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Abstract: Deep learning networks (DLNs) use multilayer neural networks for multiclass classification
that exhibit better results in wind-power forecasting applications. However, improving the training
process using proper parameter hyperisations and techniques, such as regularisation and Adam-
based optimisation, remains a challenge in the design of DLNs for processing time-series data.
Moreover, the most appropriate parameter for the DLN model is to solve the wind-power forecasting
problem by considering the excess training algorithms, such as the optimiser, activation function,
batch size, and dropout. Reinforcement learning (RN) schemes constitute a smart approach to
explore the proper initial parameters for the developed DLN model, considering a balance between
exploration and exploitation processes. Therefore, the present study focuses on determining the
proper hyperparameters for DLN models using a Q-learning scheme for four developed models. To
verify the effectiveness of the developed temporal convolution network (TCN) models, experiments
with five different sets of initial parameters for the TCN model were determined by the output results
of Q-learning computation. The experimental results showed that the TCN accuracy for 168 h wind
power prediction reached a mean absolute percentage error of 1.41%. In evaluating the effectiveness of
selection of hyperparameters for the proposed model, the performance of four DLN-based prediction
models for power forecasting—TCN, long short-term memory (LSTM), recurrent neural network
(RNN), and gated recurrence unit (GRU) models—were compared. The overall detection accuracy of
the TCN model exhibited higher prediction accuracy compared to canonical recurrent networks (i.e.,
the GRU, LSTM, and RNN models).

Keywords: wind power forecasting; reinforcement learning; Q-learning; hyperparameters; parame-
ter estimation

1. Introduction

Wind power forecasting techniques refer to estimates of the expected electrical output
from one turbine or many wind turbines of a wind farm in the near future, up to one year.
The prediction method for wind power forecasting involves performing model pre-training
and power prediction by collecting meteorological information and wind power generation
historical data. Meteorological historical data include temperature, humidity, average wind
speed, and wind direction. Conventionally, meteorological engineers use physical methods
for wind forecasting associated with numerical weather prediction (NWP) to identify
weather changes. Treating weather changes as deterministic events is not a trivial task.
In fact, it requires that meteorological engineers handle numerical weather data updates
for immediate weather changes. Basically, forecasting of wind power generation becomes
imprecise when the NWP results are poor. Moreover, current statistical schemes, such as
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autoregressive (AR) and autoregressive integrated moving average (ARIMA) [1], have been
proposed to determine the relationship between weather features and predicted power,
where weather changes are considered random processes. Statistical models generally
perform well in simple time series forecasting, but their ability to process nonlinear data in
dynamic states remains insufficient [2], and the fitting performance is limited.

Recently, numerous machine learning (ML) algorithms [3–5] have been proposed
to help engineers distinguish the correlations between climate features and wind power
outputs by accumulating historical meteorological information and wind power generation
data. For example, artificial neural networks (ANNs), genetic algorithms, fuzzy regression,
cluster analysis (K-means), and support vector machines have been introduced to solve the
problems of wind-power forecasting in climate change.

However, traditional ML models for predicting the accuracy of wind-power forecasting
have challenges with some problems, including, long-term stable prediction under climate
change, as their complex learning architecture may result in low efficiency, long training
time, and under-fitting [6]. Thus, developing a precise and robust approach for forecasting a
wide range of meteorological phenomena with wind power forecasting remains a challenge.

To address the aforementioned problems in model training that often occur in the thin-
layer network architecture of ML approaches, deep learning network (DLN) approaches
use multilayer neural networks to extract the more complex climate features from historical
weather information that accurately assist engineers in predicting the power generation
(kw/h) for wind turbines. Typical deep learning models for sequence-to-sequence data
include recurrent neural networks (RNN) [7], long short-term memory (LSTM) [8,9], gated
recurrent units (GRU) [10], and temporal convolution networks (TCN) [11–13]. These four
models have been used as learning models for the DLN to establish a classifier after their
architecture hyperparameters and features are considered.

Practically, when attempting to build a DLN model, there are several questions that
should be answered: (1) What is the best model for the wind power prediction problem to
be solved? (2) How to select hyperparameters associated with the model? Hyperparameters
include model architecture-related parameters, such as the size of hidden layers. Evidently,
one should decide training-related parameters, such as activation function, batch size, the
learning rate, and stopping time, given the alternatives of the optimizers, such as RMSprop,
SDG, and Adam [14].

We attempt to answer these questions in this study and achieve high prediction
precision with low convergence errors of the cost function in the predicted output.

To answer the first question, there are a number of options with regard to DLN model
choice; for example, if the input data form a sequence with dependencies between the
elements of the sequence, then an RNN is required. However, the RNNs suffered from
gradient exploding and vanishing problems with long sequence inputs [8,9]. The choice of
an appropriate model for wind-power forecasting is discussed later.

For the second question, the process of setting the hyperparameters requires exper-
tise and extensive trial and error. Some drawbacks of the developments in wind power
forecasting have been discussed, such as the use of manual trial and error for setting the
initial parameters for the model in the training process. There are no simple and easy
ways to set the hyperparameters. Recently, a reinforcement learning (RL)-based Q-learning
algorithm [6,15,16] has shown great success in tuning hyperparameters in controlled envi-
ronments, such as energy forecasting, Atari, robotic manipulation, and Go. The Q-learning
algorithm uses a model predictive control process to optimise a reward by an agent inter-
acting with the environment states and makes better decisions compared to the traditional
trial and error approaches.

To improve forecasting accuracy for wind turbines, this study proposes a DLN-based
model [7–13] with a Q-learning algorithm for wind power forecasting to determine the
hyperparameters for four competing models by minimising the prediction error. There are
several options with regard to DLN model choice; here, four sequence-to-sequence models
for deep learning were compared to examine the model performance and recommendations



Appl. Sci. 2022, 12, 7067 3 of 24

for wind power forecasting. In the experiment, four completing models were pre-trained
using real historical climate data and power generation outputs of wind turbines from a
wind power farm in the Chang-Bin industrial zone of Taiwan. The experimental results
show that the TCN exhibited higher prediction accuracy compared to recognized recurrent
networks, such as GRUs, LSTMs, and RNNs. In developing the proposed model, our work
focused on three important aspects:

� In this study, the proper setting of the hyperparameters for the developed model
was investigated using the Q-learning algorithm by minimising the loss of the cost
function in the learning process.

