
Citation: Liu, J.; Zhong, Y.

Time-Weighted Community Search

Based on Interest. Appl. Sci. 2022, 12,

7077. https://doi.org/10.3390/

app12147077

Academic Editors: Sławomir

Nowaczyk, Rita P. Ribeiro and

Grzegorz Nalepa

Received: 7 May 2022

Accepted: 11 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Time-Weighted Community Search Based on Interest
Jing Liu 1,2 and Yong Zhong 1,2,*

1 Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu 610041, China;
liujing186@mails.ucas.ac.cn

2 School of Computer Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China

* Correspondence: zhongyong@casit.com.cn

Abstract: Community search aims to provide users with personalized community query services.
It is a prerequisite for various recommendation systems and has received widespread attention
from academia and industry. The existing literature has established various community search
models and algorithms from different dimensions of social networks. Unfortunately, they only judge
the representative attributes of users according to the frequency of attribute keywords, completely
ignoring the temporal characteristics of keywords. It is clear that a user’s interest changes over
time, so it is essential to select users’ representative attributes in combination with time. Therefore,
we propose a time-weighted community search model (TWC) based on user interests which fully
considers the impact of time on user interests. TWC reduces the number of query parameters as much
as possible and improves the usability of the model. We design the time-weighted decay function
of the attribute. We then extract the user’s time-weighted representative attributes to express the
user’s short-term interests more clearly in the query window. In addition, we propose a new attribute
similarity scoring function and a community scoring function. To solve the TWC problem, we design
and implement the Local Extend algorithm and the Shrink algorithm. Finally, we conduct extensive
experiments on a real dataset to verify the superiority of the TWC model and the efficiency of the
proposed algorithm.

Keywords: community search; attributed network; short-term interests; time-weighted score function

1. Introduction

Community is the basis for various recommendation applications, such as friend
recommendation, precision marketing, and activity organization [1–4]. Compared with
community detection, community search can better explain the reasons for the formation of
the community by personalized search according to the query criteria specified by the user.
Therefore, community search has attracted extensive attention in academia and industry.
Many query models and algorithms have emerged to serve various query scenarios.

Unfortunately, the existing models [2–5] do not fully describe users, especially their
representative attributes (including text and spatial attributes). Take the geographic social
network Foursquare as an example: it consists of millions of nodes, where each node
represents a user, and an edge represents the friendship between two users. Users check
in at different times and places. To make the query closer to reality, we should describe
users based on multiple dimensions, such as spatial distance, social relations, interest
attributes, and time. However, these models only judge the representative attributes of
users according to the frequency of keywords. It is worth emphasizing that time plays
an extremely important role in establishing social networks. The time change of users’
check-in records can best reflect their real interest trends. Especially in the recommendation
system, we are more concerned with the short-term interests of users. The more recent the
attributes are, the stronger the ability to represent users’ current interests, and the greater

Appl. Sci. 2022, 12, 7077. https://doi.org/10.3390/app12147077 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12147077
https://doi.org/10.3390/app12147077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12147077
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12147077?type=check_update&version=2

Appl. Sci. 2022, 12, 7077 2 of 15

the weight that should be assigned. Therefore, selecting representative attributes only
according to the frequency of keywords is inappropriate.

To alleviate the query dilemma caused by incomplete query dimensions and harsh
query conditions, we propose a new community search model—Time-Weighted Commu-
nity Search Based on Interest (TWC). When a user wants to find friends with interests
similar to their own recent interests to form a community, TWC can provide efficient
queries. TWC comprehensively considers the impact of space, structure, text, and time on
the community and requires as few parameters as possible to start the query. Specifically,
given a geographic social network graph, a query vertex, and a positive integer, TWC aims
to find a subgraph—that is, a connected k-core—with the highest attribute similarity score.
TWC does not require users to specify query keywords, avoiding low-quality communities
caused by inappropriate keywords. It extracts representative attributes from users’ histori-
cal records and better explains the reasons for the formation of the community. At the same
time, we calculate their weights based on the check-in time and frequency of the attributes.
On this basis, a new node similarity scoring function and a subgraph scoring method are
designed. In this article, we assume that the greater the attribute weight, the stronger the
ability to represent users’ current interests. Figure 1 shows an example of a social network
diagram and the weighted attribute list of nodes.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 15

that should be assigned. Therefore, selecting representative attributes only according to
the frequency of keywords is inappropriate.

To alleviate the query dilemma caused by incomplete query dimensions and harsh
query conditions, we propose a new community search model—Time-Weighted Commu-
nity Search Based on Interest (TWC). When a user wants to find friends with interests
similar to their own recent interests to form a community, TWC can provide efficient que-
ries. TWC comprehensively considers the impact of space, structure, text, and time on the
community and requires as few parameters as possible to start the query. Specifically,
given a geographic social network graph, a query vertex, and a positive integer, TWC
aims to find a subgraph—that is, a connected k-core—with the highest attribute similarity
score. TWC does not require users to specify query keywords, avoiding low-quality com-
munities caused by inappropriate keywords. It extracts representative attributes from us-
ers’ historical records and better explains the reasons for the formation of the community.
At the same time, we calculate their weights based on the check-in time and frequency of
the attributes. On this basis, a new node similarity scoring function and a subgraph scoring
method are designed. In this article, we assume that the greater the attribute weight, the
stronger the ability to represent users’ current interests. Figure 1 shows an example of a social
network diagram and the weighted attribute list of nodes.

Our main contributions are as follows:
(1) Fully considering the characteristics of geographic social networks, we propose a

new community search model, Time-Weighted Community Search Based on Interest
(TWC), by considering the four dimensions of structural cohesiveness, spatial cohe-
siveness, interest, and time.

(2) We design the attribute time-weighted decay function and then extract the user’s
time-weighted representative attributes, which express the user’s interest trend
clearly in the query window. In addition, we propose a new attribute similarity scor-
ing function and a community scoring function.

(3) In order to solve the TWC problem, we design a Local Extend algorithm from inside
to outside and a Shrink algorithm from outside to inside to deal with different search
scenarios.

(4) We carry out many experiments on the real dataset. Comparison with similar algo-
rithms shows that the community nodes of TWC are similar to the current interests
of query points and can better express the short-term interests of query users.

Figure 1. Geographic social network graph.

2. Related Work
Community search was originally designed to organize a cocktail party [1] with a

good atmosphere. It organized a temporary community, and each user in the community
was familiar with at least k users. Unlike community detection, community search can
complete queries online through various index structures to improve efficiency. The

Figure 1. Geographic social network graph.

Our main contributions are as follows:

(1) Fully considering the characteristics of geographic social networks, we propose a
new community search model, Time-Weighted Community Search Based on Inter-
est (TWC), by considering the four dimensions of structural cohesiveness, spatial
cohesiveness, interest, and time.

(2) We design the attribute time-weighted decay function and then extract the user’s time-
weighted representative attributes, which express the user’s interest trend clearly in
the query window. In addition, we propose a new attribute similarity scoring function
and a community scoring function.

(3) In order to solve the TWC problem, we design a Local Extend algorithm from in-
side to outside and a Shrink algorithm from outside to inside to deal with different
search scenarios.

(4) We carry out many experiments on the real dataset. Comparison with similar algo-
rithms shows that the community nodes of TWC are similar to the current interests of
query points and can better express the short-term interests of query users.

2. Related Work

Community search was originally designed to organize a cocktail party [1] with a
good atmosphere. It organized a temporary community, and each user in the community
was familiar with at least k users. Unlike community detection, community search can

Appl. Sci. 2022, 12, 7077 3 of 15

complete queries online through various index structures to improve efficiency. The existing
community search models can be roughly divided into the following categories according
to different evaluation dimensions.

