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Abstract: Digitalization and concepts such as digital twins (DT) are expected to have huge potential to
improve efficiency in industry, in particular, in the energy sector. Although the number and maturity
of DT concepts is increasing, there is still no standardized framework available for the implementation
of DTs for industrial energy systems (IES). On the one hand, most proposals focus on the conceptual
side of components and leave most implementation details unaddressed. Specific implementations,
on the other hand, rarely follow recognized reference architectures and standards. Furthermore,
most related work on DTs is done in manufacturing, which differs from DTs in energy systems in
various aspects, regarding, for example, multiple time-scales, strong nonlinearities and uncertainties.
In the present work, we identify the most important requirements for DTs of IES. We propose a DT
platform based on the five-dimensional DT modeling concept with a low level of abstraction that is
tailored to the identified requirements. We address current technical implementation barriers and
provide practical solutions for them. Our work should pave the way to standardized DT platforms
and the efficient encapsulation of DT service engineering by domain experts. Thus, DTs could be
easy to implement in various IES-related use cases, host any desired models and services, and help
get the most out of the individual applications. This ultimately helps bridge the interdisciplinary gap
between the latest research on DTs in the domain of computer science and industrial automation and
the actual implementation and value creation in the traditional energy sector.

Keywords: industrial energy systems; integrated energy systems; digital twin platform; digital twin
requirements; service engineering; service-oriented architecture

1. Introduction

The mitigation of climate change and environmental damage due to industrial activity
are regarded as some of the most pressing issues that society faces today [1]. Consequently,
decarbonization and sustainable production are high-priority goals that also have huge
implications for the present and the future of energy systems. There are two concurrent
transformations with the common goal to make energy systems more efficient: the shift
toward integrated energy systems and digitalization. Both of these transitions can mutually
benefit from each other [2] since they share essential characteristics, both being highly
influenced by technological innovations [3].

The key characteristics of integrated energy systems are that they utilize a high share
of energy produced by intermittent renewable sources, high energy-efficient systems, and
strong integration of electricity, gas, heating/cooling, mobility systems, and markets to
maximize the synergies among new technical solutions [4]. The transition toward integrated
energy systems is also eminent within industrial energy systems (IES), where renewable
energy sources are gradually replacing fossil sources in an attempt to reduce greenhouse
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gas emissions. Although this transition is supported by policies [5], implementation and
even more so the operation of such systems confronts us with serious challenges. The
interconnection between different sectors and stakeholders, diversity of demands and
technology, numerous sources of uncertainty and large scales to consider require novel
approaches from various disciplines.

The digitalization of IES is driven by the rapid development of information and
communication technologies. This paradigm shift is often referred to as the fourth industrial
revolution or Industry 4.0 [6]. While there is justified concern that digitalization could
increase energy consumption due to subsequent rebound effects and economic growth [7],
there is undoubtedly an immense potential for digitalization and Industry 4.0 to reduce
energy consumption and increase economic sustainability [8]. To realize this potential,
various applications based on novel digital technologies have been proposed such as
forecasting, demand response, operational and design optimization, fault prediction and
predictive maintenance, to name just a few. However, today, all these digital applications
are usually considered individually. By integrating these solutions into a collaborative
platform, their impact could be even more significant.

To realize the visions of Industry 4.0 and smart, sustainable integrated energy systems,
the digital twin (DT) is considered one of the most promising concepts [9]. DTs are the
key enabler for integrating the solutions mentioned in the previous paragraph [10]. DTs in
the energy sector can thus fundamentally change the way IES operate, minimize energy
consumption and increase the integration of renewable energy sources [11].

However, the concepts and capabilities of DTs are not yet clearly defined and still
vigorously debated in contemporary scientific literature. So far, a unified DT platform has
not been established but is considered to be direly needed [9]. Furthermore, most work on
DTs has focused on the manufacturing domain [12,13], which differs from the domain of
energy systems in various aspects.

Tao et al. [9] state that the history of DTs is rather brief and that the concept was first
introduced as early as 2003 by Grieves in the context of product lifecycle management [14].
The first actual definition of a DT was given by NASA in 2012 [15]. To date, various
definitions have arisen and are still the subject of discussion in the literature [16]. Negri
et al. [17] and Liu et al. [18] even presented tables of 16 and 21 separate definitions of
the DT, which they found in the literature. The basic characteristics given by NASA [15]
are still aligned with the refined definition given by Negri et al. [17] and reported by
Cimino et al. [16] and Kritzinger et al. [19]: “The DT consists of a virtual representation of a
production system that is able to run on different simulation disciplines that is characterized by the
synchronization between the virtual and real system, thanks to sensed data and connected smart
devices, mathematical models and real time data elaboration”. Most definitions, such as this one,
are tailored to production systems, which hints at the origin of DTs in the manufacturing
domain. For a more general understanding, we can break down the definition to the term
physical object [20] or physical entity [21]. Josifovska et al. [21] define a physical entity
as an abstraction of a “thing” persisting in the real world which has to be mirrored or
twinned in the virtual world. In this framing, the definition by Negri et al. [17] is suited
for industrial energy systems, where the physical entity of a considered DT can be a single
process unit or even part of that unit but also a whole energy system including boundary
conditions (e.g., external energy supply systems/grids). Therefore, this is the definition
that we adhere to. It is important to note the difference in the level of data integration
between mere digital models of a physical entity and a full DT, which was most prominently
discussed by Kritzinger et al. [19]. While DTs are using digital models to dynamically
simulate the physical entity and thus can build on the same principles, their key feature
is bidirectional automated data exchange, i.e., synchronization with the real world. This
is where the technical complexity of DT modeling arises. Hence, DT frameworks and
practical platforms are needed to allow for the strict synchronization of digital models with
their physical entities and to enable additional functionalities compared to a mere model.



Appl. Sci. 2022, 12, 6981 3 of 29

Although the number and maturity of DT concepts is increasing, there is still no
uniform platform available for the practical implementation of a DT [18]. Most proposals
focus on the conceptual side, maintaining a high level of abstraction and leaving important
implementation details unaddressed [22]. Concrete DT implementations, on the other
hand, are mostly realized with a specific application in mind without any architectural
template [21] or only offer a limited set of services [16], hence not reaching the full potential.
Thus, there is still a significant gap in DT research regarding how to offer a higher number
of services in the same environment to support complex decision making [16]. Missing
architectural guidelines result in application-specific solutions which are barely reusable,
hence increasing development time and maintenance costs [22].

After its origin in the aerospace industry [15,23], the DT was widely announced
following Grieves’ Whitepaper [14] in 2014 [24]. Only then did the DT topic find its way
into other sectors, such as automotive, oil and gas [25], and healthcare and medicine [26]
and was driven forward massively in (discrete) manufacturing, which is apparent by the
distribution of DT applications analyzed in Jones et al. [12], Negri et al. [17], and also
Melesse et al. [13]. In recent years, the DT was also explored in the context of chemical
process engineering [27] and the food industry [28]. In the domain of energy systems, DTs
are notably represented in the domain of electric power systems [29] and especially in the
context of smart grids [30] and battery management [31]. Other examples include DTs for
decision making in energy system design [32] and, during operation, the application of
DTs for wind turbines [33] and for scheduling [34] and state estimation [35], to name just a
few. Only recently, the transfer of the DT concept to thermal IES has begun [36,37]. For a
complete overview of existing DT research and industrial application, we refer interested
readers to the current literature review by Liu et al. [18].

1.1. Scope of This Paper

Even though both industry and academia ascribe huge potential to DTs in IES, their use
in this domain is lagging behind other sectors, most notably the manufacturing sector [12],
which differs from DT research in energy systems in various aspects. A relatively low
number of papers can be found in the literature addressing DTs in the energy domain [38].
In a current literature review by Kaiblinger et al. [39], only 5 % of evaluated DT case studies
could be attributed to the energy domain, which is inline with the findings of Yu et al. [11]
and Sleiti et al. [37]. Regarding application scenarios, DTs are mostly represented in the
area of prognostics and health management, while Tao et al. [9] found that the areas of
DTs in dispatching optimization and operational control are currently underexplored but
very promising.

Based on the past evolution and current difficulties in DT development outlined above,
we focused our research on a tangible implementation of a DT platform for IES. In this
paper, we

• identify the most important requirements on DT of IES,
• propose a DT platform tailored to these requirements in line with current standardiza-

tion developments,
• address essential architecture and implementation challenges,
• solve technical implementation barriers by providing practical solutions, and,
• highlight the advantages of service engineering on this DT platform.

