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Abstract: A prediction model based on artificial neural networks is adapted to forecast the acoustic
performance of airborne sound insulation of various lightweight wooden façade walls. A total of
100 insulation curves were used to develop the prediction model. The data are laboratory measure-
ments of façade walls in one-third-octave bands (50 Hz–5 kHz). For each façade wall, geometric and
physical information (material type, dimensions, thicknesses, densities, and more) are used as input
parameters. The model shows a satisfactory predictive capability for airborne sound reduction. A
higher accuracy is obtained at middle frequencies (250 Hz–1 kHz), while lower and higher frequency
ranges often show higher deviations. The weighted airborne sound reduction index (Rw) of façades
can be estimated with a maximum difference of 3 dB. Sometimes, the model shows high variations
within fundamental and critical frequencies that influence the predictive precision. A sensitivity
analysis is implemented to investigate the significance of parameters in insulation estimations. The
material density (i.e., cross-laminated timber panel, gypsum board), thickness of the insulation
materials, thickness and spacing between interior studs and the total density of façades are factors of
significant weight on predictions. The results also emphasize the importance of façade thickness and
the total density of the clustered exterior layers.

Keywords: airborne sound insulation; façade; prediction model; artificial neural networks

1. Introduction

Timber has been widely and continuously used in construction engineering as it is
available in nature and easy to handle [1]. In addition, it has a significantly lower carbon
footprint than concrete and provides good thermal performance [2,3]. Wooden buildings
have become widely popular in Scandinavia and Australia due to their advantages [4,5].
Moreover, in North America, wood-frame structure systems were the most common in
the building construction sector in the 20th century [6]. A few years ago, although cross-
laminated timber (CLT) was an innovative product for the North American construction
market, the serviceability of CLT as a sustainable material has received much attention
from researchers and the wood industry [7].

Despite lightweight wooden structures reducing construction time and cost, one
disadvantage in certain types of these constructions is that the quality of subjective sound
isolation is considered lower than in concrete or heavy constructions, with the same
isolation data [8]. This applies to different lightweight components, such as floors, roofs,
internal walls, and façades.

Façade sound insulation is related to the outside noise insulation that is used to
control indoor noise. Acoustically inappropriate design of façade walls may produce
an undesirable impact on indoor acoustic comfort in buildings. The need to control the
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acoustic environment in building constructions is highlighted for new and old renovated
buildings [9]. Moreover, enhancing indoor acoustic comfort for building occupants is a
fundamental issue in development, research, and the construction sector [10].

However, certain façades are designed mostly for purposes such as thermal insulation
and fire safety, but acoustic aspects are often not considered or misunderstood [11]. The
characterization of acoustic performance of façade structures is derived from standardized
measurements, such as ISO and ASTM [12–17], but those measurements are demanding
for time and cost [18]. In addition, obtained results are specific to certain specimens and
cannot be generalized to different structures.

To maintain sufficient indoor acoustic quality, it is essential to use appropriate predic-
tion tools to forecast the acoustic behavior of structural elements to improve the quality
of the indoor climate. Some estimation approaches have been developed to forecast the
sound transmission through multiple structures using theoretical approaches [19–22], nu-
merical tools [23,24], and machine-learning applications [25,26]. However, some tools have
revealed significant deviations [24,27–30]. Certain construction details need to be included
during the modeling to improve their accuracy [23,30–32].

A direct prediction tool is based on theory-based analytical expressions, including
stiffness, mass, and damping [17]. This is probably reasonable for a single-leaf element, but
it is more complicated for lightweight multi-layered structures. Accurate forecasting of
sound isolation performance of multilayer elements is still a challenging task [17]. Specific
details, i.e., structural connections between elements, can scarcely be involved in prediction
tools, particularly in analytical approaches [33]. In addition, the diversity in building
materials makes forecasting even harder. Moreover, the standardized method, which is
indicated in ISO 12354 Part 1 [34], is formulated and extracted using insulation data of heavy
monolithic elements [31]. This is currently not applicable for lightweight multi-layered
structures [31].