� Five initial parameters for the developed model were analysed by incorporating the
Q-learning algorithm in the learning process: (i) number of stacks, (ii) filter size,
(iii) dilatation coefficient, (iv) activation function, and (v) optimiser to decide the
proper setting of hyperparameters for model training by the input of 1-year dataset of
wind farms from the Chang-Bin industrial zone (CBTP) for Tai-Power Corporation in
Taiwan.

� In our experiment, the TCN mode for 168 h (7 days) ahead, mean absolute percent-
age error (MAPE) = 1.41%, had the highest prediction accuracy, followed by GRU
MAPE = 3.72%, LSTM mode MAPE = 6.99%, and RNN mode MAPE = 28.18%.

The remainder of this paper is organised as follows. Section 2 reviews previous
studies on the DLNs for sequence-to-sequence data and a reinforcement learning algorithm.
Section 3 introduces the reinforcement learning framework and the proposed Q-learning
approach for determining the proper hyperparameters for the wind-power forecast model.
A performance analysis of the experimental results is presented in Section 4. Finally,
Section 5 draws the conclusions.

2. Relate Work

In this section, we review convolutional neural networks for sequence-to-sequence
data and a reinforcement learning algorithm.

2.1. Convolutional Neural Networks for Sequence-to-Sequence Data

Recently, researchers developed a DLN for time-series data processing that contains
RNN, LSTM, GRU, and TCN used for handling sequence-to-sequence inputs, performing
feature extraction of long-term sequence climate data, and estimating the expected electrical
outputs for wind turbines [7–13].

Typically, an RNN is a class of artificial neural networks where connections between
nodes form a directed graph along a sequence [7]. RNNs focus on sequential data forecast-
ing, speech recognition, text generation, stock market prediction, and language translation.
This specific design allows the network to process sequences of inputs using their internal
state. This makes them suitable for tasks such as unsegmented connected handwriting
recognition and speech recognition. However, RNNs suffer from the problem of vanishing
gradients and have limited learning in long memory applications.

Due to the problem of exploding and vanishing gradients with long sequences, LSTMs
were designed with three specific gates operating by controlling the cell states. Basically,
LSTM units are units of an RNN developed to deal with the exploding and vanishing
gradient problems that can be encountered when training traditional RNNs. Their relative
insensitivity to gap length gives LSTM networks a key advantage over RNNs, hidden
Markov models, and other sequence learning methods in numerous applications. The
compact forms of the equations for an LSTM unit are as follows [8,9]:

Updating rules for the forget gate, input gate and output gate in an LSTM block

ft = σ
(

W f [ht−1, xt

]
+ bt), (1)

it = σ(Wi[ht−1, xt] + bi), (2)
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ot = σ(Wo[ht−1, xt] + bo), (3)

Candidate (memory) cell state

c̃t = tanh(Wc[ht−1, xt] + bc), (4)

Memory cell and hidden state

ct = ft ∗ ct−1 + it ∗ c̃t, (5)

ht = ot ∗ tanh(ct), (6)

Cell output
yt = ht. (7)

where symbol xt denotes the input vector to the neural network, f is the forget gate (a
neural network (NN) with sigmoid), c̃ the candidate (memory) cell state (an NN with tanh
function), i the input gate (an NN with sigmoid), W the weight matrices and b the bias
vector parameters that need to be learned during training, o the output gate (an NN with
sigmoid), h the hidden state (a vector), c the memory state (a vector) and σ is the activation
function in an LSTM unit. Notably, bt, bi, bo, and bc represent bias vector parameters
to be learned during training in forget gate, input gate, output gate, and memory cell,
respectively.

Later, GRU was proposed to handle simple problems for shorter sequential data by
reducing the number of gates. Unlike LSTM, GRU replaces the forget gate and input gate
in the LSTM with an update gate. Engineers usually choose GRU, considering the effects of
computing power and time overhead of the hardware [10].

In 2017, Lea et al. [11] proposed a new neural framework for sequence modelling
tasks, namely temporal convolutional networks (TCNs) to address the problem for long
sequential data of uncertain length. TCN consists of three parts: dilated causal convolution,
nonlinear activation function, and residual connection. The TCN was designed using two
basic principles: (i) Causal convolutions—the convolutions are causal, indicating that there
is no information leakage from the future to past; (ii) One-dimensional fully convolutional
network architecture—the architecture can take a sequence of any length and map it to an
output sequence of the same length [12]. In other words, TCNs use one-dimensional (1D)
separable convolutions that are a form of factorised convolutions that factorise a standard
convolution into a depth-wise and pointwise convolution to preserve the massive memory
requirements of deep learning models [13]. Further, a TCN was proposed to extend the
input large memory processing using a dilated causal convolution architecture and residual
connections to preserve more accurate prediction results.

A TCN block was regularly selected using the combinational 1D fully convolutional
architecture followed by a nonlinear activation function (rectified linear unit, ReLU) to
determine the weights of an input sequence that improve classification accuracy in model
prediction, then adding a dropout function to reduce overfitting. In other words, a dropout
function in a dense layer decreases the number of parameters to be learned and helps
reduce overfitting. From a design perspective, the TCN is capable of handling a series
of uncertain length and outputs it with the same length. Experimental results [17–20]
have shown that TCNs exhibit better performance with sequences of uncertain length,
where the TCN architecture performs well in very long sequences of inputs. Sequence data
prediction is the most frequently encountered issue in the TCN model, which is illustrated
as follows [11].

Consider a given training dataset D(xt, yt) in a sequence modelling task, where xt
denotes input sequence (xt ∈ Rn, t = 1, . . . , T) and ỹ0, ỹ1, . . . , ỹT is a prediction sequence
with the corresponding sequential input {x0, x1, . . . , xT}.

