the expertise level determines
the (sub)set of production tasks a human worker can carry out. For example, some tasks
may require a certain minimum level of experience to be performed by a worker. On
the other hand, it characterizes the reliability of the performance of a worker and thus
the expected uncertainty about the duration of executed tasks. Low experience determines
higher uncertainty and thus higher variance of the performance. High experience instead
denotes lower uncertainty and thus more consolidated performance (i.e., lower variance).

The concepts WorkerPerformance supports a numerical representation of user per-
formance. SOHO in particular distinguishes between accuracy (WorkerTaskAccuracy) and
efficiency (WorkerTaskPerformance). These variables support the incremental definition
of a dataset collecting historical data about performance. Such a dataset can be analyzed
to incrementally learn performance of users and adapt collaborative processes over time.
It can be used for example to infer an efficiency matrix encoding the average completion
time of production tasks for (known) users.

4. User-Aware Collaboration

The production and user-centered knowledge is at the disposal of other modules to
adapt production processes. Such knowledge is necessary to push forward novel collabora-
tion paradigms where the system adapts interactions and collaborative processes to the known
features of participating users. Knowledge inference and extraction procedures can be imple-
mented to dynamically generate contextualized planning models to the specific features of
a domain [19,20] as well as specific skills and preferences of a human worker. This section
explains how the task planning, the Action and Motion, and the human–system interaction
module take advantage of the user model to support personalization and adaptation.

Artificial Intelligence Planning and Scheduling [21–23] is well suited to endowing
robot controllers with the flexibility needed to autonomously decide actions and adapt
behaviors to the state of the environment [24,25]. Planning technologies generally pursue
an optimization perspective aiming at finding plans that minimize or maximize a specific
metric (e.g., minimization of the planning cost). Different metrics and features of a domain
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can be taken into account, depending on the specific planning formalism used. In applica-
tion domains such as HRC, reasoning about causality, time, concurrency, and simultaneous
behaviors of domain features (e.g., the human and the robot) is crucial to synthesize and
execute effective plans.

Task planning capabilities developed within SHAREWORK rely on the timeline-
based formalism [26] and the PLATINUm software framework [27–29]. This planning
formalism integrates reasoning about causal and temporal aspects of a planning problem
and has been successfully applied to several concrete scenarios [30–32]. PLATINUm and
the formalism introduced in [26] integrates temporal uncertainty and controllability issues
to generate plans that are robust when executed in the real world [25,33]. Uncertainty is
especially important in HRC where robots should continuously interact with uncontrollable
autonomous entities such as human workers. Considering the manufacturing context and
other works synthesizing optimal, multi-objective assembly processes [34,35], we extend
PLATINUm by integrating multiple objectives and uncertainty. This allows us to synthesize
(timeline-based) plans that achieve a good trade-off between efficiency (i.e., minimize
the cycle time of collaborative processes) and safety (i.e., minimize the risk of collision),
and take into account temporal uncertainty for reliable execution [36].

4.1. Personalized Task Planning

A timeline-based specification consists of several state variables that describe possible
behaviors of domain features. A state variable is formally defined as a tuple
SV = 〈V, T, D, γ〉. A set of values vi ∈ V represent states and actions the domain
feature can assume or perform over time. A transition function T : V → 2V specified
valid sequences of values vi ∈ V. A duration function D : V → R× R specifies each
value vi ∈ V the expected lower and upper bounds of its execution time. A controllability
tagging function γ : V → {c, pc, u} specifies if the execution of a vi ∈ V is controllable
(c), partially controllable (pc) or uncontrollable (u). Information about controllability allows
a task planner to deal with uncontrollable dynamics of the environment when executing
a (timeline-based) plan. This is known as the controllability problem [37] and is particularly
important when an artificial agent such as a collaborative robot should interact with “un-
predictable” agents such as a human worker. Synchronization rules constrain the “runtime”
behavior of the modeled domain features. They specify causal and temporal constraints
necessary to coordinate the different features as a whole complex system (e.g., a HRC cell)
and synthesize valid temporal behaviors (i.e., the timelines).