Machine-learning algorithms have paved the way for technological achievements in
various fields that were challenging a few years ago, such as image recognition, speech
recognition, language translation, and building acoustics [25,35–37]. It is the science that
allows algorithms to learn and predict based on sample data [38]. Big and diverse data
are essential to enhance the predictive power of these models, especially artificial neural
networks (ANN). The latter are widely used in different acoustic applications, for example,
audio engineering, vehicle industry, acoustic material, and environmental acoustics [39–42].

In building acoustics, a convolutional neural networks model was used to classify
inter-floor noise by recording different noise sources for 24 h in a household [43]. Moreover,
a developed ANN model was applied on sandwich partition panels to forecast their sound
insulation, weighted airborne sound reduction indices Rw and sound transmission class
STC values [26]. The results were reasonable, and the model was able to predict Rw
and STC within ±3 dB differences. A similar study was conducted using measurements
related to wooden windows to predict Rw using technical parameters [32]. However, the
estimations in the two previous studies were only dealing with single-number quantities
(SNQ) without estimation of full-spectrum insulation curves.

Taking the estimations of ANN a step further, detailed predictions of airborne insu-
lation in 1/3-octave bands were acquired for masonry walls [25]. The data consisted of
laboratory measurements performed on 34 brick walls. Despite the estimated values agreed
with measured ones, the study focused on one monolithic structure. To bridge this gap,
previous research published by the authors [44] used ANN to estimate the sound insula-
tion behavior of different lightweight wooden floors in frequency bands (50 Hz–5 kHz).
67 insulation measurements were used to develop the model by taking only two variables
(material thickness and their installation order). The model demonstrated reasonable re-
sults regarding SNQ with a maximum difference of 1 dB in estimation of Rw. However, the
accuracy decreased with deviations up to 9 dB in prediction of Ln, w (normalized weighted
impact sound pressure level). This study had the sample size limitation, but showed good
potential for predicting sound insulation data.
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A complementary study was conducted [45] using 252 standardized laboratory mea-
surements performed on lightweight wooden floors with construction parameters, such as
material type, material thickness and density, area of the floor structure, etc. When more
data are included, a better accuracy in predicting Ln,w is achieved, within 5 dB variations.
However, the variance in forecasting of Rw increases up to 2 dB, but still represents reason-
able results. The study then conducted an attribution analysis to find out the important
parameters in forecasting sound insulation curves. However, the literature review at the
time of this study did not find any study that attempted to develop an ANN model to
estimate sound insulation curves of lightweight wooden façades.

The scope of this paper is to develop an ANN model to forecast airborne insulation
curves of façade walls. The isolation data comprises laboratory measurements that are
implemented on various lightweight wooden façades. This study considers specific struc-
tures for external building partitions. The measurements used are relating to complete
wall systems without considering the presence of doors, windows, and small openings in
the façades. Finally, a sensitivity analysis is conducted to explore the influence and the
significance of parameters on the prediction of airborne sound insulation.

2. Materials and Methods
2.1. Definition of Artificial Neural Networks Approach

The ANN approach is a mathematical model which is inspired by human neural
system to simulate its biological behavior [46]. The ANN approach is efficient with complex
tasks and uses simple operations, such as addition, division, etc. [47,48]. A simple ANN
model comprises of input layer, hidden, and output layer(s). In each layer, computation
units or artificial neurons are existed to connect adjacent layers by weights [49]. ANN
model propagates inputs values from first layer (input layer) to output layer by using
weights as interconnections [50]. When propagating input values, also known as training
phase, weight and bias values (features of ANN) are evaluated and tuned to reduce errors
and achieve the highest possible accuracy. The output of each artificial neuron can be
determined by

y = f (∑(wixi + b)), (1)

where y, wi, xi, and b are output, weight, input, and bias values, respectively. The calculated
output of each neuron is called activation value, which is used as an input to the chosen
activation function. The most common activation functions that are with ANN are tangent,
sigmoid, and LeakyReLU [51].

