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Abstract: As global warming accelerates due to greenhouse gas emissions, more efforts are required
to reduce greenhouse gas emissions. One of the methods used to save building energy is the
efficient management of building mechanical systems. The economizer control of HVAC systems
is an energy-efficient measure that improves operating methods by introducing outdoor air to save
cooling energy when the outdoor-air temperature is sufficiently low. When the HVAC system is
operated using economizer control, cooling energy can be saved, and the set-point of the mixed-air
temperature is kept constant. Several studies are being conducted on the saving of energy using
economizers. Although various studies have been conducted on the control of economizers, there is
insufficient research dealing with the optimal control of mixed-air temperature in economizers that
consider real-time changes. Therefore, in this study, predictive model-based mixed-air temperature
optimization for a single-duct VAV system was constructed. For this, an ANN (Artificial Neural
Network) that could be analyzed regardless of the variables was applied to predict the load and
energy consumption and a simulator was constructed for the optimized mixed air temperature of the
system. The predictive model-based control was evaluated in terms of its thermal comfort and energy,
along with the existing economizer control. According to the application of the optimal economizer
control, the energy consumption of the building was reduced by 28.9% compared to the existing
dry-bulb temperature control, and was within ±1 ◦C of the indoor-air temperature set point.

Keywords: economizer; mixed-air temperature; predictive model; ANN (Artificial Neural Network)

1. Introduction

As global warming accelerates due to greenhouse gas emissions, efforts to reduce these
emissions are required. Building energy use accounts for approximately 25% of the total
energy used, and this is increasing in South Korea. Most energy consumption is consumed
by HVAC systems [1]. One method for saving energy in HVAC (heating, ventilating, and
air conditioning) system is to improve the operating method. The economizer control
of a HVAC system is an energy-efficient measure by improving the operating method
that introduces outdoor air to save cooling energy when the outdoor-air temperature is
sufficiently low. There are two types of economizer control: dry-bulb temperature control
and enthalpy control. Each control adjusts the outdoor-air intake ratio by comparing
indoor and outdoor temperatures or enthalpy, and at this time, the mixed air set-value
is constant [2]. Cooling energy can be saved when the HVAC system is operated by an
economizer control. When the system is operated by enthalpy control, more energy can be
saved compared to dry-bulb temperature control [3–5].

Various studies are being conducted on saving energy through the use of economizers.
Son et al. evaluated the control methods of various economizers while considering the
mixed-air temperature, outdoor-air intake ratio, and cooling-energy consumption. In addi-
tion, economizer controls in various climate environments have been evaluated in terms of
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their cooling-energy consumption [6]. Yao et al. evaluated energy consumption by econo-
mizer controls in six climate zones in China using a simulation [7]. Wang et al. simulated
the optimal economizer operating range for cost reduction caused by mechanical cooling
and humidification and confirmed that energy was saved through an experiments [8]. In
addition, studies on mixed-air temperature control in economizers has been conducted
and is as follows: Gang et al. set up a steady-state energy model of the AHU system; they
derived the optimal supply air temperature set point value for minimizing energy costs
when controlling the economizer [9]. Lee et al. analyzed the relationship between the
mixed-air temperature and energy consumption using the BIN method and a simulation;
it was confirmed that the set point value of the mixed-air temperature at which energy
consumption was minimized was not constant depending on the operating conditions.
Accordingly, an optimal economizer control that adjusts the mixed-air temperature variable
according to the load using an ANN (Artificial Neural Network) was presented [10] As
such, the economizer is an energy-saving operation method, and the mixed air temperature
set-point is controlled constantly in the existing control. Although various studies have
been conducted on the control of economizers, there is insufficient research dealing with
economizer optimal control that control the mixed air temperature set-point in consider-
ation of real-time dynamic conditions (outdoor air condition, indoor occupancy etc.) in
building. For economizer optimal control, it is necessary to predict the future state by
considering all applicable conditions based on the current state.

ANNs are neural network-based learning algorithms used in biology that were devel-
oped by Warren McCulloch and Walter Pitts. An ANN can be used for analyses regardless
of the variables involved because empirical inferences based on the learned data are possi-
ble without theoretical explanations. An ANN consists of an input layer that receives input
data and delivers data, a hidden layer that processes input values and produces results,
and an output layer that calculates the system output values according to the input values
and system states. Each layer is composed of nodes, and the result is calculated by the links
between the nodes and the transfer function [11,12].

