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Abstract: Calcium imaging has rapidly become a methodology of choice for real-time in vivo neuron
analysis. Its application to large sets of data requires automated tools to annotate and segment
cells, allowing scalable image segmentation under reproducible criteria. In this paper, we review
and summarize the most recent methods for computational segmentation of calcium imaging. The
contributions of the paper are three-fold: we provide an overview of the main algorithms taxonomized
in three categories (signal processing, matrix factorization and machine learning-based approaches),
we highlight the main advantages and disadvantages of each category and we provide a summary of
the performance of the methods that have been tested on public benchmarks (with links to the public
code when available).

Keywords: datasets; neural networks; calcium imaging; neural activity; matrix factorization;
component analysis; deep learning

1. Introduction

Computational neuroscience has made impressive progress in the modelling of the
human brain. Most of the relevant findings have been made studying animal brains [1],
which share common properties with the human brain. For decades, neuroscientists used
many brain imaging methods for this purpose. Some of the most commonly used are
electroencephalography (EEG) [2], positron emission tomography (PET) [3], magnetic
resonance imaging (MRI) [4] and functional magnetic resonance imaging (fMRI) [5]. These
methods have specific characteristics that make them suitable for certain applications,
but they lack two relevant properties: real-time monitoring of neural circuits and single
cell resolution. In 2003, Stosiek et al. [6] proposed a protocol based on two-photon in vivo
calcium imaging that achieved individual cell resolution and real-time analysis of brain
tissues in mice.

Two-photon calcium imaging opened a multitude of research paths in neuroscience,
such as in the study of visual cortex [7,8], the olfactory bulb [9] or the cerebellum [10].
Nevertheless, the large scale acquisition of images to be segmented at an individual cell
level poses the need for automated neuron segmentation. Two-photon calcium imaging
produces 3D volumes where each image plane records a specific located brain region
(typically 10–20 µm) at a given time. Neuron spikes are produced at different temporal
moments, resulting in large stacks of data where neurons are identified. In addition,
neurons may appear overlapped on a single frame, and usually the intensity of the spikes
varies significantly, a large portion of the neurons being invisible in most of the time frames.
Precise annotation requires taking into account the full stack of spatio-temporal data.

Manual annotation of these data requires a cumbersome effort from expert neurosci-
entists. The process of manually drawing binary masks on each temporal frame is not
scalable, and usually two independent annotators can use different criteria on the same
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task. A logical step is to let computers learn this task from previously annotated samples,
producing reproducible results across research labs.

The pipelines for neural data analysis are generally comprised of three steps apart
from the preprocessing. The first step focuses on identifying and segmenting all the neurons
visible in the field of view. The second step is aimed at extracting temporal traces of the
identified neurons and the third step is aimed at spike deconvolution i.e., inferring the time
and frequency of neural spikes. This pipeline is illustrated in Figure 1.

Figure 1. General pipeline followed for calcium imaging data analysis. (a) A summary image
(see Appendix A.3 for details) representation of a calcium imaging stack. (b) Neuron detec-
tion/identification/segmentation step where the identified neurons are highlighted. (c) Neural
traces extraction step, some sample traces are shown. (d) Spike deconvolution, inferred spikes are
shown for the traces extracted in (c).

The number of publications dealing with calcium imaging segmentation has increased
significantly. The main motivation of this survey is to provide a comprehensive overview
of the recent state-of-the-art works and a proper classification of these methods for its use
in neuroscience research. We provide a brief summary of the main features of each method,
and a succinct description of their segmentation performance on public benchmarks. This
evidence may be useful for neuroscientists that seek out-of-the-box solutions for their
particular problems.

This survey reviews some of the most relevant papers on automated neuron segmen-
tation in two-photon calcium imaging (first step of the pipeline illustrated in Figure 1).
First, we introduce a taxonomy of the main methods analysed and describe the neural
segmentation pipeline. Then we highlight the specific contributions that had an impact
in the field. The two main challenges to boost the segmentation are the availability of
open code for comparing and improving the current methods and the publication of
benchmarks with manually annotated ground truth that allows a fair comparison among
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algorithms. Section 7 summarizes the results in the context of public benchmarks available.
We conclude the paper with a critical discussion of future research.

2. Major Trends

Current neuron segmentation approaches in calcium imaging face the following open
challenges: (i) some brain sections present regions with densely located neurons, which
can synchronously spike, making the detection and segmentation difficult, (ii) similarly,
the summary of the 3D structure of the brain may introduce overlapping neurons, which
can confuse the individual cell annotation and (iii) there is a need for automated analysis
methods due to the large availability of calcium imaging data, but there is a lack of public
large annotated datasets for learning complex models (such as deep learning approaches)
that could be used to segment the data available. The survey analyses three main trends
followed for neuron segmentation/neural activity detection for calcium imaging data
in the literature: neuron segmentation using signal/image processing methods, matrix
factorization techniques and machine learning algorithms. The taxonomy of these trends is
shown in Figure 2.

Figure 2. General taxonomy of the major trends and approaches covered in this survey.

Image processing methods use unsupervised signal processing (see Section 4) to filter
the neurons on each temporal frame. These methods benefit from the structural features of
the neurons’ boundaries to highlight them either using convolutions with specific filters,
mathematical morphology filters, graph based-clustering, pixel-value thresholding or a
combination of them. Most of the approaches which fall in this category rely on some
form of background estimation. Since neural activity is recognized by looking for compact
spatial regions which exhibit different calcium indicator dynamics than the surroundings,
background estimation is a relatively efficient approach to filter out these regions [11–13].
The underlying assumption is that calcium indicators will always emit a baseline fluores-
cence, even when the neurons are not active. An effective background estimation method
which caters to this baseline fluorescence and random noise can therefore quickly isolate
any active neurons.

Another particular case of unsupervised learning is the use of matrix factorization
methods [14–16]. These methods are based on the assumption that the image is generated
by a linear combination of a set of latent variables, which usually correlate with the neu-
ronal signal. Matrix factorization has been widely used in many computer vision tasks,
such as face classification [17], unsupervised image denoising [18] and hyperspectral image
classification [19]. This can be further sub-divided into two main categories, independent
component analysis (ICA) (see Appendix A.2 for details) and non-negative matrix factoriza-
tion (NMF) (see Appendix A.1 for details). In ICA, the spatial and temporal footprints of the
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neurons are estimated by solving the matrix factorization framework for two independent
matrices, one for spatial footprint and the other for temporal traces. In NMF, the matrix
factorization framework is solved in a constrained manner by borrowing one key fact from
the physics behind neural florescence i.e., the factorized matrices for spatial footprint and
temporal traces cannot contain negative values since a negative value in either spatial
footprint or temporal traces is not physically possible. Section 5 reviews some of the most
relevant approaches.

The third ensemble of approaches relies on supervised methods. Supervised methods
use either manually or anatomically annotated masks to train a robust classifier that
performs the neuron segmentation task. These methods usually require large amounts of
labelled data, and obtain improved generalization accuracies. With the advent of deep
learning methods, two main architectures emerged as the most prominent: convolutional
neural networks (CNNs) for pixel classification [20] and U-Net architectures for dense
segmentation [21]. These two methods are then applied to the spatio-temporal calcium
imaging stacks in two approaches. In the first approach, the temporal dimension of the
spatio-temporal stacks are collapsed by calculating summary images (see Section 4) and
then the supervised methods are applied to the summary images. This approach has the
advantage of speed but suffers from the loss of information since summary images might
not adequately represent two types of neurons: those neurons which fire very slowly and
those neurons whose emitted fluorescence is not strong enough when compared to the
baseline fluorescence/background. Moreover, this approach also struggles with those
neurons who are separated in the z-plane but appear overlapped in the summary images
since the z-plane (temporal dimension) is collapsed. The supervised methods are directly
applied to the 3D spatio-temporal stacks. This approach can detect overlapping neurons
but they are heavily reliant on appropriate masks and the length of the spatio-temporal
stacks. Moreover, these methods also tend to be computationally more expensive and more
difficult to train. Section 6 reviews the most recent methods.

It is to be noted that, on a functional level, signal/image processing-based methods
and matrix decomposition-based methods are more similar to each other and more differ-
ent than machine learning-based approaches as machine learning-based approaches are
mostly supervised and many of them need careful annotation of the data. Moreover, these
three main categories can be further sub-divided into sub-categories based on the specific
approach being taken. For instance, signal/image processing-based approaches can be
further sub-divided into two sub-categories: one which treats the temporal traces of each
pixel as independent signals and another which treats calcium imaging slices/stacks as
2D structural elements. Matrix decomposition-based approaches can also be sub-divided
into matrix factorization-based approaches and component analysis-based approaches.
Machine learning-based approaches can be sub-divided into two main functional sub-
categories: one which processes calcium imaging stacks one slice at a time and the second
which treats calcium imaging stacks either as a spatio-temporal stack or a 3D volume. We
decided not to sub-divide these three main approaches into sub-categories to keep a holistic
overview and maintain a sense of overall comparison between these three main categories.

Apart from automated segmentation of neurons, tools and pipelines are also de-
veloped for manual annotation of neurons or in some cases, fine tuning the automated
annotation [22–24]. In some cases, the ROI detection part is manual and calcium spike
extraction/detection is automated [24]. We left these approaches out of this survey since
they are out of the scope for this survey paper.

3. Neural Activity Segmentation Pipeline

Neural activity/neuron segmentation is a part of the neural data analysis pipeline.
The broad neural data analysis pipeline for calcium imaging data includes pre-processing,
neuron detection/segmentation, spike inference and spike deconvolution [25,26]. The
pipeline does not end at neuron detection/segmentation since the activity of the neurons
also needs to be deconvolved by estimating when a neuron fires. In this article, we are



Appl. Sci. 2022, 12, 6876 5 of 29

dealing only with a part of the neural data analysis pipeline i.e., neuron segmentation.
Therefore, we will only explain the pipeline steps necessary for neuron segmentation.

3.1. Motion Correction

The field of view in calcium imaging datasets is not necessarily stationary. Motion
artefacts in these datasets arise from natural brain movement and equipment movement.
In small areas this motion can be approximated as rigid, and can be corrected using
standard template-based registration methods [27]. However, it can also be non-rigid
when the field of view is large or brain movement is faster than the raster movement of
scanning equipment. Therefore, the first step of neuron detection/segmentation pipelines
is to correct any motion artefacts in the datasets. Different approaches have been proposed
for motion correction but their in-depth analysis is out of the scope of this article [28–30].

