
Citation: Wu, X.; Zhang, C.; Zhu, J.;

Zhang, X. Research on PM2.5

Concentration Prediction Based on

the CE-AGA-LSTM Model. Appl. Sci.

2022, 12, 7009. https://doi.org/

10.3390/app12147009

Academic Editors: Jingsha He and

Shengzong Zhou

Received: 13 June 2022

Accepted: 4 July 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on PM2.5 Concentration Prediction Based on the
CE-AGA-LSTM Model
Xiaoxuan Wu 1,2,*, Chen Zhang 1,2, Jun Zhu 1 and Xin Zhang 1,2

1 School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, China;
zhangchen@hfuu.edu.cn (C.Z.); 18852617705@163.com (J.Z.); zhangxin@hfuu.edu.cn (X.Z.)

2 Anhui Province Urban Infrastructure Big Data Technology Application Engineering Laboratory,
Hefei 230601, China

* Correspondence: wuxx@hfuu.edu.cn; Tel.: +86-138-667-43776

Abstract: The PM2.5 index is an important basis for measuring the degree of air pollution. The accu-
rate prediction of PM2.5 concentration has an important guiding role in air pollution prevention and
control. The Pearson Correlation Coefficient (PCC) is a common index used to mine the correlation
between meteorological factors and other air pollutants. However, this index cannot be used to mine
non-linear correlations, nor can it quantitatively analyze the weight of each related attribute. In order
to accurately explore the correlation between meteorological factors and other air pollutants and to
achieve an accurate prediction of PM2.5 concentration, this paper proposes a short- and long-time
memory (LSTM) network prediction model based on Copula entropy (CE) and the adaptive genetic
algorithm (AGA). By calculating CE, the correlation between multiple meteorological factors and
various atmospheric pollutants and PM2.5 was analyzed. The correlation of influencing factors was
sorted according to the size of the correlation coefficients. The contribution rate of meteorological
factors and atmospheric pollutants to PM2.5 concentration was determined, used as the weight of
each influencing factor and predicted as the input data of the prediction model. In this paper, a long-
and short-term memory network (LSTM) suitable for time series data was selected as the prediction
model, while the selection of model parameters was taken into account, and the relevant parameters
were sought by an adaptive genetic algorithm (AGA). The air pollutant data and meteorological data
of Beijing from 1 January 2016 to 31 December 2016 were selected, and MAE and RMSE were used as
evaluation indexes. By comparing the experimental results of the CE-AGA-LSTM with those of other
eight prediction models (LR, SVM, RF, ARMA, ST-LSTM, LSTM, CE-LSTM and CE-RNN), we found
that among the models, the CE-AGA-LSTM model provided the lowest MAE and RMSE values, i.e.,
14.5 and 21.88, respectively. At the same time, the loss rate and accuracy of the CE-AGA-LSTM model
were evaluated, and the experimental results verified the validity of the model.

Keywords: correlation analysis; Copula entropy; PM2.5 concentration; forecasting model; LSTM

1. Introduction

With the deepening of urbanization, the improvement of productivity and the trans-
formation of the production mode in China, the types of air pollutants have changed
considerably. As particulate matter with a diameter less than or equal to 2.5 µm in the
air environment, PM2.5 causes not only serious harm to the human body, but also huge
economic loss to society. PM2.5 is harmful to the human body mainly in the respiratory and
cardiovascular systems; therefore, reducing PM2.5 concentrations can effectively reduce
health risks [1]. Although China has improved remarkably in PM2.5 control in recent
years, the task of emission reduction is still very difficult to carry out. Therefore, it is
especially important to simulate and forecast the PM2.5 concentration, which is a positive
guidance and reference for scientific decisions of industrial structures and the formulation
of environmental pollution prevention and control measures.
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Statistical methods and numerical simulation methods can be used for pollutant
concentration prediction. Potential forecasts are mainly based on meteorological conditions
of atmospheric dilution and dispersion capacity [2]. Warnings are issued when weather
conditions are expected to meet the criteria for potentially severe pollution. Concentration
forecasts are direct predictions of pollutant concentrations in an area, and the predictions
are quantitative. These air pollution prediction models can be classified as parametric and
non-parametric or deterministic and non-deterministic. The prediction models used in this
paper were parametric models, whose outputs are uncertain when the parameters of the
equations in the model have to be determined.