The definition of state variables and synchronization rules modeling a HRC scenario
follows a hierarchical decomposition methodology correlating high-level production goals
to simpler production tasks and functions [38]. A state variable SVG describes the high-
level production goals supported by the HRC work-cell. A number of state variables
SVi

L where i = 0, . . . , K describe the production procedure at different levels of abstraction.
The values of these state variables represent production tasks at a specific level of abstraction
i ≤ K (where K is the number of hierarchy levels of the procedure). A state variable SVR
and a state variable SVH respectively describe the low-level operations (i.e., instances of
Function) the robot and the human can actually perform. Finally, a set of synchronization
rules S describes the procedural decomposition of high-level goals (i.e., values of state
variable SVG) into simpler production tasks (i.e., values of state variables SVi

L), until they
are associated with a number of functions of the human and the robot (i.e., values of state
variables SVR and SVH).

The state variable SVH describes behavioral dynamics of the worker collaborating with
the robot. The state variable SVH = 〈 VH , TH , DH , γH〉 is thus generated from the knowl-
edge base according to the user profile of the participating worker. The values vj ∈ VH are
defined according to the tasks/functions the worker is actually able to perform in the given
production scenario.No assumptions can be made on the actual duration of tasks/functions
assigned to the worker. Consequently all the values of SVH are tagged as uncontrollable,
γH
(
vj
)
= u, ∀ vj ∈ VH . The duration bounds of each value vj ∈ VH and are defined
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by taking into account the mentioned performance matrix that can be extracted from
the knowledge base. A performance vector is extracted representing known performance of
user ui ∈ U . Such a vector specifies, for each value vj ∈ VH , the average time δi,j the user
ui takes to accomplish the task task

(
vj
)
= tj ∈ T (δi,j = ∞ if no information is available).

At this point the expertise level of the user characterizes the expected variance of the av-
erage duration. The combination of this information is thus used to define the personalized
lower and upper duration bounds for each value vj ∈ SVH . Specifically, a certain amount
of uncertainty is associated to each of the three expertise levels defined into the ontological
model: (i) novice; (ii) intermediate; (iii) expert. The higher the expertise level the lower
the uncertainty about the performance. We define a uncertainty index associating each
expertise level with constant value of uncertainty to consider: Ω = {0.8, 0.5, 0.2}. Given
a user ui ∈ U , a function Υ : U → Ω specifies the uncertainty index corresponding to
the expertise level of the user. The resulting duration bounds of the values composing
the state variable of the worker vj ∈ VH are then defined as follows:

D
(
vj
)
=
(
δi,j −ωi ∗ δi,j, δi,j + ωi ∗ δi,j

)
. (4)

This mechanism dynamically adapt the temporal dynamics encapsulated into a task
planning model according to the changing performance of the same worker as well as to
the performance of different workers. The finer the temporal model of the worker, the better
the optimization of plans and resulting collaborative processes [39].

4.2. Integrated Task and Motion Planning

To guarantee a high level of flexibility in the planning and execution of collaborative
tasks, we deploy a hierarchical Task and Motion Planning framework that allows for online
planning of the robot trajectories according to the user and the environment’s state. This is
key to ensuring a smooth collaboration between the human and the robot because the robot’s
tasks can be robust with respect to changes in objects and tools’ positions, and the robot’s
movement can be optimized to avoid interference with the user’s activities [40].

The key idea of our approach is that robot tasks coming from the task planner are symbolic
and should be converted into a sequence of geometric movements by the Action and Motion
Planning module. In this way, the task planner reasons about the best assignment and scheduling
of tasks disregarding the actual geometric realization of each task. This is necessary because
the robot’s actual trajectories are not known a priori. Indeed, they need to be planned and
adjusted on the fly according to the scene. Moreover, the motion planner can feature user-aware
behavior that makes the robot’s motion more dependable according to his/her preferences.

The Action and Motion planning module consists of a hierarchical framework com-
posed of: (i) a task decomposition module; (ii) a proactive motion planner; (iii) a reactive
speed modulation module. A scheme of the proposed framework is in Figure 5.

Figure 5. Action and Motion Planning module.
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4.2.1. Task Decomposition Module

The task decomposition module owns a set of predefined skills; that is, high-level
behaviors that the robot can execute autonomously (e.g., pick an object, screw a bolt). Skills
are a model of an abstract task and allow the module to decompose a task into a sequence
of robot movements. For example, the task pick an object is decomposed into a sequence
of basic movements and conditions: (i) check if the gripper is empty; (ii) open gripper;
(iii) move to approach pose; (iv) move to grasp pose; (v) close gripper.

Given an object to be picked, the task decomposition module retrieves the necessary
geometric information from the scene (e.g., by querying the Knowledge Base), checks
whether the task conditions hold, and initializes the basic movements according to the scene
state. Notice that, at this stage, a task might have multiple equivalent geometric realizations.
For example, the symbolic task pick a blue cube may require choosing among multiple blue
cubes, each with numerous grasping points. This level of complexity is addressed by
the proactive motion planner.