ANN can process the relationships between non-linear variables accurately and
quickly and is most widely used in the field of building performance and energy, and
various related studies have been conducted. [13,14] Turhan et al., predicted the heating
load of a building using an ANN model and evaluated it compared to a building-energy
simulation tool. As a result of the evaluation, the percentage error between the ANN model
and the energy simulation result was small and the prediction rate was high [15]. Kang
et al. developed an ANN-based real-time predictive control and optimization algorithm for
a refrigerator-based cooling system and its cooling-energy saving effects were analyzed by
applying it to an actual building. The ANN was used to derive the optimal set point values
for the refrigerator and condenser. The developed ANN model showed high accuracy, and
energy consumption was saved during ANN-based control [16]. Bae et al. constructed
a performance prediction model of a hydrothermal heat pump system using a dynamic
simulation utilizing the hydrothermal heat pump system in combination with artificial
intelligence technology [17]. Kang et al., developed a prediction model for the cooling-
energy consumption of a VRF system using an ANN as a preliminary step to develop an
optimal control algorithm for improving the energy performance of the VRF system. The
performance of the developed prediction model met the standards of ASHRAE Guideline
14 [18]. As such, the ANN model can be used as a tool for predicting building performance,
energy consumption, and system optimal control.

Therefore, in this study, a predictive model-based economizer control for optimized
mixed-air temperature was developed. A load and energy prediction model was developed
using an ANN (artificial neural network) that could be analyzed regardless of the variables
involved. Additionally, a simulator for the predictive model-based control of optimized
mixed-air temperature was constructed and the developed method was analyzed in terms
of its mixed-air temperature set point changes and energy use, along with the existing
economizer control.



Appl. Sci. 2022, 12, 6880 3 of 10

2. Predictive Model for Optimized Mixed-Air Temperature

The economizer controls the outside, return, and exhaust dampers of the HVAC
system in order to satisfy the mixed-air temperature set point, and generally keeps the
mixed temperature set point constant. However, when the mixed-air temperature set
value is changed in relation to indoor and outdoor conditions, energy savings are possible
compared to the existing control method; so, this study proposed an economizer control
method using predictive model-based mixed temperature optimization. To do this, a load
prediction model was developed, and an energy prediction model was developed to derive
a set value in a scenario where energy use was minimal. In addition, a co-simulation
between EnergyPlus and Matlab was established through BCVTB. The detailed control
method is as follows, and Figure 1 depicts the optimization concept.

Step 1. Prediction of the load based on the operating data: Predicted building load
based on the operating data of the system.

Step 2. Prediction of energy use using the operating data, mixed temperature set point,
and predicted load: Energy consumption was estimated through iterative prediction using
the operating data, predicted load, and mixed-air temperature set point.

Step 3. Derivation of the economizer optimal mixed-air temperature set value: Based
on the result predicted in Step 2, the mixed-air temperature set value for a scenario with
minimal energy consumption was derived.

Step 4. The derived mixed-air temperature set point value was applied as the econo-
mizer control set point value of the next time step.
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Figure 1. Schematic of the mixed temperature optimization process.

3. Development of the ANN Model

This study developed a load and cooling energy prediction model using an ANN for a
predictive model-based economizer control. The ANN model development proceeded in
the order of training data collection, input variable selection, and model development and
validation.

3.1. Collecting Training Data

In this study, by using EnergyPlus, the data were collected through repeated simu-
lations while changing the set value of the mixed-air temperature and were utilized as
learning data to develop a load and energy prediction model. Learning data were collected
at 1-hour intervals through a simulation. The data collected through the simulation were
the building load, outdoor-air temperature, outdoor-air intake ratio, and supply airflow
rate.

3.2. Selection of Input Variables

This study selected the initial input variables for the load prediction model based on
the load calculation formula, and the initial input variables of the cooling energy prediction
model were selected based on the cooling energy calculation formula. Equation (1) is the
same as the equations for calculating the indoor load of the building and the load of the
machine, respectively. Hence, the wall thermal transmittance rate, room area, outdoor-
air temperature, indoor-air temperature, supply airflow rate, and specific heat of the air
affected the load. At this time, the wall thermal transmittance rate, room area, and indoor
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temperature set values were constant, so the outdoor-air temperature and supply airflow
rate were selected as the load prediction model input variables.

Q = mc∆t (1)

Equation (2) was used to calculate the cooling-energy consumption. Energy consump-
tion can be calculated from the enthalpy of the mixed and supply air, the design airflow
rate, and the air density. At this time, the air density and the design airflow rate were
constant, and since the mixed-air enthalpy is affected by the outdoor-air temperature and
outdoor-air intake ratio when controlling the economizer, the outdoor-air temperature
and the outdoor-air intake ratio were selected as input values. In addition, the mixed-air
temperature was also used as an input variable for optimal energy calculation by changing
the mixed-air temperature set point value, and the previously predicted building load was
also used as an input factor.

Ec = ρ
.