2.2. Sensitivity Analysis

ANN models are usually considered to be black-box prediction tools, which makes
understanding their mechanism quite cumbersome [52]. To understand the features on
which the model depends, quantifying the attribution of forecasting power to input features
must be characterized. This issue was formerly considered in different studies [53–55].

The attribution techniques are challenging to be analyzed empirically. Additionally,
setting apart errors that are made by misbehavior of an attribution method or by misbe-
havior of a model is a challenging task. This gap could be addressed using an axiomatic
approach, known as integrated gradients (IG) [56].

The integrated gradients method is given as IGi(x). Supposing a function F : Rn → [0, 1]
represents a network model. Using x = (x1, . . . , xn) ∈ Rn as an input and z ∈ Rn as
a baseline relative to x. Then a vector AF(x, z) = (a1, . . . , an) ∈ Rn is the attribution of
the input x, where ai is the attribution of xi of function F(x). To extract the IG values,
the gradients across the straight path between the input x and the baseline z should be
integrated. Therefore, IG for ith dimension is donated by [56],

IGi(x) = (xi − zi) ∗
∫ 1

α=0

∂F(z + α ∗ (x− z))
∂xi

dα. (2)
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The integrated gradients method highlights the importance of each input parameter by
giving a score to each input while approximating the integral of gradients. Thus, can lead
to dimensionless diagram values. This it can be compensated and overcome by respecting
units of the input values. In this study, all the input numerical values respect the SI units.
This way allows the interpretation of the output diagrams of the sensitivity analysis by
giving higher output values to the most significant parameters.

2.3. Acoustic Measurements

The developed database contains 100 standardized laboratory measurements received
from Lund University in Sweden and The National Research Council (NRC-CNRC) [57] in
Canada. The measured data consists of airborne insulation measurements of 100 various
façade walls in one-third-octave bands (50 Hz to 5 kHz). They were performed according
to ISO 10140-2 (2010) [12] and ASTM E90-09 (2016) [15].

To have a total agreement between insulation data, measurements that are performed
in compliance with ASTM standards have been converted to follow ISO 717-1 (2013) [58]
descriptor (the weighted airborne sound Rw). This conversion is essential to unify the
acoustic descriptors in the measurements.

Figure 1a,b illustrate the 100 insulation curves of façades and mean with standard
deviations, respectively. The database contains curves of airborne sound reduction index
R( f ) in frequency range from 50 Hz to 5 kHz. Hence, for every façade structure there are
technical parameters and full-spectrum insulation curve. Table 1 summarizes the division
of measurement numbers that are used to develop the network model.

(a) (b)

Figure 1. Standardized laboratory curves for airborne sound reduction index of façade walls.
(a) Airborne sound reduction index values. (b) Mean and standard variation of airborne sound
insulation curves.

Table 1. A description summary of measurement numbers used by the prediction model.

Measurements ANN Model

Measurement number 100 100

airborne training set validation set testing set

100 80 10 10

10 measurements of different façade walls are used to initiate the features of the ANN
model (described in Section 2.1), and another set of 10 curves were selected (randomly) to
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test the accuracy of the model (Figure A1 in the Appendix A). Measurement curves that
are selected for testing are part from the total number of measurements. They include
the average tendency of isolation curves and extreme values as well, at all frequencies, as
illustrated in test façades #4, #9 and #1 in Figure 1a.

In the database, each façade configuration is clustered in three parts: interior, main and
exterior parts, respecting the installation order of each façade component. The dominant
component or material is represented by the main part. Therefore, The interior and exterior
sections present components clustered and located alongside the main façade material
(Figure 2).

Figure 2. An explanation schematic presenting how façade components are clustered in the database
using an example of the test façade #6.