(1) Community search based on structural cohesion and spatial cohesion
These kinds of community search models [2–9] are usually applied to simple graphs

without considering the textual attributes of vertices. They aim to find a group of ver-
tices that meet specific structural cohesion metrics and are close to each other to form a
community. SSGQ [2] looks for a spatially aware community to reduce traffic time to the
specifying aggregation. The vertices in the community form a k-core, and the distance to
the aggregation place is the smallest. To find a group of users geographically close to each
other, [5] used MCC to represent the minimum wrapping circle of the community. Under
the same structural cohesion, the target community’s MCC is the smallest. In order to find
more compact communities, [7] proposed a (k, d)-MCC search model, which requires that
nodes meet the k-core and that the distance is not more than d.

(2) Community search based on structural cohesion and text attribute relevance
These search models perform community searches on attribute graphs, and it is worth

noting that they are different from the traditional spatial keyword search [10,11]. The
spatial keyword search in [12] aims to find vertices containing query keywords and returns
them in the form of a tree. However, the community search model in [13–15] returns
a subgraph, requiring that the subgraph nodes satisfy specific text attribute similarities
metrics and contain the query vertices. The ACQ model [14] searches for an optimal
community such that the nodes form as a k-core and share the most keywords with the
query keywords set. Unfortunately, it treats all keywords equally, ignoring differences in
weight. The community search in [15] employs (k-d)-truss as the structural cohesiveness
metric, includes query vertexes, and requires that the distance from each node to the vertex
set does not exceed d hops. Compared with [14], ATC believes that vertex attributes should
own different weights related to the frequency of occurrence. However, unfortunately, it
still ignores the influence of time on attribute weights. Therefore, ATC cannot be directly
applied to solve the TWC problem.

(3) Community search based on structural cohesion and hybrid similarity
Hybrid similarity means that both spatial similarity and text attribute similarity are met

simultaneously [16–18]. For example, the target communities of the ACOC model in [16]
should contain all query keywords in the query attribute set. In addition to satisfying
the k-core metric, the diameter of the community induced by these vertices should be
minimal. ACOC has strict requirements for query parameters, which may result in an
empty community. Although the VAC model [18] does not require users to specify query
keywords, the application scenarios of VAC and TWC are different. VAC does not consider
the impact of time on user interest. In addition, VAC’s scoring function is different from
TWC and does not highlight the decisive role of the query node in the composition of the
community. We will make a specific comparison in the experimental part.

Interest drift means that users’ interests change over time, which is the basis of this
paper. Scholars have proposed various methods to model user interest drift and applied
them to multiple recommendation scenarios [19–22]. In [20], they employed the time
decay function to model user behavior and proposed an adaptive collaborative filtering
method to predict the user’s future interest. The forgetting curve function has been used
in a personalized recommendation system to model user interest [22]. The more recent
the transaction time, the greater the user’s interest, which is consistent with the original
intention of our paper. However, the model [22] cannot be used to solve the TWC problem.
Firstly, the application of the forgetting curve in [22] is not comprehensive because it ignores
the enhancement of user interest by repeated check-in. In addition, the decay granularity
in [22] is rough. It treats the item as a whole and considers users as similar only when
they interact with the same item. However, different items may share common keywords.
Although users interact with different projects, they may be similar. Therefore, we choose
to model keywords which can better describe users’ interests. In the experimental part,

Appl. Sci. 2022, 12, 7077 4 of 15

we compared the overlapping communities found in literature [22], which proved that the
application of forgetting curve in TWC is more appropriate.

3. Problem Formulation

The problem we aim to solve is defined on an undirected, unweighted geographic
social attribute network G = (V, E), where V is the vertex set and E is the edge set. For
each vertex v ∈ V, it has a text attribute set A(v), and a location P(v) =

(
Px(v), Py(v)

)
,

where Px(v) and Py(v) denote its latitude and longitude coordinates in a two-dimensional
space. For any subgraph H = (VH , EH) ⊆ G, VH ⊆ V and EH ⊆ E are maintained. Table 1
shows the notations used in this paper.

Table 1. Notations and meanings.

Notation Meaning

G = (V, E) a graph with vertex set V and edge set E

H ⊆ G H is a subgraph of G, and VH and EH are the vertex set and
edge set of H, respectively

degH(v) the degree of vertex v in H
AvgDegree(H) the average degree of nodes in graph H

Tj a check-in timestamp
A(v) = {A1(v), A2(v), . . . , Al(v)} text attribute set of node v

W(v) = {W1(v), W2(v), . . . , Wl(v)} attribute weight set of node v, ∑l
i=1 Wi(v) = 1

l = |A(v)| size of attribute set A(v)

A(u, v) = A(u) ∪ A(v) union of attribute sets A(u) and A(v) without duplicate
attributes

Vec(v) = (Vec1(v), Vec2(v), . . . , Vecl_dimen(v)) attribute weight vector of A(u, v)
l_dimen = |A(u, v)| size of attribute set A(u, v)

P(v) =
(

Px(v), Py(v)
) position of node v, and Px(v), Py(v) are v’s latitude and

longitude coordinates

Pj(v) =
(

Pxj(v), Pyj(v)
) check-in coordinates of node v at Tj, and Pxj(v), Pyj(v) are v’s

latitude and longitude at Tj
CosTime(u, v) the textual similarity score of node u and v

GSim(u, v) the spatial similarity score of node u and v
TScore(q, v) the similarity score of node v and q
TScore(q, H) the graph score of H containing q

r the time decay factor
α the balance factor of different type of attribute scores

Before formally formulating our problem, we first introduce the structure cohesiveness
metric, the attribute time-weighted decay function, and the attribute similarity scoring
function used in this paper.

3.1. Structure Cohesiveness

The commonly used structural cohesion matrices include k-clique, k-truss, and k-core.
Due to its fast calculation and wide applications, we adopt k-core as a structural cohesion
matric in this paper. However, k-core is not always connected, so we only consider the
connected k-core as a community.

Definition 1. (Connected k-core) Given a graph G and a non-negative integer k, a connected k-core
is a connected subgraph H of graph G, where ∀v ∈ EH , degH(v) ≥ k.

In our algorithm, k-core can be easily replaced by other structural cohesion indicators
to meet the structural requirements of different scenarios.

3.2. Time-Weighted Decay Function

Intuitively, users’ interests change over time, and the more recent the attribute, the
more representative it is, as with the location attributes. In addition, the higher the attribute

Appl. Sci. 2022, 12, 7077 5 of 15

frequency, the stronger the ability to express interest. The user’s interest in attributes is the
largest at check-in and then decays at a certain speed. As shown in Figure 2, assuming that
attribute Ai(v) appears in v’s check-in records at T0, T1 and T2, the user v’s interest in Ai(v)
is enhanced every time. This is consistent with the law of human memory, known as the
Ebbinghaus memory curve.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 15

3.2. Time-Weighted Decay Function
Intuitively, users’ interests change over time, and the more recent the attribute, the

more representative it is, as with the location attributes. In addition, the higher the attrib-
ute frequency, the stronger the ability to express interest. The user’s interest in attributes
is the largest at check-in and then decays at a certain speed. As shown in Figure 2, assum-
ing that attribute 𝐴୧(𝑣) appears in 𝑣’s check-in records at 𝑇, 𝑇ଵ and 𝑇ଶ, the user 𝑣’s in-
terest in 𝐴୧(𝑣) is enhanced every time. This is consistent with the law of human memory,
known as the Ebbinghaus memory curve.

Figure 2. Interest decay curve caused by multiple check-ins.

