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Abstract: The existence of intra-class spectral variability caused by differential scene components
and illumination conditions limits the improvement of endmember extraction accuracy, as most
endmember extraction algorithms directly find pixels in the hyperspectral image as endmembers.
This paper develops a quadratic clustering-based simplex volume maximization (CSVM) approach to
effectively alleviate spectral variability and extract endmembers. CSVM first adopts spatial clustering
based on simple linear iterative clustering to obtain a set of homogeneous partitions and uses spectral
purity analysis to choose pure pixels. The average of the chosen pixels in each partition is taken as
a representative endmember, which reduces the effect of local-scope spectral variability. Then an
improved spectral clustering based on k-means is implemented to merge homologous representative
endmembers to further reduce the effect of large-scope spectral variability, and final endmember
collection is determined by the simplex with maximum volume. Experimental results show that
CSVM reduces the average spectral angle distance on Samson, Jasper Ridge and Cuprite datasets
to below 0.02, 0.06 and 0.09, respectively, provides the root mean square errors of abundance maps
on Samson and Jasper Ridge datasets below 0.25 and 0.10, and exhibits good noise robustness. By
contrast, CSVM provides better results than other state-of-the-art algorithms.

Keywords: endmember extraction; quadratic clustering; spectral purity analysis; maximum
simplex volume

1. Introduction

Due to the limitation of spatial resolution and the complexity of ground object dis-
tribution, mixed pixels exist in hyperspectral images (HSIs) and reduce the accuracy of
traditional pixel-level applications [1]. Therefore, it is necessary to perform hyperspectral
unmixing for further analysis, which includes extracting pure pixels (endmembers) and
determining the fractions of each endmember in pixels (abundance). The former is called
endmember extraction, and the latter is called abundance estimation. Hyperspectral un-
mixing has been used in many fields to improve the related performance, such as subpixel
target detection, precise land cover mapping and Earth change detection [2–7].

The mixing model is the basis for the research of hyperspectral unmixing, containing
the linear spectral mixing model (LMM) and nonlinear spectral mixing model (NLMM) [8,9].
LMM assumes the photons arriving at the sensor interact with one ground object, so
each mixed pixel is described as a linear combination of endmembers weighted by the
corresponding abundance. As a matter of fact, the photons will go through multiple
reflections and refractions between various ground objects, leading to NLMM. It has no
fixed expression and needs to be determined for specific land cover class. Hence, LMM is
utilized in most endmember extraction algorithms (EEAs) due to the simple structure and
good performance, and it is also used in our work.
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EEAs based on convex geometry are widely used in linear spectral unmixing. The
pure pixel index (PPI) projects all pixels onto a set of vectors, and pixels that fall at the
endpoints of these vectors the most are selected as endmembers [10]. Based on PPI,
vertex component analysis (VCA) uses the orthogonal direction of the subspace spanned
by the determined endmembers as projection axis, and pixels with the extreme value is
taken as a new endmember [11]. N-FINDR works by finding the simplex with maximum
volume in the space of the HSI, and pixels that constitute this simplex are regarded as
endmembers [12]. As a variant of N-FINDR, the simplex growing algorithm (SGA) reduces
the computational cost by including a process of growing simplexes one vertex at a time [13].
The alternating volume maximization (AVMAX) improves N-FINDR, using an alternating
optimization strategy to pin down some convergence characteristics [14]. To enhance
the noise robustness, the minimum volume simplex algorithm (MVSA) fits the minimum
simplex volume to the data and reduces the effect of noise and outliers by imposing a
hinge type soft constraint on the abundance [15]. The fast subspace-based module (FSPM)
detects convex hull vertices for component pairs obtained by singular value decomposition
and proposes a local outlier score measurement to remove outliers [16]. The statistics-
based EEAs decompose the data into the product of endmember matrix and abundance
matrix simultaneously, and iteratively solves the problem by adding prior constrained
information. This type of method handles HSIs with a high mixing degree well but requires
a lot of computations. The nonnegative matrix factorization (NMF) is a commonly used
method. Based on NMF, several improved approaches have emerged by adding different
constraints, such as minimum volume constrained NMF (MVC-NMF), L1/2-NMF and the
robust collaborative NMF (Co-NMF) [17–19].