3.2. Filtering

This step involves removing any unwanted noise in the datasets [31]. The noise can
come from different sources, such as the neuropil, background fluorescence, equipment
or non-uniform staining by calcium indicators. The noise can be reduced by different
approaches such as percentile filtering, homomorphic filtering or custom designed pipelines.
The detailed analysis of these methods is out of the scope of this paper.

3.3. Source Extraction (Neuron Segmentation)

The next step of the pipeline is source extraction which can either be treated as a neuron
segmentation or neuron detection problem. In neuron segmentation approach, the neurons
are segmented by identifying every pixel that belongs to a neuron in all the available frames.
The segmentation method should ideally produces a mask for each neuron with the neuron
as the foreground and everything else as the background. In neuron detection approaches,
only the position of each neuron is estimated without identifying every pixel belonging
to a neuron. This can also be viewed as neuron location approach and can be used as a
pre-processing step for more advanced neuron segmentation approaches.

3.4. Spike Deconvolution

The final step of neural data processing is spike deconvolution, which involves in-
ferring the spike trains of all the segmented neurons. When all the neurons are located,
first their activity traces are extracted by averaging the fluorescent values inside the neu-
rons. Since change in the calcium indicators concentration is not an instantaneous impulse,
but rather a dynamic process in which the calcium indicators concentration changes quickly
at the beginning and then settles down in some time, the actual spike can be represented by
a decaying signal in the extracted fluorescence trace. Spike deconvolution aims to extract
the spike train from this somewhat continuous fluorescence signal. The detailed analysis of
spike deconvolution is out of the scope of this paper [32–37].

4. Signal/Image Processing-Based Methods

In this section, we will cover all those neuron segmentation approaches that are
based on signal/image processing. The segmentation problem is approached either from a
signal fingerprinting perspective by looking for specific fingerprint of the signal or object
localization perspective. We have summarized different signal/image processing-based
neurons segmentation methods in this section.

Liu et al. proposed a gradient vector fields-based cell segmentation and localization
approach for calcium imaging data acquired from Zebra fish [38]. First, they compute a
gradient vector field of the input frame from a calcium imaging dataset. As pixel values of
gradient vector fields represent the local gradient flow in the image, the gradient vector
fields are not smooth. Therefore, after calculating the fields, they apply a physical model to
diffuse the gradient vectors on image boundaries, resulting in a smoother gradient flow
field. Given the diffused gradient flow image, for each point, they then determine a set of
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positive and negative points along the gradient direction. The positive points are found
by considering the points in a given radius along the positive gradient direction and same
for negative points. These positive and negative points are used to create orientation and
magnitude images. For each pixel, the positively voted points in a given radius are incre-
mented by 1 and the negatively voted points are decremented by 1. For magnitude voting
image, the positively voted points are incremented by magnitude of gradient multiplied by
a monotonically decreasing Gaussian and the negatively voted points are decremented by
same amount. After finding magnitude voting image and orientation voting image, non-
maximum suppression is applied. Then a distance proportional to the radius of a neuron is
used to find local maxima, which represent the nuclei of the circular neurons. To reduce
false positives, mean-shift clustering is used by taking the colour and pixel intensities into
account. The authors have validated their approach on two datasets. In the first case, they
applied their pipeline to count neurons on retinal sections stained with DNA-binding dye.
They reported a false positive rate of 4.2% and a false negative rate of 4.5% against a human
expert. In the second case, they applied their approach on retinal sections stained with a
different dye. They reported a false positive rate of 6.3% and a false negative rate of 5.2%
against a human expert. In a hindsight, their approach achieves impressive results, but it
is based on the assumption that neurons have a circular shape which might not be true
all the time. Moreover, this approach cannot isolate overlapped neurons. Additionally,
the approach is not tested on datasets acquired under diverse conditions and does not take
the temporal activity of the neurons into account.

Patrick et al. developed SIMA, an open source Python package that facilitates com-
mon analysis tasks related to fluorescence imaging [39]. The package can be used for
motion correction, ROI (region of interest) segmentation and signal extraction from calcium
imaging stacks. The package has a GUI (graphical user interface) for interactive editing of
the ROIs as well. The segmentation sub-routines are based on normalized cut approach.
The normalized cut approach [40] segments the image by an iterative process. At each stage,
a subset of the image pixels is split into two new subsets in such a way as to minimize a
penalty that depends on a set of connection weights between the pixels until a termination
criterion is met. Two factors determine the resulting cuts: (1) the connection weights
between pixels, and (2) the termination criterion. The package developed by the authors
implements two versions of the normalized cut. In the first version, the connection weights
between two pixels are logarithmically related to the correlation and distance between
the pixels. In the second variant of the normalized cut, the connection weights also take
into account the maximum intensity pixels along the line connecting the two pixels. The
termination criterion for the iterative partitioning of the image depends on the number
of pixels in the region and the normalized cut penalty for the next potential partitioning.
After the normalized cut procedure, Otsu’s method is used to for calculating the threshold
of each partition [41]. Then morphological opening followed by closing is used to fill the
gaps and regularize the shape of ROIs. Finally, a minimum size and circularity criterion is
applied to all the ROIs to exclude any small blobs. The segmentation sub-routines were
tested on 37 datasets of two-photon calcium imaging data acquired from pyramidal cells in
hippocampal area. The datasets contained 4575 frames in total with spatial dimensions of
128 × 128, acquired at a frame rate of 6.6 Hz. A ground truth was generated by a human
expert by visual inspection of all the frames. To determine if a segmented ROI represents a
true detection, the Jaccard index was used with all the ROIs with a Jaccard index above 0.25
being considered as true detection. The authors report a false negative rate of 12% ± 2%
and a false positive rate of 20% ± 5%. The segmentation sub-routines are computationally
efficient to be implemented for real-time segmentation; however, they do not take any
temporal context into account. Moreover, they cannot deal with the overlapping neurons
in the z-plane and they also cannot deal with the odd doughnuts shaped neurons which
appear in datasets acquired by some of genetically encoded calcium indicators.

Mohammed et al. proposed an integrative approach for analysing hundreds of neu-
rons in awake-behaving mice in vivo [42]. This approach includes ROI detection, ROI
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merging and calcium trace analysis. First, the frames in a calcium imaging stack are
standardized using z-scores. An adaptive threshold is then applied on all the pixels in a
frame to produce a binary mask. These binary masks then processed using morphological
operations to find and label connected components within each frame. This is based on the
intuition that neuron pixels are significantly brighter due to activation of GCaMP. The ini-
tial threshold was adjusted based on the number of non-zero pixels detected with each
threshold. The single-frame ROIs are then merged to create multi-frame ROI by clustering
all those single-frame ROIs together based on the proximity of their centroids, as well as
the proximity of their bounding boxes. The multi-frame ROIs are then used to extract
calcium traces. The approach is tested on calcium imaging data acquired from the CA1
pyramidal cell layer of head-fixed awake mice. The images were acquired at 20 Hz with
a spatial resolution of 1024 × 1024. To quantify the ROI detection performance of their
algorithms, the author manually inspected each ROI from example dataset. The authors
have reported that their ROI detection sub-routine was successful in image regions with less
density of ROIs and struggled in image regions with higher density of ROIs. The detection
sub-routine cannot handle overlapping neurons in z-plane. As this approach is not tested
on any public dataset, we cannot establish its robustness.

Spaen et al. proposed a novel combinatorial approach for identifying neurons in cal-
cium imaging data [43]. The algorithm identifies cells by finding distinct groups of highly
similar pixels in correlation space. The authors based their approach on the observation
that the pixels in spatial footprint of a neuron have similar temporal signal. They used
a graph-based model where nodes represents the pixels and edges represent the connec-
tions/similarity relations between pixels. They assigned a value close to 1 if the pixels are
similar and close to 0 if the pixels are not similar. Then they iteratively identified one neuron
at a time until all the neurons are identified. In the beginning, they selected a superpixel
as seed. Then they selected negative seeds by uniformly picking pixels from a circle of
sufficiently large radius. All the pixels within the radius are compared with the seed to
eliminate non-neurons pixels. Although finding superpixels is efficient and all of them
can be used as seeds, this process is computationally not efficient. Therefore, the authors
considered only 30–40% of all the superpixels with highest average correlation as seeds.
They computed correlation space to find similarity between pixels. To compute the value of
a pixel pi in correlation space, they find correlation of temporal trace of the pixel pi with the
temporal traces of all the pixels surrounding it which are inside a bounding box with the
pixel pi in the centre. Then, they averaged all the correlation values to calculate the value of
pixel pi in the correlation space. The authors have tested their approach on the Neurofinder
benchmark. The achieved an average F1 score of 59.6%, an average recall of 62% and an
average precision of 65.8% on the test datasets provided in the Neurofinder challenge.

Guan et al. proposed an open source MATLAB toolbox which they call NeuroSeg,
for automated analysis of two-photon calcium imaging data [44]. The toolbox includes
a custom designed cell detection sub-routine based on Gaussian and Laplacian filters.
First, they normalized the image by min-max normalization. Then they use a 2D median
filters with a kernel size of 5 for noise reduction. They based their neuron detection
approach on the observation that the neurons have circular or elliptical blob like shapes.
Therefore, they opted for the gLog algorithm proposed by Xu et al. [45]. They apply
the gLog algorithm at different scales to detect neurons of different sizes. The size and
orientation of the gLog filter kernels are predefined. These kernels were convolved with the
calcium imaging data, thus generating response maps for all the kernels. Then, seeds were
initiated by searching local maxima in response maps. An adaptive thresholding algorithm
was then used to generate a binary mask of the seeds with cell regions represented by
a logical 1 and background represented by a logical 0. Those seeds which were in close
proximity were merged. To segment neurons, square windows were drawn with the seeds
at their centres. The size of the windows was determined by the size of the kernel which
generated to response map of the seed. Next, they calculated two weighting matrices.
The first weighting matrix is a Gaussian kernel with an elliptical plateau region whose
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scales and orientation are determined by the scales and orientations of the original gLog
kernels. The second weighting matrix is proportional to the Gaussian gradient of the
window and normal vectors pointing from the pixels to the seed. These weighting matrices
are multiplied with the square window and the result is binarized. The final binarized
window contains the neuron which generated the seed point in first place. They tested their
approach on an in vivo two-photon calcium imaging dataset obtained from a C57/BL6J
male mouse’s cortical neurons with varying view fields. They compared the ROIs detected
by their approach to manually annotated ROIs. To quantify the level of agreement between
manually annotated ROIs and automatically detected ROIs, they used dice similarity
coefficient (DSC) and Hausdorff distance (HD) [46]. They reported a DSC of 0.83 ± 0.02
and an HD of 12.91 ± 1.49. They also reported a precision of 87.5% ± 6.6%, a recall of
89.3% ± 5.3% and an F1 score of 88.1% ± 4.0%. Although the approach is simple and
analytically tractable, it cannot deal with overlapping neurons. Moreover, it might also find
it hard to detect the doughnut-shaped neurons in which calcium activity is concentrated on
the borders.