Let 𝛾 be the decay factor, representing the decay rate of interest. The larger the 𝛾,
the faster the attenuation. To simplify subsequent operations, let 𝛾 remain constant at
each check-in. We designed decay functions for single check-in and repeated check-in oc-
casions of attributes, as shown in Formulas (1)–(3). 𝑓(𝐴(𝑣), 𝑇) = 𝑒ି∆௧ೕ (1)

𝑓൫𝐴୧(𝑣)൯ = 𝑓(𝐴(𝑣), 𝑇)ேೡ
ୀ (2)

𝑊(𝑣) = 𝑓൫𝐴(𝑣)൯∑ 𝑓൫𝐴୫(𝑣)൯୫ୀଵ (3)

Formula (1) expresses the attenuation of user 𝑣’s interest in 𝐴(𝑣) from time 𝑇 ,
where ∆𝑡 = ்ି்ೕ்ି ೞ்ೌೝ, 𝑇 is the check-in time of 𝐴(𝑣), and 𝑇௦௧௧ and 𝑇ௗ are the start
and end timestamps of the whole query window. As can be seen from Formula (1), the
fresher the 𝑇 is, the smaller the ∆𝑡 and the larger the 𝑓(𝐴(𝑣), 𝑇), indicating that the
user is more interested in the attribute 𝐴(𝑣). Since 𝐴(𝑣) may appear in several check-
in records at different times 𝑇, Formula (2) describes 𝑣’s overall interest in 𝐴(𝑣), where 𝑁௩ is the sum of the occurrence times of 𝐴(𝑣) in the historical check-in records of user 𝑣. For the convenience of comparison, we normalize 𝑣’s interest in all attributes and fi-
nally obtain the weight of attribute 𝐴(𝑣) named as 𝑊(𝑣), which is 𝑣’s interest in attrib-
ute 𝐴(𝑣). The larger the 𝑊(𝑣), the greater the user 𝑣 ’s interest in 𝐴(𝑣). Note that ∑ 𝑊(𝑣)ୀଵ = 1.

Ebbinghaus memory curve is also applicable to users’ spatial attributes. Assuming
that the check-in location of user 𝑣 at 𝑇 is 𝑃(𝑣) = (𝑃௫(𝑣), 𝑃௬(𝑣)) and they have
checked in 𝑁 times in the whole history query window, the spatial position after
weighted attenuation integration is shown in Formulas (4) and (5).

Figure 2. Interest decay curve caused by multiple check-ins.

Let γ be the decay factor, representing the decay rate of interest. The larger the γ, the
faster the attenuation. To simplify subsequent operations, let γ remain constant at each
check-in. We designed decay functions for single check-in and repeated check-in occasions
of attributes, as shown in Formulas (1)–(3).

f
(

Ai(v), Tj
)
= e−r∆tj (1)

f (Ai(v)) =
Ni

v

∑
j=0

f
(

Ai(v), Tj
)

(2)

Wi(v) =
f (Ai(v))

∑l
m=1 f (Am(v))

(3)

Formula (1) expresses the attenuation of user v’s interest in Ai(v) from time Tj, where

∆tj =
Tend−Tj

Tend−Tstart
, Tj is the check-in time of Ai(v), and Tstart and Tend are the start and end

timestamps of the whole query window. As can be seen from Formula (1), the fresher
the Tj is, the smaller the ∆tj and the larger the f

(
Ai(v), Tj

)
, indicating that the user is

more interested in the attribute Ai(v). Since Ai(v) may appear in several check-in records
at different times Tj, Formula (2) describes v’s overall interest in Ai(v), where Ni

v is the
sum of the occurrence times of Ai(v) in the historical check-in records of user v. For the
convenience of comparison, we normalize v’s interest in all attributes and finally obtain
the weight of attribute Ai(v) named as Wi(v), which is v’s interest in attribute Ai(v). The
larger the Wi(v), the greater the user v’s interest in Ai(v). Note that ∑l

i=1 Wi(v) = 1.
Ebbinghaus memory curve is also applicable to users’ spatial attributes. Assuming that

the check-in location of user v at Tj is Pj(v) =
(

Pxj(v), Pyj(v)
)

and they have checked in N
times in the whole history query window, the spatial position after weighted attenuation
integration is shown in Formulas (4) and (5).

Px(v) = ∑N
j=0 e−r∆tj Pxj(v) (4)

Py(v) = ∑N
j=0 e−r∆tj Pyj(v) (5)

Appl. Sci. 2022, 12, 7077 6 of 15

Here, ∆tj =
Tend−Tj

Tend−Tstart
, r is the decay factor, the same as in Formula (1). The more recent

the coordinates, the stronger the ability to represent the user’s current position. Figure 1
shows nodes’ text attributes and their corresponding weights, which is the basis of node
similarity evaluation.

3.3. Attributes Similarity Scoring Function

We evaluate the similarity between users from two aspects: text attributes and spatial
attributes. For text attribute similarity, Jaccard similarity is usually preferred, which means
that the more attributes shared between two nodes there are, the more similar they are.
Nevertheless, Jaccard similarity treats all attributes equally, ignoring the corresponding
weights, which is inconsistent with the problem studied in our paper. Therefore, we design
an improved cosine similarity method to measure their textual similarity.

Let A(u) =
{

A1(u), A2(u), . . . , Al1(u)
}

and A(v) =
{

A1(v), A2(v), . . . , Al2(v)
}

be
the attribute set of u and v, where l1 does not have to equal l2. Their corresponding weights
are W(u) =

{
W1(u), W2(u), . . . , Wl1(u)

}
and W(v) =

{
W1(v), W2(v), . . . , Wl2(v)

}
. In or-

der to compare the similarity of node attributes in the same dimensions, we integrate
their attribute sets as A(u, v) = A(u) ∪ A(v) = {A1(u, v), A2(u, v), . . . , Al_dimen(u, v)},
where l_dimen = |A(u, v)|, representing the size of the attribute set A(u, v) without dupli-
cate attributes. Then, taking A(u, v) as the metric space, we design the attribute weight
vector of node v as Vec(v) = (Vec1(v), Vec2(v), . . . , Vecl_dimen(v)). For attribute weight
vector Vec(v), if Ai(u, v) ∈ A(v), i = 1, . . . , l_dimen, make Veci(v) = Wi(v), otherwise
Veci(v) = 0. We construct the vector Vec(u) = (Vec1(u), Vec2(u), . . . , Vecl_dimen(u)) in the
same way. When comparing with different users, the attribute weight vector of v may be
different due to the different metric space. Now, we define the text attribute similarity
function of node u and v as

CosTime(u, v) =
Vec(u)·Vec(v)

‖Vec(u)‖ ‖Vec(v)‖ (6)

where Vec(u) and Vec(v) are the attribute weight vector of node u and v, and Vec(u)·Vec(v)
represents the dot product of Vec(u) and Vec(v), ‖Vec(u)‖ and ‖Vec(v)‖ are the lengths
of Vec(u) and Vec(v). The more shared attributes and the greater the weight of shared
attributes, the more similar they are in textual attributes.

As shown in Figure 1, we take q as the query node, V0 and V1 as candidate nodes,
and then calculate the similarity with q. If Jaccard is employed, Jaccard(q, V0) = 0.5,
Jaccard(q, V1) = 0.8, and V1 should be the target node. However, the weights of shared

attributes in q are small, which can not sufficiently represent q’s interests.
When we take CosTime as the similarity function, CosTime(q, V0) = 0.787,

CosTime(q, V1) = 0.67, then V0 should be selected due to the shared attributes’ own larger
weights, and they are more suitable to describe q’s short-term interests.

For spatial attributes, we adopt Euclidean distance to measure the spatial similarity of
nodes. Given the nodes’ locations according to Formula (4) and (5), we define their spatial
similarity as

GSim(u, v) =
1

1 + dist(u, v)
(7)

where dist(u, v) is the Euclidean distance between u and v. Obviously, the greater the
distance, the lower the similarity. To comprehensively evaluate various attributes, we
employ parameter α to balance text attributes and spatial attributes. Then, the similarity of
nodes is

TScore(u, v) = αCosTime(u, v) + (1− α)GSim(u, v) (8)

Note that CosTime(u, v) ∈ [0, 1], GSim(u, v) ∈ [0, 1], so TScore(u, v) ∈ [0, 1]. In this
paper, we assume that the greater the TScore(u, v), the higher the similarity. Based on the
attribute similarity of nodes, we define the score of the graph as follows.

Appl. Sci. 2022, 12, 7077 7 of 15

Definition 2. (Attribute similarity score of the graph) Given a subgraph H ⊆ G and a query node q,
the attribute similarity score of H is expressed as TScore(q, H), which is the minimum value of the
similarity scores between q and all others nodes in H—that is, TScore(q, H) = min

v∈VH
TScore(q, v).