In HSIs, pure pixels are more likely to exist in homogeneous areas, and mixed pixels are
more likely to be present in transition areas containing two or three features. The above two
types of methods ignore such spatial properties and identify endmembers only by spectral
features, resulting in limited endmember extraction performance. Therefore, EEAs that fuse
spatial and spectral features have appeared, which improve the accuracy of endmember
extraction to a certain extent. Automatic morphological endmember extraction (AMEE), the
earliest algorithm to fuse spatial and spectral properties, enables unsupervised endmember
extraction by performing multidimensional morphological dilation and erosion over an
ever-increasing spatial neighborhood [20]. The entropy-based convex set optimization
(ECSO), developed in recent years, exploits entropy as spatial information to choose two-
band pairs and calculate the convex set for two-band data to determine endmembers [21].

As clustering can effectively utilize spatial and spectral information, it has been widely
used in endmember extraction, further improving the performance of hyperspectral unmix-
ing. For example, clustering and over-segmentation-based preprocessing (COPP) combines
top–down over-segmentation (TDOS) with spectral clustering to generate homogeneous
partitions, and the most spectrally pure average vectors are sent to spectral-based EEAs [22].
The regional clustering-based spatial preprocessing (RCSPP) performs regional clustering
to obtain a set of clustered partitions that exhibit spectral similarity, then a subset of can-
didate pixels with high spectral purity is fed to endmember detection methods [23]. As
a recently proposed method, spatial energy prior constrained maximum simplex volume
(SENMAV) utilizes spatial energy prior obtained by spectral clustering as a regularization
term of the maximum simplex volume model to constrain the selection of endmembers [24].
The spatial potential energy weighting endmember extraction (SPEW) adopts spectral
angular distance and space potential energy derived from spectral clustering to weight
pixels, and the weighted pixels that compose the maximum volume simplex are regarded
as simplex [25]. K-medoids-based endmember extraction (KMEE) applies convex geometry
for the selected two bands and uses K-medoids clustering to remove extra points, aiming
to improve the noise robustness [26].

Spectral variability exists in HSIs due to the different scene components and illu-
mination conditions, which blurs the identification of different types of ground objects
and brings inaccurate endmember representation. Large-scope spectral variability refers
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to the phenomenon that homogeneous ground objects at different positions in an image
show different spectral signatures. Local-scope spectral variability refers to the spectral
difference exhibited by homogeneous ground objects in adjacent areas, which is small since
the scene conditions may not change much in a local area. As most of the current methods
directly find pixels in the image as endmembers, the influence of spectral variability cannot
be avoided. Spatial purity-based endmember extraction (SPEE) attempts to address the
problem by using the average of pure spatial neighborhoods to mitigate local-scope spectral
variability and the merge of spatially related candidates to mitigate large-scope spectral
variability [27].

In this paper, a novel quadratic clustering-based simplex volume maximization
(CSVM) method is proposed to efficiently extract endmember, which exploits the ad-
vantages of clustering to make full use of spatial and spectral information and better deal
with spectral variability. CVSM first adopts spatial clustering to segment HSI into homo-
geneous partitions, and the average of pure pixels obtained by spectral purity analysis in
each partition is taken as representative endmember, which reduces the effect of local-scope
spectral variability. Then CVSM performs spectral clustering to merge spectrally related
representative endmembers to further alleviate large-scope spectral variability, and the
final endmembers are determined by simplex with maximum volume. The CSVM shows
its novelty in three ways. First, a local clustering criterion is proposed for spatial cluster-
ing based on simple linear iterative clustering (SLIC) to acquire a set of partitions with
good spatial homogeneity, which combines spectral angle distance (SAD) and Euclidean
distance (EDspe) to constraint spectral measurement. Second, spectral clustering adopts
an improved weighted k-means algorithm to adjust the clustering performance, which
takes both spectral curve shape and distance into consideration to alleviate the large-scope
spectral variability. Third, a set of candidates with a small number of pixels is obtained
after quadratic clustering, which reduces the complexity of the simplex-based algorithm.