Ultimately, our work aims to bridge the gap between the latest research on DTs
in the domain of computer science and practical deployment in the energy sector. The
proposed DT platform should pave the way to standardized DT implementations with
service encapsulation and thus efficient DT service engineering. In this way, DTs will be
easy to implement in various cases related to energy systems and be capable of hosting
various complex models and services fulfilling different application purposes.
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1.2. Paper Structure

After this introduction into the topic, we elaborate on specific features and require-
ments of energy systems and the need for an appropriate DT platform in Section 2. We
also compare the most relevant DT concepts and architectures. We will show that none
of the existing implementations is a good match for IES but that the five-dimensional
(5D) DT concept is feasible despite its high level of abstraction. In Section 3, we propose
concrete solutions to fill in the blanks in the 5D-DT concept and overcome implementation
barriers, thus creating a practical DT platform. We highlight the capabilities and benefits
and critically discuss the proposed DT platform with regard to the specific requirements of
IES as well as emphasizing the potential of service engineering in Section 4.

2. State of the Art

Considering that the typical claim of DT platforms is that they are universal, i.e.,
that they are not just applicable for the specific system that they were developed for,
but that they are transferable to any physical entity, the scarce use of DTs in the energy
domain compared to the manufacturing domain appears unjustified. This disparity cannot
be explained by the DT‘s historical evolution alone. There must also be a number of
distinct differences that distinguish manufacturing and energy systems. We thus argue
that the unique requirements of energy systems have to be considered for the successful
development of a DT platform.

2.1. Characteristics of Industrial Energy Systems

As a typical use case for a DT platform in this domain, we consider an exemplary
industrial energy system, as illustrated in Figure 1. It is composed of a conventional
combined heat and power unit, electrically powered heating units and internal renewables
based on photovoltaics for electric and thermal energy supply. A number of production
processes typically account for electric and thermal energy demand. Heat exchanger
networks and heat pumps are used for waste heat recovery. Electrical and thermal energy
storage components are employed to provide additional flexibility and improve the energy
efficiency enhancement of the IES. Furthermore, the IES is not isolated but instead coupled
with both the electricity grid and a district heating/cooling network.

Figure 1. Sketch of the target use case: a typical industrial energy system.

Such an IES is a complex integrated energy system that has a number of characteristics
that set it apart from typical manufacturing systems:

• Many sources of uncertainty such as weather influences, prices on the energy market
and stochastic processes within the system itself make the optimal operation of an IES
challenging.

• Energy system units feature complex thermophysical behaviors, hence leading to
strong nonlinearities in mathematical model descriptions.
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• Energy systems are often vast and distributed systems with specialized equipment.
• Power plants as well as industrial and urban energy systems have very long lifetimes

or are even continuously refurbished instead of being rebuilt. Thus, “off the shelf”
solutions have a limited field of applications.

• Energy systems are very dynamic systems with a broad range of operational time
scales.

• Some process quantities cannot be measured directly, e.g., due to high temperatures
or abrasive conditions.

• System properties change over time, e.g., the efficiency of a unit can change due to
wear, while the mechanical resistance of a system can degrade due to fatigue.

• Energy systems consist of continuous processes as opposed to processes with discrete
units in manufacturing; hence, scalar and vector fields instead of single values are
used to describe the system.

• Given their critical nature within the power grid infrastructure, cyber attacks targeting
IES have potential for disastrous consequences.

All of these aspects more or less differentiate from manufacturing systems and can be
considered specific features of IES, thus contributing to the fact that DTs are underdeveloped
in the energy sector. We deduce that these characteristics explain why DT frameworks that
have been applied successfully in the manufacturing domain have not been extensively
transferred to the energy domain yet. One way or another, if DTs are to be widely deployed
in the energy sector, these specific properties must be properly considered.

2.2. Digitalization Developments and Opportunities in Industrial Energy Systems

Technical developments such as Internet of Things (IoT) technologies and the growing
data acquisition in energy systems have resulted in new challenges and opportunities for
energy systems [40]. Digital innovations have the potential to trigger significant changes in
the energy sector in the near future [41]. For example, the increasing maturity of machine
learning approaches enables applications to improve the accuracy of demand, generation,
and price forecasting [40]. Various other solutions have been proposed, such as intelligent
energy management [42], demand response [43], operational optimization [44] and design
optimization [45], fault prediction [46] as well as preventive and predictive maintenance
for energy efficiency [47] and to extend the lifespan of machinery [48]. In the area of battery
management, IoT and data science technologies enable numerous solutions to optimize
battery manufacturing, operation and re-utilization [49].

Existing DT concepts and implementations in the energy sector aim to provide at least
one specific solution. In a recent study by Wang et al. [50], targeting energy neighborhood
applications emphasized the use of DT in energy storage use cases, which are equally
important in IES. The estimation of stage of charge and aging state of storage devices as
well as the cloud-based interconnection of multiple units to enhance computational abilities
and overall operation management were highlighted. A recent summary of the modest
amount of DT development in the area of power generation was given by Sleiti et al. [37],
including electricity generation, power distribution, the renewable and nuclear power
industry, and the energy vehicle and storage sector. They concluded that while the energy
industry is actively pursuing the tremendous opportunities of DT, most articles did not
include details on the comprehensiveness of their DTs or details on the used models and
enabling technologies. Furthermore, the scope of implementations is mostly very limited
to specific applications scenarios.

Weigel et al. [41] provided a structured overview of digital applications in the German
energy sector, and Ardebili et al. [51] listed the most frequent application scenarios for DTs
in smart energy systems based on a systematic literature review. Furthermore, Yu et al. [11]
recently derived a structured list of DT applications in the process and energy industry from
the literature. Grouped into three lifecycle phases, these included [11]: virtual testing [52]
and design optimization [53] in the Desing phase, process optimization [54], prediction [55],
monitoring [56] and training [57] as well as production control [58] in the processing phase
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and fault detection and diagnosis [59] in the service phase. Based on these studies, we
deduced a list of application categories which we consider most relevant for industrial
energy systems from a technical perspective (see Table 1).

Table 1. Most relevant technical categories of digital applications considered for value creation during
operation of industrial energy systems. For an in-depth review, we refer to [11,41,51].

ID Application

A1 Condition monitoring
A2 Anomaly/deviation detection
A3 Fault classification and analysis
A4 Predictive maintenance
A5 Forecasting
A6 Operational optimization

The condition monitoring (A1) of physical components by analyzing measurement
data is crucial to guarantee the optimal and safe operation of energy systems [33]. Fur-
thermore, condition monitoring via models and “soft sensors” can facilitate this process,
especially in harsh environments and for quantities that cannot be directly measured. On
top of monitoring, anomaly or deviation detection (A2) aims to detect deviations between
the expected and observed behavior of physical components, which is often via the use of
simulation models. The application of fault classification (A3) is typically designated to
identify the type and cause of detected anomalies or errors and sometimes also to predict fu-
ture fault scenarios. Predictive maintenance (A4) aims to predict and extend the remaining
useful lifetime of machinery to determine an optimal maintenance schedule. Forecasting
(A5) of energy demand, prices and environmental conditions becomes increasingly relevant
and also more feasible by using historical and external data and advanced analytic methods.
The operational optimization (A6) and control of IES generally aims to decide on optimal
operating points and scheduling in order to minimize energy consumption or overall costs.
We consider the leveraging and marketing of demand flexibility also within this category,
although it is sometimes known as demand-side management, since it is generally based
on very similar methods and merely considers different operational variables, constraints
and external information sources.

Weigel et al. [41] derived the benefits of such digital applications from the literature,
which were allocated into six clusters: (1) system stability, (2) environmental protection,
(3) energy demand reduction, (4) revenue increase, (5) cost reduction and (6) customer
expectations. These benefits are based on the potential of individual applications, i.e., to
automate and improve efficiency in processes and optimize the operation and maintenance
of systems but also on digitalization’s potential to create interacting networks, increase
transparency and improve convenience [41]. While some of these categories clearly show
some correlation with each other, cost reduction is inherently covered in all of them.
Yu et al. [11] evaluated the main driving benefits for DT adoption in the energy sector from
the literature as energy efficiency, profit, decarbonization, throughput, quality and safety.

To enable individual digital applications and thus leverage the benefits ascribed to
them, various methodical approaches were already successfully developed. However,
although many of these solutions have been deployed in all energy value stream steps, the
value stream itself has remained mostly unchanged [60]. A major problem today is that all
these solutions are usually considered individually. By integrating them into a collaborative
platform, their impact could be much more significant, and future development and
software maintenance effort could be reduced. The DT is considered as such a platform that
can host a large number of services in a single environment [16]. These services can either
provide specific application purposes on their own [61] or can be loosely coupled with
other small software services to build service-oriented applications [22]. This microservice
architectural style gains increasing popularity in software development due to its improved
scalability and maintainability [62].
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The most common services and features of DTs in general have been reviewed by a
number of researchers. Tao et al. [61] listed nine main services of DTs in the production
sector, while Cimino et al. [16] grouped these in six categories; however, these are specif-
ically tailored to manufacturing systems. Ardebili et al. [51] list the most frequent goals
and applications for DTs in the energy sector, and Steindl et al. [63] identified six groups of
functional services: simulation services, monitoring services, diagnosis services, prediction
services, control services, and reconfiguration services.