We formally define the time-weighted community search (TWC) based on user interest,
as shown below.

Problem 1. (TWC-problem) Given an attributed graph G = (V, E), a query node q, and a
non-negative integer k, the time-weighted community search based on user’s interest can
return a subgraph H ⊆ G, satisfying the following conditions:

(1) Connectivity: H is a connected graph containing q.
(2) Structure cohesiveness: ∀v ∈ H, degH(v) ≥ k.
(3) Attribute score maximum: While satisfying (1) and (2), the attribute similarity score

of H, TScore(q, H), is the highest, where TScore(q, H) = min
v∈VH

TScore(q, v).

(4) There does not exist another subgraph H′ ⊇ H satisfying the above three properties.

We re-observe Figure 1 and let q be the query vertex, k = 3. Since
TScore(q, H1) = 0.226 < TScore(q, H2) = 0.67 and a 4-core subgraph does not exist,
we select H2 = {q, v0, v1, v5} as the optimal solution.

4. Methods

In order to solve the TWC problem, we designed a Local Extend algorithm and a
Shrink algorithm. Before introducing the specific algorithm, we first explain the concept of
feasible community.

Definition 3. (Feasible Community) A subgraph H ⊆ G is a feasible community of TWC, only if
H is a connected k− core, containing the query node q.

The feasible community meets the requirements (1) and (2) defined in TWC. A most
intuitive method is finding all feasible communities, calculating their scores one by one, then
selecting the community with the best score as the optimal solution for TWC. Unfortunately,
this method is not suitable for large-scale social network graphs for its huge computational
cost. Thus, we will no longer consider it.

4.1. Local Extend Algorithm

The intuitive algorithm is essentially the enumeration of graphs starting from q,
resulting in massive invalid subgraphs. According to the nesting nature of k-core, we
believe that if there is a better solution, it must be included by the initial feasible community.
Therefore, we first detect the maximum feasible community H as the initial subgraph, which
can significantly reduce the search space. We calculate TScore(q, v) for each node v in H,
then sort them in descending order according to the score. Starting from q, we gradually
expand the nodes under the guidance of the best score until a feasible community is formed.
Then, we choose the feasible community with the highest score, that is, the optimal solution.
We use Et to represent the extended point set, C represents the candidate point set, HB
represents the current optimal solution, and HEt+v represents the feasible solution derived
from Et + v. During each expansion, we select the best node according to the following
node selection strategy:

• Strategy 1: Select the neighbor node v of Et from C with the highest TScore(q, v);
• Strategy 2: If there are multiple nodes satisfying strategy (1), we choose the node with

the largest degree.

Appl. Sci. 2022, 12, 7077 8 of 15

Strategy 1 ensures that the score of the subgraph is monotonically decreasing. Strategy
2 is to select nodes with cohesive structures and organize them into feasible solutions as
soon as possible. At the same time, we follow the following extension rules and stop rules.

• Extend Rule 1: If TScore(q, HEt+v) < TScore(q, HB) and |HB| > |HEt+v|, then add
node v to Et and continue to expand.

• Extend Rule 2: If TScore(q, HEt+v) > TScore(q, HB), then add node v to Et, update
HB = HEt+v and continue to expand.

• Extend Rule 3: If TScore(q, HEt+v) = TScore(q, HB) and |HB| < |HEt+v|, then add
node v to Et, update HB = HEt+v and continue to expand.

Extend Rule 1 describes the early stage of the algorithm, not finding enough nodes to
form a feasible community. Extend Rule 2 shows that the addition of node v allows us to
obtain a new feasible solution with a higher score, and so we update the current optimal
community. Extend Rule 3 occurs after Extend Rule 2. Adding a new best node v does not
reduce the score of HB, indicating that the algorithm has found a larger feasible community
and should update the current optimal solution.

• Stop Rule 1: If TScore(q, HEt+v) < TScore(q, HB) and HB ⊆ HEt+v, then stop extension.
• Stop Rule 2: If C = ∅, then stop extension.

Stop Rule 1 may be triggered after the feasible solution is formed. Specifically, if HB
cannot maintain its score when expanding v, we can conclude that there will not exist a
more extensive feasible community whose score is no less than HB. Thus, the expansion
should be stopped and return HB as the optimal solution. Stop Rule 2 is easy to understand.
There are no extensible nodes, so HB is naturally the optimal community.

The Local Extend algorithm is outlined in Algorithm 1, which integrates all expansion
and stop strategies. In the worst case, the initial feasible solution is the optimal solution,
and thus the algorithm will expand from q to each node, but generally not.

Algorithm 1 Local Extend Algorithm (G, q, k)

Input: A graph G = (V, E), a query node q, a non-negative integer k.
Output: A k− core HB with the maximum TScore(q, HB).
1: Find the maximum feasible community H as initial subgraph.
2: For each node v in H, compute TScore(q, v), then arrange them in descending order
according to the score.
3: Et← q; C ← VH − q; HB ← H;
4: Extend (Et, C, HB)
5: return HB.
Procedure Extend(Et, C, HB)
6: if C = ∅, then
7: Update HB; over;
8: else
9: Select the best node v from C according to the vertex selection strategy.
10: if TScore(q, HEt+v) < TScore(q, HB) and |HB| > |HEt+v|, then
11: Extend(Et + v, C− v, HB);
12: else if TScore(q, HEt+v) > TScore(q, HB) then
13: HB ← HEt+v ;
14: Extend(Et + v, C− v, HB);
15: else if TScore(q, HEt+v) = TScore(q, HB) and |HB| < |HEt+v|, then
16: HB ← HEt+v ;
17: Extend(Et + v, C− v, HB);
18: else if TScore(q, HEt+v) < TScore(q, HB) and HB ⊆ HEt+v, then
19: update HB; over.

We use the graph in Figure 1 to illustrate the Local Extend algorithm. We assume that
q is the query vertex and k = 3. Table 2 shows the expansion process. Step 1–Step 3 follow
Extend Rule 1. In Step 4, with the addition of node v1, TScore(q, HEt+v) > TScore(q, HB),

Appl. Sci. 2022, 12, 7077 9 of 15

the algorithm updates HB as {q, v5, v0, v1}. In Step 5, the addition of node v2 leads to
the reduction in the score of the feasible algorithm HEt+v, so the algorithm ends, and the
optimal solution of TWC is H2 = {q, v5, v0, v1}.

Table 2. Illustration of Algorithm 1 on the graph in Figure 1.

Step Et C HEt+v HB

Step 1 q v5, v0, v1, v2, v4 ∅ q, v5, v0, v1, v2, v4
Step 2 q, v5 v0, v1, v2, v4 ∅ q, v5, v0, v1, v2, v4
Step 3 q, v5, v0 v1, v2, v4 ∅ q, v5, v0, v1, v2, v4
Step 4 q, v5, v0, v1 v2, v4 q, v5, v0, v1 q, v5, v0, v1
Step 5 q, v5, v0, v1, v2 v4 q, v5, v0, v1, v2 q, v5, v0, v1

4.2. Shrink Algorithm

The closer the initial community is to the optimal solution, the less efficient the Local
Extend algorithm is. In the worst case, it needs to traverse all nodes. In order to solve this
query dilemma, we design a Shrink algorithm, which is also inspired by k-core nesting.
Given an initial feasible community HB, to obtain a better solution H′B ⊂ HB, then we
only need to delete some nodes VHB−H′B

from HB. According to the definition of TWC, we
can delete nodes that contribute less to the score of the subgraph without damaging the
structure of the feasible community. As shown in Algorithm 2, the Shrink algorithm can
be divided into three steps. First, we operate core decomposition and find the maximum
k-core containing q as the initial subgraph H of the algorithm. Then, for each node v in H,
we calculate their similarity score TScore(q, v) and sort them in ascending order according
to the score. Finally, we delete nodes gradually until H cannot be maintained as a feasible
community and take the latest feasible solution as the optimal solution.