The major contributions of this paper are threefold. First, a quadratic clustering-based
endmember extraction method is introduced to better deal with spectral variability, as it is
one of the current limitations to improve the hyperspectral unmixing performance. Second,
parameter analysis is conducted to choose the optimal value of each parameter involved in
CSVM, thus enhancing the applicability of CSVM to different datasets. Finally, experiments
using real hyperspectral prove that our algorithm has great improvements in endmember
extraction, abundance estimation and anti-noise performance, which also indicates that the
spectral variability cannot be ignored in hyperspectral unmixing.

2. Proposed Methods

The proposed method, CSVM, is implemented from spatial and spectral dimension, as
shown in Figure 1. The processing in spatial dimension contributes to handle local-scope
spectral variability, while the processing in spectral dimension aims to deal with large-scope
spectral variability and makes the final decision on endmember extraction. CSVM will
be introduced in four steps, which are spatial clustering, spectral purity analysis, spectral
clustering and simplex volume maximization.
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2.1. Spatial Clustering

Spatial clustering can be achieved by superpixel segmentation algorithms. Here, the
simple linear iterative clustering (SLIC) algorithm commonly used in two-dimensional im-
age processing is enhanced for HSIs, as it has significant advantages in terms of calculation
speed, memory efficiency and segmentation performance [28,29]. The enhancement mainly
focuses on the adjustment to the clustering criterion, making it better meet the need of
regional homogeneity in partitions. The details of spatial clustering are as follows.

The HSI is first divided into blocks with the size of s × s as the initial clustering state.
Take the center of each block as the cluster center. Considering that the centers located at the
edge in the image may affect the clustering performance, the principal component analysis
(PCA) is performed, and the projection of the image to the first principal component is
chosen to calculate the gradient. The pixel with the lowest gradient in each block is regarded
as new cluster center. In addition, PCA has good denoising effect, and the first principal
component contains most of the information in the HSI.

Since good spatial homogeneity makes the representative endmembers more accurate,
it is our primary consideration in determining the clustering principle. In some studies,
clustering strategies have been developed to produce superpixels with regular sizes and
shapes but poor spectral similarity, which is not suitable for us [30]. In this work, the
combination of EDspe and SAD provides constraints on spectral similarity as spectral
measurement, and spatial Euclidean distance (EDspa) is utilized as the spatial measurement.
They are formulated as follows:

EDspa =
√
(xi − x̂i)

2 + (yi − ŷi)
2/L, (1)

EDspe =
√
‖vi − ci‖2

2/b, (2)

SAD = cos−1
(
< vi, ci >

‖vi‖·‖ci‖

)
, (3)

where (x i, yi) refers to the location of a given pixel in the image, ( x̂i, ŷi) is the center
location of the partition that contains the pixel, L is the length of the diagonal for the search
scope used to normalize the EDspa, vi and ci are the spectra of the pixel and the cluster
center respectively, and b is the number of bands in the HSI.

Thereby, the spatial measurement Dspa and the spectral measurement Dspe are defined
as follows:

Dspa= EDspa, (4)

Dspe =

(
EDspe+SAD

)
2

. (5)

The clustering criterion D is defined as follows:

D = λ1 × Dspa + (1 − λ1) × Dspe, (6)

where λ1 is a weighting factor to balance Dspa and Dspe.
After initialization, spatial clustering can be iteratively conducted. In each iteration,

calculate D for pixels within the search scope of 2 s × 2 s for each cluster center. Since
a pixel may be searched for more than one time and obtain multiple Ds, assign it to the
cluster center corresponding to the smallest D. Then update the cluster centers and their
corresponding spectra to enter the next iteration. Pixels belonging to the same cluster center
form a partition. The spatial clustering ends when all partitions no longer change. It should
be noted that the designed search scope greatly reduces the computational complexity
compared to global searching and makes it possible to accelerate our algorithm using
parallel computation [31].
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2.2. Spectral Purity Analysis

Spatial clustering obtains a set of homogeneous partitions, but the existence of mixed
pixels in each partition cannot be avoided, which reduces the accuracy of representative
endmembers. It is necessary to perform spectral purity analysis to choose pure pixels and
remove the mixed pixels.