2.3. Barriers Impeding Digital Twin Implementation

The distinct features of IES, which we outlined in Section 2.1, present challenges for
the implementation of DTs in these systems in addition to general technical barriers. The
fact that DTs are relatively scarcely addressed in the literature relating to the energy domain
both gives evidence to such challenges and reinforces the underdevelopment of DTs for IES.
In that regard, we see the energy domain at a similar stage as the process industry, where
similar difficulties led to the fact that little research on DTs has been conducted [64]. This
fact is supported by the review from Yu et al. [11], where only 50 papers were retrieved
for process or energy DT within a thousand research papers on DTs in general since 2010.
Perno et al. [65] recently presented a systematic review of barriers for DT implementation
in the process industry. Such barriers are equally present in the energy domain. A summary
of the most crucial barriers impeding DT development from a technical perspective is given
in Table 2.

Table 2. Most crucial technical barriers impeding DT implementation. We endorse and apply the
categories established by Perno et al. [65] for the process industry and provide a summary of topics
causing difficulty in the energy domain.

ID Barrier Category Challenges

B1 System integration issues Lack of system integration; Interoperability issues; Legacy systems
B2 Security issues Data protection; Real-time communication; Robustness
B3 Performance issues Prediction accuracy; Data volume; Scalability; Flexibility; Standardization
B4 Organizational issues Fragmented data management; Data availability; Technology investment decisions
B5 Data quality issues Data validity; Lack of methodologies and tools; Low DT maturity
B6 Environmental issues Software decisions; High-fidelity modelling; Multi-disciplinarity; Heterogeneity

System integration issues (B1) include interoperability issues and often problems with
legacy systems. Fuller et al. [66] stated that such DT challenges fall into the area of IoT and
IIoT. DT implementations should thus not only feature a standardized architecture but also
a certain flexibility to retrofit existing infrastructure. This is especially critical for IES that
feature very long lifetimes.

Security issues (B2) are a barrier that is not necessarily crucial during DT development
but during DT deployment. The key enabling technologies for DT must follow the current
practices and updates in security and privacy regulations to resolve this barrier [66].

Performance issues (B3) cannot be solved alone by large computational capacities
but include aspects of standardization and scalability. Standardization will facilitate the
interoperability of new and existing supporting software [37]. Only when standardization
is achieved can DT really thrive in the energy sector due to the easy exchange of information
and models.

Data quality issues (B5) include the lack of methodologies, low data validity or low
DT maturity that results, e.g., in information resulting from DT models that are untrust-
worthy or incomprehensible. This is crucial in IES, where many sources of uncertainty
complicate operation.

Organizational issues (B4) and environmental issues (B6) feature multidisciplinary
problems that also needs to be tackled from the area of business management, impeding
the fast development of DTs.
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Yu et al. [11] stated that DT development in the energy sector is inherently multidisci-
plinary, including fields such as chemical, mechanical, electrical, civil, software engineering
and data science. Additionally, DT operation should ideally be unclosed to non-technical
staff and business managers. Thus, further non-technical challenges arise that have to be
countervailed by a convenient DT architecture.

For more details on barriers and possible enablers in current DT research, we refer to
the reviews of Perno et al. [64,65], Yu et al. [11] and Fuller et al. [66].

2.4. Requirements on Digital Twins in the Energy Sector

Since most DT implementations are realized following a specific goal without any
architectural template [21], it is impossible to overcome the implementation barriers given
in Section 2.3 in a standardized manner. However, a DT that is tailored to the specific
characteristics of IES (i.e., one that meets their requirements) could be an enabler to integrate
digital applications on a single platform and thus make IES significantly more efficient.
While having mainly different scopes of applications in mind than the energy sector, some
researchers directed their research on establishing common focus points in DT development
and servization. Furthermore, they listed requirements they deemed as necessary DT
capabilities. These requirements are summarized in the following paragraph and critically
reviewed to provide a foundation for our assessment in regard to IES.

Boje et al. [67] highlighted requirements on DTs in the construction sector. Demands
for smart factory systems were established in Ref. [68]. Moyne et al. [69] studied DT
definitions in manufacturing and clustered them into requirements (1) derived from the
literature, (2) derived from DTs in use today, and (3) applications in the near future.
Weskamp et al. [70] formulated requirements for the architecture of a knowledge explo-
ration platform of industrial data for integration into digital services. Steindl et al. specified
functional and non-functional requirements for a DT service framework derived in a
literature review [22] and clustered these requirements based on three RAMI 4.0 layers
(information, functional and business). Negri et al. [71] collected requirements for onto-
logical modeling in industrial applications. Tao et al. [72] proposed eight rules for DT
modeling, which are, in their original short denomination, (1) data and knowledge based,
(2) modularization, (3) light weight, (4) hierarchy, (5) standardization, (6) servitization,
(7) openness and scalability, and (8) robustness. Neto et al. [73] summarized and identified
four features of digital twins based on the literature, including digital modeling, analytical
support, timeliness update and control. Sleiti et al. [37] stated seven requirements for their
DT architecture for power plants.

Based on this literature about DT requirements and considering the specific char-
acteristics of IES and technical barriers impeding the DT development outlined in this
subsection, we established a set of key requirements for DTs in the energy domain. These
requirements are listed in Table 3 together with references that provided motivation for
them.

Requirements R1 and R3 express the need for bidirectional automated information
exchange between physical and virtual entities, which is considered the most distinctive
feature of a DT [19]. Especially for highly dynamic systems, the DT must be capable of
informing and warning human operators (R2).

Both requirements R5 and R7 address the issue that the DT must not only provide
recommendations for action but to trigger these actions, hence optimizing the operation
of IES.

Since IES and their corresponding DTs should be in operation for very long time-spans,
IES are continuously evolving; i.e., components are added and environment variables
change. Therefore, DTs should be modular (R4), scalable (R6) and build on standardized
technologies (R12), thus facilitating the maintenance and continuous development of the
DT platform.

Especially in IES, parameters of physical units can change significantly, e.g., due to
degradation in harsh conditions. Hence, the DT must be robust in that it can automatically
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adapt to behavioral changes (R9). This reinforces also requirement R10, which is a typical
DT requirement also in other domains.

Table 3. Requirements of DT platfoms for application in IES. The requirements are specified together
with an identifier for later reference and with literature sources that provided motivation for them.

ID Requirement Source

R1 The DT must be able to observe the physical world in real time via the use of sensors. [61,67]
R2 The DT must be able to monitor, inform and issue warnings on relevant physical alterations. [37,67]
R3 The DT must be able to actuate physical components. [67]
R4 The DT should be designed in a modular fashion. [61,69,72]
R5 The DT must be able to make decisions and trigger actions on the virtual entity. [67]
R6 The DT should be open, re-usable, and scalable. [61,69]
R7 The DT must be able to optimize operation of the physical entity. [61,67]
R8 The DT must provide interfaces for seamless user interaction. [70,74]
R9 The DT must be robust and able to provide automatic model adaptation, i.e., for simulating the physical entity. [69,72]
R10 The DT must be able to predict the behavior of the physical entity based on simulations and sensing. [61,67,69]
R11 The DT should be able to accommodate simulation models for various applications and in arbitrary fidelity. [61,67]

R12 The DT should build on standardized technologies and use available metadata, hence facilitating model
integration, information exchange and maintenance. [70,72]

R13 The DT must be able to process heterogeneous data from different sources. [37,61]

R14 The DT should be able to store data with context information and exchange information in a semantically
meaningful way. [61,69,70]

R15 The DT must allow for safe and secure operation of the physical entity. [75]

The need for the accommodation of various types of simulation models (R11) is
particularly important in IES, where models of both varying fidelity and different physi-
cal considerations are applied, e.g., heat transfer, fluid dynamics, mechanical stress and
chemical kinetics.

The need for heterogeneous data processing (R13) is crucial in IES, since specific tasks
may require data from multiple simulation models, different legacy measurement devices
and also input data streams with respect to the surrounding integrated energy system.

Dynamic processes in IES can be very complex, and operation experience is still
indispensable. Hence, storing data with context information and exchanging information
in a semantically meaningful way (R14) makes a DT a much more powerful tool.

Last but not least, both plant safety procedures and cyber-security concerns should be
addressed (R15) in a way that the DT must not impede the safe operation of the physical
entity and, ideally, increase the overall security of the energy system.