Q(hmix − hs) (2)

Table 1 lists the input and output variables of the developed prediction model. The
input variables had different ranges and units, so a normalization process was performed
to improve the learning and prediction performance of the ANN model.

Table 1. Input and output variables of the ANN model.

Category Load Prediction Model Energy Prediction Model

Input Outdoor-air temperature (◦C)
Supply air flow rate (kg/h)

Outdoor-air temperature (◦C)
Indoor Load (kJ/h)

Outdoor-air intake ratio (-)
Mixed-air temperature (◦C)

C Indoor load (kJ/h) Cooling energy (kWh)

3.3. Development and Prediction Models

A building load and cooling energy prediction model was developed using an ANN
to develop the predictive model-based economizer control. At this time, the built-in Matlab
function was used. For the optimization of the ANN prediction model, it was important
to determine the number of neurons in the hidden layer and the number of hidden layers.
In order to derive the optimal number of hidden layer neurons and hidden layers, each
CV(RMSE) evaluation was performed after developing a predictive model while changing
the number of hidden layer neurons and the number of hidden layers. Table 2 shows the
final prediction model developed through the optimization process. The load prediction
model consisted of 1 input layer, 4 hidden layers, and 1 output layer, and each node had 2,
5, and 1 nodes; the energy prediction model consisted of 1 input layer, 4 nodes, 1 hidden
layer, and 4 nodes, as well as 1 output layer and 1 node. Moreover, 70% of the total data
were used for training, 15% of the data not used as training data was used for validation,
and the remaining 15% was used for testing.

Table 2. Parameter composition of the ANN model.

Category Load Prediction Model Energy Prediction Model

Function
Activation Sigmoid Sigmoid

Performance Mean squared error Mean squared error
Epoch 1000 1000

Structure

Input layer Number of layers 1 1
Number of neurons 2 4

Hidden layer Number of layers 4 1
Number of neurons 5 4

Output layer Number of layers 1 1
Number of neurons 1 1
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To verify the ANN model developed in this study, the CV (RMSE; Coefficient of
Variant Root Mean Square Error)—which are the error rata analysis methods suggested by
the ASHRAE Guidelines—and R2 were used.

4. Composition of the Simulator

In this study, to compose an optimal predictive model-based economizer control
using a simulation, a co-simulator using the EnergyPlus (V8-5-0), Matlab (R2020b) [19],
and BCVTB (v1.6.0) programs was established. EnergyPlus is a program that integrates
the advantages of DOE-2 and BLAST and enables dynamic analysis under abnormal
conditions as well as the precise analysis of the heat transfer phenomena of radiation,
convection, and conduction through the building envelope and was developed by U.S.
department of Energy [20,21]. Matlab is a programming language and numeric computing
environment developed by MathWorks. The BCVTB (Building Controls Virtual Test Bed)
is software that combines disparate programs for co-simulations. For combination with
BCVTB, EnergyPlus can be mapped through three interfaces: ExternalInterface:Schedule,
ExternalInterface:Actuator, and ExternalInterface:Variable. The result can be transferred to
BCVTB using the Output:Variable and EnergyManagementSystem:Output Variable [22].
When Matlab which neural network toolbox is available and EnergyPlus are linked using
BCVTB, simulation by applying ANN model is possible.

4.1. Overview of the Simulation Model

The target building used in this study had an area of 927.20 m2 and consists of 5 zones.
HVAC with VAV system is installed, and differential dry-bulb temperature control is
applied to HVAC system. The low limit for the economizer was 4 ◦C, and the high limit
was 19 ◦C, andthe mixed-air temperature set value was 13 ◦C. In addition, the simulation
was conducted at 15 min intervals for about 1 month, and during the simulation, weather
information from Daegu, Korea was used. Table 3 lists the detailed simulation conditions,
Figure 2 shows a schedule of the internal heat gain, and Figure 3 shows the system diagram.

Table 3. Overview of the simulation.

Category Contents

Building Area 927.20 m2

HVAC system

System HVAC with VAV
system,

Operating schedule 08:00–21:00

Economizer

Control type Differential
Dry-bulb Control

Low limit 4 ◦C
High limit 19 ◦C

Mixed air set value 13 ◦C

Simulation
Time-step 15 min

Period 1 month
Weather Daegu, Korea
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4.2. Co-Simulation

This study constructed a co-simulator using EnergyPlus, Matlab, and BCVTB. Table 4
shows the data exchanged between EnergyPlus and Matlab. The outside air temperature,
outdoor-air intake ratio, and supply air fraction were transmitted from EnergyPlus to
Matlab, and the set value of the mixed-air temperature was transmitted from Matlab to
EnergyPlus. Figure 4 shows the integrated control system using BCVTB.

Table 4. Data exchange list.