The mapping function f is defined for a temporal convolutional network as follows:

ỹ0, ỹ1,. . . , ỹT = f (x0, x1 , . . . , xT), (8)
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where ỹt depends only on previous observations x0, x1, . . . , xt at time t.
The network is trained by supervised learning to find the function f that minimizes

the error between the actual outputs (y0, . . . , yT) and the predictions ( ỹ0, ỹ1, . . . , ỹT).
Under the causal constraint, the TCN develops dilated causal convolutions to expand the
receptive field exponentially, taking more historical information into consideration. The
dilated convolution operation F on element s of the 1-D sequence xt ∈ Rn for a filter f : (0, 1,
. . . , k − 1)→ R is formulated as Equation (9) [13]:

F(s) = xt ∗d ( f )(s) =
k−1

∑
i=0

f (i)·xs−d.i, (9)

where k is the stack size, d is the dilation factor, and symbol * is the convolution operator.
The dilated causal convolution used in this paper is illustrated in Figures 1 and 2 with
dilation factors d = 1, 2, 4, 8 and stack size k = 2. Definitely, the larger the stack sizes k or
dilation factor d are set, the broader the receptive field of the network is.
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2.2. Hyperparameter Optimization for Machine Learning Models

The performance of deep learning models strongly depends on choosing a set of
optimal hyperparameters. In other words, the prediction performance of the deep learning
network model is influenced quite heavily by the choice of hyperparameters, hence it can
incorporate a reinforcement learning optimisation process to improve the searching effi-
ciency in model development. Hyperparameter tuning is an optimization problem where
the objective function of optimization is unknown. Traditional optimization techniques
such as the Newton method or gradient descent cannot be applied.

Practically, data engineers find a set of hyperparameter values in the training phase to
archive the best performance for machine learning models within a reasonable amount of
time. Further, they continuously adjust hyperparameters for models with the selection of
different sets of values for a learning algorithm and then compare the model performance
to choose the best model. This process is called hyperparameter optimization.



Appl. Sci. 2022, 12, 7067 6 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 25 
 

filter. Further, we inserted a dropout layer after each convolutional layer to avoid overfit-
ting. 

 
Figure 1. TCN-based architecture for wind power forecasting (dilated residual block k = 2). 

In essence, the TCN model was composed of one or more 1D convolutional layers 
with dilated residual blocks for input processing. Through use of the residual block in the 
convolutional layers in TCN, deep and large TCNs can achieve further stabilisation. TCNs 
are useful for all types of long sequence problems because they can perform feature ex-
traction and correlation analyses. An example of the residual block (d = 8) used between 
each layer in the TCN to accelerate convergence and enable the training of deeper models 
is shown in Figure 2. 

 
Figure 2. Detailed diagram of the dilated residual block. Figure 2. Detailed diagram of the dilated residual block.

Typically, there are mainly two kinds of hyperparameter optimization methods, i.e.,
manual search and automatic search methods. Manual search identifies the important
parameters depending on the experience of expert users. The process of tuning hyper-
parameters is not easily reproducible. Moreover, as the number of hyperparameters and
the range of values increase, it becomes quite difficult to manage [21]. To overcome the
drawbacks of manual search, automatic search algorithms have been proposed, such as
grid search [22–25]. Mainly, grid search trains machine learning models with different
values of hyperparameters in the training set and compares the performance according to
evaluation metrics. Finally, grid search outputs hyperparameters that have the optimal
performance. Two hyperparameter optimization approaches are compared in Table 1.

Table 1. Comparison of two hyperparameter optimization methods.

Scheme Features Limitations

Manual search
(MS)

The MS depends on the experience
of expert users to identify the
important parameters.
It is suitable for expert users to
handle simple or low-dimensional
hyperparameter tuning problems
using the visualization tools.

When the number of
hyperparameters and the range of
values increase, it becomes quite
difficult to manage since humans
are not good at handling high
dimensional data.

Automatic search
(AS)

The AS trains machine learning
models with selection of the
optimal hyperparameters for a
model that result in the most
precise performance.

Basically, the AS is a brute-force
and exhaustive searching
approach, and it suffers from a
high computational load with
time cost.

Automatically tuning hyperparameters for the ideal model structure is a challenging
task. Numerous automatic search techniques comprising machine learning approaches
with optimised algorithms have been used for achieving high-precision performance. These
AS schemes are summarised in Table 2.
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Table 2. Machine learning approaches for hyperparameter tuning.

Scheme Achievement Limitations

Lee, Park, Sim (2018) [21]

Proposed a novel approach to improve
CNN performance by hyperparameter
tuning in the feature extraction step using
a parameter-setting-free harmony search
(PSF-HS) approach.
By two simulations, it is possible to
improve the performance by tuning the
hyperparameters in CNN architectures
with reference to CifarNet and a Cifar-10
dataset proposed in the past.

A host needs relatively high
computational capabilities to train the
PSF-HS algorithms for image recognition.

Wu, Chen, et al. (2019) [22]

Proposed a hyperparameter tuning
algorithm for machine learning models
based on Bayesian optimization to find a
set of hyperparameters that archive the
best performance.
Experimental results show that the
proposed method can find the best
hyperparameters for the widely used
machine learning models, such as the
random forest algorithm and the neural
networks.

The model accuracy highly relies on large
amounts of prior information to tune the
hyperparameters for developing model.

Amirabadi, Kahaei, and Nezamalhosseini
(2020) [23]

Proposed two novel suboptimal grid
search methods to tune hyperparameters
for deep learning networks for optical
communication (OC) systems.
Results indicate that despite greatly
reducing computational complexity, the
proposed methods achieved favourable
performance on four experimental
datasets.

The trained deep learning network
(DNN) is a state-of-the-art deep learning
algorithm used for modelling free space
optical (FSO) communication in an
optical communication system.

Lokku, Reddy, Prasada (2022) [24]

Proposed a CNN-based classifier for
Optimal Face Recognition Network
(OPFaceNet) to recognize facial images
affected by high noise and occlusion.
This algorithm identifies the
hyperparameters for CNN model by
optimizing the Fitness Sorted Rider
Optimization Algorithm (FS-ROA) and
achieves a good recognition rate of 97.2%.