Even though this list could be extended even further, it should cover the most relevant
requirements and provide a solid foundation for evaluating a proper DT platform in the
energy domain. Other researchers argued that a DT must deliver quantifiable metrics and
ultimately add value in its application area [69]. However, while we share this opinion for
DTs in general, we see this not as a necessary consideration for the technical implementation
of a DT platform. In addition, lifecycle aspects are often raised. While we do not assign a
high value to this topic with regard to IES, we argue that basic requirements for the lifecycle
aspect in DTs are already covered by various functional requirements in our list (e.g., R6).
For more detailed necessities, e.g., on information technology (IT) infrastructure, service-
and model management, we refer to the particular literature presented above, i.e., the work
of Weskamp et al. [70], Steindl et al. [22] and Negri et al. [71].

2.5. Digital Twin Architectures

A number of research articles have addressed DT concepts, architectures and platforms
in varying levels of abstraction in recent years. Cimino et al. [16] and Semerano et al. [76]
broach the issue of DT architectures as part of their respective review papers. However,
we could only ascribe four references [51,63,77,78] to the energy domain. While it is
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considered an urgent necessity to define standardized DT frameworks, no consensus has
been reached [9] yet. This is even more critical for DTs in the energy domain.

In this subsection, concepts and architectures for DTs and related work for cyber-
physical systems (CPS) are reviewed and then discussed with regard to their viability for
DTs of IES.

2.5.1. Existing Digital Twin Concepts, Architectures and Platforms

The first DT concept was published by Grieves [14] in 2014, defining the three basic
aspects of (i) the physical space, (ii) the virtual space and (iii) the connection between
them to exchange data and information. These three main dimensions are found in most
other concepts and architectures. Concurrently, they are often organized into physical (i),
computing (ii) and network layers (iii) [67,76]. Grieves’ three-dimensional approach is very
minimalistic, and consequently, many extensions have been proposed in recent years to
reflect the growing complexity of DT concepts.

Tao et al. [79] argued that Grieves’ three dimensions do not indicate the extent to
which services and features can be provided, and also, the extent to which information can
be retrieved and data can be processed is not explicitly presented. These shortcomings in
combination with the rapid development of enabling technologies, omnipresent availability
of data, and the need for services led Tao et al. [24,80] to propose a 5D-DT concept, adding
(iv) DT data and (v) DT services to the three dimensions proposed by Grieves [14]. In
the 5D-DT concept, especially the service dimension is emphasized as an important part.
The functionality of the DT is encapsulated into standardized services with user-friendly
interfaces for easy and on-demand usage.

Stark et al. [81] propose a “DT 8-dimension model” to provide a template for planning
DTs; however, they admit that further research is needed toward a reference model for the
implementation of a DT.

Wang et al. [31] presented DT models and a four-layer networked architecture of
cloud-side-end collaboration for battery management systems. This architecture contains
four layers from the perspective of hardware functionality, namely “edge computing layer”,
“data access layer”, “data storage and analysis layer” and “data-based application layer”.

Sleiti et al. [37] proposed a five-component DT architecture for robust power plant
operation, consisting of (1) a physics-based dynamic system model, (2) an anomaly de-
tection model, (3) a sensor database, (4) a digital thread model and (5) localized in-depth
simulations. While this architecture is specific regarding purpose and possible modeling
techniques for physical components, the authors circumvent the important topics of data
storage and processing and connections within the DT. Furthermore, no standardization
aspects are considered to ensure the scalability and openness of the architecture.

In [21], a “Reference Framework for Digital Twins” is presented that specifies the
structure and interrelations of the main DT building blocks, which were identified based
on a literature review. Interestingly, the blocks are almost identical to the dimension in the
5D-DT concept by Tao et al. [72,80] except for the notable absence of an equivalent to the
connection dimension.

The concept for a “Cognitive Twin Toolbox” was presented in [82] with a special focus
on the process industry. The toolbox is organized into the five layers, which again have
some similarity to the 5D-DT [72]. The “Data Ingestion and Preparation Layer” and the
“Service Management Layer” are of a similar design as the data and service dimension in
the 5D-DT. The “Model Management Layer” serves a similar function as the virtual entity.
Additionally, the toolbox also has a “Twin Management Layer”, to handle synchronization
of the DT structure, and a “User Interaction Layer”. Just like the “Reference Framework for
Digital Twins”, the “Cognitive Twin Toolbox” has no explicit connection layer.

The three main building parts of a DT presented by Grieves [14] align with the
definition of CPS, which is a concept that is very prominent in the industrial production
domain. Various papers in the manufacturing field mention the use of the DT to simulate a
CPS [17]. Therefore, some researchers see a DT as merely the digital model inside a CPS [10],
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and this conversely implies that a DT is the prerequisite for a CPS [12]. Zheng et al. [83]
state that the DT in the broad sense belongs to the CPS but has a higher fidelity and focuses
more on data and models with ultra-high-fidelity simulations. Either way, DTs and CPSs
are undoubtedly very similar, and thus, CPS architectures are also highly relevant for DT
implementations.

The prominent five-layer architecture (5C architecture) for CPSs proposed by Lee et al. [84]
consists of the five pyramid-like layers “Smart Connection Level”, “Data-to-Information
Conversion Level”, “Cyber Level”, “Cognition Level”, and “Configuration Level”, in order
from bottom to top, bearing similarity with the 5D-DT architecture by Tao et al. [72,80]. The
5C architecture aims to guide the development and deployment of CPSs in manufacturing
even though it cannot be considered to be a mature DT platform.

In Ref. [85], an “Intelligent Digital Twin” architecture for implementation in CPSs was
proposed. In the “Cyber Layer”, a synchronization interface is introduced besides a data
acquisition interface to keep simulation models of the DT consistent with the physical entity.
Furthermore, a co-simulation interface is described as a component of the architecture to
facilitate interaction between simulation models and to enable communication with other
DTs. While focus of this architecture lies on automated synchronization and inseparability,
the dimension of services seems underdeveloped, since the “DT” is only regarded as a
virtual replication of physical functionalities in that article.

2.5.2. Standardization Aspects

We see that the available reference architectures for DTs and related concepts such as
CPSs use either structured elements (e.g., building blocks, components, dimensions) or
some kind of layers (also interfaces) to structure functionality and reduce complexity for
DT implementation. These basic DT parts often have the same function even though they
have different names, which impedes direct comparison. In an attempt to bring order to
this topic, several standardization efforts have been made.

The Asset Administration Shell (AAS) was introduced in the context of the Industry 4.0
initiative as a standardized digital representation of an asset [86,87]. The AAS is used to
uniquely identify assets, describe their functionality over the whole lifecycle and enable the
communication among assets within a single factory and between companies. The AAS
is still being developed, and the integration of models into the AAS is due to be added
soon [88]. However, it is not in the scope of the AAS to provide simulations [20], hence
missing basic requirements for a DT. For this reason, the AAS can rather be seen as the
first step to a standardized DT solution providing the basic DT functionalities of resource
description, discovery and access.

The ongoing standardization initiatives by the International Organization for Stan-
dardization (ISO) under the code ISO 23247 and title “Automation systems and integration—
Digital twin framework for manufacturing” are also noteworthy as are the DT implemen-
tations that are built on these [89] as well as other standards relating to the scope of DTs,
such as ISO 22989 and ISO 10303. However, both the transferability of such standards to
the energy sector and ultimately the acceptance of the norms are not foreseeable yet.

In an attempt to establish a common view and terminology, the Reference Architecture
Model Industry 4.0 (RAMI 4.0) was introduced in the context of Industry 4.0 [90]. RAMI 4.0
is a guidance framework for implementing Industry 4.0 aspects and developing a common
understanding of standards, tasks and use cases. Thus, RAMI 4.0 provides a very useful
system for localizing the parts of a DT.

To connect RAMI 4.0 with DT concepts, the Generic Digital Twin Architecture (GDTA)
was proposed by Steindl et al. [63]. In it, the 5D-DT concept [72] was used as a basic
conceptual model and aligned with the six interoperability layers of RAMI 4.0 (Business,
Functional, Information, Communication, Integration and Asset Level [63]) in an attempt
to achieve a consistent naming and understanding of the layers. The GDTA targets the
“instance-phase” of the RAMI 4.0 lifecycle, i.e., the operational phase as opposed to the
“type” or engineering phase. A DT can be located at various hierarchy levels within
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RAMI 4.0, depending on the physical entity for which it is designed for, potentially cov-
ering all levels [63]. Defined data models within the AAS can be semantically lifted to a
knowledge representation based on Resource Description Framework (RDF) [91], enabling
the representation of the AAS inside the shared knowledge base of a GDTA-based DT.