Romano et al. proposed an open-source toolbox for pre-processing, neuron segmenta-
tion, trace extraction, estimation of significant single-neuron single-trial signals, mapping
event-related neuronal responses, detection of activity-correlated neuronal clusters and
exploration of population dynamics in two-photon calcium imaging data [47]. The toolbox
includes a neuron segmentation sub-routine which is based on morphological operations.
First, a summary image is obtained by averaging the stack across temporal dimension.
Then the summary image is spatially normalized by first filtering it by a 10% order statistic
filter and then by a 90% order statistic filter. The two resultant images are used for min-max
normalization of the summary image. After normalization, the user sets the thresholds
for the cell body, the soma and the neuropils which will segment the summary image into
binary masks, one for soma and one for neuropil. Both of the masks are then imposed
as regional minima to the image complement of the summary image. Finally, watershed
transformation is performed to obtain the ROI boundaries. Moreover, the associated GUI
lets the user manually curate the ROIs too. The authors have tested their ROI (neurons)
segmentation approach on five datasets obtained from different regions of a mouse brain
under different conditions (Dataset 2 sampled at 30 Hz with spatial dimensions of 256× 256,
Dataset 3 sampled at 7 Hz with spatial dimensions of 256 × 256, Dataset 4 sampled at 1 Hz
with spatial dimensions of 512 × 256, Dataset 5 sampled at 100 Hz with spatial dimensions
of 232 × 242, Dataset 1 sampled at 100 Hz). They reported a true detection rate of 85–90%.
It is to be noted that the toolbox has not been tested on any public benchmarks, so we
cannot establish its robustness. Moreover, the neuron segmentation approach employed in
this toolbox cannot separate overlapping neurons.

Tomek et al. developed an open source MATLAB toolbox for pre-processing, neuron
segmentation and signals extraction in real time which they call Search for Neural Cells
Accelerated or SeNeCA [48]. The segmentation algorithm is based on a combination of local
thresholding and a watershed method which is interrupted properly. First, the input image
is filtered with a blur or disk filter. Then a light averages (LA) matrix is generated by placing
average of surrounding pixel intensities at the original pixel spatial position. At this point,
the mask is also initiated. The user sets the higher light threshold coefficient and the lower
light threshold coefficient while the actual thresholds at each pixel are the product of a
particular coefficient and the pixel value of LA matrix at same spatial coordinates. If a pixel
value of this product image exceeds the higher threshold, it is considered an intracellular
pixel and represents a possible origin for the watershed wave. A flooding wave is started
from each point (Meyer’s flooding algorithm [49]). The lower light threshold stops the
flooding. The pixels are continuously updated in the output mask. The neuron cells are
numbered. The authors propose to mark the edge of the nth neuron as n whereas the
inside of the nth neuron is marked by −n. Finally, cells in the output mask are eliminated
if their size is greater or smaller than the expected size. The authors have tested SeNeCA
on three kinds of data: synthetic, in vitro and in vivo. To quantify the neuron segmentation
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performance, the neurons segmented by SeNeCA are compared to the neurons annotated
by human experts. Each of the dataset contained 100 images and SeNeCA was tested
on a randomly selected image. The authors calculated four kinds of errors to quantify
performance: split: when two numbers are assigned to same cell; merged: when two cells
are treated as one; spurious: a false positive; missing: a false negative. SeNeCA detected
48.7% false positives, missed 5.9% of the cells and split and merged errors were minimal.
In case of synthetic data (dimensions of 256× 256× 25), SeNeCA made 1.9%± 0.6% merged
error, 7.0% ± 2.5% false positives and 4.0% ± 3.4% false negatives. SeNeCA is open source,
computationally efficient and tractable. However, like most of its counterparts in this
category, it fails to take the temporal dimension into account. If the neurons are densely
populated, SeNeCA might see a lot of merged errors since it cannot deal with neurons
overlapped in the third dimension.

Stephanie et al. proposed a level set-based neuron segmentation approach in two-
photon calcium imaging data which they call ABLE [50]. The approach treats every neuron
and its immediate surrounding as a union of two sub-regions, the neuron as one sub-region
and the background as another sub-region. These sub-regions are separated by a boundary
and both of them can be represented by their own feature vectors. In this case, the authors
consider the average time-courses of the sub-regions as the feature vectors. The optimal
partition or the boundary is the one which minimizes the dissimilarities between a pixel
time course and the average time-course of the region it belongs to. The optimal boundary
is found by iteratively evolving its shape based on the dissimilarity function. The boundary
is an active contour. As it gets updated, the interior and exterior of the neuron also get
updated. In this article, the authors considered the union of all background sub-regions
as one global background sub-regions. They used a level set method to evolve the active
contours. First, the temporal dimension of the image stack is collapsed by computing
a correlation image. Then local maxima are found in the correlation image which are
considered as neurons at the initialization stage so there boundaries become the active
contours. The active contours are iteratively updated until either maximum number of
iterations is reached or the number of pixels added or removed from the interior is smaller
than a threshold. If the neurons are sufficiently closed, they are merged. The authors have
tested their approach both on synthetic data and the Neurofinder challenge benchmark.
They considered a cell as true positive if its centroid is within five pixels of the centroid
of its manually annotated counterpart. To quantify the performance, they used F1 score.
On synthetic data, ABLE achieved an F1 score > 99%. On the Neurofinder challenge dataset,
ABLE achieved a precision of 67.5%, a recall of 67.5% and an F1 score of 67.5%. ABLE is
flexible since no priors are required. Additionally, it only needs local information to evolve
a contour. However, like any level set method, the performance of ABLE is dictated by the
quality of initialization.

Ellefsen et al. developed an interactive MATLAB/Python toolbox for segmentation,
analysis and visualization of calcium imaging data [51]. The toolbox has a custom neuron
segmentation sub-routine. The toolbox accepts image stacks as inputs. The input image
stack is first filtered to remove flash artefacts. The user is then prompted to select an area
of the imaging plane containing no neurons. The average intensity of this area is used to
create a background frame. The background frame is subtracted from all the frames in
the image stack. Then the resulting image stack is spatially filtered with a Gaussian filter.
The spatially filtered image is temporally filtered using a band-pass filter which removes the
high frequency photon shot noise and low frequency baseline fluorescence. A user specified
boxcar window is used to find the minimum value of preceding frames. This minimum
value is then subtracted from the pixel values of the current frame. Those pixel values
which are higher than a threshold are set to 1 while the remaining are set to 0. This step
generates a 3D Boolean matrix. True pixels close in space and time are grouped together.
Afterwards, the Boolean matrix is used to create three dimensional boxes encompassing
unique events. The authors have tested their algorithm and routines on a synthetic dataset
and an in vitro calcium imaging dataset. The synthetic dataset was generated by creating
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a neurons firing sequence and adding this to a baseline fluorescence at known locations,
at different amplitudes and with different neurons sizes. An image stack of 1200 frames
was created using this method. The other dataset was acquired from neuron activity
at localized sites in human neuroblastoma SH-SY5Y cells cultured in vitro. The image
stack was acquired at 420 frames per second. The ground truth was created by visually
inspecting the stack and localizing neural activity. The authors report a maximum false
positive rate of 0.007 events per frame (one false positive per cell every 3 s). The authors
have not reported the performance of their toolbox on benchmarks, therefore it is hard to
evaluate the robustness of their toolbox on diverse datasets. Moreover, the calcium events
localization routine in their toolbox seems to ignore the occurrence of overlapping neurons,
which can significantly drive the performance down.

Prada et al. developed an open-source bioinformatics tool for automatic extraction,
counting and localization of calcium signals in two-photon calcium imaging data [52]. They
specifically targeted calcium signals whose amplitude is close to background fluorescence
levels. The tool interactively asks the users to enter three parameters: grid window size,
signal to noise ratio (SNR) and signal average threshold (SAT). The SNR value defines
the threshold separating calcium events from noise and SAT value is used to separate
signal from the background. First, the input image stack is divided into multiple grid cells.
Then, average calcium fluorescence is calculated for the grid window and its amplitude is
compared with the SAT value. Wavelet transform is used to localize the peak in the calcium
signal. It is based on the assumption that calcium signal has three components, the peak
(calcium transient event), the baseline and the noise. The authors have tested their tool
on hippocampal neurons prepared from CDI mice of either sex. The authors reported an
average true positive rate of 93% and an average false positive rate of 2.5%. They have not
reported any false negative rate. Moreover, the tool has not been tested on a benchmark
dataset, so we cannot establish its robustness. Additionally, temporal information is only
used once the neurons are detected (grid cell containing neurons); therefore, this tool cannot
effectively deal with spatially overlapping neurons.