The model accuracy highly relies on the
FS-ROA, and the trained CNN is a
specific deep learning algorithm used for
facial recognition only.

Nematzadeh, Kiani, Torkamanian-Afshar,
and Aydin (2022) [25]

Proposed a method to tune
hyperparameters for machine learning
algorithms using Grey Wolf Optimization
(GWO) and Genetic algorithm (GA)
metaheuristics.
Experimental results show that in all
trials, the performance of the training
phases is improved. Additionally, GWO
demonstrates better performance with a
p-value of 2.6E

Providing a ready-to-use library and
packages for different platforms and also
an online web tool is needed in practice
due to investigating a wider range of
several machine learning training
algorithms and different metaheuristics.

Although the methods in Table 2 achieve automatic tuning approaches such as grid
search and can theoretically obtain the near optimal value of the hyperparameters, they
suffer from a high computational load with time cost.
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2.3. Reinforcement Learning Algorithm

To solve the problem of expensive cost in grid search, a dynamic programming-based
reinforcement learning algorithm has been proposed to assist engineers in finding the
optimal performance for specific problems by adjusting the definite hyperparameters for
the developed model.

Notably, the reinforcement learning-based algorithm has shown great success in
many real-world hyperparameter optimization problems, including hyperparameter tun-
ing in controlled environments for deep learning network modelling [6,15,16,26–28]. Many
researchers have focused on neural architecture search (NAS) and hyperparameter opti-
mization using reinforcement learning approaches. For example, Zoph and Le addressed
hyperparameter optimization of RNN and LSTM using reinforcement learning to design
automation of deep learning networks [26]. Later, Iranfar et al. used reinforcement learning
to tune the hyperparameters for a multi-layer perceptron (MLP) and CNN [27]. Jalali et al.
used an ensemble learning scheme with reinforcement learning strategy to increase the
prediction accuracy of wind power forecasting [28].

In the following, we review the basic principle of reinforcement learning algorithm.
In real applications, decisions seldom observe the complete state of the system; it is

more common to receive observations of the state that are noisy or incomplete. Markov
decision processes (MDPs) with stochastic theory have been proposed to solve these model
decision problems in incomplete states. The MDP focuses on finding a good policy that
will yield the maximum cumulative rewards by taking a series of actions with respect to
specific states of the observed system.

In the problem model for the MDP, an agent (decision maker) may interact with
its environment and change its behavior using an action in available states S from the
consequences of actions A. The dynamic process responds at the next time step by randomly
moving into a new state and giving the decision maker a corresponding reward R [6].

A major approach in reinforcement learning, namely the Q-value approximation, is
to select an action at that maximises the expected reward at any state st. The goal of the
agent in Q-value approximation is to find an optimal policy in the sense of maximizing
the expected value of the total reward over any and all successive steps, starting from the
current state. Therefore, this algorithm calculates the quantity of a state-action pair as [26].

Q : S× A→ R (10)

The update rule Q-value approximation is shown as

Q(s, a) = (1− α)Q(st, at) + α
(

rt+1 + γ max
a

Q(st+1, a)
)

(11)

Here, α ∈ (0, 1) is the learning rate. A factor of value ‘0’ lets the agent not learn
anything, while a factor of value ‘1’ lets the agent consider only the most recent information.
Equation (11) indicates that the Q-value approximation is a multi-decision process based
on the MDP framework to provide a generalised framework for optimal behaviour based
on actions of the agent to maximise the cumulative rewards of a series of decisions.

Recently, Iranfar et al. addressed hyperparameter optimization of CNNs through a
Q-learning-based approach with a multi-agent system [27]. In the proposed multi-agent
Q-learning-based approach, agents are able to communicate through our novel definition
of state-action pairs, Q-tables, and a Q-table update rule. Thus, a Q-learning scheme was
adopted for hyperparameter optimization and to examine the predicted accuracy of the
model for overcoming an expensive cost problem scheme in grid search.

3. Determining the Hyperparameters for the Developed Model with
Q-Learning Scheme

This section presents our proposed TCN model design for wind power forecasting
24–168 h ahead, incorporating a reinforcement learning algorithm for long-term, wind
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power forecasting. The proposed model comprises three phases: the architecture design
phase, hyperparameter selection phase and the overall process for model development phase.

3.1. Architecture Design for the TCN Model

For a TCN model design for wind power forecasting 24–168 h ahead, it is expected
that the resulting deep features will consist of climate features obtained through the convo-
lutional feature learning process from historical weather information, thereby reducing the
prediction errors of power generation (kw/h) for wind turbines as much as possible.

Adopting TCNs for wind power forecasting has two advantages. First, in the training
phase, TCNs automatically learn the correlations to capture complex variations with wind
power output by leveraging a large amount of training data. Second, during the learning
and testing phase, deep learning networks can be easily parallelised on GPU cores for
acceleration, allowing the results to be quickly obtained [17]. Thus, we incorporated the con-
volutional network architecture involved in casual convolution with residual connections
to construct a stable TCN-based prediction model for 24–168 h wind power forecasting.

In the present study, a wind power forecasting technique was developed based on
a TCN model, with the goal of achieving high predictive accuracy with the minimum
convergence error where the input sequence comprises historical wind speed and direction
observations over past periods, while the actual output is the current wind power output.

First, TCN is used to learn the correlations between meteorological features and wind
power generation from various historical data. In the case of wind power forecasting, the
TCN model can be defined as follows [11]:

xl
t = σ(W l

x·Fd

(
xl−1

t

)
+ bl

x + xl−1
t ), (12)

where Fd(.) is the dilated convolution function of d-factor; xl
t is the value of the neuron of

l-th hidden layer at time t; W l
x and bl

x are the weights and bias corresponding to the l-th
hidden layer, respectively; and σ is the activation function.

A detailed workflow of the wind power forecasting using dilated residual blocks to
extend a large receptive field for processing historical data is shown in Figure 1. In theory,
TCN has two effective approaches to increase the receptive field size, that is, increase the
dilation factor d and choose a larger filter size k.