2.5.3. Summary and Discussion

In Table 4, a summary of the concepts, architectures and frameworks presented in the
preceding paragraphs is given. The table was adapted and extended from our previous
work [63]. It also gives a classification of the architectures based on their level of abstraction
ranging from “high” (more general concept) to “low” (concrete framework, targeting
implementation details).

Table 4. Overview of concepts, architectures and frameworks for DTs. Adapted and extended from
Steindl et al. [63].

Name Target
Domain Structure Main Parts Level of

Abstraction

3D-DT [14] Lifecycle management component-based 3 components high
5D-DT [72] Manufacturing component-based 5 components high
5C Architecture [84] CPSs in manufacturing layer-based 5 layers high

Intelligent DT [85] Production systems component-based 4 interfaces and 9 com-
ponents low

Ref. Framework for DT [21] CPSs in general component-based 4 main components low
“4S” architecture [31] Battery management layer-based 4 layers low

COGNITWIN [82] Process industry components and layers 5 layers and 19 compo-
nents low

Conceptual DT model [92] CPS in general layer-based 6 layers medium
ASS [86,87] Manufacturing only meta-model ongoing work -
The Twinning process [12] DT characterization only synchronization model sequential processes high
Data-driven reference architecture
for DT [93] Various industries layer-based 6 layers and several com-

ponents high

Digital Twin 8-dimension model [81] Smart manufacturing component based 8 components high

Application framework of DT [83] Lifecycle management modules and layers 3 components and
1 layer high

The Interactive Digital Twin [32] Decision making in energy
system design only design model sequential processes low

GDTA [63] Industrial Energy Systems components, layers and ser-
vices 6 layers medium

Robust DT for power plants [37] Power plants component-based 5 components medium

While abstract DT concepts are very useful for the initial development of the DT
platform for a particular use case, they mostly do not indicate how to implement a DT. The
propositions at a low level of abstraction that we found in our literature search either do
not meet energy system specific requirements or lack the perspective of standardization.

Aligning solutions with the architectural guidelines of the GDTA outlined above
facilitates technology-independent implementations of DTs, thus ensuring reusability
ultimately reducing development expenses. However, services are still considered in an
abstract way in the GDTA, and appropriate implementation technologies have to be chosen.
The prominent 5D-DT concept is being simple to understand in theory while keeping
implementation details vague.

We conclude that a more tangible DT platform, addressing the requirements for the
domain of IES, can significantly facilitate DT implementation. Therefore, we propose a
DT platform in Section 3 based on the previous work on the 5D-DT concept [80] and the
GDTA [63]. The 5D-DT concept allows to conceptualize a specific DT based on five main
dimensions, which are found in the majority of existing literature concepts. The GDTA,
being also based on the 5D-DT concept, aims structuring its essential components and
functionality and helps to classify, combine, and re-use already existing frameworks and
technologies based on its alignment with RAMI 4.0.
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3. The Digital Twin Platform

Taking the 5D-DT concept as a fundamental pattern, we developed a DT platform that
is tailored to the specific requirements of IES (see Section 2).

The architecture of the developed DT platform is presented in Figure 2. The connection
dimension is at the center of our platform, which highlights its function as the central com-
munication hub. All parts of the DT can communicate via a message broker. The physical
entity (left-most box in Figure 2) is connected to the virtual space via the supervisory
control and data acquisition (SCADA) system. New data points are sent to the message
broker, and control signals are received. The virtual entity (right-most box in Figure 2) is
connected via the model management layer. Via this model management layer, models are
made available to the other parts of the DT. Each model is associated with an identifier and
models can be added, updated and fetched. The data dimension (box at the bottom center
of Figure 2) provides a uniform interface and semantic structuring to the various data
sources in the DT. Queries are received from the message broker, processed, and the result
is returned via the broker to the requesting client. In the service dimension (top center
in Figure 2), each service can connect directly to the message broker. Services can send
requests for models to the virtual entity and send data queries to the data dimension. The
coordination of the various services and the realization of complex sequences is realized by
the service orchestrator.

Figure 2. Illustration of the DT platform for an IES inspired by the five-dimensional 5D-DT concept
and the GDTA.

In the following subsections, we address the particular implementation issues of each
dimension of the DT and propose universal, yet concrete, approaches for resolving these
issues. As a use case, we consider a generic IES comprised of typical components, as
illustrated in Figure 1.

3.1. Connection Dimension

The main task of the connection dimension is to enable the communication between all
parts of the DT. The goal of our DT platform is to provide powerful yet versatile standards,
which can be used easily, while allowing the implementation of more efficient alternatives
for applications with special requirements. Implementing various communication channels
between the parts of the DT would result in an unnecessarily complicated architecture.
Instead, the main communication channel should be designed so that it is interoperable
with all parts of the DT.
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There are numerous choices for appropriate communication technology, such as
Message Queuing Telemetry Transport (MQTT), Advanced Message Queuing Protocol
(AMQP), Constrained Application Protocol (CoAP), Hyper Text Transport Protocol (HTTP)
or Open Platform Communications Unified Architecture (OPC UA) [94], to name just a
few. The choice is often application-specific and depends on reliability, speed and resource
constraints, amongst other things. For a review on messaging technologies for IoT systems,
see, for example, the work of Naik [95] and Profanter et al. [96]. To enable event-driven
asynchronous communication between all dimensions, a publish–subscribe message queue
in form of a message broker is the most viable solution [97].

We thus chose MQTT as the default communication protocol of our DT platform.
Human et al. [94] demonstrated the effective use of MQTT for DTs of complex systems. It
is appropriate because of its versatile topic-based publish/subscribe functionality, light-
weight messages and low bandwidth requirements, which allows 1:n as well as n:1 com-
munication [22]. It is well established in IoT [96] and can be utilized by clients based on the
Internet Protocol Suite TCP/IP; hence, it is also compatible with heterogeneous hardware
components of the physical entity. Furthermore, it features three levels of Quality of Service
(QoS) for reliable message delivery and an adequacy for large networks [94].

Each of the other four dimensions of the DT is connected to the MQTT message
broker in the connection dimension as a client and can publish and subscribe to different
topics. These topics are defined and managed by the MQTT message broker. The broker is
responsible for receiving all messages, filtering the messages, determining who subscribed
to which topic, and sending the messages to those subscribed clients. On an even more
abstract level, all parts of the DT can be considered some kind of service, and the whole
DT can be modeled in analogy to a microservice framework (see, e.g., [22]). By applying a
message broker in this way, the connection dimension turns into a central communication
hub, as it is shown in Figure 2.

With regard to the practical implementation of the DT platform, we propose Eclipse
Mosquitto (https://mosquitto.org/, accessed on 10 June 2022) as an MQTT message broker.
The lightweight architecture allows for deploying on different devices and does support
various authentication and encryption protocols, such as username/password authentica-
tion, and certificate-based encryption. Depending on the application which aims to connect
to the broker, various MQTT client libraries are available that support the used MQTT
version 3.1.1 (OASIS Standard. Available online: http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/os/mqtt-v3.1.1-os.html, accessed on 10 June 2022).

Figure 3 illustrates an exemplary request–response message pattern in our DT platform
and the message topics involved. The function of the service orchestrator is explained in
detail in Section 3.5.

Each client publishing to the broker has to follow an MQTT topic naming convention
depending on the type of message. This ensures that published messages have a defined
payload allowing subscribed clients to process received messages accordingly. However, the
DT platform does require a request/response message pattern, which is not supported by
MQTT out of the box, as it follows the publish/subscribe pattern. Therefore, considerations
on how to implement such a request/response message mechanism had to be made, which
include two implementation possibilities: (1) one MQTT topic for request and response
messages or (2) one MQTT topic for a request message and one MQTT topic for the
correlated response message. The first approach requires to define the type of message
within the payload alongside a unique identifier to correlate messages. Alternatively, the
unique identifier could be appended to the MQTT topic for reducing the payload, but this
would require parsing the MQTT topic for retrieving the identifier. Thus, we opted for
the second approach, which defines the type of the message by the MQTT topic; hence,
only the unique identifier has to be appended to the payload. An application would then
need to parse the topic for getting the type of message and the identifier for message
correlation. This approach allows exchanging messages while still enabling the use of
arbitrary payloads.

https://mosquitto.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
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Figure 3. Exemplary request–response message pattern in the DT platform. Services subscribe to
their respective request-topics and thereby receive messages published by the service orchestrator,
e.g., to start operating. When a service instance has completed a run, it publishes to its response topic,
which is monitored by the service orchestrator via subscription. Note: The function of the service
orchestrator is explained in detail in Section 3.5. Character # denotes a multi-level wildcard, hence
receives all messages of a topic that begins with the pattern before the wildcard character, and ” ”
contains message payloads.