Simon et al. proposed an adaptive thresholding-based cell segmentation approach
which they call “ACSAT (Automatic Cell Segmentation by Adaptive Thresholding)” ([53]).
This approach is optimized for cell segmentation in large datasets. First, they collapse the
3D calcium imaging stack onto a 2D image by taking a temporal average. In the second step,
ACSAT detects ROIs at various threshold iteratively. In the first iteration, an initial threshold
is used to segment potential ROIs from the background. The locations of these ROIs is
saved and then the ROIs are eliminated. Next, the threshold is lowered for next iteration.
The thresholding is applied both at global level and at local level. The global thresholding
segments the ROIs from the background whole the local thresholding separates overlapping
ROIs. ACSAT has been validated on a simulated dataset with a recall generally higher than
80%, however, the authors report that the precision and recall fall if the SNR is below 20 dB.
ACSAT has also been validated on an actual dataset acquired from the hippocampus of a
mouse. It achieved a precision of 71.2% and a recall of 74.9%. On another dataset acquired
from the striatum, it achieved a precision of 51.1% and a recall of 75.8%. The performance
figures of ACSAT are decent and it is simple enough to be understood and computationally
not very expensive. However, it cannot deal with those neurons whose temporal activity is
sparse and might not register strongly in the mean image. Moreover, it can also not deal
with those overlapping neurons that have similar fluorescence levels.

5. Matrix Factorization-Based Methods

One of the most popular approached for calcium data segmentation is the use of
matrix factorization techniques. These techniques aim to solve the neuron segmentation
problem by factorizing the observed datasets into spatial and temporal footprints of the
neurons. These methods also take the background fluorescence and noise into account.
The choice of factorization framework, constraints and background modelling results in
different variants of this approach. In this section we summarize the most relevant ones,



Appl. Sci. 2022, 12, 6876 11 of 29

focusing specially on the commonly used independent component analysis (ICA) [54] and
non-negative matrix factorization approaches [55].

5.1. Independent Component Analysis-Based Approaches

Independent component analysis is a computational approach which separates a multi-
variate signal into additive sub-components. It defines a generative model for the observed
multivariate data. The data variables are assumed to be weighted linear combinations of
some unknown latent variables. It also assumes that the combination weights for each
latent variable are also unknown. The latent variables are assumed to be non-Gaussian
and mutually independent. Therefore, the end goal of ICA is to find a new representation
of observed data defined by latent variables which are statistically independent of each
other. In the context of calcium imaging, the ICA tries to separate the observed fluorescent
stack in independent sources which will (hopefully) represent the fluorescence activity
of individual neurons. The underlying assumption is that the fluorescence activities of
individual neurons are statistically independent.

Mukamel et al. proposed an ICA framework aided by image segmentation to isolate
neurons in calcium image data at scale [56]. Individual frames of a calcium imaging stack
are first converted into a column vector by rearranging the frame. Then, principal compo-
nent analysis (PCA) is used to reduce the dimensionality of the image vector which can
be of order 105. After PCA, the ICA algorithm is used to extract independent components
in the spatio-temporal domain by maximizing the non-Gaussian distribution in the tem-
poral domain. Then the extracted independent components are checked for spatial and
temporal sparsity. To increase the independence of found components, the filters for all
independent components are first smoothed and then applied to the image data. Local
regions with strong response to a filter are thresholded and if one filter results in more than
one binarized regions, new filters are created which make sure that one filter results in only
one binarized response region. This process verifies that regions with correlated neural
activity are disentangled. The performance of the proposed approach was quantified by
comparing it to ground truth produced by a human annotator. The authors report an F1
score of 75%. The authors also tested their approach on calcium imaging data acquired
from the molecular layer of cerebellar lobules V and VI of anesthetized and awake head-
fixed mice. They have not reported comparative performance for this dataset but they
did report that the shape of filters extracted by ICA was same as of the Purkinje cells they
were targeting. The proposed ICA+image segmentation framework offers an advantage in
the form of iterative fine tuning by targeting regions with correlated neural activity but it
also carries the inherent weakness of the ICA frameworks, i.e., the ICA framework is built
upon the assumption that the signal sources (neurons) are independent, which might not
always be the case. It also cannot detect cells that do not spike or differentiate cells that fire
synchronously. It also identifies neuronal projections that may not be of interest to the user
for network-level analysis.

Patel et al. proposed a semi-automated ICA-based neuron segmentation framework
for neuronal networks quantification and single cell dynamics analysis in calcium imaging
data [57]. Under this framework, initial estimates for neurons’ ROI are generated using
the ICA framework proposed by Mukamel et al. [56]. The authors then assume that the
generated ROIs might not be a correct approximation of the actual neurons ROIs since
they might contain merged ROIs or some ROIs might be missed. Therefore, those ROIs are
displayed and the user is then first presented with the option to change the ICA parameters
to get a better initial estimate of the ROIs. Then, the user can modify the ROIs, delete the
ROIs or manually add more ROIs. The authors have neither provided any quantitative
figures for their neuron segmentation framework when compared to manual annotation,
nor have they tested the segmentation framework against public benchmarks. Therefore,
we cannot verify the robustness of their approach.

Tegtmeier et al. developed an open-source MATLAB package for calcium data pro-
cessing and behavioural data analysis in mice [27]. The package is intended to be used for
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calcium data acquired from head-mounted imaging setup and behavioural data acquired
from multiple cameras. The author call the package “Calcium Activity Explorer” or CAVE.
The package has sub-routines for motion correction, ∆F/F calculation, cell (neurons) detec-
tion (segmentation) and trace analysis. For cell detection, the ICA framework proposed
by Mukamel et al. [56] is used to generate initial ROI estimates. Then thresholds are
applied to minimum and maximum sizes of the ROI to delete ROIs smaller or larger than
an expected size range (30 to 300 pixels). Those ROIs which overlap by more than 30%
are merged together. Moreover, those ROIs whose fluorescence is lower than a threshold
are deleted and those ROIs whose temporal correlation is greater than 0.8 are merged.
Finally, the users can themselves add or delete ROIs manually. CAVE has sub-routines
for calcium activity deconvolution and behavioural analysis as well but they are out of
the scope of this survey. The authors have tested their package on data acquired from
both a cortical region (primary somatosensory cortex, S1) and a hippocampal region (DG).
However, they have not provided any quantitative performance figures for their package
on cell/neuron detection.

Prada et al. [52] developed an open-source tool for automatic extraction, counting and
localization of calcium signals from calcium imaging stacks based on continuous wavelet
transform-guided peak detection in calcium signals. The tool needs three parameters: grid
window size (WS) which is used to locate calcium activity events, signal to noise ratio
(SNR) which defines what part of the ROI is signal and what is the background and signal
average threshold (SAT) which is used as a threshold for background removal. The average
signal threshold is either entered manually or calculated from a cell-free region/low activity
region of the stack. These three parameters are used to extract an automated pdf report
about time and location of calcium activity in the imaging stack. This tool was developed
in ImajeJ and R. The authors have not provided a comparative or quantitative performance
for this tool. This tool is simple to understand, easier to use and according to the authors
and performs activity detection satisfactorily. However, this tool is non-robust as it cannot
deal with varying levels of background activity. It cannot isolate neurons on its own and
relies solely on a fixed background model.

5.2. Non-Negative Matrix Factorization-Based Approaches

In NMF frameworks, the observed data are described by the vector product of
two lower rank matrices, one for the spatial footprint and one for temporal footprint
along with some additive terms. The spatial and temporal footprints are constrained to be
non-negative since neither the spatial coordinates nor the temporal traces of neurons can
be negative.

Majee et al. formulated the neuron detection problem as an image reconstruction prob-
lem where the reconstructed image encodes the location of neuron centres [58]. The shapes
of the neurons are encoded by the impulse response of a filter in the forward model and is
estimated from training data. First, the neurons are represented in two groups, sparsely
expressed and overly expressed neurons. Both of these groups are represented by two sep-
arate images, X(1) and X(2). These images are then estimated using a matrix factorization
framework of four elements where the first element represents the matrix product of spatial
and temporal footprints of the neurons, the second element represents the background
fluorescence, the third element is white Gaussian noise, while the fourth element is noise
from the dendrites. X(2) and X(2) are assumed to be independent, so their prior joint
probability can be estimated by their individual prior probabilities. These probabilities are
proportional to the L1 norms of X(1) and X(2). Taking all of these facts into account, X(1)

and X(2) are estimated by a non-negative matrix factorization framework. This approach
has been validated on a manually annotated dataset. It achieved the best performance
figures with F1 = 91%, precision = 95% and recall = 87%. This approach has not been
validated on an established benchmark, so its performance against other neuron detection
approaches is not established.
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Jinghao et al. proposed a modular pipeline for enhancement, movement correction
and signal extraction in one-photon calcium imaging stacks [59]. Each sub-module can
be used as a stand-alone unit for their intended purposes. The enhancement modules
removes grainy noise by applying anisotropic diffusion-based noise removal [60]. This
is followed by morphological opening operations to remove smaller ROIs which might
not be necessarily neurons. The movement correction is achieved by hierarchical video
registration. The neural enhancement and motion correction are pre-processing steps which
are followed by two more steps for calcium activity extraction. First, an over-complete set of
seeds is initialized which might contain many false-positives. Then, this over-complete set is
cleansed by applying a two-component Gaussian mixture model (GMM) on the traces of the
seeds. The traces with relatively larger fluctuations are retained while the rest are discarded.
To further strengthen the cleansing, an offline-trained long short-term memory (LSTM)
network is used as a classifier to identify actual calcium spikes. The overlapping seeds
which exhibit similar temporal activity are then merged together to remove redundant seeds.
After seed initialization and cleansing, a constrained non-negative matrix factorization
(CNMF) proposed by Pnevmatikakis et al. [31] is used to extract spatial and temporal
footprint of the neurons. The authors have validated MIN1PIPE on a synthetic video for
comparison with other approaches. The authors report a precision of 100% on this video
and claim the pipeline successfully avoids almost all of the false positives found by CNMF.
Next, the authors validated MIN1PIPE on calcium imaging stacks obtained from the barrel
of the cortex in freely behaving mice. MIN1PIPE detected 357 potential ROI as compared
to 79 by PCA/ICA and 598 by CNFM. The authors have not reported quantitative results
on a ground truth, so we cannot evaluate its performance against a baseline.