Category Contents

EnergyPlus to Matlab
Outdoor-air temperature (◦C)

Outdoor-air intake ratio (-)
Supply air fraction (-)

Matlab to EnergyPlus Mixed-air temperature (◦C)
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5. Results and Discussion
5.1. Validatating the Prediction Models

The developed building load and energy prediction model were verified using data
for verification from the constructed learning data, and evaluated using the CV(RMSE) and
R2. According to ASHRAE Guideline 14-2014, this is appropriate when the CV(RMSE) is
30% or less for hourly data [23]. Table 5 and Figure 5 show the results of the developed
prediction model. In the case of the load prediction model, the CV(RMSE) and R2 were
21.8% and 0.96, respectively, and 20.6% and 0.86, respectively, in the case of the energy
prediction model. All models showed smaller values than the verification criteria presented
in ASHRAE Guideline 14.

RMSE =

√
∑
(
yp − ys

)2

n
(3)

CV(RMSE) =
RMSE

ys
× 100 (4)

Table 5. Verification of the ANN model.

Category Load Prediction Model Energy Prediction Model

CV(RMSE) 21.8% 20.6%
R2 0.96 0.86
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5.2. Predictive Model-Based Economizer Control

1. Hourly AHU mixed-air temperature control status

A predictive model-based economizer control was developed and evaluated by a
simulation. Figure 6 shows the change in the mixed-air temperature set point and the
cooling energy consumption according to the application of the predictive model-based
control for one day during the simulation. At this time, it was confirmed that the mixed-air
temperature set point value was not constant but continuously changing.
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2. Energy consumption

The predictive model-based economizer control for the optimized mixed-air tempera-
ture set point was evaluated in terms of its energy use along with the existing control, which
kept the mixed-air temperature set point value constant. Figure 7 shows the evaluation
results; the results are shown for 23 days in a month (31 days), excluding weekends, when
the system was not operating. When controlling with the predictive model-based control,
the cooling energy was reduced in all sections compared to the base operation control.
The monthly cooling energy consumption with the base operation was approximately
1,620,865 kJ. On the other hand, the monthly cooling-energy consumption when operated
by the predictive model-based control was about 859,997 kJ, saving about 760,868 kJ of
energy. In addition, the day with the greatest energy savings was 3 March (the 3rd data
point in Figure 7), in which approximately 110,639 kJ of energy were saved.
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model-based control, the energy consumption of the chiller and pump were reduced,
whereas the fan energy consumption increased. The fan energy consumption was 823,486 kJ
with the base control and 823,926 kJ with the predictive model-based control. The energy
increase amount was 440 kJ, indicating a 0.05% increase rate. Furthermore, the chiller
energy consumption was 2,374,292 kJ and 1,600,102 kJ in the base and predictive model-
based control, respectively. The energy consumption of the pump in the base and predictive
model-based control was 1,083,547 kJ and 915,127 kJ, and 168,420 kJ of energy was saved.
According to the predictive model-based economizer control of the building, the total
energy saving in the building was approximately 3,194,029 kJ—showing an energy saving
of approximately 28.9% (Figure 8).
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6. Conclusions

In this study, a predictive model-based economizer control for optimized mixed-air
temperature was established to reduce the cooling energy, and the detailed results are as
follows:

1. When controlling the economizer of the HVAC system, a control using the optimal
mixed-air temperature set point considering both indoor and outdoor conditions was
proposed.

2. A co-simulation was established using EnergyPlus, Matlab, and BCVTB to configure
a simulation-based real-time economizer optimal control system. The building and
systems were modeled using EnergyPlus; the control logic was simulated using
Matlab. Different programs were combined through BCVTB.

3. A building load and cooling energy prediction model was developed using an ANN.
The load prediction model consisted of one input layer, four hidden layers, and one
output layer. In addition, the input layer consisted of two nodes, the hidden layer
consisted of five nodes, and the output layer consisted of one node. Moreover, the
energy prediction model consisted of one input layer, four nodes; one hidden layer,
four nodes; and one output layer, one node. The developed prediction models were
verified using CV(RMSE) and R2. The CV(RMSE) of the building load and cooling
energy prediction model was 21.8% and 20.6% and the R2 was 0.96 and 0.86, indicating
a high prediction rate.

4. A predictive model-based economizer control was evaluated using a simulation. The
results confirmed that the set point value of the mixed-air temperature continuously
changed. Moreover, the total energy consumption of the building was reduced
compared to the existing economizer control by 28.9%.
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An economizer control using predictive model-based mixed-air temperature optimiza-
tion was proposed and its evaluation was conducted through a simulation. In the future,
it will be necessary to evaluate the model’s performance through field application of the
technology, and to verify the technology through real-time interlocking of the automatic
control system and the data analysis program.
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