Previous research is of great help for the prediction of PM2.5 concentration. however,
the methods used are not sufficient as they do not consider the characteristics of different
periods and the future dynamic effects of the concentrations of PM2.5. Especially, if
dramatic changes of meteorological factors occur, such as heavy rain or strong wind,
most methods fail in the mining of the dynamic effect of meteorological factors on the
concentrations of PM2.5. At the same time, prediction models fail to effectively simulate
the PM2.5 concentration dependence of space and time. In view of the above limitations,
this study proposes an LSTM network based on Copula entropy to accurately predict
PM2.5 concentration.

The contributions of this study mainly include three aspects:

(1) Copula entropy (CE) was used to measure the statistical independence between PM2.5
and meteorological factors and air pollutants. The non-linear correlation could be
mined, and it will possible to better explore the dynamic influence of characteristic
states at different times on PM2.5 concentration in the future to improve the accuracy
of the prediction model.

(2) This paper converted the correlation analysis results into the weights of each influenc-
ing factor, which were fed into the prediction model as input data for the prediction.
This reflects the degree of influence of attribute characteristics on PM2.5 concentration
change, thus improving the accuracy of the prediction model.

(3) A genetic algorithm—a heuristic search algorithm—was adopted in this paper to
determine the model parameters by optimization, which avoided repeated parameter
tuning and further improved the accuracy of the model prediction.

In this paper, CE was used to analyze the correlation between PM2.5 and meteorologi-
cal factors and air pollutants and to select attributes. Meanwhile, the correlation analysis
results were used as attribute weights and input data to predict PM2.5 pollutant concen-
tration through the LSTM model. The organizational structure of this paper is as follows:
the Section 2 introduces a background review of the theoretical basis, experimental theory
and preliminary work; the Section 3 introduces the methodology applied in this paper; the
Section 4 presents the experimental results of our work. Finally, we draw conclusions from
the work of this paper in Section 5.

2. Related Works
2.1. Correlation Analysis

In the process of actual production, life and scientific research, it is often found that
multiple factors have an impact on a certain object or phenomenon at the same time.
Since there is generally a certain correlation, either strong or weak, between multiple
variables, information overlaps to some extent, hindering the in-depth analysis of objects
or phenomena. Correlation analysis is a statistical method to analyze whether two or more
objects or phenomena are correlated and the strength of their correlation [3].

PM2.5 in the atmosphere is produced by both primary and secondary sources of
pollution. Environmental monitoring stations for PM2.5 detect mainly secondary particu-
late matter, mainly contributed by ammonium, sulfate and nitrate, which are substances
produced by SOx and NOx emissions [4]. Therefore, NO2, SO2, O3, etc. are key factors
influencing the atmospheric PM2.5 concentration [5]. The generation and flow of PM2.5
are significantly related to the local climate environment [6]. Different meteorological
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conditions also have a large impact on the diffusion and transport of pollutants. Zhou [7]
discussed the correlation between air pollutants and meteorological conditions in Zhuma-
dian City and found that different seasons and meteorological conditions have a certain
influence on air pollution concentrations, with a negative correlation between air pollutants
and temperature and precipitation, and a positive correlation with wind speed. Co The
main factors affecting the change of PM2.5 concentrations include not only the mutual
transformation between various atmospheric pollutants caused by chemical interactions,
but also the influence of different meteorological factors and geographical characteristics on
the atmospheric environment. Since the regional geographical characteristics are relatively
stable, this paper focuses on the correlation among atmospheric pollutants and between
atmospheric pollutants and meteorological factors.

The measurement of correlation was proposed and studied in the early stage of
statistics, and the most widely used measurement is the Pearson Correlation Coefficient
(PCC). Liu.et al. [8] used PCC for correlation analysis to obtain the correlation matrix of
six major AQI indicators in a city regarding available monitoring data. Zeng et al. [9] used
PCC to analyze the correlation between PM2.5 concentration in summer and autumn in
Beijing and six meteorological factors, including air temperature, relative humidity, wind
speed, water vapor pressure, atmospheric pressure and wind direction. However, PCC
is limited to linear Gaussian cases and is often inadequate for complex nonlinear natural
phenomena; therefore, its application is very limited. If PCC is applied without considering
the preconditions, the conclusions drawn are unreliable.