As shown in Figure 1, we proposed a TCN based dilated causal convolution design
with dilation factors d = 1, 2, 4, 8 and filter size k = 2. In the residual block, TCN uses
a two-layer dilated causal convolution, the activation function of the convolution is a
linear rectification function (ReLU), and weight normalization is used to normalize the
convolution filter. Further, we inserted a dropout layer after each convolutional layer to
avoid overfitting.

In essence, the TCN model was composed of one or more 1D convolutional layers
with dilated residual blocks for input processing. Through use of the residual block in
the convolutional layers in TCN, deep and large TCNs can achieve further stabilisation.
TCNs are useful for all types of long sequence problems because they can perform feature
extraction and correlation analyses. An example of the residual block (d = 8) used between
each layer in the TCN to accelerate convergence and enable the training of deeper models
is shown in Figure 2.

3.2. Hyperparameter Selection for the TCN Model Using Q-Learning Algorithm

Inspired by Iranfar, Zapater, and Atienza in [27], we adapted Q-learning agents to split
the design space into independent smaller design sub-spaces such that the agents fine-tune
the hyperparameters for the assigned layer and provide faster, yet accurate design space
search. Thus, the optimal parameters for the developed wind power prediction model with
Q-learning algorithm are analyzed as follows.

In the training phase, the present study used a TCN model pre-trained on the experi-
mental dataset containing collected wind turbine data from the Chang-Bin wind power
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plant in Taiwan from 2020 to 2021 (2-year period) and incorporated a Q-learning algorithm
to determine the optimal parameters for the developed models in the training process
(Figure 3). As shown in Figure 4, the selection process for architecture parameters is
modelled as an MDP.
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To solve the problem of exploring the proper setting of hyperparameters for the TCN
model, this study proposed a prediction model involving Q-learning with the reinforcement
learning approach as follows.

Initially, the loss function of the Q-learning model, L(θ), is given by

L(θ) = E
[(

rk(s, a; θ) + γ max
a

Qk
(
s′, a′; θ

)
− Qk(s, a; θ)

)]
, (13)

where rk(s, a; θ) represents the reward value of the current state s, θ is the parameter from
the previous iteration, s′ is the state after performing action a, and γ is a number between
0 and 1, 0 ≤ γ ≤ 1, called the discount factor, which trades off the importance of sooner
against later rewards. Further, γ may also be interpreted as the likelihood of succeeding
at every step k. Q(s, a ; θ) denotes the quantity of a state-action pair (s, a). By performing
action a, the agent can move from a state s to a new state s′, in which each state provides
the agent with a reward.

As described above, the agent is used for maximising its total reward by learning the
optimal action for each state.
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To minimise the errors between the predicted values and actual outputs (i.e., maximise
the reward to minimise the prediction errors between prediction value and real output) for
wind power forecasting, we define the reward (R) between state s and new state s′ as

R =
(

TCNLoss(s) − TCNLoss(s′)

)
. (14)

In finite state-action spaces, the Q-learning approach can solve for Q-value using an
update rule as follows (Figure 4).

Qk+1(s, a; θ) = Qk(s, a; θ) + α[rk(s, a; θ) + γmax
a

Qk
(
s′, a′; θ

)
−Qk(s, a; θ)], (15)

where Qk+1(s, a; θ) is a new Q-value of the state-action pair for state s, Qk(s, a; θ) is the
Q-value of the state-action pair for current state s; rk(s, a; θ) is the reward value of the state-
action pair for current state s, and Qk(s′, a′; θ) represents the Q-value of the state-action
pair for a new state s′.

In summary, the Q-learning computation was performed in the following five sub-
steps [21,22]:

1. Initialise Q-values Q(s, a; θ) arbitrarily for all state-action pairs.
2. For life, or until learning is stopped.
3. The agent selects action (a) in the current state (s) based on the current Q-value and

estimates state-action pair Q(s, a; θ) using Equation (15).
4. Applying Equation (15), Q-values are updated after a new state and reward are

observed.
5. Calculate L(θ), and then stop updating when ∆L(θ) < ε.

Selection of the optimal parameters (θ) for the developed TCN model is illustrated in
Figure 5.
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In summary, the detailed Q-learning algorithm for wind power forecasting with the
TCN learning model described by the PDL is as Algorithm 1.

Algorithm 1. Q-learning for Hyperparameter Tuning of TCNModel

Repeat
The state vector S consists of N independent states
S = [s1, s2, . . . , sN ]
Set R = 0
For each state si in S
Initialize Q(si, ai), ∀si ∈ Si, ai ∈ A(si), arbitrarily, and Q(terminal − state, 0) = 0
Repeat (for each episode of ith state si)
Initialize Si
Repeat (for each step of episode)
Choose A from Si using policy derived from Q
Take action A, observe R, S′i

S′ =
[
s1, . . . , s′i , . . . , sN

]
R = TCNLoss(s) − TCNLoss(s′)

Qk+1(Si, A; θ)← Qk(si, a; θ) + α[R + γmax
ai

Qk
(
s′i , a′i ; θ

)
−Qk

(
si, ai; θ

)
]

Si ← S′i
Until Si is terminal
Until ∆L(θ) < ε (preset constant ε)

3.3. Overall Process for Model Operations

A detailed flowchart of the developed model for wind power forecasting is shown
in Figure 6. The figure also illustrates the proposed TCN model incorporating three
subphases in the model operation process: (i) data pre-processing, (ii) model training (vs.
determination of proper setting for hyperparameters), and (iii) model validation.
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Step 1. Data pre-processing
The wind turbine built in the Chang-Bin industrial zone is a Vestas V80 2 MW exemplar

turbine. It has a rotor diameter of 80 m, hub height of 67 m, and rated speed of 14.5 m/s. A
wind power farm in an industrial zone was built in 2006. Tai-Power Company constructed
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a total of 23 wind turbines with a capacity of 2 MW, of which eight were erected in the
western area of the Chang-Bin industrial zone, and the remaining 15 turbines were erected
in the LunWei District. The experimental data are summarised as shown in Table 3.