Algorithm 2 Shrink Algorithm (G, q, k)

Input: A graph G = (V, E), a query node q, a non-negative integer k.
Output: A k− core HB with the maximum TScore(q, HB).
1: Find the maximum feasible community H as initial subgraph.
2: Compute TScore(q, v), form them as an ascending list Sim_list = {(v, TScore(q, v)) : ∀v ∈ H}.
3: Compute and form their core numbers as Core(H) = {(v, core(v)) : ∀v ∈ H}.
4: while H exists do
5: HB ← H ;
6: Select the first node v in Sim_list as the node to be deleted.
7: Delete v and its incident edges from H;
8: Delete v from Sim_list;
9: Update Core(H) with the core maintenance algorithm, and organize nodes as
Impossible = {v : ∀v ∈ H and core number core(v) < k}
10: For nodes in Impossible, remove them from H and Sim_list;
11: Maintain H as a feasible community;
12: Return the latest feasible community as HB.

As shown in Algorithm 2, the Shrink algorithm maintains an ascending sequence
of similarity. Deleting nodes one by one according to the order in Sim_list can gradually
improve the score of feasible community and avoid blind trial and error. We note that
deleting nodes may change the core numbers of their neighbors. Therefore, we employ
the dynamic core maintenance algorithm proposed by [23] to update the core numbers,
avoiding multiple global core decomposition. We record these nodes whose core number is
less than k during the core maintenance procedure and organize them as Impossible. Then,
we remove them from Sim_list, which can significantly shorten the length of Sim_list and
stop the iteration as early as possible.

As shown in Figure 1, we initiate the query Q = (G, q, 3), and the initial feasible
community is H1 = {q, v4, v2, v1, v0, v5}. According to the Shrink algorithm, we first delete

Appl. Sci. 2022, 12, 7077 10 of 15

v4, and then we observe that core(v2) = 2 < k, meaning v2 will not appear in the final
feasible community, so that we can remove {v4, v2} from Sim_list together. After two
iterations, the optimal solution found by the Shrink algorithm is H2 = {q, v5, v0, v1}, which
is the same as the Local Extend algorithm.

5. Results

In this part, we implement our proposed TWC model and the corresponding algorithm
in Python and evaluate their effectiveness and efficiency. All experiments were conducted
on a Linux Server with Intel Xeon CPU E5-2630 (2.2 GHz) and 125 GB memory.

We conducted all experiments on Foursquare [24], which includes long-term check-in
data for about 22 months from Apr 2012 to Jan 2014, venue data, and friend relationship
data. The dataset contains 22,809,624 check-ins by 114,324 users at 3,820,891 venues. Each
row in the friend’s snapshot file indicates a friendship between two users. Each check-in
record includes the user ID, venue ID, and check-in time. Each venue ID corresponds
to several category keywords. If a user checks in at a venue, we believe that the user
is interested in the attributes related to the venue ID. We note, however, that users may
check-in at different venues, and different venues may have the same category of keywords.
Therefore, we calculate the cumulative weight of attributes according to Formulas (1)–(3).

5.1. Case Study

Since VAC also adopts the idea of taking query points as the center, which is very
similar to TWC, we first compare it with VAC. To fairly compare the two models, we first
transform the VAC model into a k-core-based model and change the scoring function from
distance to similarity: the more significant the similarity, the higher the score. We randomly
select node q as the query node, search communities using the DFS-based VAC algorithm
and TWC’s Local Extend algorithm, respectively, and then compare the similarity between
vertices and q. Taking node UserId = 769697 as query node q, we set k = 10, α = 1, use
VAC and TWC model to query, respectively, and record the queried communities as Hvac
and Htwc. Figure 3 shows the nodes in the community in terms of Jaccard similarity and
CosTime similarity.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15

As shown in Algorithm 2, the Shrink algorithm maintains an ascending sequence of
similarity. Deleting nodes one by one according to the order in 𝑆𝑖𝑚_𝑙𝑖𝑠𝑡 can gradually
improve the score of feasible community and avoid blind trial and error. We note that
deleting nodes may change the core numbers of their neighbors. Therefore, we employ
the dynamic core maintenance algorithm proposed by [23] to update the core numbers,
avoiding multiple global core decomposition. We record these nodes whose core number
is less than 𝑘 during the core maintenance procedure and organize them as 𝐼𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒.
Then, we remove them from 𝑆𝑖𝑚_𝑙𝑖𝑠𝑡 , which can significantly shorten the length of 𝑆𝑖𝑚_𝑙𝑖𝑠𝑡 and stop the iteration as early as possible.

As shown in Figure 1, we initiate the query 𝑄 = (𝐺, 𝑞, 3), and the initial feasible com-
munity is 𝐻ଵ = {𝑞, 𝑣ସ, 𝑣ଶ, 𝑣ଵ, 𝑣, 𝑣ହ}. According to the Shrink algorithm, we first delete 𝑣ସ,
and then we observe that core(𝑣ଶ) = 2 < 𝑘, meaning 𝑣ଶ will not appear in the final fea-
sible community, so that we can remove {𝑣ସ, 𝑣ଶ} from 𝑆𝑖𝑚_𝑙𝑖𝑠𝑡 together. After two itera-
tions, the optimal solution found by the Shrink algorithm is 𝐻ଶ = {𝑞, 𝑣5, 𝑣0, 𝑣1}, which is
the same as the Local Extend algorithm.

5. Results
In this part, we implement our proposed TWC model and the corresponding algo-

rithm in Python and evaluate their effectiveness and efficiency. All experiments were con-
ducted on a Linux Server with Intel Xeon CPU E5-2630 (2.2 GHz) and 125 GB memory.

We conducted all experiments on Foursquare [24], which includes long-term check-
in data for about 22 months from Apr 2012 to Jan 2014, venue data, and friend relationship
data. The dataset contains 22,809,624 check-ins by 114,324 users at 3,820,891 venues. Each
row in the friend’s snapshot file indicates a friendship between two users. Each check-in
record includes the user ID, venue ID, and check-in time. Each venue ID corresponds to
several category keywords. If a user checks in at a venue, we believe that the user is inter-
ested in the attributes related to the venue ID. We note, however, that users may check-in
at different venues, and different venues may have the same category of keywords. There-
fore, we calculate the cumulative weight of attributes according to Formulas (1)–(3).

5.1. Case Study
Since VAC also adopts the idea of taking query points as the center, which is very

similar to TWC, we first compare it with VAC. To fairly compare the two models, we first
transform the VAC model into a k-core-based model and change the scoring function from
distance to similarity: the more significant the similarity, the higher the score. We ran-
domly select node 𝑞 as the query node, search communities using the DFS-based VAC
algorithm and TWC’s Local Extend algorithm, respectively, and then compare the simi-
larity between vertices and 𝑞. Taking node UserId = 769697 as query node 𝑞, we set 𝑘 =
10, α = 1, use VAC and TWC model to query, respectively, and record the queried com-
munities as 𝐻௩ and 𝐻௧௪. Figure 3 shows the nodes in the community in terms of Jac-
card similarity and CosTime similarity.

(a) (b)

Figure 3. Comparison of community nodes queried by different models. (a) Nodes in Hvac community
and their similarity with q; (b) nodes in Htwc community and their similarity with q.