3.2. Physical Entity

The key for realizing a DT is to enable a tight integration of physical and virtual space.
To that end, a lot of information has to be exchanged with the physical entity. Data have
to be recorded by sensors, and control signals have to be fed back to the actuators in the
energy system. However, most DT applications do not mention the connection of the DT
environment to the control system [16]. Hence, this critical implementation barrier needs
to be dissolved.

In a typical DT deployment scenario for IES, it can be assumed that there is already
a pre-existing system for at least basic interfacing of the physical entity in place. Various
measurement values are typically connected via a programmable logic controller (PLC) to
a state-of-the-art SCADA system. Our DT platform builds upon on such SCADA systems;
hence, we locate them inside the physical entity dimension (see Figure 2). Such SCADA
systems (or merely PLCs) can then be interfaced to the DT via standard industrial IoT
protocols. In case of our DT platform, this is MQTT.

This tight integration would also allow realizing certain control tasks in the DT. The
advantage is obvious: on the DT, the controller has access to more detailed models and more
computation power. However, other factors that need to be taken into account are hard
real-time and dependability requirements, which cannot be guaranteed for communication
via the used network transmission protocols. For this reason, high-speed control tasks and
plant safety measures should not be executed within the DT, but they always run on the
PLC directly.

For our DT implementation, XAMControl (https://en.evon-automation.com/, ac-
cessed on 10 June 2022 ) was used as the SCADA platform, which allows to define, visualize,
program and configure PLCs. In order to integrate this system into the proposed architec-
ture, a prototype version of the server software enables publishing and receiving messages
to and from the MQTT broker. These messages can then be processed by any interested
application by subscribing to the relevant MQTT topic.

https://en.evon-automation.com/
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3.3. Virtual Entity

One of the key features of a DT is that its virtual entity represents the state of the
physical entity at all times. This requires that models or the model parameters are adapted
to changes in the physical entity. An adaption of the models in the virtual entity will, for
example, be required when degradation changes the process performance, when parts have
been replaced or refurbished in a maintenance intervention, or when new components
were installed for modernization of the IES. The job of the DT is to keep track of these
changes and manage the different versions of each model/parameter set.

In our platform, this requirement is fulfilled by the model management in the virtual
entity. It essentially runs a database of all available model instances and stores information
on each model in a local knowledge graph. Information includes (amongst other factors)
the URI (Uniform Resource Identifier), scope, inputs, outputs, validity ranges, accuracy
and time of validity. The model management runs an MQTT endpoint over which models
can be queried and afterwards processed. The models can thus be provided for specific
services.

Our DT platform allows for model integration developed in different environments.
Thus, also different types of models, for example, physical, data-driven or hybrid models,
with varying fidelity, can be applied for designated tasks within the DT. For details on
modeling enabling technologies for DTs, see, for example [98].

Accessing the metadata of model instances and storing them within an ontology
requires standardized interfaces. Functional Mock-up Interfaces (FMIs) (https://fmi-
standard.org/, accessed on 10 June 2022) are an established standard to create relevant
model instances and their input and output parameters (connections). This allows storing
a model instance as a single file via corresponding Functional Mock-up Units (FMUs). By
including a metadata file, which contains descriptions of the connection types, these two
files provides all necessary information to describe the virtual entity.

Figure 4 illustrates how services can access virtual entity models within the DT
platform. The platform contains a model management service written in Python (https:
//www.python.org/, accessed on 10 June 2022), which processes these files and provides
access to the FMU model via the File Transfer Protocol (FTP). In order to select a specific
model, any service connected to the MQTT broker is able to query all provided models of
the model management service via an MQTT request and subsequently can access them
via FTP. The reason for using FTP in contrast to provide the FMU file via MQTT lies within
the nature of MQTT, which is not designed for exchanging binary files, hence the choice of
using the much more suitable File Transfer Protocol.

3.4. Data Dimension

Generally, the data dimension holds information about five data categories according
to Tao et al. [72,80] and as illustrated in Figure 2. In addition to sensor data from the
physical entity (Dp), model and simulation data from the virtual entity (Dv), and data
from the Service dimension (Ds), it contains semantic data about the system and all the
relationships within the DT, i.e., domain knowledge (Dk), and fused data (Df) of Dp, Dv,
Ds and Dk.

However, the data dimension must not only store these data but also provide semantics
to it. Therefore, in our DT platform, we use a so-called knowledge graph, which is a
knowledge-based system, consisting of an ontology and a built-in reasoner that is capable
of acquiring and integrating external information sources [99]. This knowledge graph
consists of several ontologies that hold information about plant equipment, topology,
instrumentation, etc. The runtime data from the IES, which is usually stored in relational
databases, is integrated into the knowledge graph via ontology-based data access (OBDA).
By defining mappings between the relational database structure and the ontologies, the
implicit knowledge about the data models is made explicit. Thus, the knowledge graph
acts as a semantic abstraction layer [100] where data can stay in the original local database,
e.g., within an SQL database of the SCADA system. Data are only loaded when accessed,

https://fmi-standard.org/
https://fmi-standard.org/
https://www.python.org/
https://www.python.org/
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which also enhances performance [101]. For more detailed information about the data
access, we refer to our previous work in references [22,63].

Figure 4. An exemplary service (simulation service from Figure 3) queries for a specific model
instance within the virtual entity of the DT platform. The knowledge graph provides its access point
via the FMU’s file URL, and the service can fetch the FMU file via the FTP get command.

As a crucial methodical foundation, domain-specific ontologies have to be applied for
IES. However, knowledge engineers do not need to build ontologies from scratch, but they
can use and integrate existing standards that were developed in collaborative efforts among
industry and academia and be conveniently created via open source tools (e.g., [102]). For
our DT platform for IES, relevant ontologies include PETIont (Plant, Equipment, Topology
and Instrumentation Ontology) [103], Sensor, Observation, Sample, and Actuator (SOSA)
ontology [104], PQOnt (Electrical Power Quality Ontology) [105], OntoPowSys (Power Sys-
tem Ontology) [106], OpenEnergy [107], OntoCAPE (Ontology for Computer-aided Process
Engineering) [108], and OntoEIP (Ontology for Eco-Industrial Park) [109]. Furthermore, for
including information on services and virtual entity models in the knowledge graph, exist-
ing semantic web ontologies such as OWL-S (Web Ontology Language for Service) [110]
and OWL-Time (Web Ontology Language of Temporal Concepts) [111], extended with
Quality of Service (QoS), are considered as foundation. Domain ontologies, e.g., FMUont
(Functional Mock-up Ontology) [112] and ML-Schema [113] for simulation services, are
built on top, inheriting all classes and properties of the base service ontology [63]. The cre-
ation of a single generic ontology for IES is beyond the scope of this contribution. However,
it has already been successfully demonstrated, e.g., by Ocker et al. [114], that the highly
reusable terminological components of such ontologies can be (semi-)automatically merged
to fit the requirements of specific applications.

For the practical use of the ontology, hence instancing the concepts of it and creating
the relations between them, a triplestore provides the means to store the ontology similar
to a database. A semantic triple consists of three entities, namely subject, predicate and
object, and represents a relation between them. This way, knowledge can be structured in
a machine-readable and standardized way. For the implementation, the RDF framework
RDF4J (https://rdf4j.org/, accessed on 10 June 2022) is used, which supports a variety

https://rdf4j.org/
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of established ontology file formats and provides a SPARQL endpoint to access data. For
ontology-based data access, Ontop (https://github.com/ontop/ontop, accessed on 10 June
2022) enables connecting a SQL database into the knowledge graph, which means that data
remain in the data source without being moved. A wrapper service, which translates MQTT
requests to SPARQL queries (database connector in Figure 2), enables the integration into
the DT platform. Listing 1 shows how to formulate a SPARQL query to receive the values
from a sensor (FBR-TE-1A1) between two timestamps. Such a query can be automatically
submitted, e.g., from the deviation detection service mentioned in Figure 3.

For connecting other databases to the DT platform, one requirement is that it sup-
ports MQTT, which is, for instance, fulfilled by InfluxDB (https://www.influxdata.com/,
accessed on 10 June 2022).