2.2. PM2.5 Concentration Prediction

In recent years, researchers have introduced artificial intelligence methods and hybrid
three-dimensional models for measuring air pollutants and achieved some results. Hybrid
methods have good robustness, low risk, and strong adaptability [10–12]. In terms of
artificial intelligence methods, Güler Dincer et al. [13] developed a new fuzzy time series
model based on the fuzzy K-Medoid clustering algorithm to predict SO2 concentrations in
Turkey. Wang. et al. [14] proposed a prediction method for PM2.5 concentration based on
the LSTM and SVR hybrid model. By introducing relaxation variables into the SVR model,
the LSTM model can correct large prediction errors, so to achieve better predictions.

With more and more attention paid to air pollution, researchers have also proposed
many spatiotemporal prediction models to predict air pollution. Li et al. [15] presented a
new ensemble reinforcement learning gated unit model. The key of this model is to establish
a sub-series forecasting model by the SAE-GRU method. SAE was used to obtain low-
latitude features of PM2.5 data, and GRU was applied to finish PM2.5 sub-series forecasting.
Zhao et al. [16] proposed a new air quality spatio-temporal prediction model to predict
future air quality based on a large amount of environmental data. Wen et al. [17] proposed
a deep multi-output LSTM (DM-LSTM) neural network model that incorporates three deep
learning algorithms to configure the model to extract the key factors in complex spatio-
temporal relationships. Zhou et al. [18] proposed a hybrid model for spatio-temporal
forecasting of PM2.5 based on graph convolutional neural network (GCN) and LSTM.
Huang et al. [19] aimed at the long-term prediction of PM2.5 concentration, considering
PM2.5 spatio-temporal correlation between multivariate data, and a TSMN prediction
model was proposed. The model constructs a local memory component and a neighborhood
component to explicitly model the temporal and spatial dependencies. Zhu et al. [20]
proposed an attention-based parallel network (APNet), which can extract short-term and
long-term temporal features simultaneously, based on the attention-based CNN-LSTM
multilayer structure to predict PM2.5 concentration in the next 72 h. Li et al. [21] proposed
a PM2.5 prediction model based on the complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN), differential symbolic entropy (DSE), variational mode
decomposition improved by the butterfly optimization algorithm (BVMD) and kernel
extreme learning machine optimized by the crow search algorithm (CSA-KELM), which
was named CEEMDAN-DSE-BVMD-CSA-KELM. Hu et al. [22] proposed a hybrid machine
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learning model (WD-SA-LSTM-BP model) based on simulated annealing (SA) optimization
and wavelet decomposition.

3. Methods
3.1. Correlation Analysis of PM2.5 and Influencing Factors

CE is a mathematical concept strictly defined by Ma Jian et al. [23] in 2008 to measure
the relationship of statistical independence. CE is an ideal measure of statistical indepen-
dence as a correlation analysis tool for any nonlinear, non-Gaussian correlations and is a
good method for causal discovery, since no assumptions need to be made. As pollutant
factors affecting PM2.5 interact with each other and reflect nonlinear characteristics, the
traditional analysis method suitable for linear correlations will affect the accuracy of the
prediction [24]. The CE values of each factor and PM2.5 were calculated for 8 meteoro-
logical factors (air temperature, body temperature, air pressure, humidity, rainfall, wind
direction, wind force, wind speed) and 5 kinds of atmospheric pollutants (PM10, SO2, NO2,
CO, O3), and the relevance of the influencing factors was ranked according to the size of
the correlation coefficient. The top 4 factors with greater relevance to PM2.5 were taken as
the main influencing factors; CE was used to analyze the correlation between the 8 main
influencing factors and PM2.5 again, and the correlation coefficients were normalized as
the weights of each main influencing factor and introduced into the prediction model to
realize the prediction of PM2.5 pollutant concentration.

The mutual information (MI) indicator that describes the interrelation between dif-
ferent variables originates from the information theory and reflects the size of common
information regarding different variables, i.e., the larger MI is, the stronger the correlation
between the variables, and vice versa, the weaker the correlation. Assuming that there is a
certain connection between the random variables X and Y, the MI between them can be
calculated by Equation (1)

MI =
1
N

N

∑
i=1

p(xi, yi) ln
p(xi, yi)

p(xi)p
(
yj
) (1)

where N is the sample size, xi and yi are the samples of the random variables X and
Y, respectively.