Pnevmatkakis et al. proposed a matrix factorization-based approach for calcium signal
extraction which tries to solve the problems of denoising, factorization and deconvolution
simultaneously [31]. First, a parametric model is estimated for calcium transients under
the assumption that sampling time is less than the decay time of the transients. This is
achieved by approximating the calcium transients as the impulse response of an auto-
regressive (AR) process of order p (p is either 1 or 2). Next, the spiking signal is estimated
by solving a non-negative sparse constrained deconvolution problem. To achieve this,
a T time steps field of view is considered. This field of view can be considered as d × T
matrix where d is the number of elements in one time step (all the pixels in one image/slice).
The number of neurons in this field of view is initially assumed to be K. The spatio-temporal
activity of a neuron is assumed to be an AR process with two elements, one element is
for the spatial footprint and the other element is for the temporal footprint in d × T field.
The spatial and temporal footprints are extracted by factorizing the field in two lower
rank matrices in a constrained way. The first constraint is that the residuals between
observed and reconstructed videos should not have higher noise power than a threshold.
The second constraint is the spatial and temporal footprints cannot have negative values.
The third constraint is that the spatial components need to be sparse. Keeping all these
constraints in mind, the overlapping components are merged iteratively. To achieve this,
those components whose temporal correlations are higher than a threshold are merged after
each iteration. In order to address a situation where the neurons are densely packed and
lazy initialization might result in loss of resolutions in terms of lost neurons, the neurons
are treated as Gaussian kernels and the initialization seeks to minimize the number of
Gaussian kernels which can explain the observed activity. The approach is tested on an
in vitro dataset containing 207 spinal motor neurons. The calcium imaging stacks are
acquired at 14.6 Hz. The authors report a strong correlation between the activity traces
obtained by the proposed approach and raw traces. On a simulated dataset, the proposed
approach achieves a correlation of 0.965 between the ground truth and the extracted traces.
The authors have not reported the performance of their approach in terms of neuron
detection, or on the Neurofinder challenge [61] or any other manually curated dataset.

Ferran et al. proposed a wavelet transform powered image segmentation and sparse
dictionary learning-based pipeline for identifying neuronal activity in calcium imaging [62].
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They refer to this pipeline as “ADINA”. The pipeline is composed of two components,
cell sorting and calcium transients extraction. ADINA solves the cell sorting as a sparse
dictionary learning problem where a dictionary element represents a group of co-activated
cells (basis functions). The N × T image stack (N is the number of pixels in an image and T
is the number of images in the stack) is assumed to be made of two elements, an N × K
spatial element and a T × K temporal element where K represents the number of dictionary
elements. A representative set of sparse basis functions is learned by keeping either one of
the components (spatial and temporal) fixed while iterating over the other. After extraction
of the basis functions, those basis functions are identified that might represent more than
one cell by non-maximal suppression [63]. Finally, the cells are refined by fitting a 2D
Gaussian for each cell. The authors validated their approach on both synthetic and real
data. On synthetic data, the authors report a sensitivity of 94.3%. On a real imaging
stack acquired from hippocampal cultures of different mice, the authors have qualitatively
validated their approach but since no ground truth was available, they did not report
quantitative results. This approach is easier to use and adapt for imaging stacks acquired
under different settings; however, it is not robust against spatially overlapped cells, varying
noise levels and spatially variant background fluorescence.

Pnevmatikakis et al. proposed a structured matrix factorization approach to simulta-
neously detect and segment ROIs, separate overlapping ROIs and deconvolve the calcium
activity traces in calcium imaging stacks [64]. They used the standard matrix factorization
approach by treating the imaging stacks as the product of two low rank matrices, one
matrix represents the spatial footprint of the neurons while the other matrix represents the
temporal activity of the neurons. However, they put a hard constraint on the energy of
residual signal between the raw data and denoised signal reconstructed from the factorized
matrices. These hard threshold noise levels are estimated by exploiting the autoregressive
structure of the calcium indicator dynamics in an iterative manner. This enforces the dy-
namics of the calcium indicator. Moreover, the authors have proposed warm initialization
methods for matrix factorization to increase the computational efficiency. As the fluores-
cence from individual neurons is highly localized, the noise levels and ROI estimation is
further facilitated by taking into account the noise levels and ROIs in previous iterations.
To merge ROIs which might belong to the same neuron, they construct a graph where
each vortex corresponds to a neuron which is connected to other neurons by an edge if
those neurons overlap. If they edge is stronger than a threshold, the ROIs are merged.
Moreover, if some ROIs do not contribute to the overall spatio-temporal activity, they are
removed. The downside of this approach is that the number of initial ROIs must be known.
The authors have validated their approach on in vivo mouse V1 spontaneous activity
data, however, they have not compared the results to any ground truth, so a quantitative
comparison is not done.

Maruyama et al. proposed a constrained matrix factorization-based approach for
neuron detection by using the bleach line of background fluorescence to disassociate
noise from calcium activity [65]. The matrix factorization approach follows the standard
protocols by assuming that the observed calcium imaging data are the product of two
low rank matrices, one corresponding to the spatial footprint of the neurons and the other
corresponding to the temporal footprint. They also add a background noise term and base
fluorescence term which itself is the product of baseline background spatial and temporal
activity. All these terms are constrained to be positive. Overall, there are four unknowns
which need to be estimated: S which represents the spatial footprint, A which represents
the temporal activity, sb which represents the baseline (background) spatial footprint and ab
which represents the baseline temporal footprint. All the matrices are randomly initialized.
In one iteration, a least squares solution is found first for one matrix while the others are
fixed and all the negative values are zeroed out. This process is repeated for pre-determined
number of iterations. The ROIs detected in this approach are further refined by manual
screening and merging. The authors have reported satisfactory performance on the spike
deconvolution tasks and temporal activity extraction tasks when applied to both synthetic
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and real data. However, they have not reported its performance on a ground truth for cell
detection, which can help us determine how well this algorithm works on cell/neuron
detection tasks.

Friedrich et al. proposed an approach for large-scale neuron detection in whole
brain imaging based on non-negative matrix factorization (NMF) applied to patches of
the acquired calcium imaging stack, instead of applying the NMF to the whole field of
view [66]. The core idea behind this approach is when NMF is applied to a small patch of
the stack, instead of the whole stack, the spatial and temporal components can be extracted
with higher speed owing to the low complexity of factorization space. Then the method
can be applied iteratively to all the patches. This approach has two benefits: one, it can
be scaled linearly and two, since it is applied on localized patches, information from two
spatially disjoint but visually similar patches will not leak. Moreover, they also argue that
spatial and temporal downsampling can reduce speed while not compromising the overall
performance, thus further boosting the processing speed. The patches are centred around
potential neurons whose centres are extracted by local maxima, therefore this approach
is also vulnerable to neuron-like noise. The authors have not provided any quantitative
results in order to compare this approach to other state-of-the-art approaches in terms of
detection accuracy, precision and recall.

Pachitariu et al. proposed a pipeline for motion-correction, neuron detection and
spike inference in calcium imaging. They call the pipeline Suite2p [67]. The pipeline
can be scaled linearly with the number of neurons in the field of view. They formulate a
generative model of the fluorescence image based upon spike times and neuropil signal.
As per their argument, neuropil and soma signals are highly correlated and cell transients
can be identified by the deviation from otherwise linear relationship between soma and
neuropil. They model recorded signal as a weighted sum of temporally modulated cell
signal and temporally modulated neuropil signal at each pixel. They find the parameters
of temporal modulation, weights of soma and neuropil and noise parameters by applying
expectation maximization on the observed data. They fix some parameters and iterate
over the others in one optimization iteration. Once the ROIs are detected iteratively, a user
defined threshold for the size of soma is used to identify soma and neuropil. In order to
speed up the computations, they use SVD to reduce data dimensions and then apply the
pipeline in lower dimensions. On the Neurofinder benchmark, this approach achieved good
performance with a precision of 57.8%± 16%, a recall of 56.8%± 18% and F1 = 55%± 12.7%.
One big advantage of this pipeline is that it can be scaled linearly with the number of
recorded cells. However, since this pipeline relies on accurate parameter estimation for
downstream analysis, it can face problems with a region with high cell density. Moreover,
its robustness on highly occluded and spatially overlapped cells is also not well established.

Diego et al. approached cell detection, spike inference and impulse response calcu-
lation as a single optimization problem in extremely sparse calcium imaging stacks [68].
They assume that all the neurons in the field of view will fire an extremely sparse rate J,
much lower than number of cells K. Moreover, each neuron (cell) can be decomposed into
the convolution of a number of impulse responses L (again much lower than K). The J, K,
L and H (size of convolutional kernel) are specified by the user. All the unknown variables
in the optimization problem are first initialized from a non-negative Gaussian distribution.
The optimization problem is then solved by fixing a group of variables while iterating over
the other variables. The biggest disadvantage of this approach is that the user has to specify
at least four parameters which makes this approach vulnerable to human error and makes
it harder to be used by a non-expert. The authors have not reported any performance
figures for neuron detection from this pipeline.

Giovannucci et al. proposed an online framework for denoising, neuron detection and
spike deconvolution which they call Online Analysis of streaming Calcium Imaging Data
(OnACID) [69]. This approach is based on online dictionary learning approaches. In this
approach, they model the neuron detection as a matrix factorization problem. The observed
data are assumed to be a product of spatial footprint and temporal footprint with some
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noise and background/neuropil contamination added. The background signal is further
decomposed into spatial and temporal components and are estimated by non-negative
matrix factorization. This matrix factorization regime works well if the number of sources
(neurons) are fixed but struggles when more neurons are added/deleted. To overcome this,
a new neuron is added if the correlation between the new neuron and current neurons in
two successive data frames is lower than a threshold. Moreover, a Gaussian smoothing
kernel is applied with a size similar to the size of expected new neuron and then search for
point with maximum spatial variance. In order to speed-up the computation, parameter
values in an iteration are initialized from the values in previous iterations. Moreover,
the neurons statistics are updated only after certain number of steps, thus further reducing
the processing time. The authors have validated their approach on both synthetic and
real data. On synthetic data, this approach detected and tracked all the active sources
with only one false positive. The approach was also bench-marked on data manually
annotated by two persons. This dataset consisted of 90k frames acquired at 30 Hz (50 min).
The proposed approach achieved precision = 0.87, recall = 0.72 and F1 = 0.79. Moreover,
OnACID analysed the dataset in 27 min, suggesting that it can process almost 2 times faster
than real time.