Listing 1. Exemplary SPARQL query, requesting measurement values from a sensor (FBR-TE-1A1)
between two timestamps from the DT’s knowledge graph.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
2 PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
3 PREFIX sosa: <http ://www.w3.org/ns/sosa/>
4 PREFIX : <http :// tuwien.ac.at/dt>
5

6 SELECT * WHERE {
7 :FBR -TE -1A1 sosa:madeObservation ?obs.
8

9 ?obs sosa:resultTime ?time;
10 sosa:hasSimpleResult ?result.
11 FILTER( ?time > "2022 -04 -02 T08 :00:00"^^xsd:dateTime &&
12 ?time < "2022 -04 -02 T09 :00:00"^^xsd:dateTime)
13 }ORDER BY (?time)

3.5. Service Dimension

The service dimension in our DT platform is realized according to the microservice
framework by Steindl et al. [22], which is aligned with the GDTA and the RAMI 4.0 IT
layers. A key advantage of this framework is that small services can be realized and
developed independently. To compose and deploy services, choreography or orchestration
can be used [22]. Compared to the sometimes advantageous decentralized choreography
approach, our platform builds on service orchestration, leading to an integrated service
logic and a potentially less laborious development [115]. To realize and manage complex
processes and computations, multiple services can be linked in workflows. Workflows can
be defined in a graphical language, such as BPMN (Business Process Model and Notation)
and executed via a workflow engine, which is located in the Service Orchestration (see
Figure 2). For the inter-service communication, again, the central MQTT message broker
is used. Once deployed, the services can be containerized for the sake of reliability. Each
service holds its relevant data in its own local database or triplestore and can add relevant
information to the shared knowledge graph in the data dimension via a federated SPARQL
query engine. For details, we refer to the work of Steindl et al. [22] and the corresponding
source code [116].

The services within our service dimension are grouped in accordance with the GDTA [63].
We consider different forms of control, prediction, diagnostic, monitoring and simulation
services to be implemented in our platform as well as potential non-categorized services
relevant for DTs of IES. Services that require models can fetch the up-to-date model in-
stances from the virtual entity via the MQTT message broker. Additionally, we consider the
human–machine interface (HMI) as an important service in this dimension, since humans
have to be informed about the current state of the physical entity as well as the DT itself to
interact with it. This is possible via the platform’s workflow engine. Different HMIs for the
sole purpose of physical entity monitoring located in the SCADA system are also viable.

As indicated by Figure 3, the DT platform uses a BPMN workflow engine as a service
orchestrator, namely Zeebe (https://github.com/camunda-cloud/zeebe, accessed on 10
June 2022). It allows loading BPMN files and enriching them with metadata necessary for

https://github.com/ontop/ontop
https://www.influxdata.com/
https://github.com/camunda-cloud/zeebe
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the connection to MQTT. In particular, these enriched BPMN files cover MQTT request
and response topics. Figure 5 illustrates a simple exemplary workflow, which incorporates
application category A2, respectively, deviation detection, of Section 2.2. This workflow is
either triggered by a timer, i.e., in a predefined interval, or manually by the request of a
user or another service. The activities in this workflow (“Simulation (virtual entity)” and
“Deviation detection”) describe the services which the workflow engine will call on their
corresponding MQTT request topic, as seen in Figure 3. In case of the “Deviation detected”
activity, this send activity will trigger another workflow, which handles the classification
of the deviation for further processing, e.g., to detect possible faults. The intermediate
message events (“Simulation results received” and “Deviation detection results”) indicate
that the workflow has to wait at these events until the services successfully complete their
processing and return a result on the respective MQTT response topic. Other application
categories can be modeled and integrated in a similar way.

Figure 5. BPMN representation of an exemplary workflow for the application deviation detection.
Services communicate via their corresponding MQTT request and response topics, as illustrated in
Figure 3. The simulation service can query and fetch virtual entity models via information from the
data dimension (see Figure 4).

The proposed architecture of the service dimension aims to be very flexible, which
includes allowing the deployment on various machines. For this, the containerization
framework Docker (https://www.docker.com/, accessed on 10 June 2022) allows running
services in so-called containers, which include all necessary libraries the services require.
Therefore, no additional software besides Docker has to be installed on the host machine.
However, as the DT platform already covers multiple services, it would be cumbersome
to start every single container with the correct parameterization manually. In order to
automate this process, Docker Compose (https://docs.docker.com/compose/, accessed
on 10 June 2022) enables defining a single file in which multiple containers and their
configuration are specified. This allows starting the DT platform based on a single file.

4. Discussion

In the following, we discuss and evaluate our proposed DT platform by aligning it
with the requirements identified in Section 2, addressing the benefits of the platform and
discussing the potential of service engineering.

4.1. Alignment with the Requirements on Industrial Energy Systems

We developed the DT platform with a special focus on IES that has some unique
features, resulting in specialized requirements, as emphasized in Section 2. In Table 5, we
summarize how these requirements are met by our DT platform.

Some important requirements for DTs of IES are fulfilled via adequate use of the
physical entity in our platform, such as R1 and R3, which are achieved by the efficient use
of typical infrastructure such as SCADA/PLC systems and interconnection with the DT
via a reliable message broker. Real-time observation (R1) is realized via PLCs connected
to the SCADA system, which itself can publish values via the message broker. Actuation
of the physical components (R3) can also be triggered by services within the DT via the
message broker.

https://www.docker.com/
https://docs.docker.com/compose/
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The connection within the DT is a crucial part of the whole platform. Using a message
broker with event-based messaging supports the fulfillment of several requirements (R4,
R5, R6, R7, R8, and R14).

The microservice architectural style of the platform supports the modularity (R4),
scalability and maintainability (R6). Models can be defined via FMI and all services are
containerized, facilitating maintainability and transferability. Complex processes can be
realized via multiple interlinked DT services assembled to workflows. Defining, maintain-
ing and adapting workflows within the DT is conveniently achieved via BPMN. This was
highlighted in Section 3.5 via an exemplary workflow within the DT platform.

Table 5. Alignment of the identified requirements (see Table 3) supported by implementation aspects
of the proposed DT platform. The requirements are listed along with their given IDs, an abbreviation
of their description in Table 3, and structured via localization within the five dimensions (5D-DT) of
the DT platform for IES.

ID Requirement
(Abbreviation) 5D-DT DT Platform for IES

R1 Real-time observation Physical entity SCADA/PLC system
R2 Reaction on physical

alterations
Service dimension Various orchestrated services +

HMI
R3 Physical entity actuation Physical entity SCADA/PLC system
R4 Modularity Connection

dimension
Microservice architecture +
message broker integration

R5 Decision capability Service dimension Service orchestration
R6 Scalability Service dimension Microservice architecture +

containerization
R7 Optimization capability Service dimension Optimization services
R8 User interaction Service dimension HMI + workflow engine
R9 Robust modelling Virtual entity Model management
R10 Prediction capability Virtual entity Simulation and

Prediction services
R11 Model versatility Virtual entity Model management +

Service encapsulation
R12 Standardized foundation Data dimension Alignment with RAMI 4.0

based on existing ontologies
R13 Heterogeneous

data processing
Data dimension Federated knowledge graph

R14 Semantic
interoperability

Data dimension Federated knowledge graph +
message broker

R15 Secure operation Physical entity SCADA/PLC system

The DT is able to optimize operation of the physical entity (R7) via specific target
applications (see also Table 1) that can be conveniently incorporated in the DT platform via
workflows and by the use of specialized (micro)services. Optimized operation schedules
are executed on the physical entity via control services.

User interaction (R8) is primarily localized within the service dimension, but different
interfacing possibilities are feasible. For the sole observation of physical entity state vari-
ables, existing interfaces within legacy SCADA systems and also the use of such systems
in a greenfield approach are encouraged. Observation of the DT and access to it is conve-
niently realized via the BPMN workflow engine as a service orchestrator. An HMI is already
covered in typical software packages, such as for example Zeebe, in our implementation.
Additional specific HMIs, e.g., for virtual entity services, could be realized accordingly. The
DT is thus able to monitor, inform and issue warnings on relevant physical alterations (R2).
Decision frameworks can be integrated via workflows and trigger corresponding actions
on the virtual entity (R5) via the message broker.

Our virtual entity implementation accounts for robust and adaptive modeling (R9),
extensive simulation and prediction capabilities (R10) and model versatility (R11). These
properties are enabled by providing standardized interfaces and model management as
presented in Section 3.3 and Figure 4 as well as the possibility to host models developed in
different environments and varying fidelity.
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Our implementation of the data dimension (see Section 3.4) with a federated knowl-
edge graph facilitates heterogeneous data processing (R13) and provides semantic inter-
operability (R14). It holds information about plant equipment, topology, instrumentation,
etc. in a machine-readable and standardized format and integrates runtime data via OBDA.
The implementation with the RDF framework provides means to semantically access data
via SPARQL endpoints. A wrapper service, which translates MQTT requests to SPARQL
queries, enables information exchange within the DT. Standardization technologies and
metadata (R12) are applied throughout our DT platform, e.g., by the use of established
protocols such as MQTT and standards such as FMI for virtual model description. However,
these requirements are especially crucial in the data dimension. Therein, domain-specific
standardized ontologies are a crucial methodical foundation, fulfilling this requirement.
Existing IES ontologies, as introduced in Section 3.4, can be (semi-)automatically merged
to fit the demands of specific DT services, exploiting their highly reusable terminological
components. AAS or ISO frameworks, as introduced in Section 2.5.2, can be conveniently
incorporated in the data dimension of the platform to ensure conformance in case these are
established as recognized standards. The knowledge graph in the data dimension of the
DT platform provides a single access point to acquire and integrate external information
sources, e.g., metadata, further aiding the scalability of the DT (R6). Furthermore, the whole
DT platform builds on the GDTA [63] and RAMI 4.0, hence aiding the re-use of existing
frameworks and technologies.