In the HSI, if all pixels are projected onto the same vector, endmembers will be
projected to the endpoints of the vector, that is, endmembers will obtain maximum or
minimum projection values. Given that each partition is considered to mainly contain one
feature, pixels with higher projection values are more likely to be pure pixels. Based on
that, PCA is performed on each partition, and a set of principal components decomposed
by PCA is obtained denoted by U = {u i}b

i=1. The first principal component u1 is chosen as
the projection vector, as it captures most of the information of the hyperspectral data. Then
all pixels in each partition are projected on it as follows:

x = u1
TS, (7)

where S = (s1, s2, . . . , sN) ∈ Rb×N is a partition containing N pixels, and x = (x 1, x2, . . . , xN)
∈ R1×N is a set of projection values of this partition.

To find pixels with high spectral purity, sort x in descending order and obtain new
vector x̂. Choose pixels in order according to certain proportion Pt from x̂, and take the
average of the chosen pixels as a representative endmember for each partition, which
alleviates the local-scope spectral variability and random noise.

2.3. Spectral Clustering

Since the wide area covered by one class, such as ocean and forest, will be segmented
into several partitions due to the constraint of the search scope, representative endmem-
bers from these partitions exhibit the same feature. The spectral clustering plays a role
in merging the representative endmembers separated. On the one hand, it is of great
significance to eliminate the effect of large-scope spectral variability. On the other hand, it
can reduce the number of candidate endmembers, improving the computational efficiency
of the subsequent processing.

The spectral clustering method is based on the k-means clustering algorithm [32]. The
clustering criterion adopts a weighted spectral measurement strategy, which takes both
spectra shape and distance into consideration. It is defined as follows:

D = λ2 × EDspe + (1 − λ2) × SAD, (8)

where λ2 is a balance constant.
In spectral clustering, initialize k cluster centers first. Then calculate D between each

representative endmember and the cluster centers. Each endmember is assigned to the
center with the smallest D. Next, update the cluster centers according to the classification
results. Perform the above operations iteratively. Representative endmembers belonging to
the same cluster center form a class. The spatial clustering ends when all classes no longer
change. Finally, the cluster centers are regarded as candidate endmembers, which further
suppresses the effect of large-scope spectral variability.

As the final endmembers will be chosen from candidate endmembers, that is, from
the cluster centers, the performance of spectral clustering is particularly key, as is the
determination of the two parameters involved.

2.4. Simplex Volume Maximization

The simplex composed of endmembers has the maximum volume. Based on that, the
proposed method makes the final decision on endmembers.

Suppose that the set of candidate endmembers obtained by spectral clustering is
Y = (y 1, y2, . . . , yM) ∈ Rb×M. First, it is necessary to perform PCA on Y to reduce the
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dimension to p − 1 and obtain a new set denoted by Ŷ = (ŷ1′ , ŷ2′ . . . , ŷM) ∈ R(p−1)×M. P
represents the number of endmembers. The simplex volume is calculated as follows:

V
(

ŷk1
, ŷk2

, . . . , ŷkp

)
=

abs

(∣∣∣∣∣ 1 1 . . . 1
ŷk1

ŷk2
. . . ŷkp

∣∣∣∣∣
)

(p− 1)!
. (9)

Iteratively select p vectors from Ŷ and calculate the corresponding V. The p vectors
with the largest V are selected as the final endmembers. It can be formulated as follows:

V_ max = argmax
ŷk1

,ŷk2
,...,ŷkp

V
(

ŷk1
, ŷk2

, . . . , ŷkp

)
. (10)

3. Results and Discussion

In this section, parameter analysis is first carried out to choose the optimal value for
each parameter in CSVM and improve the applicability of CSVM for future use. Then four
experiments are performed on three datasets (the Samson dataset, Jasper Ridge dataset,
and Cuprite dataset) to evaluate the performance of the proposed method. The comparison
algorithms include VCA, SGA, AVMAX, MVSA, AMEE, ESCO, KMEE, FSPM, SENMAV,
SPEW. Among them, VCA, SGA and AVMAX are convex geometry-based methods com-
monly used for comparison; AMEE and ESCO are typical methods that integrate spatial
and spectral information; MVSA, KMEE and FSPM are noise-robust algorithms, and the
result of FSPM is sent to VCA to determine the final endmembers, as it is a preprocessing
module; SENMAV and SPEW combine clustering with a simplex-based algorithm, which is
similar to our approach. Since hyperspectral unmixing involves endmember extraction and
abundance estimation, the first two experiments aim to compare the performance of all test
algorithms on endmember extraction and abundance estimation, respectively. The third
experiment verifies the noise robustness of all algorithms by setting the signal-to-noise
(SNR) level of the datasets to 15 dB, 20 dB, 25 dB, 30 dB, 35 dB and 40 dB. In the fourth ex-
periment, the processing time of all methods are compared, and the acceleration possibility
of the proposed method is analyzed. To ensure the reliability of the experimental results,
each experiment is conducted five times and the average values are taken in this paper.