As shown in Figure 3a, the three nodes {‘1474184’, ‘639615’, ‘647188’} in Hvac are
abandoned by Htwc because, although they have high Jaccard similarity with q, their
CosTime similarity is relatively low—especially the node ‘647188’, which is significantly
reduced. In other words, although they share many attributes with q, the related check-in
record occurred a long time ago and cannot represent q’s current interests. We observe
that Htwc replaces them with five new nodes, {‘1190126’, ‘665064’, ‘1472376’, ‘1458831’,
‘1026751’}, as shown in Figure 3b. Although their Jaccard similarity with q is low, the
attributes they share with q have a larger weight in q’s attributes set, which can better
represent q’s current interests. This phenomenon proves that the more recent the shared

Appl. Sci. 2022, 12, 7077 11 of 15

attributes, the greater the similarity of users’ short-term interests. In terms of community
score, TScore(q, Hvac) = 0.016, TScore(q, Htwc) = 0.021, and the score of Htwc increased
by 34% compared with Hvac. In addition, the community becomes more cohesive for
AvgDegree (Hvac) = 10.6 and AvgDegree (Htwc) = 12.8. Therefore, by adopting the time-
weighted decay function proposed in this paper to assign different weights to attributes
and employing CosTime as the node similarity evaluation method, we can filter nodes more
similar to q and form a higher-quality community.

5.2. Effectiveness and Efficiency Evaluation of the Model

To evaluate the effectiveness of the TWC model on the attribute graph, we com-
pare our Local Extend algorithm with the existing attribute-driven community search
(ATC) [15], attributed community query (ACQ) [14], vertex-centric attributed community
search (VAC) [18], and the time-weighted overlapping community detection (TWOD) [22].
We randomly selected 100 nodes as query nodes in each experiment and calculated the
average value as the experimental result. It is worth noting that TWOD [22] is essentially
a global community detection that cannot conduct personalized queries based on user-
specified parameters. Therefore, we only compare the TWC and TWOD models from
the perspective of user interest drift. In addition, each node may have multiple overlap-
ping communities. For a fair comparison, we take the average value of all overlapping
communities of the query node as the result of TWOD in each experiment.

• Experiment 1: time distribution of community shared attributes

For the community found in the model, we filter the keywords shared with q and
form them into a shared attribute set. We take the historical check-in time of q as the
time-effective window, take the latest check-in timestamp as the start of the window, and
divide the time window into sub-windows with a proportion of 10%, 20%, 30%, 40%, and
50%. We calculate the proportion of shared keywords involved in the time window in
the entire shared attribute set. As shown in Table 3, the digit in each cell represents the
distribution proportion of the attributes in the shared attribute set in the current time
window. Because the time window is divided in reverse order by timestamp, the larger the
proportion in a smaller time window, the more recent the attribute is, and the closer the
short-term interests of community members and the query node are.

Table 3. The distribution proportion of community attributes in different time windows of q.

Time
Effective
Window

10%
Window

20%
Window

30%
Window

40%
Window

50%
Window

TWC 0.115 0.237 0.478 0.686 0.814
ACQ 0.006 0.065 0.126 0.208 0.325
ATC 0.063 0.097 0.158 0.197 0.305
VAC 0.084 0.105 0.178 0.186 0.317

TWOD 0.075 0.122 0.207 0.297 0.496

It is not difficult to find that about 50% of the keywords shared by TWC communities
appear in the first 30% of the time window, indicating that community members are closer
to the short-term attributes of query node. Although TWOD applies the forgetting curve,
the experimental results show that the proportion of shared keywords in the first 30% time
window is only 20.7%. The reason is that TWOD ignores the enhancement effect of repeated
check-in on user interest and does not consider the possibility that different items may share
common keywords. The decay granularity is too rough, resulting in insufficient ability
to express users’ short-term interests. Other models mainly use high-frequency words as
the representative attribute of users, ignoring time, resulting in a low proportion of their
shared attributes in the more recent time window, indicating that the current interests of
community members and the query node are not well-matched.

Appl. Sci. 2022, 12, 7077 12 of 15

• Experiment 2: community fitness comparison caused by interest drift

Because both TWOD and TWC adopt the forgetting curve to model users’ interests
drift and similarities, they build different communities on this basis. We refer to the
definition of fitness in [25] and design the fitness function of the community as follows.

f itness =
win

win + wout (9)

where win means the sum of the similarities of all paired nodes in the community, and
wout represents the sum of the similarities between the community nodes and their direct
external neighbors. For each query node, we first calculate the fitness of the queried
community and then count the proportion of communities in different fitness intervals.

As shown in Figure 4a, the fitnesses of 83% of TWC communities vary in the range
of 0.5~0.7, while the fitnesses of 70% of TWOD communities are in the range of 0.4~0.5.
Only when two users check in the same project will the TWOD model think that the two
users are similar; otherwise, the corresponding value in the user–user matrix is 0. However,
friends may just check in for similar items, which leads to the user–user matrix failing to
capture the real social relationship. Hence, the community’s fitness based on the user–user
matrix is not high. TWC model is based on the social network snapshot, which reflects
the real social relationship between users. In addition, the similarity between users is
evaluated according to the historical occupancy records of users so that the community
can be better divided. Since TWOD is not affected by k, we evaluate the change in the
median fitness of the community queried by the TWC model at different k. As shown in
Figure 4b, the community’s fitness increases with the growth of k and finally tends to be
stable. Compared with k = 10, the fitness of the TWC model is better than that of TWOD.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15

Table 3. The distribution proportion of community attributes in different time windows of 𝑞.

Time Effective
Window

10% Window 20% Window 30% Window 40% Window 50% Window

TWC 0.115 0.237 0.478 0.686 0.814
ACQ 0.006 0.065 0.126 0.208 0.325
ATC 0.063 0.097 0.158 0.197 0.305
VAC 0.084 0.105 0.178 0.186 0.317

TWOD 0.075 0.122 0.207 0.297 0.496

• Experiment 2: community fitness comparison caused by interest drift
Because both TWOD and TWC adopt the forgetting curve to model users’ interests

drift and similarities, they build different communities on this basis. We refer to the defi-
nition of fitness in [25] and design the fitness function of the community as follows. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤𝑤 + 𝑤௨௧ (9)

where 𝑤 means the sum of the similarities of all paired nodes in the community, and 𝑤௨௧ represents the sum of the similarities between the community nodes and their direct
external neighbors. For each query node, we first calculate the fitness of the queried com-
munity and then count the proportion of communities in different fitness intervals.

As shown in Figure 4a, the fitnesses of 83% of TWC communities vary in the range
of 0.5~0.7, while the fitnesses of 70% of TWOD communities are in the range of 0.4~0.5.
Only when two users check in the same project will the TWOD model think that the two
users are similar; otherwise, the corresponding value in the user–user matrix is 0. How-
ever, friends may just check in for similar items, which leads to the user–user matrix fail-
ing to capture the real social relationship. Hence, the community’s fitness based on the
user–user matrix is not high. TWC model is based on the social network snapshot, which
reflects the real social relationship between users. In addition, the similarity between users
is evaluated according to the historical occupancy records of users so that the community
can be better divided. Since TWOD is not affected by k, we evaluate the change in the
median fitness of the community queried by the TWC model at different k. As shown in
Figure 4b, the community’s fitness increases with the growth of k and finally tends to be
stable. Compared with k = 10, the fitness of the TWC model is better than that of TWOD.

(a) (b)

Figure 4. Community fitness comparison. (a) Proportion of communities in different fitness ranges
when k = 10; (b) median of community fitness with different k.

• Experiment 3: the effect of k on effectiveness
Since TWOD is a global community detection, we will not compare it with other com-

munity search models. We gradually vary parameter k from 8 to 20 and compare the

Figure 4. Community fitness comparison. (a) Proportion of communities in different fitness ranges
when k = 10; (b) median of community fitness with different k.

• Experiment 3: the effect of k on effectiveness

Since TWOD is a global community detection, we will not compare it with other
community search models. We gradually vary parameter k from 8 to 20 and compare
the improvement of Htwc in similarity score compared with Hvac. As shown in Figure 5a,
no matter the value of k, the community score of Htwc is better than that of Hvac. This
is because the scoring function of TWC defines the decisive role of query nodes and
selects nodes with high similarity in descending order, while the scoring function of VAC
measures the similarity between all nodes, which undoubtedly weakens the leading role of
query nodes. As k grows, the improvement tends to be stable. This is because the initial
feasible community is smaller and more stable. The lowest similarity score determines the
community score, and so the average similarity of the community also has the same trend.