From Equation (1), it is easy to find that when X and Y are uncorrelated, the value of
MI is close to 0, while when X and Y present a functional relationship, the value of MI will
be close to positive infinity. Compared with other similarity indexes, the MI index has the
advantage that in addition to reflect the nonlinear correlation between variables, it does not
change in size under the influence of any reversible transformation of random variables.

MI has strong information mining ability, but the joint distributions of different random
variables in practical studies are often skewed and non-homogeneous, so it is difficult to
find the appropriate distribution type to fit it. To solve this problem, this paper introduces
the Copula theory. The Copula theory is a representation of multivariate dependencies by
Copula functions [25,26].

Definition 1 (CE). Let X be the random variable of the edge distribution u and the association
densityc(u); the CE of X is defined as:

Hc(X) = −
∫

u
c(u) log c(u)du (2)

In information theory, MI and entropy are two different concepts [27]. However, Ma
and Sun proved that they are essentially the same [23], and MI is also entropy with the
following relationship.
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Theorem 1. The MI of a random variable is equivalent to negative CE, i.e.,

I(X) = −Hc(X) (3)

Proof of Theorem 1.

I(x) =
∫
x

p(x) log
p(x)

∏
i

pi(xi)
dx =

∫
x

c(ux)∏
i

pi(xi) log c(ux)dx (4)

=
∫
x

c(ux) log c(ux)dux = −Hc(x)

Based on Theorem 1, a simple nonparametric method is proposed which requires only
two steps to estimate CE or MI from data.

Step 1. Estimate the empirical Copula density function (ECD).
Step 2. Estimate the CE. �

For Step 1, given the independent and identically distributed data samples {X1, · · · , XT}
generated by the random variable X = {x1, · · · , xN}T, the ECD can be estimated more easily
as follows.

Fi(xi) =
1
T

T

∑
t=1

χ
(

Xi
t ≤ xi

)
(5)

where χ denotes the indicator function when i = 1, · · · , N; assuming that u = [F1, · · · , FN ],
a new sample set {u1, · · · , uT} can be derived as ECD data c(u).

The KNN method was suggested in [28]. Based on the Copula theory, the KNN method
was used to rank the impact factors through a two-step approach for the nonparametric
estimation of CE in this paper.

3.2. AGA-LSTM Prediction Model

LSTM is a subtle control of the combination of short-term memory and long-term
memory through a “gate structure”, which solves the problem of gradient disappearance
to a certain extent and gives better results than a recurrent neural network for time series
data analysis. However, in the process of constructing the LSTM model, some model
parameters, such as the number of neurons in the hidden layer, the number of training
times, the learning rate, etc., need to be assumed first, and the selection of these parameters
also affects the prediction accuracy of the model. In this paper, a heuristic search algorithm-
genetic algorithm was used to determine the model parameters by optimizing the global
optimal solution and improve the accuracy of model prediction.

Genetic algorithms (GA) are a class of stochastic search algorithms that draw inspi-
ration from natural selection and natural genetic mechanisms in biology. They are very
suitable for dealing with complex and nonlinear optimization problems which are difficult
to solve by traditional search methods. The crossover probability and mutation probability
of genetic algorithms are the key parameters which affect their behavior and performance
and directly influence the convergence of the algorithms. Adaptive genetic algorithms
(AGAs) [28] enable the crossover probability and mutation probability to change automati-
cally with fitness. In this paper, AGA and LSTM were integrated to build an AGA–LSTM
prediction model so to achieve PM2.5 prediction. The basic framework of the AGA–LSTM
prediction model is shown in Figure 1.
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Basic process of the AGA–LSTM prediction model:
Step 1. Binary encode of the number of neurons, training times and learning rates of

the parameters’ hidden layer in the LSTM.
Step 2. Generate the initial population N (even number).
Step 3. Establish the LSTM model, train and predict the data of training set and test

set and take the predicted mean-square error as the AGA fitness value fi.
Step 4. Select N individuals according to the roulette rule and calculate favg and fmax.
Step 5. Each individual in the population is randomly paired into pairs, forming a

total of N/2 pairs, and each pair of individuals is calculated according to the adaptive

formula Pc =

{ k1( fmax− f ′)
fmax− favg

, f ′ > favg

k2, f ′ ≤ favg
to generate the adaptive crossover probability, ran-

domly generating R (0,1), if R < Pc; then, the crossover operation is performed on a pair
of chromosomes.