Security requirements (R15) are only inherently covered in our DT platform. We argue
that cyber-security mechanisms should be contained in the applied fundamental technolo-
gies and further investigated in the pertinent literature. As outlined in Section 3.2, plant
safety measures and critical high-performance control loops should be implemented on the
PLC/SCADA system. However, specialized services could be integrated to automatically
reconfigure and compile these control mechanisms on the PLC if, for example, the plant
topology changes.

Even if the message broker is designed to be the only means of communication
between the parts of the DT, there might be situations where direct communication is a
more suitable option. For example, if a specific service within the DT needs to access a
large data set in one of the relational databases, MQTT’s maximum message size might be
a limiting factor. In such a case, the service could request information about the location
of the data set from the knowledge graph and then send a query directly to the database
endpoint. The access to FMU files within the virtual entity via FTP or SFTP, as presented in
Section 3.3, is another example.

Furthermore, service management is currently completed by hand and still has to
be established if a DT should feature automated service deployment. Therefore, several
(micro)services, e.g., for service discovery and access, still have to be implemented.

4.2. Digital Twin Platform Benefits

Our contribution aims to overcome the technical implementation barriers relevant for
energy systems summarized in Table 2 and to enable different value-creating applications
(see Table 1) in the same platform. Via the simple exemplary workflow for a deviation
detection application, given in Figure 5, and considering typical use cases, it is possible
to assess the attributes of our platform that aim to maximize the benefits of individual
applications.

We have to stress here that the final benefits such as energy demand reduction, revenue
increase and cost reduction that are expected from DT (see Section 2.2) are only provided
via the respective applications integrated as services. However, we consider the detailed
discussion of individual services to be out of scope of this contribution and refer to special-
ized literature instead. Nonetheless, via this evaluation, the platform’s qualitative benefits
are clearly evident.

Instead of having one monolithic application that takes care of all aspects of fault
detection starting from the data cleansing, deviation detection, and fault classification to
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decision making and also scheduling maintenance actions, the process can be split into
microservices that are coordinated by the service orchestrator in the DT platform. For the
deviation detection workflow itself, nothing changes, but it enables it to integrate it more
tightly with other DT services. For example, if a deviation is detected by the deviation
detection service (see Figure 5), a message can trigger a workflow for fault classification in
order to check if the deviation is caused by a fault or due to a normal drift in the system’s
behavior. In case of the latter, this information can then be used to trigger a model adaption
workflow. For a more in-depth discussion of a semantic microservice framework, we refer
to Steindl et al. [22], where automatic sensor data evaluation serves as a proof of concept.

To react to new data points within the IES, a dedicated topic for each sensor value is
set up on the message broker. Any service that needs to react to new data points subscribes
to the respective topics. Whenever a new data point is available, the SCADA system
publishes a message on the corresponding topic, and the message broker will deliver the
new data points to all services that require this data point. Through the publish/subscribe
function of the message broker, neither the SCADA system nor the services need to have
any information about each other aside from the name of the topic where data points are
transferred.

The ability of the DT to adapt to changes of the plant is enabled by the separation of
models and the services that use these models. If a continuous drift in the system’s behavior
was detected via fault classification, models within the virtual entity can be automatically
replaced or updated, e.g., via data-driven modeling and validation services, to fit the
altered behavior. When a simulation service starts, it fetches the newest validated model
instance from the virtual entity.

Figure 6 illustrates how the presented DT platform leverages the integration of digital
applications to offer associated benefits. In addition to the easy integration, operation
and maintainability of applications, another important aspect is that synergies between
these individual solutions can be conveniently exploited. Naturally, applications such as
condition monitoring and deviation detection can provide basic unidirectional information
for subsequent fault classification and analysis. However, also, back-feeding information
between applications can provide additional benefits. For example, a schedule derived
from operational optimization can be used for estimations within predictive maintenance
applications. Conversely, the latter can determine operational constraints for operational
optimization services. This is not possible without sufficient information management.
The architectural design of our platform, i.e., the division into the five DT dimensions
with the message broker as the central communication hub and a microservice framework
for managing inter-service workflows, facilitates interconnection between different ap-
plications and the access of distributed data sources. As presented in Section 2.2, these
digital applications integrated in a DT platform provide benefits such as system stability,
environmental protection, energy demand reduction, revenue increase or cost reduction.

4.3. The Potential of Service Engineering

While the energy industry strives to implement DTs as soon as possible to leverage
its potential benefits, one of the biggest current obstacles remains to be that in-depth
knowledge from various domains is required. Within the energy sector, most technical
contributors have a background in electrical, chemical, mechanical, thermal or operations
engineering, due to the fact that IES to date have been very complex systems requiring
profound expertise in these fields to manage and develop. Industry 4.0, and with it concepts
such as the DT, set a paradigm shift in motion, introducing more and more novel technology
from information and communications technology to this sector. While energy domain
experts struggle to understand modern IoT methods and what the implications for their
work are, computer scientists typically do not fully comprehend the intricacies of IES and
the challenges of operating them. The DT platform provides a common understanding of
operational DTs, and it also defines clear interfaces to separate the work of the engineers
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and the computer scientists. In this way, everyone can focus on their strengths while still
working efficiently on the big picture: the DT.

Condition monitoring

Anomaly/ deviation detection

Fault classification and analysis

Predictive maintenance

Forecasting

Operational optimization
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Figure 6. Illustration of DT platform benefits. By fulfilling IES-related requirements, hence realizing
attributes such as scalability, robustness, modularity and semantic interoperability, the integration,
operation and maintainability of applications as given in Table 1 are facilitated. These applications
are leveraged, individually and by using synergies between them, to obtain benefits for the IES.

The engineering of complex IES-related models and services will still rely on expertise
and profound experience with the respective assets in the years to come. However, these
services can be encapsulated in standardized form in the DT platform. Deployment is
facilitated by providing an appropriate IT infrastructure, making information from both
physical and virtual entities easily accessible. Thus, on one hand, IES experts who develop
new services and models have clear interfaces within the DT platform. Therefore, they can
concentrate on application-related domain problems instead of deployment and connection
within the DT.

On the other hand, computer scientists can focus on the infrastructure to provide
an open, scalable, reliable, and secure DT platform solution by converging the operation
technology and IT world. In this context, interoperability is key for integrating third-party
systems and providing openness to enable new business opportunities. Therefore, interop-
erability must be established on a technical, syntactical, semantical, and operational level.

We presume that on the technical side, interdisciplinary work in DT development
between computer scientists and energy system experts will have some distinct focus points.
We see such a major overlap in the area of knowledge representation, i.e., the development
of ontologies or knowledge graphs for IES. Methodologies such as METHONTOLOGY [117]
structure and guide the work to build ontologies, but they also rely on the knowledge of
domain experts.

5. Conclusions

In this paper, we identified special requirements on digital twins (DT) in industrial
energy systems (IES) that set IES apart from other domains, where DTs are already estab-
lished. On this foundation, we developed a DT platform that is tailored to the requirements
of IES. Our DT platform is based on the five-dimensional DT (5D-DT) concept and provides
solutions to various implementation issues that are not addressed in the 5D-DT concept.
It also complies with the Generic Digital Twin Architecture (GDTA), hence facilitating
alignment with existing technology and standardization.

The DT platform should prove a practical tool for interdisciplinary teams that aim
to implement a DT for IES. The platform is designed to provide clear interfaces that
allow domain experts to develop their services without in-depth knowledge about IT
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implementation aspects. Through the efficient service encapsulation of the proposed DT
platform, energy domain experts can focus their work on engineering services, virtual
entity models and ultimately the optimal operation of IES. At the same time, computer
scientists can leverage their expertise on the scalability, reliability and security of the DT
platform and on establishing interoperability on a technical, syntactical, semantical, and
operational level.

The main benefit of the DT platform for the operation of IES will be that individual
digitalization solutions such as predictive maintenance, deviation detection, fault classi-
fication, and operational optimization, which are typically developed and deployed as
standalone solutions today, can be more tightly integrated, and synergies can be exploited.
The DT platform provides the basis for the standardized implementation of complex digital
applications that make the operation of IES more efficient and thus get us one step closer to
the paradigm of integrated, decarbonized energy systems with sustainable production.
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