Table 3. The basic features of the wind turbines in the Chang-Bin industrial zone.

Item Feature

# of Wind turbines 31 units (2 MW)

Wind turbine Vestas V80/2000 wind turbine, Denmark

Device capacity 62 MW

Rated power 2000 kW

Annual power generation 135 million kWh

Once the wind turbine location is located, the forecasting algorithm can include future
weather forecasting data from the Central Weather Bureau (CWB) in Taiwan, where the
forecasts on the CWB website are issued four times daily, updating future 7-day ahead
weather forecasts for various areas of Taiwan. Moreover, historical data contain real weather
observations and wind turbine power outputs with anomalous data, and engineers need to
pre-process data for wind farm datasets before performing model pre-training.

Step 2. Model training
Step 2.1. Initial setting of hyperparameters from GitHub
Then, the proposed model uses a set of pre-training parameters from keras-tcn at

GitHub [29] as initial parameters for model training. keras-tcn was used as the transfer
learning (TL) model to fine-tune the developed model and improve learning speed and
training accuracy. In the experiment, four crucial architecture-related parameters (hyperpa-
rameters) were selected from the transferring learning cases in the TCN predictor, namely
(i) number of stacks, (ii) filter size, (iii) dilatation coefficient, (iv) activation function, and (v)
optimiser. The accuracy (%) associated with the distinct model parameters for wind power
prediction will be examined using Q-learning algorithm.

Step 2.2. Hyperparameter tuning of the model
In this phase, the following sub-steps were used to determine the proper parame-

ters for the training model for wind-power forecasting using the Q-learning algorithm
(Algorithm 1), by exploring these possible solutions and deciding on the proper parameter
selection for the training model.

Step 3. Model validation
In the following, the system provides the benefit of a quick response for wind power

forecasting through the use of neural net weights using four trained DLN models. To
validate the accuracy of the four experimental models, an evaluation index was chosen to
evaluate the prediction performance of the proposed model as follows:

The MAPE can be defined as

MAPE =
1
N

N

∑
t=0
|Ot − Ôt

Ot
|, (16)

where Ot is the real wind power value, Ôt is the estimated wind power output, and N is the
number of data points. As presented in Equation (15), the MAPE is calculated by dividing
the estimation error by the real value of wind power generation.

4. Experimental Results

In this section, the performance of the proposed TCN-based model was demonstrated
using an example of wind power prediction. The prediction system was executed in the
Linux environment, and the software packages installed are listed in Table 4.
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Table 4. Software packages installed in the wind power forecasting platform.

Item Hardware/Software Installed

CPU AMD Ryzen Threadripper, 1920X (3.4 G)

OS Ubuntu 14.04 LTS 64

GPU Nvidia GTX-2080TI x2

Language Python 3.5

Library Package TensorFlow-gpu 1.13, Pandas 0.23.4, Numpy
1.18, Matplotlib 3.3.2

Step 1. Data pre-processing phase
In the experiment, model pre-training used a project dataset of wind farms from the

Chang-Bin industrial zone (CBTP) for Tai-Power Corporation in Taiwan, including real
weather observations and wind turbine power outputs to pre-train the model. Each record
of the CBTP dataset contained five parameters sampled every 10 min with a total of 192,817
samples listed. The five parameters in the historical file are listed as follows:

6. Date/time: 10 min intervals
7. Wind speed (m/s): The wind speed at the hub height of the turbine.
8. Wind direction (◦): The wind direction at the hub height of the turbine
9. Real power output (kW): The power generated by the turbine for that moment.
10. Theoretical power curve (KWh): The theoretical power values that the turbine gener-

ates with that wind speed, which is generated by the turbine manufacturer.

To increase the recognition accuracy, the correct value of null fields was mislabelled
to build a clean dataset for the experiment. The data cleaning process in experimental
data was manually pre-processed to remove null fields and were pre-filled in the linear
proportions of the neighbouring observation data. The training dataset used samples
collected every 10 min from 1 January 2018 to 31 December 2018. Further, the test dataset
in the experiment was 7 days in total, from 1 January to 7 January 2019.

Step 2. Model training phase
To examine model efficiency, the experiment incorporated four deep neural models

for series data processing, that is, GNN, LSTM, GRU, and TCN, to conduct wind power
forecasting 24–168 h (1–7 days) ahead.

First, a series of experiments were pre-trained to investigate the performance of the
TCN-based classifier effectiveness using the training dataset, where the learning results
were regarded as the basis for the proper selection of model parameters, including five
important hyperparameters for structure design, i.e., the number of filters, dilatation
coefficient, activation function, optimiser, and number of stacks.

To achieve proper selection of hyperparameters in a TCN model, we used a reward
function defined in Equation (10) for neural network generation and hyperparameter tuning
based on Markov decision process. The decision process for generating a TCN architecture
with the optimal parameters on neural network layers using Q-learning algorithm is shown
in Figure 7 [30].
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To improve input processing capability, the TCN model was developed to generate
the receptive field to solve series data input problems. In particular, TCNs address the
problems associated with dilated causal convolution, and residual connection. In theory,
the receptive field size of the TCN depends on the network depth n (number of stacks),
filter size k, and dilation factor d; making the TCN deeper and larger is important to obtain a
sufficiently large receptive field. Empirically, making the network deep and narrow, which
means stacking a large number of layers and choosing a thin filter, results in an effective
architecture [31].

(i) Number of stacks
First, we need to decide the number of stacks for the TCN model. In essence, the

network architecture of a TCN is an extension of a 1D CNN in which a series of 1D
convolutional layers are stacked on one another. [24] In the experiment, we analysed three
different stack numbers n (i.e., 2, 3, 4) from transferring learning cases in the TCN predictor.

(ii) Filter size
Similarly, we analysed three different filter sizes k (i.e., 8, 16, 32) for the receptive

field size of the TCN for the designed TCN-based prediction model using iterations of the
Q-learning computation.