Step 6. For all individuals N in the population, calculate the adaptive variation

probability according to the adaptive variation formula Pm =

{ k3( fmax− f )
fmax− favg

, f > favg

k4, f ≤ favg
and,

if R < Pm, then perform crossover operations on that chromosome.
Step 7. Calculate the fitness of new individuals generated by crossover and mutation,

which together with their parents form a new population.
Step 8. Determine whether the termination condition is satisfied; if it is satisfied, the

termination returns the optimal parameters, otherwise execute step 4.
Step 9. Use the optimal parameters obtained by AGA to construct the LSTM network

model; train the model and obtain the prediction results.

4. Experiments
4.1. Experimental Data

The experimental data in this paper were obtained from the hourly meteorological
data (weather conditions, temperature, body temperature, barometric pressure, humidity,
rainfall, wind direction, wind force, wind speed) and hourly air quality monitoring data
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(PM2.5, PM10, SO2, NO2, CO, O3) of Beijing from 1 January 2016 to 31 December 2016 from
Nanjing Yunchuang Big Data Technology Co., Ltd. The air quality monitoring data refer to
the hourly monitoring data of 12 monitoring points. In order to make the meteorological
data consistent with the air quality monitoring data, the data of one monitoring point were
taken uniformly. The position of the monitoring point is 116.28 longitude and 39.89 dimen-
sion; so, there were 8760 data records each, but due to some uncontrollable factors, some
data were missing, and the data records finally used were 6430. The Chinese descriptions
of weather conditions, wind direction, and wind power are coded as shown in Tables 1–3.

Table 1. Weather Condition Codes.

Weather Conditions Code Weather Conditions Code

Clear 1 Fog 10
Haze 2 Rain and snow 11

Cloudy 3 Snow 12
Yin 4 Moderate to heavy snow 13

Light rain 5 Heavy Snow 14
Moderate to heavy rain 6 Heavy to blizzard 15

Heavy rain 7 Floating dust 16
Showers 8 Medium Rain 17

Thundershowers 9 Rainstorm 18

Table 2. Wind Code.

Wind Direction Code

North Wind 1

Northeast wind 2

East Wind 3

Southeast Wind 4

South Wind 5

Southwest Wind 6

West Wind 7

Northwest Wind 8

Table 3. Wind Power Code.

Wind Power Code

Breeze 1
Level 1 2
Level 2 3
Level 3 4
Level 4 5
Level 5 6

4.2. Analysis of the Experimental Results
4.2.1. Selection of Influence Factors

The hardware environment for this experiment was Intel(R) Core(TM) i7-8565U CPU
1.80 GHz, 8 GB of RAM, Windows 10 as the operating system, and Python 3.7.8 as the
programming tool for this experiment.

In order to analyze the correlation between PM2.5 and meteorological factors and other
atmospheric pollutants and to further select the influencing factors, this experiment ranked
PM2.5 with respect to eight meteorological factors (air temperature, body temperature, air
pressure, humidity, rainfall, wind direction, wind force, wind speed) and five atmospheric
pollutants (PM10, NO2, SO2, O3, CO) by non-parametric estimation of CE, and considered
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the top four with higher correlation with the first four that displayed greater correlation
with PM2.5 as the main influencing factors, thus obtaining eight influencing factors. Again,
the correlation between the eight main influencing factors and PM2.5 was analyzed by
the method presented in this paper, and the estimated CE values were normalized as the
weights of each main influencing factor and introduced into the prediction model to achieve
pollutant prediction. The experimental results are shown in Figures 2 and 3. The horizontal
coordinates 1–8 of Figure 2 indicate air temperature (TMP), body temperature (FEELST), air
pressure (PRES) relative humidity (HUM), precipitation (RAIN), wind direction (WDIR),
wind speed (WSC) and wind speed (WSPD), respectively. The horizontal coordinates 1–5
of Figure 3 indicate PM10, NO2, SO2, O3, and CO, respectively.
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In Figure 2, the top four influencing factors with stronger correlation are PRES, TMP,
HUM and WDIR according to the calculated CE results of each meteorological factor with
PM2.5. Similarly, the top four influencing factors with stronger correlation are PM10, NO2,
SO2 and O3, according to the calculated CE results of each pollutant factor with PM2.5 in
Figure 3. It was also found that PM10, NO2, SO2 and O3 had stronger correlations with
PM2.5 than each meteorological influence factor. Therefore, the eight influencing factors
PM10, NO2, SO2, O3, PRES, TMP, HUM and WDIR with stronger correlation with PM2.5
were selected; the CE results of the eight influencing factors and PM2.5 concentration were
obtain to calculate the weight of each influencing factor ωi. The attribute data of the eight
impact factors xi combined with the weights ωi were input into the model for prediction.