MySQL software [59] is used to organize the database using 10 variables of structural
parameters of each façade wall (Table 2). Those parameters present the input that are
used to train the network model. They are arranged considering type of each façade
component, their installation position, thickness and density of each layer, depth of studs
and spacing between them, area of a façade (S), volume of a receiving room (V), group
and total thickness and mass of a structure, resilient metal channel depth and spacing
between them. Values of airborne sound reduction index in one-third-octave bands are
used as outputs or targets of the ANN model. Despite the fundamental role of certain
elastic properties on the sound transmission, such as dynamic stiffeners and the modulus
of elasticity of each material, they are not taken into account in the input parameters due to
the lake of information in acoustic measurement reports.

Table 2. Structural variables used to organize the database and employed as inputs for the
network model.

Parameter Unit Class

− type of material — i.e., CLT panel, insulation materials, etc.
−Material installation order — first/second/. . .
−Material thickness mm —
− Group thickness mm interior, main and exterior parts
− Total thickness of a façade mm —
−Material density kg/m3 —
− Group density kg/m3 interior, main and exterior parts
− Total density of a façade kg/m3 —
− Façade area S m2 —
− Volume of the receiving room V m3 —
− Studs depth mm —
− Spacing between studs mm —
− Resilient channels depth mm —
− Spacing between Resilient channels mm —
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2.4. Configuration of the ANN Model

In this study, a multilayer perceptron class of ANN is used. The network comprises
two hidden layers, and each layer consists of 40 and 30 artificial neurons, respectively. Cross-
validation technique is employed to validate the network model and to prevent overfitting
issues [50,60]. As an activation function, LeakyReLU (Leaky Rectified Linear Unit) is chosen
for hidden layers. It is usually used to overcome the vanishing gradient issues. This problem
could face other activation functions, such as tan or sigmoid [61]. During the training phase,
Adam optimizer [62] is employed, which is one of several optimization algorithms used
to optimize neural networks [63]. It is based on the gradient descent method to minimize
errors that are made by a prediction model during the training phase [64].

Three subsets of the data are used by splitting the entire measurements called: training,
validation, and test set. 80% of the total number of measurements is used for training set,
while 10% for each validation and testing (Table 1). Data used for training is employed to
initiate network patterns or features, such as bias, weights, etc. However, the validation
data provides a way to optimize the model’s hyper-parameters, i.e., number of hidden
layers and neurons. The term “cost function” is an expression gives indication of the
predictive power of the model. Since the predictions are continuous values (insulation
curves), the root-mean-square error (RMSE) function can be used as a cost function,

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2, (3)

where n presents the number of observations (measurements) that are used in the train-
ing phase. Output (predicted) and input (measured) values are donated by ŷi and yi,
respectively. In this study, the developed model illustrates an overall prediction accuracy of
4.44 dB for all predicted and measured curves. However, for a better judgment of the results
and considering various frequency bands, each estimated insulation curve is analyzed
with comparison to measured one using the RMSE function considering values in each
one-third-octave band from 50 Hz to 5 kHz.

3. Results and Discussion
3.1. Comparison between Measurements and Predictions

The ANN model is trained and validated with 80 and 10 standardized laboratory
measurements, respectively. In addition, 10 measurements are employed for testing the
accuracy in prediction of airborne sound reduction curves. The acoustic behavior of each
wall (in dB) in 1/3-octave frequencies (50 Hz–5 kHz) is used as a dependent variable.

Predicted and measured airborne curves of test façade walls are shown in Figure 3. It
is significant that predicted and measured insulation curves are close, with some deviations
in certain cases. The deviations between predicted and measured curves increase in some
samples in low and/or high frequency bands. The smallest deviation is notable in façade #3
with a RMSE value of 2.19 dB, while the largest is 5.73 dB in façade #10 which has slightly
complex configuration.

At high frequencies (1.25–3 kHz), a significant gap is observed in the results. The
later frequency range usually includes the critical frequency of lightweight constructions.
This frequency is also called coincidence frequency, at which occurs a match between the
wavelength of the bending wave in the plate and incident acoustic wavelength which is
projected onto the plate [17]. A good coupling or matching means that the structure will
efficiently and easily radiate sound at and above this frequency [65].