(iii) Dilatation coefficient
As described before, the residual block (d) was used between each layer in the TCN to

accelerate convergence and enable the training of deeper models. From [14], we analysed
three different sets of combinations for the dilatation coefficient d (i.e., 1, 2, 4; 1, 2, 4, 8; 1, 2,
4, 8, 16) in the receptive field size of the model input.

(iv) Activation function
We analysed two major types of nonlinear activation functions, that is, Norm_relu and

Tanh*Sigmoid activation functions used in Wavenet. Then, we calculated the corresponding
convergence error of the cost function for the two activation functions.

(v) Optimiser
To minimise loss during model training, an optimiser was adopted to improve the

predictive accuracy of the model by adjusting the filter weights. We assessed three popular
optimisers for the TCN model: Adam, SGD, and RMSprop.

In summary, the computation process for the proper selection of TCN model parame-
ters is as follows:

1. Initialize the parameters for the model.

The architectural components of the proposed TCN model from GitHub [24] were
regarded as the initial values and are listed in Table 5.

Table 5. Initial parameters for the proposed TCN model.

Parameter Stacks Filter Dilatations Activation
Function Optimizer

Initial value 2, 3, 4 8, 16, 32
[1, 2, 4]

[1, 2, 4, 8]
[1, 2, 4, 8, 16]

norm_relu,
wavenet

Adam,
SGD,

RMSprop

2. Repeat the computation of Algorithm 1 for the developed model until R < 0.1. Select
the appropriate parameter values for the five model parameters in Table 5.

a. The parameter Q table is iterated until the termination condition.
b. Compute Reward R using Equation (14).
c. Update the Q-table using Equation (15) as shown in Table 6.
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Table 6. A record of the Q-learning computation process for selection of optimizer.

R Table

t state t + 1 t + 2 t + 3 Adam RMSprop SGD

Adam 0

Adam 0

Adam 0 Adam 0 −53.60 −6643.26

RMSprop −53.60 RMSprop 53.60 0 −6589.66

SGD −6643.26 SGD 6643.26 6589.66 0

RMSprop −53.60

Adam 53.60 Adam 0 −53.60 −6643.26

RMSprop 0 RMSprop 53.60 0 −6589.66

SGD −6589.66 SGD 6643.26 6589.66 0

SGD −6643.26

Adam 6643.26 Adam 0 −53.60 −6643.26

RMSprop 6589.66 RMSprop 53.60 0 −6589.66

SGD 0 SGD 6643.26 6589.66 0

Q Table

1nd literation

t state t + 1 state

Adam 0

Adam 0

RMSprop 0

SGD 0

2st iteration

t state t + 1 t + 2

Adam 0

Adam 0

Adam 0

RMSprop 0

SGD 0

RMSprop −37.52

Adam 0

RMSprop 0

SGD 0

SGD −4650.28

Adam 0

RMSprop 0

SGD 0

3rd iteration

t state t + 1 t + 2 t + 3 Adam RMSprop SGD

Adam 0

Adam 0

Adam 0 Adam 0 0 0

RMSprop −37.52 RMSprop 0 0 0

SGD −4650.28 SGD 0 0 0

RMSprop −25.14

Adam 37.52 Adam 0 0 0

RMSprop 0 RMSprop 0 0 0

SGD −4612.76 SGD 0 0 0

SGD −3115.69

Adam 4650.28 Adam 0 0 0

RMSprop 4612.76 RMSprop 0 0 0

SGD 0 SGD 0 0 0
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In the experiment, the architecture parameters were determined by computing the
Q-table (Figure 6). Finally, the architecture parameters were selected according to the
results of the Q-learning computation and are listed in Table 7.

Table 7. Architecture parameter settings in the TCN model.

Hyperparameter Stacks Filter Dilatations AF Optimizer

Optimal value 4 32 [1, 2, 4, 8] norm_relu RMSprop
AF = activation function, loss in object function = root_mean_squared_error, max_Epoch = 100.

Then, the selected hyperparameters for the TCN were used to draw comparisons
and calculate the predictive precision of the proposed scheme. As shown in Figure 8,
we evaluated the accuracy of the model in terms of prediction ability to examine the
expected outcome and whether the appropriate model parameters were selected. The
optimal hyperparameters for the TCN can be determined through the error value and
error reduction speed of the loss function. Specifically, the model parameters may require
adjustment if the convergence error decrease is not smooth. From Figure 8, the TCN
accuracy for wind power prediction increased with a decrease in the iteration of the
training data, leading to achievement of stable convergence.
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Figure 8. Convergence error training of the TCN model.

To compare predictive accuracy of DLNs for sequence data processing, three deep
neural models, namely RNN, LSTM, and GRU, were incorporated to examine the proper
setting of the model parameters. First, the initial parameters for the three models from the
transfer learning were regarded as the initial values and are listed in Table 8.

Table 8. Initial parameters for the RNN, LSTM, and GRU models.

Model
Parameter Output Unit Optimizers Learning Rate (lr)

RNN 8, 16, 32 Adam, SGD, RMSprop 0.05, 0.02, 0.01
LSTM 8, 16, 32 Adam, SGD, RMSprop 0.05, 0.02, 0.01
GRU 8, 16, 32 Adam, SGD, RMSprop 0.05, 0.02, 0.01

In the experiment, the architecture parameters were determined based on the results
of the Q-learning computation process. Tables 9 and 10 and Figures 9 and 10 show the
corresponding convergence errors of the cost function for the RNN, LSTM, GRU and TCN
prediction models for wind power forecasting 72 and 168 h ahead. Finally, the hyperpa-
rameters for the model were selected based on the results of the Q-learning computation
and are listed in Table 11.

Once the optimal parameters for the RNN, LSTM, and GRU models were selected,
three predictive models were validated with the same experimental data to conduct
wind power forecasting 72–168 h ahead using the model parameters selected, as listed in
Tables 7 and 11.
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Table 9. Performance of wind power forecasting (72 h ahead).

DLN Models
Training Set Test Set

MAPE (%) MAPE (%)

RNN 6.2 2.2
GRU 1.7 1.3
LSTM 4.1 0.4
TCN 0.9 0.1

Table 10. Performance of wind power forecasting (168 h ahead).