Inan et al. proposed a robust statistical optimization method for matrix factorization
framework to detect and extract neural cells in calcium imaging ([70]). This optimization
framework assumes the observed data are a matrix product of spatial and temporal foot-
prints with background noise. The background noise is dominated by baseline activity
modelled by a normal distribution. The cell extraction starts by detecting local maxima
in the time maximum summary image, one at a time. Then at each iteration, the matrix
factorization framework is solved for spatial and temporal footprints using M-estimator
and Huber loss [71,72]. This is repeated until a convergence criteria is satisfied. The re-
dundant components and those components which have converged to zero are removed.
The authors have validated their approach on both synthetic and real data. Although they
provided a qualitative comparison of their proposed approach against some other matrix
factorization frameworks, yet they have not provided any performance figures on a ground
truth of established benchmarks, so the performance of this approach on benchmarks is
not validated.

Pengchang et al. proposed another variant of constrained non-negative matrix fac-
torization for extracting neurons in calcium imaging [73]. They model the observed data
using three elements. The first element is the matrix product of spatial and temporal
footprint of the neurons, the second element represents the background fluorescence while
the third element is Gaussian noise. The constraints on spatial footprints are that they
should be spatially localized and sparse. The temporal footprints are modelled as highly
structured auto-regressive processes. Consequently, the combined spatio-temporal neural
activity is structured and sparse. The background fluorescence is made of two elements,
the baseline fluorescence and a fluctuating component. The fluctuating element at each
pixel is estimated by the linear combination of nearby pixels which are not the nearest
neighbours. This approach has been validated on both synthetic and real data. It identified
all the neurons in a synthetic dataset. In a dorsal striatum dataset, this approach identified
692 neurons against 547 neurons identified by PCA/ICA. The authors have not provided
any details about the performance of this approach on established benchmarks.

6. Machine Learning-Based Methods
6.1. ML Methods Applied to Summary Images

In this sub-section, we cover all those ML/DL based approaches which apply an
ML/DL algorithm to the summary images of the input stacks. Therefore, the first step
of these approaches after preprocessing is always the extraction of an appropriate sum-
mary image.

Valmianski et al. [74] proposed a multi-staged classification pipeline to determine
which pixel belongs to a neuron or otherwise. The first two stages consist of robust-boost
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classifiers [75]. The first stage classifier classifies every pixel into neuron and non-neuron
classes based on eight statistical features. A median filter is then used to remove small
regions falsely identified as neurons. The second stage classifier is another robust-boost
classifier which classifies if a candidate neuron is actually a neuron or false positive based
on six morphological features. The output probability map is then thresholded and neurons
are segmented using connected thresholds. The authors have tested their approach on
64 different datasets, resulting from 16 different regions imaged over 4 trials on 4 mice.
Each data set consisted of 200 frames at a resolution of 256× 256 pixels. They have reported
a test error of 7% and ROC curve maxing at 0.97.

Wang et al. [76] proposed a two staged neuron detection pipeline. In the first stage,
the raw image stack is first denoised by taking a moving average along temporal axis. Then
they normalize the stack using local maxima and minima along temporal axis. After nor-
malization, they generate a reference image by taking maximum value along temporal axis
and an average image by taking average value along temporal axis. They binarize the refer-
ence image using Local Adaptive Thresholding Algorithm (LATA) [77]. After binarization,
they use watershed algorithm on the binary and reference image to create intermediate
segmentation mask. To separate neurons from non-neuron blobs in the segmentation mask,
they train a three layered CNN. The first and second layers consist of a convolutional layer
followed by a max-pooling layer while the third layer is fully connected layer generating
two outputs, 1 for neurons and 0 for otherwise. They have evaluated their pipeline on
nine manually annotated image stacks and reported F1 score of 85% ± 1%. They have not
reported the performance of their pipeline on any benchmarks, so it is hard to compare
their pipeline against other state-of-the-art approaches.

Aleksander et al. [78] proposed a standard UNet [21] based neuron segmentation
pipeline. They create a single mean summary image by taking average value across
temporal dimension. This operation flattens the temporal dimension and converts 3D
stack into a 2D image. Then they apply a UNet on 128 × 128 patch of the summary
image to segment the neurons. The UNet is composed of an input layer, three encoding
layers, one middle layer, three decoding layers and an output layer. The input layer has
two 3 × 3 convolutional operations with 32 filters each. First encoding layer consists of
two 3 × 3 convolutional layers with 64 filters each and a 0.25 dropout layer. The second
encoding layer consists of two 3 × 3 convolutional layers with 128 filters each and a
0.5 dropout layer. The third encoding layer consists of two 3 × 3 convolutional layers
with 256 filters each and a 0.5 dropout layer. The middle encoding layer consists of
two 3 × 3 convolutional layers with 512 filters each and a 0.5 dropout layer. Each decoding
layer consists of concatenation, two 3 × 3 convolutions, a 3 × 3 deconvolution and dropout.
The third decoding layer has 256, 256 and 128 filters in each of its two convolutional and
one deconvolutional layers, the second decoding layer has 128, 128 and 64 filters in each
of its two convolutional and one deconvolutional layers, and the first decoding layer has
64, 64 and 32 filters in each of its two convolutional and one deconvolutional layers.The
output layer has a concatenation, two 3 × 3 convolutions with 32 filters each and output
softmax layer. They have validated their approach on the Neuronfinder challenge dataset
(http://neurofinder.codeneuro.org/, accessed on 2 July 2022). They trained their network
on the top 75% of the summary images and validated it on bottom 25%. In 2017, their
pipeline stood third on the Neurofinder challenge with an F1 score of 59% ± 16%.

Bao et al. proposed a shallow UNET based active neuron segmentation approach for
online use purposes [79]. They apply this approach on single 2D images, which can either be
individual images or summary images. First, they do motion correction by homomorphic
filtering and large-scale background fluctuation removal. Then the a temporal filter is
applied to each pixel to enhance the active pixels and suppress the others. Afterwards,
a shallow UNET is trained on active neurons masks. The UNET has two convolution
layers and two downsampling/upsampling layers and one skip connection layer. This
shallow UNET allows faster processing. The temporal pixel enhancement and faster UNET
deployment makes the approach capable of real-time speeds. The authors claim that this

http://neurofinder.codeneuro.org/
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approach achieved a processing speed of 117 frames per second on 275 µm ABO dataset.
It achieved an F1 = 0.85 on the ABO dataset. This approach is on par with other online
segmentation approaches in performance and speed while leveraging the power of both
temporal signal processing and machine learning. This approach might still struggle in
imaging stacks with high ration of overlapped neurons.

6.2. ML Methods Applied to 3D Calcium Imaging Stacks

In this sub-section, we cover all those ML/DL based approaches which apply an
ML/DL algorithm directly to the spatio-temporal stacks. These methods can either be
end-to-end or might need an additional post-processing step.

Xu et al. proposed a CNN architecture with a graph regularization term which
can utilize unlabelled data along with labelled data for neuron segmentation [80]. First,
they over-segment a neuron image into superpixels [81]. The superpixels are then fed
to a CNN which minimizes a composite loss function over the labelled and unlabelled
superpixels. The CNN is composed of two convolutional layers with 6 and 50 filters each.
The loss function over labelled superpixels is represented by a softmax loss while the loss
function over unlabelled superpixels is represented by a graph-regularized loss. The graph
regularized loss function is formulated on the assumption that neighbouring elements in a
graph will most likely share the same label. Therefore, they perform label propagation from
labelled superpixels onto unlabelled superpixels by Gaussian field harmonic functions [82].
They repeat the segmentation process for all the images in a volume. Finally, they perform
neuron segmentation in 3D volume by global association method [83]. They have validated
their approach on a private one-photon data set. They manually annotated 2000 neuron
regions spread over 1000 images (which form a 3D volume when stacked up), with half
of them used for training and the remaining used for testing. Along with 2000 manually
annotated regions, they include 70,000 more unlabelled regions (superpixels) which include
4000 neurons. They have reported an F1 score of 0.96 when they use as few as 40 images
for training and an F1 score of 0.99 when they use 1000 images for training.

Apthorpe et al. [84] proposed a 3D (referred to as (2 + 1)D) convolutional network
based neuron segmentation approach for calcium imaging data. It accepts an input image
stack containing T time slices. There are four 10 × 10 convolutional layers, a max pooling
over all time slices and two 1 × 1 bottleneck fully connected layers. The output layer
is configured to yield two 2D greyscale images as output, which together represent the
softmax probability of each pixel being inside an ROI centroid. The dimensions of the input
image stack are 37 × 37 × T, therefore to cover the whole spatial domain, the window is
made to slide in two dimensions over the input image stack to produce an output pixel
for every location of the window fully contained within the image bounds. The network
was trained on two-photon calcium imaging data gathered from both the primary visual
cortex (V1) and medial entorhinal cortex (MEC) from awake-behaving mice. size. Human
experts annotated ROIs using the ImageJ Cell Magic Wand Tool [85], which automatically
generates a ROI based on a single mouse click. The human experts found 4006 neurons
in the V1 dataset with an average of 148 neurons per image series and 538 neurons in the
MEC dataset with an average of 54 neurons per image series. They have used F1 score to
evaluate the network performance and reported F1 = 71%.

Wen et al. [86] proposed a 3D-UNet [21] based neuron segmentation approach on the
calcium imaging data acquired from the nematode “Caenorhabiditis elgans”. The UNet
accepts a 160 × 160 × 16 image stack and produces a binary mask of the same dimension,
with every voxel either representing a neuron or background. The 3D UNet consists of
three encoding layers, one middle layer and three decoding layers. The first encoding
layer consists of two convolutional operations with 8 and 16 filters, second and third also
consists of two convolutional operations with 16, 32 and 32, 64 filters. Each encoding layer
is followed by 2 × 2 downsampling. The middle layer has 2 convolutional operations
with 64 filters each. The output of each encoding layer is concatenated with the input of
decoding layer at similar level. The decoding layer consist of one convolutional operation



Appl. Sci. 2022, 12, 6876 19 of 29

and one concatenation with 8, 16 and 32 filters respectively. The output probability score
for each voxel is thresholded at 0.5 and then neurons are segmented by Gaussian blurring
and watershed segmentation. The original 3D image stacks are 512 × 1024 × 28, therefore
they divided the initial raw images into 160 × 160 × 16 sized smaller images. They have
used one 3D stack for training and reported that the pipeline tracked 98% of neurons in the
test data. They have also reported that the pipeline was able to track 91% of the neurons
even when artificial noise was added.