Appl. Sci. 2022, 12, 7077 13 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 15

improvement of 𝐻௧௪ in similarity score compared with 𝐻௩. As shown in Figure 5a, no
matter the value of k, the community score of 𝐻௧௪ is better than that of 𝐻௩. This is
because the scoring function of TWC defines the decisive role of query nodes and selects
nodes with high similarity in descending order, while the scoring function of VAC
measures the similarity between all nodes, which undoubtedly weakens the leading role
of query nodes. As k grows, the improvement tends to be stable. This is because the initial
feasible community is smaller and more stable. The lowest similarity score determines the
community score, and so the average similarity of the community also has the same trend.
• Experiment 4: the effect of query time window on effectiveness.

Let us set the whole record time of the dataset as a time window and the latest
timestamp as the start of the window. In reverse order of time, five sub-windows are set,
denoted as 20%, 40%, 60%, 80%, and 100% time windows, respectively. Then, we compare
the improvement of 𝐻௧௪ in similarity score compared with 𝐻௩. As shown in Figure 5b,
the improvement is not obvious when the time window is small. This is because the check-
in records included are relatively few and fresh, so the difference in weights is not obvi-
ous. As the time window enlarges, more and more records are included in the calculation.
The difference between attribute weights is gradually enlarged, which is more conducive
to filtering out low-weight attributes. Hence, the score improvement is more obvious. How-
ever, the improvement is reduced when the time window is large enough, indicating that
blindly expanding it is not appropriate because it will include the old and frequently occurring
attributes in the user’s interest list and disperse the weight of these significant attributes.

(a) (b)

Figure 5. Effectiveness evaluation of different models. (a) Change of similarity improve ratio with
different k; (b) change of similarity improve ratio with different time windows.

• Experiment 5: the effect of k on efficiency.
Since the efficiency of the TWC model is only affected by 𝑘, and the communities

found by the Local Extend algorithm and the Shrink algorithm are the same, we vary k to
compare the efficiency of different modes.

As shown in Figure 6, the community is large and incohesive enough when 𝑘 is
small. The Local Extend algorithm expands the nodes from inside to outside in descend-
ing order of similarity, which can quickly form the optimal solution. Along with the in-
crease in 𝑘, the initial feasible community becomes closer to the optimal community. Only
a few nodes need to be deleted to build the optimal community. Therefore, the Shrink
algorithm performs better than the Local Extend algorithm. At the same time, we note
that no matter how the value of 𝑘 varies, the TWC model is faster than VAC and ATC.
This is because the community score function of TWC only considers the similarity with
the query node, while ATC and VAC consider all pairs of nodes, so their calculation is
expensive. Since ACQ adopted k-core as the structural cohesion metric, it is faster than
ATC and VAC. However, because the index construction takes a long time, ACQ has little
difference from the efficiency of TWC.

Figure 5. Effectiveness evaluation of different models. (a) Change of similarity improve ratio with
different k; (b) change of similarity improve ratio with different time windows.

• Experiment 4: the effect of query time window on effectiveness.

Let us set the whole record time of the dataset as a time window and the latest
timestamp as the start of the window. In reverse order of time, five sub-windows are
set, denoted as 20%, 40%, 60%, 80%, and 100% time windows, respectively. Then, we
compare the improvement of Htwc in similarity score compared with Hvac. As shown in
Figure 5b, the improvement is not obvious when the time window is small. This is because
the check-in records included are relatively few and fresh, so the difference in weights is
not obvious. As the time window enlarges, more and more records are included in the
calculation. The difference between attribute weights is gradually enlarged, which is more
conducive to filtering out low-weight attributes. Hence, the score improvement is more
obvious. However, the improvement is reduced when the time window is large enough,
indicating that blindly expanding it is not appropriate because it will include the old and
frequently occurring attributes in the user’s interest list and disperse the weight of these
significant attributes.

• Experiment 5: the effect of k on efficiency.

Since the efficiency of the TWC model is only affected by k, and the communities
found by the Local Extend algorithm and the Shrink algorithm are the same, we vary k to
compare the efficiency of different modes.

As shown in Figure 6, the community is large and incohesive enough when k is small.
The Local Extend algorithm expands the nodes from inside to outside in descending order
of similarity, which can quickly form the optimal solution. Along with the increase in
k, the initial feasible community becomes closer to the optimal community. Only a few
nodes need to be deleted to build the optimal community. Therefore, the Shrink algorithm
performs better than the Local Extend algorithm. At the same time, we note that no matter
how the value of k varies, the TWC model is faster than VAC and ATC. This is because
the community score function of TWC only considers the similarity with the query node,
while ATC and VAC consider all pairs of nodes, so their calculation is expensive. Since
ACQ adopted k-core as the structural cohesion metric, it is faster than ATC and VAC.
However, because the index construction takes a long time, ACQ has little difference from
the efficiency of TWC.

Appl. Sci. 2022, 12, 7077 14 of 15
Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 15

Figure 6. Efficiency evaluation of different models with different k.

6. Conclusions
In this paper, we study a new attributed community search problem named time-

weighted community search (TWC) based on interest, which integrates time into commu-
nity query. We design a time-weighted attribute weight decay function to find users’ rep-
resentative attributes and design a new similarity scoring method. Two query methods
are designed to solve the TWC problem, which can meet the query requirements in dif-
ferent scenes. Multiple experiments have proved that the communities discovered by the
TWC model are more in line with the short-term interests of users.

Author Contributions: Conceptualization, J.L. and Y.Z., methodology, J.L. and Y.Z., software, J.L.;
validation, Y.Z.; formal analysis, J.L.; investigation, J.L.; resources, J.L.; data curation, J.L.; writing—
original draft preparation, J.L.; writing—review and editing, Y.Z.; visualization, J.L.; supervision,
Y.Z.; project administration, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the AI industrial technology innovation platform of Sichuan
Province, grant number ”2020ZHCG0002”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sozio, M.; Gionis, A. The Community-Search Problem and How to Plan a Successful Cocktail Party. In Proceedings of the 16th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’10, Washington, DC, USA, 25–28
July 2010; ACM Press: Washington, DC, USA, 2010; p. 939. https://doi.org/10.1145/1835804.1835923.

2. Yang, D.-N.; Shen, C.-Y.; Lee, W.-C.; Chen, M.-S. On Socio-Spatial Group Query for Location-Based Social Networks. In Pro-
ceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’12, Beijing,
China, 12–16 August 2012; ACM Press: Beijing, China, 2012; p. 949. https://doi.org/10.1145/2339530.2339679.

3. Shen, C.-Y.; Yang, D.-N.; Huang, L.-H.; Lee, W.-C.; Chen, M.-S. Socio-Spatial Group Queries for Impromptu Activity Planning.
IEEE Trans. Knowl. Data Eng. 2015, 28, 196–210.

4. Zhu, Q.; Hu, H.; Xu, C.; Xu, J.; Lee, W.-C. Geo-social group queries with minimum acquaintance constraints. VLDB J. 2017, 26,
709–727.

5. Fang, Y.; Cheng, R.; Li, X.; Luo, S.; Hu, J. Effective Community Search over Large Spatial Graphs. Proc. VLDB Endow. 2017, 10,
709–720.

6. Ghosh, B.; Ali, M.E.; Choudhury, F.M.; Apon, S.H.; Sellis, T.; Li, J. The Flexible Socio Spatial Group Queries. Proc. VLDB Endow.
2018, 12, 99–111. https://doi.org/10.14778/3282495.3282497.

7. Chen, L.; Liu, C.; Zhou, R.; Li, J.; Yang, X.; Wang, B. Maximum Co-Located Community Search in Large Scale Social Networks.
Proc. VLDB Endow. 2018, 11, 1233–1246. https://doi.org/10.14778/3231751.3231755.

Figure 6. Efficiency evaluation of different models with different k.