DLN Models
Training Set Test Set

MAPE (%) MAPE (%)

RNN 5.7 2.8
GRU 2.0 1.3
LSTM 4.0 1.3
TCN 1.1 0.3
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Table 11. Selected parameters for the RNN, LSTM, and GRU models.

Model
Parameter Output Unit Optimizers Learning Rate (lr)

RNN 8 Adam 0.005
LSTM 32 SGD 0.001
GRU 32 Adam 0.005

Step 3. Model validation phase
In the experiment, 1-year historical data were used to train four DNNs for wind power

data, and the prediction results for 72, 120, and 168 h ahead are shown in Figures 11–13,
respectively. Figure 13 shows the accuracy associated with using four different prediction
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models where the prediction error of the TCN mode for 168 h (7 d) ahead had the highest
prediction accuracy, MAPE = 1.41%, followed by GRU mode MAPE = 3.72%, LSTM mode
MAPE = 6.99%, and RNN mode MAPE = 28.18%.
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5. Method Comparisons

As shown in Figure 14a, the precision of four prediction models was increased by the
decreased convergence error of the cost function in each iteration of the model training.
More concisely, the descending speed of error convergence for the cost function was rapid
with the increasing number of iterations (epochs). After 60 iterations, the loss function
tended to be stable when TCN and GRU prediction models were applied (Figure 14b).
However, the errors for the RNN and LSTM models did not converge slowly. Notably,
the convergence error of the TCN model decreased more than that of the GRU model
close to the fifteenth epoch, and the convergence error decreased steadily as the number of
iterations increased. The experimental results revealed that the prediction error of the TCN
model decreased the most steadily among the four models, followed by GRU and LSTM.

To discriminate the performance of four prediction models in long-term prediction,
different lengths of the prediction period based on the same amount of training data were
tested. Notably, the experiment varied the lengths of the prediction periods set to examine
the accuracy of the convergence error in practice; Table 12 lists the prediction error (i.e.,
MAPE), and the output results of the modules were sorted for a test set of distinct lengths
of prediction periods with the same data size.

Experimental results show that the prediction error increased as the length of the
prediction period increased. In other words, the prediction error of wind power output
increased with increasing length of prediction period. Particularly, the prediction error of
the TCN-based model remained below 2% with increasing length of the prediction period,
and the forecast errors for 72, 120, and 168 h were 0.07%, 1.71%, and 1.41%, respectively.
In summary, the average prediction error of the proposed TCN-based model was approxi-
mately 1.063% based on 1-year historical data in three different predictive periods. In other
words, the TCN model achieved highly precise prediction accuracy with consistent and
stable results using selected parameters from the Q-learning algorithm.
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Table 12. Performance comparison of four DNN models with prediction error for wind power
forecasting.

Period
Performance Excellent Good Medium Bad

72 h (3 days) TCN (0.07%) LSTM (1.20%) GRU (1.46%) RNN (3.33%)
120 h (5 days) TCN (1.71%) GRU (4.01%) LSTM (7.75%) RNN (35.08%)
168 h (7 days) TCN (1.41%) GRU (3.72%) LSTM (6.99%) RNN (28.18%)

Compared to other studies in wind power forecasting, such as with LSTM [17], LSTM
with grid search (LSTM-grid) [18], bidirectional LSTM with grid search (BiLSTM-grid) [18],
GRU [17], TCN [17], and the ensemble learning-based AAA aggregation model [19], the
detailed comparison information for distinct approaches is listed in Table 13. Notably,
the project of the BSI electric power company used an AAA aggregation model based on
an ensemble-based learning algorithm for 120 h forecasts by aggregating numerous deep
learning models in different climate scenarios and reached approximately 2% prediction
error in 2016. Overall, the proposed TCN-based model with Q-learning algorithm provides
a lower prediction error with higher prediction accuracy than those of earlier deep learning
schemes such as LSTM, BiLSTM, TCN and AAA aggregation models [32] in studies of
wind power forecasting.
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Table 13. Performance comparison with other real projects for wind power forecasting.

Approach Prediction Cycle Prediction Intervals Training Prediction Error Testing Prediction Error

LSTM [17] Short term Within 1 h 6.30% 5.40%

LSTM-grid [18] Short term Within 1 h 8.65% 8.66%

BiLSTM-grid [18] Short term Within 1 h 8.66% 8.64%

GRU [17] Short term Within 1 h 6.00% 5.00%

TCN [17] Short term Within 1 h 2.80% 1.60%

AAA aggregation
model, 2016 [32] Medium term Within 120 h 2.00% 2.00%

Proposed model Medium term Within 168 h 1.41% 1.41%

6. Conclusions

This paper presented a TCN-based model based on a casual convolution architecture
with a Q-learning algorithm to efficiently learn the correlations between meteorological
features and wind power generation. The experimental results show that the Q-learning
algorithm efficiently helps data engineers in determining appropriate parameters for tem-
poral convolutional networks. Additionally, the TCN has a great capability for feature
extraction of long-term sequence data and retains higher prediction accuracy than GRU
and LSTM. Overall, the proposed TCN-based approach outperformed GRU, LSTM, and
RNN in our experiments for wind power forecasting.
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Nomenclature

a the action to the current state s
a′ the action to the new state s′

b bias vector parameters that need to be learned during training
bl

x bias vector corresponding to the l-th hidden layer
c the memory state
c̃ the candidate (memory) cell state
d dilation factors
f the forget gate
Fd(.) the dilated convolution function of d-factor
h the hidden state
k filter size
L(θ) cost function
o the output gate
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Q(s, a ; θ) the quantity of a state-action pair (s, a) for current state s
Qk(s′, a′; θ) the quantity of a state-action pair (s, a) for new state s′

rk(s, a; θ) the reward value of the current state s,
s the current state
s′ a new state after performing action a
xt input vector to the neuron
xl

t the value of the neuron of l-th hidden layer at time t
W the weights that need to be learned during training
W l

x the weights corresponding to the l-th hidden layer
α the learning rate
σ the activation function
γ the discount factor
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