Peterson et al. [87] proposed a dictionary learning-based approach, called SCALPEL,
for neuron detection in calcium imaging data. First, they binarize every frame in the image
stack after standardization. Then they use the connected thresholds [88] method to segment
candidate neurons from the background. After segmentation, they filter candidate neurons
which are smaller or larger than an expected size range. Then they generate a dissimilarity
matrix based on temporal and spatial properties of candidate neurons in which each
element represents how dissimilar a candidate neuron is compared to another candidate
neuron. Using the dissimilarity matrix, they cluster similar candidate neurons together
by hierarchical clustering approach [89]. In the final step, they optionally filter the refined
dictionary elements, arguing that clusters with a larger number of members are more likely
to be true neurons. They have validated their pipeline on three calcium videos/image
stacks. The first video is a one-photon video, collected by the lab of Ilana Witten (https:
//wittenlab.org/, accessed on 2 July 2022) at the Princeton Neuroscience Institute, with
3000 frames of size 205 × 226 pixels sampled at 10 Hz. They have only reported the
successful detection of neurons, but no precision, recall or F1 scores. The second and third
videos are two-photon videos from Allen Brain Observatory (http://observatory.brain-
map.org/visualcoding, accessed on 2 July 2022), containing 105,698 and 105,710 frames
respectively of size 512 × 512. Once again, they have reported successful detection of quite
large number of neurons but no precision, recall or F1 scores.

Soltanian-Zadeh et al. proposed a spatio-temporal neural network architecture for
segmenting active neurons in calcium imaging data [90]. Their architecture is based on
DensVNet [91]. Like other popular fully CNNs for semantic segmentation of medical im-
ages (e.g., UNet [21] and VNet [92]), DenseVNet is composed of encoding layers, decoding
layers and skip connection components. Each encoder stage of DenseVNet is a dense feature
stack. The input to each convolutional layer of the stack is the concatenated outputs from
all preceding layers of the stack. The authors made the following two modifications to Den-
seVNet: (i) they changed the last convolutional layer of DenseVNet to have 10 output chan-
nels instead of the number of classes and (ii) they added a temporal max-pooling layer to the
upsampled features, followed by a 2D convolutional layer with ten 3× 3 kernels and a final
convolutional layer with two 3× 3 kernels to the output of DenseVNet. They optimized the
network using Dice-loss objective function. They validated their pipeline on a subset of the
Allen Brain dataset (http://observatory.brain-map.org/visualcoding, accessed on 2 July
2022) and the Neurofinder Challenge dataset (http://neurofinder.codeneuro.org/, accessed
on 2 July 2022). The Neurofinder challenge dataset was improved by having it analysed
by two expert human annotators. They compared their approach with four other state of
the art neuron segmentation approaches namely CaImAn [93], Suite2P [67], HNCcorr [43],
and UNet2DS [78]. They have reported a superior true positive detection performance as
compared to the states approaches at lower PSNR values; with their approach detecting
80% true positives at PSNR = 10 while the mentioned approaches achieved 65%, 52%,
47% and 41%, respectively. This approach achieved an average F1 score of 69% on the
Neurofinder challenge.

Kirschbaum et al. proposed a deep learning powered pipeline for neuron segmentation
which explicitly makes use of the temporal and shape information of the neurons [94]. First,
the input calcium imaging videos is split in temporal segments. Then, correlations between
temporal traces are calculated over all temporal segments. The pixel-wise correlations and
a mean summary image is then fed into a CNN which aggregates the information over
temporal segments. The outputs of this CNN are fed into a UNet which is then trained

https://wittenlab.org/
https://wittenlab.org/
http://observatory.brain-map.org/visualcoding
http://observatory.brain-map.org/visualcoding
http://observatory.brain-map.org/visualcoding
http://neurofinder.codeneuro.org/
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to not only produce a foreground background mask, but also produce affinities between
neighbouring pixels. The authors have validated their approach on the Neurofinder
benchmark and has achieved the best F1 of 67%.

Sita et al. proposed a CNN-based online neuron segmentation and trace extraction
pipeline for processing mesoscopic imaging datasets which they call CITE-On (Cell identifi-
cation and Trace Extraction Online) [95]. This approach is capable of identifying thousands
of neurons in real time. The greyscale images are first downsampled, and then upsampled
to reduce noise factor and then converted into three channel RGB-like images. These images
are then fed into a CNN-based on RetinaNET architecture. The RetinaNET architecture is a
single stage detector which uses a focal loss to deal with the class imbalance problem in
object detection tasks [96]. The RetinaNET CNN puts bounding boxes around neuron like
shapes which are then projected on a summary image. The pixels in each bounding box are
then used to create a temporal trace of that neuron. In an online environment, the starting
frames are first used to create the initial bounding boxes and traces. When new images
become available, the bounding boxes are updated by including the new frames in the
imaging stack while removing an equivalent amount of images from the beginning of the
imaging stack. The authors claim an average F1 greater than 0.85 for imaging datasets of
different calcium indicators, suggesting cross domain generalization capability. In offline
settings, the author claim that the performance of CITE-On is on par with STNeuronNet [90]
on never before seen datasets.

7. Summary of Performance on Public Benchmarks, Applications
and Recommendations

In this section, we provide a performance summary of the approaches mentioned in
the previous sections. The performance summary can either be on a public benchmark
such as Neurofinder or on a private manually curated dataset. We also provide a link to
the online code repositories for these approaches along with a quantitative figure for their
performance in the form of precision, recall and detection accuracy. Table 1 summarizes the
main methods.

In order to be able to compare the time consumption of the methods surveyed, we
also provide a broad approximation of the order of computational complexity at testing
time (when available). In the case where a method involves several algorithms, we report
the dominant order of complexity among them. Nevertheless, the amount of variables to
take into account are closely related to each method. Briefly, in Table 1, we used:

• In the general case, variables W refer to image width, H to image height, D to the
depth of the calcium image stack and N to the number of images needed at inference
time (some matrix factorization methods need to compute the segmentation using the
whole data set).

• For the iterative methods (at inference time) we use m to refer to the number of
iterations needed for reaching convergence.

• In the deep learning approaches, we use variable K to denote the average cost of a
forward step on a convolutional layer, and F to denote the average cost of a fully
connected layer. These costs can be understood as an upper bound to the temporal
complexity at testing time, as usually pooling layers reduce the internal feature maps
making the pipeline more efficient. The variable F might also be sensible to the size
and the number of filters on each convolutional layer.

• We refer with the notation RT to the algorithms where the authors claim that real-time
testing performance is achieved.

Most of the ML/DL-based methods are computationally demanding at training time.
Usually, these computational needs are accelerated using specific GPU hardware (graphical
processing units). Nevertheless, these methods perform faster at testing time. We consider
a single pass through the neural network for testing one instance, which is approximated
by the addition of the time complexities of the convolutional layers and the fully connected
layers present in the network (although filter and layer dimensions from different methods
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may vary). The capability of performing the training computations only once, completely
offline, the use of transfer learning to improve the model estimation and the improved
segmentation accuracy at testing time make the ML/DL methods the dominant approach
in the most recent literature.

Table 1. Comparison of different approaches. For each method, we provide the reference, a link to
the code (if available, accessed on 2 July 2022), the key performance indicators reported (if available),
the databases used (MC stands for manually curated and NF stands for the Neurofinder dataset)
and the approximate complexity order at testing time.

Type Code Availability Performance DB Complexity

Guan et al. [44] Signal and
image processing-based

MATLAB code available at
https://bit.ly/2GItq4O

Precision = 87.5%,
Recall = 89.3%, F1 = 88.1% MC -

Shen et al. [53] Signal and
image processing-based

MATLAB code available at
https://bit.ly/328n2Lx

Precision = 71.2%,
Recall = 74.9%, F1 = 72.3% MC -

Spaen et al. [43] Signal and
image processing-based

Python code available at
https://bit.ly/36qtJw3

Precision = 65.8%,
Recall = 62%, F1 = 59.6% NF O(WHD) + O((WH)2)

Reynolds et al. [50] Signal
and image processing-based

MATLAB code available at
https://bit.ly/3lb776R F1 = 67.5% NF O(WHK) where K is the

dimension of the levelset

Giovannucci et al. [69]
Matrix factorization

Python code available at
https://bit.ly/2SzbJHw

Precision = 87%,
Recall = 72%, F1 = 79% MC RT

Mukamel et al. [56]
Independent component

analysis-based

MATLAB code available at
https://bit.ly/36PuoaB F1 = 75% MC O((WHD)2Nm)

Pachitariu et al. [97] Matrix
factorization-based

Python code available at
https://bit.ly/3g55vvT

Precision = 57.8%,
Recall = 56.8%, F1 = 55% NF -

Pachitariu et al. [98] Matrix
factorization-based

Python code available at
https://bit.ly/3dSPmai

Precision = 59.9%,
Recall = 62.9%, F1 = 58.3% NF -

Apthorpe et al. [84] Machine
learning-based

Python code available at
https://bit.ly/30Ky49C F1 = 71% MC O(4K+2F)

Wang et al. [76] Machine
learning-based

MATLAB code available at
https://bit.ly/3iEJEcA F1 = 85% MC -

Spaen et al. [43]+Gao et al. [99]
Machine learning + signal

processing-based

Python code available at
https://bit.ly/33EVzTc+
https://bit.ly/36qtJw3

Precision = 70.2%,
Recall = 60.2%, F1 = 61.7% NF O(6K+F)

Klibisz et al. [78] Machine
learning-based

Python code available at
https://bit.ly/3d60HTG

Precision = 70.2%,
Recall = 60.2%, F1 = 56.9% NF O(9K) U-Net 2Ds

Ronneberger et al. [21]
Machine learning-based

Python code available at
https://bit.ly/36pvvNL F1 = 69% NF O(9K) U-Net

Kirschbaum et al. [100] + [94]
Machine learning-based

Python code available at
https://bit.ly/30G96YU F1 = 67% NF O(3K+F) CNN +O(5F)

U-Net

Soltanian-Zadeh et al. [90]
Machine learning-based

Python & MATLAB code
available at

https://bit.ly/36seu5Q
F1 = 67.5% NF O(6K+F)

Bao et al. [79] Machine
learning-based

Python & Python code
available at

https://bit.ly/3wEjsaU
F1 = 85% NF -

Sita et al. [95] Machine
learning-based

Python & Python code
available at

https://bit.ly/3sOuE3I
F1 = 85% MC -

https://bit.ly/2GItq4O
https://bit.ly/328n2Lx
https://bit.ly/36qtJw3
https://bit.ly/3lb776R
https://bit.ly/2SzbJHw
https://bit.ly/36PuoaB
https://bit.ly/3g55vvT
https://bit.ly/3dSPmai
https://bit.ly/30Ky49C
https://bit.ly/3iEJEcA
https://bit.ly/33EVzTc + https://bit.ly/36qtJw3
https://bit.ly/33EVzTc + https://bit.ly/36qtJw3
https://bit.ly/3d60HTG
https://bit.ly/36pvvNL
https://bit.ly/30G96YU
https://bit.ly/36seu5Q
https://bit.ly/3wEjsaU
https://bit.ly/3sOuE3I
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7.1. Applications and Recommendations

This survey article is intended to function as a set of insights and guidelines to the
researchers who want to work with calcium imaging, either in vivo or in vitro. It can be used
as a quick preview of the literature on neuron segmentation/neural activity detection in
calcium imaging. Additionally, it can be used as a guideline for which method to choose for
neuron segmentation in case the researcher gets their hands on a calcium imaging dataset.
This survey can be used a guiding set of principle by researchers in the following fields.