4.2.2. Proactive Motion Planner

The proactive motion planner solves the motion planning problem related to each
basic movement of a task, as decomposed by the Task decomposition module. The term
proactive distinguishes this module from the reactive speed modulation module. The
proactive planner is intended to find a collision-free trajectory according to a prediction of
the user’s actions and movements. Once a trajectory has been found, its execution starts,
and the reactive layer monitors and adjusts it according to real-time scene information.
Moreover, the path is sent to the Human-System Interaction Module for visualization so
that the user will foresee the robot’s movement in the short run.

The proactive trajectory planner has been implemented by using the standard path-
velocity decomposition paradigm, in which a path planner finds a collision-free path from
a start to a goal state, and a path parametrization algorithm (e.g., TOPP [41]) optimizes
the velocity profile along the path. Regarding path planners, sampling-based algorithms
are preferred, for they can efficiently deal with high-dimensional search space [42].

User awareness is embedded in the path planner using a cost function that depends
on the human state. The typical approach minimizes a weighted sum of an efficiency term
(e.g., the path length) and user-aware terms, such as human–robot distance [43], trajectory
repeatability [44], or human visibility [45].

4.2.3. Reactive Speed Modulation Module

The reactive speed modulation module modifies the nominal speed during the execu-
tion of each trajectory. This is necessary to meet safety requirements and avoid unnecessary
safety stops. In general, reactive motion planners are shifting from simple yet conserva-
tive strategies such as safety zones to optimized methods that adapt the robot motion
continuously [46,47].

In this work, we adjust the robot’s speed according to the safety requirements imposed
by safety specifications. In particular, the technical specification ISO/TS 15066 (Robots and
robotic devices—Collaborative robots) [48] defines speed reduction rules for collaborative
operations with and without admissible contact between robots and humans. For example,
if speed and separation monitoring is applied, the human–robot distance S must not fall below
a protective distance Sp.

To satisfy the safety requirement without jeopardizing the smoothness of the collabo-
ration, we adopt a continuous modulation of the robot speed. The robot nominal velocity
is scaled at high rate by a speed override factor sovr ∈ [0, 1] according to the following rule:

sovr = min
(

vmax

vrh , 1
)

, (5)
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where vrh is the human–robot relative speed and vmax is the maximum allowed relative
velocity, derived from (6) by using the measured user position and velocity in the cell, that is:

vmax =
√

v2
h + (asTr)2 − 2as

(
C− S(t0)

)
− asTr − vh, (6)

where S(t0) is the human–robot relative distance at the current time instant, vr is the robot
velocity toward the human, vh is the human velocity toward the robot, as is the maximum
Cartesian deceleration of the robot toward the human, Tr is the reaction time of the robot,
and C is a parameter accounting for the uncertainty of the perception system.

4.3. Augmented Human–Robot Interaction

The human–robot interaction framework aims to structure a usable and personalized
interaction pipeline between the operator and the robot towards increased awareness and
well-being. All those attributes are mostly accomplished by using multiple human senses
(i.e., vision, hearing, touch) through interaction modalities available in customized inter-
faces [49]. Both modalities and customization options formulate a user-centric framework
that can meet the requirements of novice and advanced operators.

In terms of architecture, the multi-modal interaction framework consists of three layers
(see Figure 6). A broker forms the top layer of this module and is responsible for parsing
information from the SHAREWORK’s modules to the end devices, and vice versa [50]. The
intermediate layer incorporates the available end devices, thus their respective applications.
The bottom layer gathers all the supported interaction modalities based on the specifications
of the intermediate hardware. The existence of the broker ensures stability against a varying
number of deployed devices. During operations, there are redundant ways of interaction
since information can flow simultaneously to all devices. This suppleness does not only
serve the anthropocentric SHAREWORK system design principles, but also contributes to
the overall system resilience against hardware limitations (e.g., battery, network range) or
even issues (e.g., damages).

Figure 6. SHAREWORK’s Human-System interaction module architecture.