4.2.2. Prediction of PM2.5 Concentration Based on the AGA-LSTM Prediction Model

Based on Section 4.2.1, eight impact factors were selected using the CE method, and
the new obtained dataset had 10 dimensions, i.e., PM10, NO2, SO2, O3, PRES, TMP, HUM,
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WDIR, PM2.5; so, the dataset contained a total of 64,300 data records. The pattern of change
of each feature at different times was further analyzed by plotting the time-series feature
maps of each feature at different times, as shown in Figure 4. From Figure 4, it can be seen
that each feature of the dataset had a certain periodicity.
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In this experiment, the input data were normalized using Equation (6) to map the
values to decimals between 0, 1, and finally the dataset was processed into the data format
needed for supervised learning and input into the prediction model.

x =
x−min

max−min
(6)

The format of each supervised learning data was: (x1ω1, x2ω2, x3ω3, · · · , x10), where
the first nine dimensions are the input training data at time t – 1 and the last dimension
is the label, i.e., PM2.5 concentration at time t. The length of each input sequence was 24.
To predict the PM2.5 concentration of the next day, data of the previous seven days were
used as the model input data for prediction, and the PM2.5 concentration data of the first
day after the seven days were used as the model output for the prediction. Therefore, the
input data of the prediction model were 7*24*10, and the output data were 24*1. The data
were divided into two parts for the experiment, with 70% of them as the training set, and
30% as the test set. The number of neurons in the hidden layer, the number of training
times, and the learning rate in the LSTM model were determined by AGA, and the relevant
parameters of the prediction model were set as shown in Table 4.

Table 4. Prediction Model-Related Parameter Settings.

Model Parameters Set Value

Input_size 10
Output_size 1
hidden_size 32
num_layers 2

Activation function ReLU
batch_size 60

Optimization algorithm Adam
lr 0.001

loss function MSE
epochs 2000

dropout 0.25
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To verify the feasibility and accuracy of the proposed method in this paper, nine meth-
ods of prediction models were designed for comparison tests, namely, the Linear Regression
models (LR), the Support Vector Regression models (SVM), the Random forest (RF), Autore-
gressive Moving Average models (ARMA), the ST-LSTM model in reference [16], the direct
input LSTM prediction model with all attributes (LSTM), the CE-based LSTM prediction
model (CE+LSTM), the proposed method in this paper (CE+AGA-LSTM) and the CE-based
RNN prediction model (CE+RNN). To evaluate the performance of the prediction models,
five samples (five 7-day time series data) were randomly selected as input data to predict
PM2.5 concentrations, which were measured by three metrics: MAE, RMSE and R2. The
three indicators were obtained from Equations (7)–(9). The results of the experimental
comparison are shown in Tables 5–7. The best results are marked in bold.

MAE =
1
n∑n

i=1|ŷi − yi| (7)

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2 (8)

R2 = SSR/SST = 1− SSE/SST = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

, y =
1
n

n

∑
i=1

yi (9)

Here, ŷi and yi represent the predicted and true values of PM2.5 concentration, respectively.
Tables 5–7 show MAE, RMSE and R2 averages for the nine models over the five sample

sets. Each column value indicates MAE, RMSE and R2 values of the PM2.5 concentration
of that model in 1–5 sample sets, and the results show that the proposed method in this
paper (CE-AGA-LSTM) had the smallest MAE and RMSE and the largest R2. Meanwhile,
we found that the RF prediction model and the LSTM prediction model gave the same
results as the CE-LSTM prediction model, while the CE-RNN prediction model had the
worst performance. As can be seen from the above tables:

• Compared with the RNN model, the LSTM model is more suitable for model predic-
tion of time series data, and its unique “gate structure” better realizes the effective
combination of short-term memory and long-term memory.