In addition, similar variations are visible at frequencies lower than 200 Hz, e.g., façades
#1, #8 and #9. That can happen due to the effect of first eigenfrequencies or fundamental
resonances [17]. It is also observed that the trend of certain estimated curves becomes
smoother in bands close to low resonances and/or critical frequencies. This reveals that the
main difficulties in estimation of sound reduction values are appeared near those bands.
Similar problems with ANN models were also reported in other studies [25,45].
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Table 3 represents root-mean-square errors (RMSE) in the prediction of airborne sound
reduction curves. It also includes the calculated single-number quantities (SNQ), Rw and
RwPredicted, that corresponds to each curve. The highest error is up to 3 dB (façade #7), while
the model can predict the same weighted values for façade #3 and #6. In addition, the
calculated and predicted correlation terms C100–3150 and C50–5000, which are presented in
Table 3, show a maximum difference of 4 dB in façade #5.

Figure 3. Predicted and measured airborne sound reduction index curves of test façades.

Table 3. Predicted and measured weighted sound reduction indices of test façades.

Façade no. RMSE (dB) Rw (dB) C100–3150 C50–5000 RwPred (dB) CPred 100–3150 CPred 50–5000

1 3.42 39 −4 −3 40 −3 −3
2 5.48 46 −2 −2 48 −1 −1
3 2.19 53 −4 −6 53 −4 −6
4 2.92 50 −3 −4 51 −6 −6
5 5.62 52 −2 −2 51 −6 −6
6 4.48 55 −4 −4 55 −5 −5
7 5.59 48 −1 −1 51 −2 1
8 3.01 65 −5 −7 67 −4 −5
9 4.12 37 −4 −3 38 −1 −1

10 5.73 49 −3 −3 47 −2 −1

Figure 4 depicts normalized error deviation values (in interval [−1, 1]). The highest
error variations are located at high frequencies (1.25–5 kHz) (e.g., façade #2, #7 and #10). In
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low frequency bands (50–200 Hz), the model shows certain gaps between measured and
predicted curves, such as façade #5 and #9. Moreover, Figure 4 illustrates that errors appear
to be distributed alike at low and high frequencies, while a better accuracy can be achieved
in the middle frequencies (250 Hz–1 kHz).

Figure 4. Normalized error distributions of estimated airborne reduction curves for tested walls.

Figure 5 shows a probability density function of error distributions in the estimation
of isolation curves across all frequencies. It is noticeable that the highest error density is in
the (−5, 5) dB range. The graph shows a peak around 0 dB that reveals the goodness of the
model at predicting airborne sound insulation curves with convenient results.

Figure 5. Probability density function of errors in prediction of airborne reduction curves for test
façades in frequency range (50 Hz–5 kHz).

3.2. Sensitivity Analysis of Façade Parameters

A sensitivity analysis is used to reveal the influence of each structural parameter
on sound insulation forecast. This technique also provides information concerning the
contribution of input variables in each frequency band. Frequent building materials used
in façade constructional components are selected to explore their influence on the network
model (Figure 6). Additionally, physical parameters have been included in the attribution
analysis, such as façade tested area, receiving room volume, thickness and density of interior,
main, and exterior parts of façades (Figures 7 and 8). A reader can use those type of graphs
and figure out the relationship between input variables and prediction values depending on
the magnitude of y-axis as an indication to quantify the attribution of each input variable.
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Values close to zero indicate a weak effect size of structural parameters on the estimations. In
contrast, higher values suggest a strong relationship. Often, the integrated gradient analysis
gives signed values. This is sometimes difficult to explain, depending on the application
used [52]. Since the target of this analysis is to shed light the importance of input parameters,
using the absolute values may help to better interpret the results.

Figure 6. Attribution analysis of structural components to the prediction of airborne insulation curves.