Focusing on the information streams, the module comprises mechanisms for human–system
(HS) and system–human (SH) interaction. The former ones are needed either for operator
monitoring or direct robot control. Despite the advances in machine learning for human activity
recognition, the improvisation of operators can still highlight limitations in those systems. Thus
the developed interaction framework supports functionalities for monitoring purposes. In detail,
all deployed applications involve “Task completed” feedback apparatus in the form of voice
commands, touch, and augmented buttons. The same modalities can also be used as inputs for
direct robot and system control (e.g., stop or proceed). Each application processes those inputs
and communicates to the broker normalized commands or requests that are parsed to the rest
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of the SHAREWORK modules through ROS. On the contrary, when the system communicates
to the human, the involved modules share information to the broker that is then streamed
simultaneously to all end devices. Each application makes available the information based
on the hardware’s capabilities in the form of textual, graphical, or audio material.

The volume and type of communicated information are closely related to the opera-
tor’s experience level. For novice users, the module offers intuitive visual instructions that
can support them during assembly operations via augmented 3D models, panels, arrows,
or screen-based figures. For greater awareness, robot-centric information can also be pro-
vided through 3D augmented trajectories, notifications, and warnings. Textual instructions
and info are standard in plain or extended format. Unlike novice users, who need support
and a clear description of robot behavior, experienced operators could be distracted if they
are communicated with all aspects of information. For this reason, the customization of
the interaction framework can be performed during runtime through the related options
panels. According to each operator’s entity, tailoring of the interfaces is supported by
the Knowledge Base. The customization options suggest the selection of available de-
vices, available modalities, assembly information detailing, feature positioning, button
positioning, and robot information detailing. The personalization of the system’s front-end
through customizable applications and the selection of multiple devices is achieved by
implementing a distinct hierarchical architecture.

5. Integration and Deployment: A Case Study

We demonstrate the proposed approach in a case study derived from a mechanical
machining scenario. The case study is characterized by unpredictable market changes
in terms of demand, which require massive use of Flexible Manufacturing Systems (FMSs)
to remain highly competitive in the market [51]. In FMSs, parts to be machined are
mounted on multi-fixturing devices called pallets. Pallets are manually assembled at
a loading/unloading station (LUS) and moved from/to general-purpose machine centers
to be machined. The number of pallet configurations, i.e., pallet mounting clamping
systems/jigs, and products present simultaneously in an FMS can be considerable. Due
to the high number of different operations to be performed on the pallets, LUSs influence
FMS performance in terms of final throughput. Specifically, three critical operations at
LUS are performed: assembly, disassembly, and quality inspection. The application is
stimulating for human–robot collaboration because the process throughput would benefit
from juxtaposing humans’ manipulation skills and robots’ tirelessness. For example, robots
could be exploited to perform batches of simple, repetitive operations, while a human
could perform the most complex operations and perform quality checks. Note that no
fixed scheduling usually applies [52]; a dynamic online reconfiguration of the workflow is
required by operators who may change sequences and roles.

Within this context, we consider the scenario shown in Figure 7. A collaborative LUS
is composed of a small-size robot, Universal Robots UR10e, mounted on a linear track to
extend its range of motion. The LUS owns four pallet positions: P0 is the arrival position
of a new pallet brought by a mobile robot; P1 and P2 are the working position, where
the pallets are mounted, unmounted, and checked; P3 is the departure position, where
a mobile robot will load the finished pallet to move it to next stage of the process. The robot
and the human operator can work simultaneously at the LUS, either on the same pallet or
two different pallets. The process requires the following stages:

1. A mobile robot brings a new pallet to P0;
2. The pallet is moved to a free position (P1 or P2). Notice that the pallet can be moved

to P2 only if P1 is not occupied;
3. The pallet is unmounted to extract the finished part;
4. A new raw part is inserted, and the pallet is mounted;
5. The pallet is moved to P3;
6. A mobile robot picks up the pallet from P3.
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(a) (b)

Figure 7. Demonstrator setup and description of the work positions: (a) Setup components; (b) Setup
working positions.

Steps 2 and 5 are always performed by the human operator because the robot is not
able to lock/unlock and move the pallet. Steps 3, 4, and 5 can be performed by both
the robot and the human. Notice that more than up to four pallets can be present at
the LUS at the same time, meaning that Steps from 2 to 5 can be performed without a fixed
scheduling and assignment wither by the human or the robot. Moreover, pallets can
have different geometries and therefore requires different operations to be mounted and
unmounted. In this case study, we consider three different types of pallets requiring high
flexibility in the planning and execution phases.