• Although the LSTM model is more suitable for the prediction of time series data, for
PM2.5 concentration prediction, long-term prediction in days, weeks and months is
different from short-term prediction in seconds and minutes in data processing and
prediction model construction; therefore, to meet the needs of the actual situation,
according to the prediction of time, different prediction models should be designed.
This is also a key direction of future research.

Table 5. Mean Values of MAE in five Experiments.

Sample
MAE

LR SVM RF ARMA ST-LSTM LSTM CE+LSTM CE+AGA-LSTM CE+RNN

1 16.826 25.516 15.747 16.735 15.521 15.9372 16.1229 14.2270 24.8390
2 16.782 25.782 15.032 17.352 15.602 16.2981 15.5084 14.5400 22.1463
3 17.855 26.792 15.248 17.395 15.272 16.2664 15.5939 14.4312 21.7606
4 17.364 26.455 15.289 16.897 14.583 16.1936 15.3963 14.0790 20.4152
5 17.522 26.374 14.553 16.823 14.890 15.5610 15.4919 15.2141 19.2932

Average 17.2698 26.1838 15.1738 17.0404 15.1736 16.05126 15.62268 14.49826 21.69086
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Table 6. Mean Values of RMSE in five Experiments.

Sample
RMSE

LR SVM RF ARMA ST-LSTM LSTM CE+LSTM CE+AGA-LSTM CE+RNN

1 26.302 28.433 25.365 27.352 25.377 25.0623 24.4878 21.7831 36.0257
2 26.585 29.576 25.487 27.433 26.432 24.4848 24.0016 21.9509 32.4109
3 26.033 29.988 24.355 27.982 25.780 24.7315 24.3585 21.9374 32.2737
4 26.278 29.774 24.708 27.321 25.821 24.6910 23.8413 21.4525 30.8680
5 26.592 29.061 24.583 27.458 25.337 25.2206 23.5822 22.3172 28.7630

Average 26.358 29.3664 24.8996 27.5092 25.7494 24.83804 24.05428 21.88822 32.06826

Table 7. Mean Values of R2 in five Experiments.

Sample
R2

LR SVM RF ARMA ST-LSTM LSTM CE+LSTM CE+AGA-LSTM CE+RNN

1 0.902 0.896 0.923 0.890 0.932 0.937 0.939 0.947 0.903
2 0.921 0.917 0.920 0.901 0.938 0.930 0.940 0.949 0.905
3 0.927 0.899 0.911 0.878 0.929 0.928 0.942 0.950 0.866
4 0.919 0.858 0.927 0.922 0.934 0.925 0.944 0.952 0.879
5 0.904 0.906 0.928 0.913 0.933 0.921 0.935 0.956 0.893

Average 0.9146 0.8952 0.9218 0.9008 0.9332 0.9282 0.940 0.9508 0.8892

The loss rate and PM2.5 concentration prediction results of the method in this paper
for the test set are shown in Figures 5 and 6. As can be seen in Figure 6, the prediction
accuracy of the CE-AgA-LSTM prediction model reached 92.8%.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 14 
 

 
Figure 5. Loss rate of model testing. 

 
Figure 6. Predictions of model testing. 

5. Conclusions 
This paper proposes a prediction model for the PM2.5 concentration: the CE-AGA-

LSTM model. Taking the meteorological data and air pollutant data of Beijing in 2016 as 
an example, the CE-AGA-LSTM prediction model and eight other models were compared 
based on the MAE, RMSE and R2 indexes. The CE-AGA-LSTM prediction model used five 
randomly selected time series data samples as input data to predict PM2.5 concentration. 
Its average results in terms of MAE, RMSE and R2 were 14.49826, 21.88822 and 0.9508, 
respectively. Compared with the results of other models, the results showed that the CE-
AGA-LSTM prediction model is feasible. The prediction accuracy of the model on the test 
set reached 92.8%. 