6. Conclusions

In this paper, we study a new attributed community search problem named time-
weighted community search (TWC) based on interest, which integrates time into com-
munity query. We design a time-weighted attribute weight decay function to find users’
representative attributes and design a new similarity scoring method. Two query methods
are designed to solve the TWC problem, which can meet the query requirements in different
scenes. Multiple experiments have proved that the communities discovered by the TWC
model are more in line with the short-term interests of users.

Author Contributions: Conceptualization, J.L. and Y.Z., methodology, J.L. and Y.Z., software, J.L.;
validation, Y.Z.; formal analysis, J.L.; investigation, J.L.; resources, J.L.; data curation, J.L.; writing—
original draft preparation, J.L.; writing—review and editing, Y.Z.; visualization, J.L.; supervision,
Y.Z.; project administration, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the AI industrial technology innovation platform of Sichuan
Province, grant number “2020ZHCG0002”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sozio, M.; Gionis, A. The Community-Search Problem and How to Plan a Successful Cocktail Party. In Proceedings of the 16th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’10, Washington, DC, USA, 25–28 July
2010; ACM Press: Washington, DC, USA, 2010; p. 939. [CrossRef]

2. Yang, D.-N.; Shen, C.-Y.; Lee, W.-C.; Chen, M.-S. On Socio-Spatial Group Query for Location-Based Social Networks. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’12, Beijing,
China, 12–16 August 2012; ACM Press: Beijing, China, 2012; p. 949. [CrossRef]

3. Shen, C.-Y.; Yang, D.-N.; Huang, L.-H.; Lee, W.-C.; Chen, M.-S. Socio-Spatial Group Queries for Impromptu Activity Planning.
IEEE Trans. Knowl. Data Eng. 2015, 28, 196–210. [CrossRef]

4. Zhu, Q.; Hu, H.; Xu, C.; Xu, J.; Lee, W.-C. Geo-social group queries with minimum acquaintance constraints. VLDB J. 2017, 26,
709–727. [CrossRef]

http://doi.org/10.1145/1835804.1835923
http://doi.org/10.1145/2339530.2339679
http://doi.org/10.1109/TKDE.2015.2468726
http://doi.org/10.1007/s00778-017-0473-6

Appl. Sci. 2022, 12, 7077 15 of 15

5. Fang, Y.; Cheng, R.; Li, X.; Luo, S.; Hu, J. Effective Community Search over Large Spatial Graphs. Proc. VLDB Endow. 2017, 10,
709–720. [CrossRef]

6. Ghosh, B.; Ali, M.E.; Choudhury, F.M.; Apon, S.H.; Sellis, T.; Li, J. The Flexible Socio Spatial Group Queries. Proc. VLDB Endow.
2018, 12, 99–111. [CrossRef]

7. Chen, L.; Liu, C.; Zhou, R.; Li, J.; Yang, X.; Wang, B. Maximum Co-Located Community Search in Large Scale Social Networks.
Proc. VLDB Endow. 2018, 11, 1233–1246. [CrossRef]

8. Fang, Y.; Wang, Z.; Cheng, R.; Li, X.; Luo, S.; Hu, J.; Chen, X. On Spatial-Aware Community Search. IEEE Trans. Knowl. Data Eng.
2019, 31, 783–798. [CrossRef]

9. Zhang, F.; Zhang, Y.; Qin, L.; Zhang, W.; Lin, X. When Engagement Meets Similarity. Proc. VLDB Endow. 2017, 10, 998–1009.
[CrossRef]

10. Li, Y.; Wu, D.; Xu, J.; Choi, B.; Su, W. Spatial-aware interest group queries in location-based social networks. Data Knowl. Eng.
2014, 92, 20–38. [CrossRef]

11. Guo, T.; Cao, X.; Cong, G. Efficient Algorithms for Answering the M-Closest Keywords Query. In Proceedings of the Acm Sigmod
International Conference, Melbourne, VIC, Australia, 31 May–4 June 2015; pp. 405–418.

12. FeLipe, I.D.; Hristidis, V.; Rishe, N. Keyword Search on Spatial Databases. In Proceedings of the IEEE 24th International
Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008.

13. Zhang, Z.; Huang, X.; Xu, J.; Choi, B.; Shang, Z. Keyword-Centric Community Search. In Proceedings of the 2019 IEEE 35th
International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; IEEE: Macao, China, 2019; pp. 422–433.
[CrossRef]

14. Fang, Y.; Cheng, R.; Luo, S.; Hu, J. Effective Community Search for Large Attributed Graphs. Proc. VLDB Endow. 2016, 9,
1233–1244. [CrossRef]

15. Xin, H.; Lakshmanan, L. Attribute-Driven Community Search. Proc. VLDB Endow. 2017, 10, 949–960.
16. Luo, J.; Cao, X.; Xie, X.; Qu, Q.; Xu, Z.; Jensen, C.S. Efficient Attribute-Constrained Co-Located Community Search. In Proceedings

of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; IEEE: Dallas, TX,
USA, 2020; pp. 1201–1212. [CrossRef]

17. Chen, L.; Liu, C.; Zhou, R.; Xu, J.; Li, J. Finding Effective Geo-Social Group for Impromptu Activities with Diverse Demands. In
Proceedings of the KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA,
USA, 6–10 July 2020.

18. Liu, Q.; Zhu, Y.; Zhao, M.; Huang, X.; Xu, J.; Gao, Y. VAC: Vertex-Centric Attributed Community Search. In Proceedings of the
2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; IEEE: Dallas, TX, USA,
2020; pp. 937–948. [CrossRef]

19. Lee, T.-Q.; Park, Y. A Time-Based Recommender System Using Implicit Feed-back. In CSREA EEE; Citeseer: Princeton, NJ, USA,
2006; pp. 309–315.

20. Rafeh, R.; Bahrehmand, A. An Adaptive Approach to Dealing with Unstable Behaviour of Users in Collaborative Filtering
Systems. J. Inf. Sci. 2012, 38, 205–221. [CrossRef]

21. Sun, B.; Dong, L. Dynamic Model Adaptive to User Interest Drift Based on Cluster and Nearest Neighbors. IEEE Access 2017, 5,
1682–1691. [CrossRef]

22. Feng, H.; Tian, J.; Wang, H.J.; Li, M. Personalized Recommendations Based on Time-Weighted Overlapping Community Detection.
Inf. Manage. 2015, 52, 789–800. [CrossRef]

23. Li, R.-H.; Yu, J.X.; Mao, R. Efficient Core Maintenance in Large Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 2014, 26, 2453–2465.
[CrossRef]

24. Yang, D.; Qu, B.; Yang, J.; Cudre-Mauroux, P. Revisiting User Mobility and Social Relationships in LBSNs: A Hypergraph
Embedding Approach. In Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019.

25. Lancichinetti, A.; Fortunato, S.; Kertesz, J. Detecting the Overlapping and Hierarchical Community Structure of Complex
Networks. New J. Phys. 2009, 11, 033015. [CrossRef]

http://doi.org/10.14778/3055330.3055337
http://doi.org/10.14778/3282495.3282497
http://doi.org/10.14778/3231751.3231755
http://doi.org/10.1109/TKDE.2018.2845414
http://doi.org/10.14778/3115404.3115406
http://doi.org/10.1016/j.datak.2014.06.001
http://doi.org/10.1109/ICDE.2019.00045
http://doi.org/10.14778/2994509.2994538
http://doi.org/10.1109/ICDE48307.2020.00108
http://doi.org/10.1109/ICDE48307.2020.00086
http://doi.org/10.1177/0165551512437517
http://doi.org/10.1109/ACCESS.2017.2669243
http://doi.org/10.1016/j.im.2015.02.004
http://doi.org/10.1109/TKDE.2013.158
http://doi.org/10.1088/1367-2630/11/3/033015

	Introduction
	Related Work
	Problem Formulation
	Structure Cohesiveness
	Time-Weighted Decay Function
	Attributes Similarity Scoring Function

	Methods
	Local Extend Algorithm
	Shrink Algorithm

	Results
	Case Study
	Effectiveness and Efficiency Evaluation of the Model

	Conclusions
	References