• Neuroscientists working on developing semantic neuronal networks from calcium
imaging data recorded at sub-cellular resolutions.

• Neuroscientists working to understand the behaviour of neurons affected by some
neurodegenerative diseases.

• Researchers working on understanding the firing patterns of neurons as a response to
some physical stimuli.

• Researchers working to understand neurons behaviour in detail and then build in
silico model of these neurons which in turn can be used to develop neural networks
which mimic the behaviour of their biological counterparts.

• Last but not the least, researchers working on neuromorphic computing who want to
understand the operations of neuronal networks at sub-cellular resolutions.

Based on the computational requirements, complexity and ease of use, we have
following recommendations.

• Signal/image processing-based methods

– Signal/image processing-based approaches are usually not complex and compu-
tationally expensive. A little background in fundamental signal/image processing
is enough to get the gist of these methods.

– In order to research the effect of various parameters on the outcome of these
methods, the researchers need to know all the related signal/image processing
concepts in detail.

– For those researchers who are not from a computational background (neuroscien-
tists), the pipeline if these methods is easy to follow and can be used a set of tools
with few parameters to tweak.

– These methods are ideal for neuron segmentation in in vitro datasets since
these datasets do not have the overlapping neurons problem as much as the
in vivo datasets.

– These methods tend to be not computationally as expensive, which is why the
are also recommended if computational power is an issue. Moreover, without in-
vesting a lot on expensive computational hardware, these methods (or at least
some of them) can be easily deployed for real-time or online inference.

• Matrix factorization-based methods

– The base framework of these methods is a bit harder to grasp and can be compu-
tationally expensive.

– For those researchers who are not from a computer science background, these
methods might pose a challenge since the success/failure of these methods
depend heavily on the choice of factorization framework, background model and
baseline fluorescence model.

– These methods have a modest performance on in vivo datasets as well, so they can
be used for neuron segmentation in in vivo datasets with acceptable performance.

– Since these methods tend to be computationally expensive, they are not recom-
mended if computational cost is an issue. Due to this specific issue, most of these
methods are not recommended for real-time or online inference. For instance, we
could find only one approach [69] in this category which can be deployed online.

• Machine learning-based methods
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– The analytical model behind ML/DL approaches is complex, but ML/DL meth-
ods are usually treated as black box models, so if the method is end-to-end
(provide data and get a segmentation mask), then these methods are easier to
grasp from a holistic perspective.

– These methods perform fairly well on in vivo datasets as well, especially when
they are trained on raw calcium imaging stacks and not just on summary images.

– If computational cost is not an issue, then these methods are recommended.
– DL-based methods are always data hungry, so if annotated data availability is

an issue, then these methods are not recommended. Some of the DL-based ap-
proaches are developed while keeping the online inference in mind such as [79,95]
but most of them are data hungry and work well only when deployed offline.

In Table 2 we summarize the main weaknesses and strengths of each category of methods.

Table 2. Comparison of the main strong and weak points of each algorithm category.

Category Strengths Weaknesses

Signal/Image
processing-based
methods

• Simple and explainable
• Computational complexity
• Fewer parameters to tune
• Easily implementable

• Have to compromise either on temporal
or spatial information

• Difficulties with separating overlap-
ping neurons

• Vulnerable to noise
• Not transferable
• Domain knowledge needed for parame-

ters tuning

Matrix
decomposition-based
methods

• Better at capturing spatio-temporal context
• Explainable
• Better performance on in vivo datasets than sig-

nal/image processing-based methods

• Computationally expensive
• Unwanted artefacts
• Not transferable
• More problem dependent
• Most of these methods cannot be

scaled linearly

ML-based methods

• Can be taught to process calcium imaging stacks of
different resolutions and frequencies

• State-of-the-art results on most of the datasets
• Knowledge from one dataset can be transferred to

other datasets.
• End-to-end learning

• Higher computational power needed in
many cases

• Require lots of training data
• Manual labelling required in most ap-

proaches
• Mostly black box models. Although

researchers have proposed empirical
methods for explaining the behaviour
of DL models, an analytical explanation
is still out of the question.

7.2. Conclusions and Future Work

In this article, we provide a comprehensive overview of the computational methods
researchers use for neuron segmentation in calcium imaging. We introduce the problem
in the context of spatio-temporal segmentation and then divide the approaches in three
main categories: signal/image based approaches, matrix factorization-based approaches
and machine learning-based approaches. We describe the core methods shortly and also
provide performance figures (if reported by the authors). We also provide a comprehensive
list of all the benchmarked approaches and links to their source codes if available. Finally,
we also include recommendations for new researchers which are based on the problem
definition and the approaches we studied.

Based on the literature survey we conducted, we have identified following areas which
can be further improved.

• Neuron segmentation would benefit greatly if more annotated datasets are made
available apart from the Neurofinder benchmark.
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• In their current form, the annotated datasets of Neurofinder have one two-dimensional
mask for a calcium imaging video where only the location of every neuron is identified.
It would greatly help if the datasets were annotated in temporal domain as well by
adding information about when those neurons were active.

• Machine learning-based approaches can specifically benefit from synthetic data.
• Another interesting avenue to explore is the use of reinforcement learning. We know

the firing patterns of neurons and we know they follow the dynamics of calcium
indicators. This information can be used to to train reinforcement learning methods to
identify neurons.

• Another interesting avenue to explore is generative adversarial networks to learn the
calcium imaging distributions and then use the learned distribution for neuron seg-
mentation.

• Since calcium imaging datasets are acquired by different devices and under different
conditions, they might not be similar. Moreover, there are other methods as well which
capture the same neural activity but in different form (functional magnetic resonance
imaging, for example). Therefore, domain alignment and domain adaptation can
also help.
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Appendix A. Research Methods

Appendix A.1. Independent Component Analysis

Independent component analysis (ICA) is a computational method for separating a
multivariate signal into additive sub-components. The underlying assumption is that the
sub-components are non-Gaussian signals and statistically independent from each other.
ICA is a special case of blind source separation. ICA finds the independent components
(also called factors, latent variables or sources) by maximizing the statistical independence
of the estimated components. There are many ways to choose from in order to formulate the
“independence” of the sub-components, thus resulting in different forms of ICA methods.
Two sub-components are considered broadly independent if their mutual information
is minimized and they are non-Gaussian. In the ICA framework, the observed data are
described as the sum of additive statistically independent components. In the case of
calcium imaging, the two sub-components are the spatial footprints of the neurons and
their temporal traces.

Appendix A.2. Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is a constrained version of the more general
matrix factorization frameworks. In matrix factorization, the observed data are described
by decomposing it into two lower rank matrices whose vector product is the closest
approximation of the observed data. To take the effects of noise and any other contributing
factors into account, more additive terms are added into the framework, depending upon
the application and physical quantities being estimated by the framework. In the case
of calcium imaging data, the two lower rank matrices represent the spatial and temporal
footprints of the neurons. One additive term describes the baseline fluorescence and another
additive term describes the noise. Therefore, the general matrix factorization framework
for calcium imaging has one lower rank matrix for spatial footprint, one for temporal traces,
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one term for baseline fluorescence and one for noise. In order to make the framework
follow the physics of calcium fluorescence, a constraint is placed so spatial and temporal
components are strictly non-negative as neither spatial coordinates nor the temporal traces
of neurons can be negative. This is why the framework is often referred to as non-negative
matrix factorization (NMF). The additive term for baseline fluorescence can also take many
forms, depending on the assumption about the data and the choice of models. Moreover,
additional constraints can be put in place and different methods can be chosen to solve the
framework which results in a wide range of NMF variants.

Appendix A.3. Summary Images

The image stacks acquired by two-photon calcium imaging cannot be visualized
by standard image visualization tools since they have a temporal dimension; therefore,
researchers often use summary images. A standard summary image is obtained by applying
a specific function across the temporal dimension which collapses the temporal dimension
and gives a 2D image representation of the stacks. Based on the collapsing function used,
we can divide the summary images into the following two categories.

Appendix A.3.1. Statistical Summary Images

The statistical summary images are obtained when pixels in the 2D image are replaced
by a statistical measurement of all the pixels on that specific location across temporal
domain [78]. Widely used statistical summary images include the mean image, standard
deviation image and max image. For instance, when calculating a mean summary image,
the value at a specific spatial location is calculated by taking the mean of all pixels on that
specific location across the temporal dimension.

Appendix A.3.2. Correlation Summary Images

The correlation summary images are obtained by finding the mean temporal corre-
lation of a pixel with its neighbours [69]. For instance, to find a pixel value on a specific
location in the correlation image, first, the temporal correlation of the pixel on that location
is calculated with its immediate neighbours (four or eight neighbours). Then mean of the
temporal correlations is placed as the pixel value at that specific location.
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