Figure 7. Attributions analysis of additional variables to the prediction of airborne insulation curves.
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Figure 8. Feature attributions of interior, main and exterior parts façade structures to predictions of
airborne sound insulation.

Another classification is carried out on the database to explore the influence of the
thickness and the density of exterior, main and interior parts of façade structures on
prediction of airborne sound insulation curves.

Attributions Analysis to Airborne Sound Insulation

Figure 6 describes feature attributions of the chosen building materials to the prediction
of sound isolation. It shows the effect size of thickness and density of building materials and
the importance of their presence. At low frequencies, results highlight the density effects
of the CLT (cross-laminated timber) panel, OSB (oriented strand board) and lightweight
concrete panels on the predictions. However, the sensitivity effect of the latter increases
in middle and high frequencies, except for the OSB panel. In addition, the density of a
gypsum board has an important attribution, the higher the frequency bands. For gypsum
fiberboard, the effect of its density increases significantly compared to normal gypsum
board, especially in low frequency bands. The latter can be explained due to stiffer material
of gypsum fiberboard where the stiffness is dominant at low frequencies. Density of the
insulation materials shows a non-negligible attribution across all frequencies, but more
pronounced for wood fiber insulation at high frequencies.
A previous study [66] emphasizes the effectiveness of rockwool density in improving the
isolation below 1.25 kHz, which is in accordance with findings in Figure 6. Moreover, the
density of coating material (mineral plaster) is also essential at low and high frequencies.

Regarding the attribution of material thickness, it is noticeable that thickness of the
CLT panel is essential in all frequencies. The same observation was also found for the
thickness of insulation materials, air gap and coating material. However, the attribution of
some materials’ thickness tends to increase at middle and high frequency, such as OSB panel
and gypsum board, where the mass control region starts to dominate [17]. Furthermore,
the existence of certain building components (material effect) has a bigger effect than the
densities or thicknesses on airborne sound insulation, such as air gap and glass fiber.

Figure 7 shows the attributions of additional parameters to airborne sound estimations.
It reveals a small influence of surface area S of a façade structure in very low and high
frequencies. The importance of the structure area on prediction of airborne sound in low
frequency bands is also reported in [67]. In addition, the receiving room volume V is
vital at all frequencies, particularly at higher ranges, where energy of short sound waves
can be easily damped out due to relaxation phenomena. This is more evident at high
frequencies and/or in larger rooms, where the energy is exchanged between the sound
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wave and air particles; the particles extract energy from the propagating waves and release
it after a delay. This action leads to hysteretic energy losses, which contributes to sound
attenuation [17]. The latter agrees with [45] and contrasts with another study [67] that
showed the unimportance of V in the low frequency range. Contrary to the thickness of
exterior studs in a façade wall, the thickness of interior studs is a factor of higher weight
on prediction across all frequencies. Moreover, the spacing between interior studs affects
the predictions at low and middle frequencies, while the importance of spacing between
exterior studs is only revealed at high frequencies. This finding emphasizes the role of
mechanical connections, also known as sound bridges, in creating transmission paths and
thus reducing insulation improvements [17,68]. No remarkable attributions have been
revealed for the depth of the resilient channels, except at very high frequencies. However,
the spacing between the resilient channels has a noticeable effect in middle and high
frequency bands. The total thickness of a façade structure influences the predictions at
all frequencies, which is also concluded in [67]. Additionally, the total density affects the
prediction the most across all frequencies, as also reported in [45]. The attribution spectrum
of the total density of a façade reveals a peak near 150 Hz and a dip near 1.25 kHz, which
is probably due to effects of fundamental and critical frequencies, respectively. This is
likely due to coupling between resonant façade components that allows energy to transfer
between elements [65]. The latter happens when elements are physically connected, and
they have sufficiently close natural or critical frequencies. This amplifies the radiations
from components and affects the isolation negatively [17].