5.1. Process Representation in the Knowledge Base

To successfully coordinate human and robot operations, it is necessary to configure
the Knowledge Base module of Figure 2 first. This configuration step allows the system to
build an abstraction of production procedures characterizing the specific needs/requirements
of an HRC cell and the specific skills and features of participating acting agents. To this
aim, we manually define an ontological model of the scenario using Protégé (A well-
known editor for ontologies and knowledge bases—https://protege.stanford.edu (accessed
on 21 June 2022)). We define individuals and assert properties necessary to characterize
the (relevant) information about the production environment and the capabilities of the agents
that take part in the process.

The main elements of the environment are the workpieces (i.e., pallets), the worker and
the cobot agents, and the positions they occupy while performing operations. Workpieces
can be of three types entailing different geometric constraints and low-level operations
for their manipulation. These workpieces are thus modeled separately as three distinct
instances of Workpiece: (i) 0218; (ii) 1121; and (iii) 1122. This distinction supports the con-
textualization of production procedures according to the particular type of workpiece
to be worked. During the execution of a production procedure, each workpiece occu-
pies a specific environment location. In the considered scenario, such environmental
locations are subject to physical constrains limiting the number of objects that can occupy
them simultaneously. They are thus modeled as BinaryProductionLocation that are
ProductionLocation associated with a ResourceCapacity, which limits to 1 the num-
ber of ProductionObjects that can stay at the same location simultaneously (i.e., these
locations are characterized by a binary state denoting the location as free or busy).

Each type of workpiece is associated with a ProductionGoal specifying a different
ProductionMethod and different production operations. Such production operations are
defined as individuals of ProductionTask. The knowledge base describes operational
constraints and alternative decomposition of tasks as well as alternative assignments to the hu-
man and to the robot. In this regard, individuals of DisjunctiveTask describe alterna-
tive way of implementing/decomposing a ProductionTask. For example, the general
task process_1121 is modeled as DisjunctiveTask and is associated with two alter-

https://protege.stanford.edu
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native sub-tasks through the property DUL:hasConstituent: (i) process_1121_p1 and;
(ii) process_1121_p2. Both sub-tasks are instances of ConjunctiveTask and represent two
alternative ways of performing the production task process_1121_p2: (i) perform produc-
tion operations for workpiece 1121 on position1; and (ii) perform production operations
for workpiece 1121 on position2. The actual choices would be made dynamically by a task
planner depending on previously scheduled operations and the known state of physical
locations/positions of the HRC cell.

A similar decomposition is defined for low-level tasks that can be assigned to the hu-
man or to the robot. An example is the operation requiring to mount the pallet 1121
in a specific position of the cell. The DisjunctiveTask mount_1121_p2 is decomposed
into two (alternative) simpler ProductionTask that are: (i) mount_1121_p2_worker and;
(ii) mount_1121_p2_cobot. This disjunction characterizes the alternative choice of as-
signed the mounting task to the worker or to the robot. The two sub-tasks are both
instances of IndependentTask meaning two individuals of SimpleTask associated with
a CollaborationModality of type Independent. Following the ontological definition of
independent collaborative tasks, they are respectively decomposed into a HumanFunction
and a RobotFunction of type Assembly representing the actual operations performed
on the workpiece.

The defined knowledge base completely characterizes the production process and
can be used to configure the planning and interaction modules deployed into the scenario.
A designed knowledge extraction procedure automatically generates contextualized timeline-
based specifications for: (i) hierarchical decomposition and planning constraints concerning
known goals; and (ii) temporal dynamics and controllability properties associated with
robot and worker capabilities. Such specification provides the Task Planner with the rules
to compute collaborative plans for the considered manufacturing scenario at hand. A graph-
based description of production procedures is automatically extracted from the knowledge
base and used to generate a suitable timeline-based task planning model [19,20]. The
resulting production procedure is organized into several hierarchical levels correlating high-level
production goals with low-level tasks and individuals of Function the human and the robot
should perform to carry out related production processes correctly. The following section
describes with further detail the timeline-based model and provides an example of a plan.

5.2. Task Planning and Scheduling

A timeline-based task planning model is synthesized by the knowledge base to “opera-
tionalize” production procedures and coordinate human and robot behaviors. A number of
state variables are defined to characterize states and/or actions that relevant domain features
assume and/or perform over time. Four state variables SVp0, SVp1, SVp2, SVp3 describe the
state of the working positions of the pallets. Since these physical locations are modeled as
BinaryProductionLocation in the knowledge base, these variables are associated with two
values, Vp0, Vp1, Vp2, Vp3 = {Free, Busy}. Then, we define transitions Tp0(Free), Tp1(Free),
Tp2(Free), Tp3(Free) = Busy, Tp0(Busy), Tp1(Busy), Tp2(Busy), Tp3(Busy) = Free and du-
ration (1,+∞) for all of them. These state variables are used to encode binary resource
constraints and, thus, enforce a mutually exclusive use of the associated physical locations.