Despite its excellent performance, the model proposed in this paper also has some 
limitations: (1) the method in this paper only predicted the PM2.5 concentration of a single 
station, without considering the relationship between multiple stations in the whole city. 
Data of all stations in a single city can be integrated to further mine the spatial relationship 
between stations, so to achieve an accurate prediction of PM2.5 concentration. Data of a 
single site are more suitable for predicting the regional PM2.5 concentration of the site in 
the future. Selecting the primary site, mining the correlation between the primary site and 
each site and selecting the attributes would be more conducive to realizing the prediction 
of PM2.5 concentration of the whole city. (2) The prediction by the LSTM on stationary 
time series data was better than that of non-stationary data. Therefore, Empirical Mode 
Decomposition (EMD) was adopted to decompose and stabilize the input data, and better 

Figure 5. Loss rate of model testing.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 14 
 

 
Figure 5. Loss rate of model testing. 

 
Figure 6. Predictions of model testing. 

5. Conclusions 
This paper proposes a prediction model for the PM2.5 concentration: the CE-AGA-

LSTM model. Taking the meteorological data and air pollutant data of Beijing in 2016 as 
an example, the CE-AGA-LSTM prediction model and eight other models were compared 
based on the MAE, RMSE and R2 indexes. The CE-AGA-LSTM prediction model used five 
randomly selected time series data samples as input data to predict PM2.5 concentration. 
Its average results in terms of MAE, RMSE and R2 were 14.49826, 21.88822 and 0.9508, 
respectively. Compared with the results of other models, the results showed that the CE-
AGA-LSTM prediction model is feasible. The prediction accuracy of the model on the test 
set reached 92.8%. 

Despite its excellent performance, the model proposed in this paper also has some 
limitations: (1) the method in this paper only predicted the PM2.5 concentration of a single 
station, without considering the relationship between multiple stations in the whole city. 
Data of all stations in a single city can be integrated to further mine the spatial relationship 
between stations, so to achieve an accurate prediction of PM2.5 concentration. Data of a 
single site are more suitable for predicting the regional PM2.5 concentration of the site in 
the future. Selecting the primary site, mining the correlation between the primary site and 
each site and selecting the attributes would be more conducive to realizing the prediction 
of PM2.5 concentration of the whole city. (2) The prediction by the LSTM on stationary 
time series data was better than that of non-stationary data. Therefore, Empirical Mode 
Decomposition (EMD) was adopted to decompose and stabilize the input data, and better 

Figure 6. Predictions of model testing.



Appl. Sci. 2022, 12, 7009 12 of 13

5. Conclusions

This paper proposes a prediction model for the PM2.5 concentration: the CE-AGA-
LSTM model. Taking the meteorological data and air pollutant data of Beijing in 2016 as
an example, the CE-AGA-LSTM prediction model and eight other models were compared
based on the MAE, RMSE and R2 indexes. The CE-AGA-LSTM prediction model used five
randomly selected time series data samples as input data to predict PM2.5 concentration.
Its average results in terms of MAE, RMSE and R2 were 14.49826, 21.88822 and 0.9508,
respectively. Compared with the results of other models, the results showed that the
CE-AGA-LSTM prediction model is feasible. The prediction accuracy of the model on the
test set reached 92.8%.

Despite its excellent performance, the model proposed in this paper also has some
limitations: (1) the method in this paper only predicted the PM2.5 concentration of a single
station, without considering the relationship between multiple stations in the whole city.
Data of all stations in a single city can be integrated to further mine the spatial relationship
between stations, so to achieve an accurate prediction of PM2.5 concentration. Data of a
single site are more suitable for predicting the regional PM2.5 concentration of the site in
the future. Selecting the primary site, mining the correlation between the primary site and
each site and selecting the attributes would be more conducive to realizing the prediction
of PM2.5 concentration of the whole city. (2) The prediction by the LSTM on stationary
time series data was better than that of non-stationary data. Therefore, Empirical Mode
Decomposition (EMD) was adopted to decompose and stabilize the input data, and better
prediction results could be obtained. (3) In this paper, the data of the first seven days were
used to predict the PM2.5 concentration of the next 24 h. We can also predict the PM2.5
concentration of the next month every day. However, for large-scale predictions, the results
of the method described in this paper may not be good, so further research is necessary.
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