Plots in Figure 8 illustrate the contribution of the thickness and density of interior, main
and exterior parts of façade walls to prediction of insulation curves. It can be observed that
the density and thickness played an important role on the estimations across all frequencies.
The same trends for the attribution of façade total density (Figure 7) is noticed for the total
density of the exterior part. Moreover, the effects of fundamental and critical frequencies
are also remarkable on the attribution of the total density of interior and main parts, but
with lower scale.

Table 4 summarizes error distributions in the prediction of airborne insulation curves
considering three frequency ranges: low (50–200 Hz), middle (250 Hz–1 kHz) and high
(1.25–5 kHz) frequency. The (RMSE) function is employed to calculate the errors. The
best accuracy achieved is at middle frequencies, with an error of 3.52 dB. However, error
deviations increased at low and high frequencies with RMSE values of 4.67 and 4.99 dB,
respectively. Again, the higher deviations can be presumably described due to presence of
resonance and critical frequencies.

However, one may consider that the ANN model does not treat uncertainties. In other
words, the prediction model does not consider the uncertainties in acoustic measurements
which may affect the predictive accuracy. Since the measurements are collected from
different laboratories (Lund University and NRC-CNRC), this could present a source of un-
certainties. The latter is also reported by a part of a European project that conducted acoustic
measurements for lightweight partitions using 19 different European laboratories [69]. The
results presented by authors emphasize that the measured acoustic performance of struc-
tures could depict some differences from one laboratory to another depending on various
factors, such as installation details of the partitions, laboratory design, number of diffuses,
etc., [69]. In addition, the human factor can also affect the accuracy of acoustic measure-
ments, depending on the person performing the measurements and her/his knowledge
and experience [70]. Those factors are not taken into account while developing the ANN,
and they somehow have an influence on the predictive capability of the model.
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Table 4. Error distributions in the prediction of airborne sound reduction index R considering three
frequency regions.

Root-Mean-Square Errors in dB

Frequency Bands Low Middle High
50–200 Hz 250–1000 Hz 1250–5000 Hz

R (airborne sound) 4.67 3.52 4.99

4. Conclusions

This paper reveals the potential of a prediction model using an artificial neural net-
works approach to forecast airborne insulation curves based on 100 laboratory measure-
ments of different lightweight façades. The developed model shows reliable results with
root-mean-square error (RMSE) within 2.19–5.73 dB for estimating the sound insulation
curves of various façades in the frequency bands 50 Hz–5 kHz. When the comparison con-
siders the single-number quantity, the weighted sound reduction index Rw, the prediction
accuracy improved with errors of 0–3 dB.

In general, the model demonstrates better estimations at middle frequencies
(250 Hz–1 kHz). However, the forecast of R( f ) around fundamental and critical fre-
quencies in certain tested façades marked variations, underlying the resonance effects
on the insulation behavior of façades and inefficiency of the model to predict around those
frequency bands.

A sensitivity analysis is implemented to estimate the effects of constructional input pa-
rameters on estimation of airborne insulation curves. Density of CLT panels is a significant
variable in all frequency bands. Similar findings apply to the thickness of the insulation
materials, especially at middle and high frequencies. Moreover, the total thickness and
total density of interior, main and exterior parts of façades have significant effects in all
frequencies with higher attribution to the total density of the exterior part. The coupling
between resonant façade components, resulting from fundamental and critical frequencies
of each component, has a significant influence on the prediction.

The prediction of Rw with a maximum error of 3 dB encourages designers to consider
the model from the perspective of practical engineering work on sound insulation in
buildings. In particular, differences of 1 to 2 dB are less than the noticeable differences for
the noise level. Additionally, the present model could provide a predictive tool with which
the construction time and cost of acoustic measurements (for a certain type of partitions)
could be saved.

Further research would be expected on optimization of certain parameters to control
and improve the prediction of sound insulation. This would pave the way to explore the
appropriate structural parameters to achieve the desired isolation.
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Figure A1. Structural components of the tested façad walls that have been selected to test the accuracy
of the network model in prediction of airborne insulation curves.
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