Other two state variables describe possible behaviors of the human and the robot
in terms of the set of Function that they can perform over time. These functions are the in-
ferred instances of low-level operations the human and the robot can perform in the con-
sidered scenario. The state variable of the robot SVR is thus a associated with the set of
values denoting the function it is supposed to perform VR = {Idle, Release_p1, Release_p2,
Pick_p1, Pick_p2, Assemly_p1, Assembly_p2, Disassembly_p1, Disassembly_p2}. The val-
ues Release_p1, Release_p2 and Pick_p1, Pick_p2 are instances of the function PickPlace
and denote respectively the operations of removing a worked piece from the pallet
(i.e., release piece) and placing a new raw piece into the pallet (i.e., pick piece). The transition
function requires all value changes to pass through the idle state as follows: TR(Idle) ∈
{Release_p1, . . . , Disassembly_p2}; TR(Release_p1) = {Idle}; . . . ; TR(Disassembly_p2) =
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{Idle}. All the values of the robot vR,i ∈ VR are tagged as partially controllable (γR(vR,i) = pc)
because the actual duration of their execution can interfere with the worker. The dura-
tion bounds of these values instead is set according to the average observed execution
time. The state variable of the human SVH is structured similarly to SVR. In this case, it is
necessary to consider the additional operations the worker can perform and robot can
not. These are modeled with additional values VH = {PickPlace_p0p1, PickPlace_p1p2,
PickPlace_p2p3, . . . }. The value transition function follows the same “pattern” of SVR.
However, in this case, all the values vH,i ∈ VH of the state variable SVH are tagged as
uncontrollable (γH(vH,i) = u) since the system cannot control the behavior of the worker.
Furthermore the duration bounds of the values are defined according to Equation (4) and
thus they depends on both the average duration of their execution and on the uncertainty
index δ set according to the expertise level of the worker.

To synthesize production operations, it is necessary to define “functional” state vari-
ables encapsulating abstract production tasks. Such state variables are directly associated
with the production procedure extracted from the knowledge base. The actual number
of these variables (and their values) depend on the complexity of the modeled procedure.
In general, each “production” state variable is associated with a specific abstraction level
of the extracted hierarchical procedure. A goal state variable SVG encapsulates high-level
production requests and is associated with the individuals of ProductionGoal. Individuals
of this concept are generally root elements of the production procedure and are mapped to
the values of SVG. In this case we have three different types of goals, each associated to
a particular type of pallet VG = {process_1121, process_1122, process_0218}. Three differ-
ent hierarchical procedures correspond to these three goals. These values are all controllable
(γ(vG,i) = c) and do not have specific duration bounds since their actual duration depends
on the planning and scheduling of underlying human and robot operations. Intermediate
N − 1 levels of the procedure are modeled through “production state variables” SVL1 , . . . ,
SVLN−1 . The last hierarchical level (N) of the decomposition entails individuals of Function
that are already represented through SVR and SVH . The values of production state variables
represent individuals of ProductionTask such as unmount_1121_p2, mount_1121_p2 and
thus complex/abstract production operations that need to be further decomposed in sim-
pler ones. Starting with high-level production requests (i.e., values of the goal state variable
vj ∈ VG) task decomposition and the needed causal and temporal constraints are modeled
through a set of synchronization rules. Each rule has individuals of ProductionTask (i.e.,
values vLi ∈ VLi ) as trigger (i.e., the head of the rule). Individuals of DisjunctiveTask are
triggers of different rules in order to model alternative decomposition.

The Task Planning Module implements goal-oriented acting capabilities using the open-
source ROSJava Package ROXANNE (https://github.com/pstlab/roxanne_rosjava.git
(accessed on 21 June 2022)). Once configured, the module is ready to receive production
requests (i.e., planning goal) through a dedicated input topic. The synthesis of a task plan
consists in deciding the assignment of production tasks to the human and the robot that
best takes advantage of the collaboration (i.e., optimize the production process) in the given
scenario [7,28,39]. The resulting assignment is then dispatched online to the human and
to the robot by sending task execution requests respectively through the Human-System
Interaction Module and the Motion Planning Module (see Figure 2).

Figure 8 shows an example of a timeline-based plan. It specifically shows the timelines
of the plan through a Gantt representation depicting tokens planned for the state variables
of the domain and their allocation over time. Note that this Gantt representation shows
a specific instance of the plan called the earliest start time. Timelines indeed encapsulate
an envelope of possible temporal behaviors (i.e., possible plan instances) through temporal
flexibility [26]. This flexibility is crucial to deal with temporal uncertainty and support reliable
execution of timelines in real environments [39,53].

https://github.com/pstlab/roxanne_rosjava.git
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Figure 8. Simplified view of a plan synthesized for the execution of a collaborative process concerning
Workpiece 1122. It shows the timelines synthesized for each state variable of the task planning model
(i.e., Goal, Process, Tasks, Worker and Cobot state variables) with the scheduling of related tokens.

5.3. Action Planning and Execution

High-level tasks dispatched by the task planner module are put in place by the action
planning module. This module converts symbolic tasks into a sequence of robot movements
and tool operations (e.g., open/close gripper). The Task Decomposition module receives
the task from the task planner and queries a database to decode the type of the task and its
geometrical properties. The type of task and its properties determine the set of operations
that a task requires.

When a task request comes from the task planner, the Task Decomposition mod-
ule converts it into a set of basic operations. For example, task mount_1121_p2 boils
down to: (a) move to P2 approach position; (b) approach nut; (c) unscrew nut (activate
power drill); (d) push locking bracket; (e) move to piece grasping pose; (f) close gripper;
(g) move to unloading box; (h) open gripper. Each operation corresponds to a point-to-point
robot movement or a change in the state of the robot’s auxiliaries (e.g., the gripper and
the power drill). For all robot’s movements, the Task Decomposition sends the decomposed
actions to a motion planning algorithm. When the task is executed, it returns the outcome
to the task planner. If the task is successful, the task planner will dispatch the next task
in the plan. Otherwise, it would replan according to the reported error. Notice that, since
the proposed framework is designed for dynamic environments, task decomposition and
motion planning are performed online, based on the current state of the cell.

The Task Decomposition module was developed in C++ and Python 3 within the ROS
framework. The communication with the task planner is managed by a ROS-action server
that receives the tasks from the task planner and queries a MongoDB database to retrieve
the task properties. The planning and execution phases are managed by manipulation
framework, an open source library that implements basic skills [54]. The manipulation
framework uses the MoveIt! planning pipeline and planning scene. Thanks to MoveIt!’s
plugin-based architecture, it is possible to load motion planners dynamically from state-
of-the-art libraries available in MoveIt! (e.g., OMPL, CHOMP, and STOMP). In this work,
we use a human-aware path planner [55], which accounts for the position of the operator
in the cell, according to Section 4.2.2. The manipulation framework is also modular with
respect to the controller. In this work, we implemented the human-aware reactive speed
modulation module (see Section 4.2.3) as a ROS controller that changes the robot speed
according to the human–robot relative distance. This allows for a real-time implementation
with a sampling rate equal to that of the robot controller (500 Hz), ensuring prompt reaction
of the robot motion.

5.4. Human-System and System-Human Interaction

For this industrial case, the HS-SH interaction module was deployed by spawning two
applications, hosted on Augmented Reality Headset Microsoft HoloLens 2 and Android
Tablet Samsung Galaxy S4 (Figure 9). Voice, gesture, touch, hearing, and sight-related
modalities are available during operation, either for direct system control or for worker
support. The Knowledge Base configures the type of modals and features within the appli-
cation environments according to the operator’s level of expertise. Online customization
options are offered to users to maximize personalization thanks to several options for each
feature. Authentication via operator profiles ensures that user models are updated with
the customization settings and are linked to each operator.
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Figure 9. Demonstrator setup and HS-SH interaction module.

The human worker and the robotic arm are aware of each other through bilateral
communication of information about each agent’s actions. More specifically, the user
can press easy-to-use buttons to send feedback to the Task planner about the successful
execution of a human task or action. On the contrary, the robot’s status is broadcasted
via textual panels in addition to visualized robot trajectories in 3D augmented-reality
(i.e., AR headset) or 2D screen-based (i.e., tablet) formats, as planned by the Motion Planner.
Awareness about robot actions is also promoted via audio notifications that are enabled
upon robot movements.

The implemented interaction module also supports users during manufacturing opera-
tions through intuitive instructions in extensive or plain form, depending on their preferences
and expertise. The AR application augments the physical system by visualizing digital assis-
tive content within the workstation (Figure 10). In detail, 3D augmented models and arrows
(static or moving) instruct the operator on how to manipulate related components toward
successful assembly. On the same basis, the tablet application provides assistive figures.
In parallel, task information panels are filled by the “Task planner”, providing Task id, name,
remaining tasks, and instructions about current operation in both applications.

Figure 10. Operator point of view for indicative tasks (AR application).



Appl. Sci. 2022, 12, 6839 19 of 22

5.5. Results and Discussion

In general, cyber–physical systems entail the need for intuitive human–system interfaces.
This is even more crucial in anthropo-centric human–robot collaboration systems that incor-
porate online task and motion planning mechanisms. Indeed, these interfaces help promote
mutual awareness about collaborative agents’ current and future actions. Focusing on the hu-
man operator(s), the exposure to robots and safety-related information (e.g., future robot
tasks, future trajectories), as planned from the related modules, can contribute to an increased
sense of safety, feeling more trust in the system, and improved overall confidence during
the fence-less coexistence. Similarly, highly usable monitoring and interaction mechanisms
can support the planning and system adaptation modules on accurate and correct decision
making due to reliable scene reconstruction of the cell’s status.

In this sense, the proposed framework brings together different solutions coming from
the state of the art in knowledge reasoning, planning, and communication to advance
the readiness of HRC research solutions in real-world industrial problems. In particu-
lar, the integration of reasoning and profiling capabilities connected to robot planning
capabilities is crucial to enhance robotic solutions’ flexibility and efficacy in real-world
manufacturing. Additionally, complete and well-structured knowledge about production
scenarios can be used to smoothly adapt collaborative plans and related robot motions to
different skills and production operational and safety requirements. This increased level of
awareness and adaptation of robots is achieved dynamically by combining the developed
AI-based cognitive capabilities into novel controllers. Namely, integrating such cognitive
capabilities is crucial to support higher level of flexibility and allow robots to autonomously
contextualize their behavior to production needs and personalize collaboration according
to workers’ skills and preferences.

It is worth stressing that the proposed framework is intended as a flexible toolkit of
modules to be used based on the application requirements. For example, in a preliminary
version of the framework [10], we addressed a use case inspired by the automotive industry.
In that case, we did not use online Action and Motion planning because the application
required a heavy-duty robot to perform slow and repetitive trajectories. This confirms
the generality of the approach. At the same time, modularity represents a key advantage
in the hand of the system integrator.

This work focused on the integration of different technologies at a single-cell level.
An open point (to be considered in future works) is how to scale the proposed framework up to
the shop floor level. Collaborative cells and operators should be aware of a relevant operation
running in other cells or storage status. This requires additional effort from the planning
and the communication points of view. In terms of planning, the Knowledge Base of each
cell should communicate with a supervisory software system of the plant and leverage this
augmented knowledge to plan shop floor-aware actions. The system should also inform
the operators of relevant features they could exploit in the middle- or long-term reasoning.
In this regard, research trends concerning developing a digital twin of factories [56–58] seem
quite correlated with the current work. The proposed AI-based representation and control
capabilities would strongly benefit from integrating a rich and updated digital representation
of the whole shop floor/factory. The digital twin would indeed represent a precious source of
valuable knowledge to (locally) enhance the awareness of robot controllers about the current
(and future) production and enable more contextualized planning/control decisions. A further
open point concerns how to combine the Planning and Execution flexibility desired in most
applications with industrial safety requirements. As shown in our framework, flexibility
means that the system may change the way the system acts (e.g., modifying the sequence and
the time of tasks to be executed). Risk assessment procedures currently used in the industry
must catch up with this re-configuration flexibility. Online and dynamic risk assessment
appears a fundamental aspect to be addressed to increase the technology readiness level
in the next future (see, e.g., [59]).
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6. Conclusions and Future Works

This work shows the research activity conducted within the EU-funded project SHARE-
WORK to foster user-awareness in HRC scenarios. The work proposes a methodology to
deploy control architecture based on the integration of recent advancements in knowledge
representation , task and motion planning, and human–system communication. We have
shown that the integration of these cutting-edge technologies lays the groundwork to
push a change of paradigm in human–robot collaboration towards contextualized and
user-centered production processes. The developed technological modules have been suc-
cessfully deployed on a real-world manufacturing scenario showing the technical feasibility
of the approach. Future works will investigate the applicability of the proposed approach
at a shop floor level and with users with different skills and features.
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