3.1. Input Data
3.1.1. Samson Dataset

Samson contains 156 bands covering the wavelength range from 401 nm to 889 nm
with the spectral resolution of 3.13 nm. It has no blank channels or badly noised channels.
To reduce the computational cost, the Samson dataset used in our experiment is partially
cropped from the original image starting with the (252,332) pixel, which has the size of
95 × 95 and three endmembers corresponding to soil, tree, and water. The pseudo-color
image and the spectral reflectance of endmembers are shown in Figure 2 [33].
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3.1.2. Jasper Ridge Dataset

Jasper Ridge has 224 bands ranging from 380 nm to 2500 nm with the spectral resolu-
tion of 9.46 nm. Due to the dense water vapor and atmosphere effect, bands 1–3, 108–112,
154–166 and 220–224 are removed, and 198 bands are reserved for experiments. Addition-
ally, a sub-image of 100 × 100 pixels starting with the (105,269) pixel from the original
image is used, as shown in Figure 3. There are four endmembers in this data: road, soil,
water and tree.
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3.1.3. Cuprite Dataset

Cuprite is one of the most widely used hyperspectral data for hyperspectral unmixing,
which contains 224 bands ranging from 370 nm to 2480 nm. The noised bands (1–2
and 221–224) and the water absorption bands (104–113 and 148–167) are removed, and
188 bands are retained. A sub-image of 250 × 190 pixels is utilized in our experiments,
including 14 minerals. To avoid the minor difference between the variants of the same
mineral, 12 minerals are finally considered as endmembers, which are alunite, andradite,
buddingtonite, dumortierite, kaolinite1, kaolinite2, muscovite, montmorillonite, nontronite,
pyrope, sphene and chalcedony as shown in Figure 4.
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3.2. Parameter Analysis

The input parameters for CSVM include p, s, λ1, Pt, λ2 and k. The number of endmem-
bers is denoted by p, which can be obtained by endmember number estimation algorithms.
The grid step s, the weighting factor λ1 and the proportion for representative endmember
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extraction Pt will be set through the following spatial clustering analysis. The weight-
ing factor λ2 and the number of clusters k will be determined in the following spectral
clustering analysis.

Indexes are first introduced to provide a quantitative assessment for the clustering
performance, including Scatt, AvgPI and SvdPI corresponding to the following definitions.

Scatt =
‖σ(vi)‖
‖σ(X)‖ , (11)

where σ(X) is the variance of HSI and σ(v i) is the variance of the ith partition.

AvgPI = ∑m
i=1 dist(xi, x)

m
, (12)

where dist is the correlation coefficient between xi and the average vector x in the ith
partition, and m is the number of pixels contained in this partition.

SvdPI =
L1

∑m
i=1 Lj

, (13)

where Lj is the jth singular value after singular value decomposition.
The smaller the value of Scatt and the larger the value of AvgPI and SvdPI, the better

the clustering results.

3.2.1. Spatial Clustering Analysis

Spatial clustering involves the grid step s and the weighting factor for spatial mea-
surement λ1. Two experiments are designed to determine the optimal values of them.
To determine s, set λ1 to 0.9, and calculate Scatt, AvgPI and SvdPI on the input datasets
clustered with s from 5 to 30. The results are shown in Figure 5. To determine λ1, set s to 6,
and Scatt, AvgPI and SvdPI are calculated on the input datasets clustered with λ1 from 0 to
1 at an interval of 0.05. The results are shown in Figure 6.
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From Figure 5, the indexes fluctuate significantly with the increase in s, and from
Figure 6, the indexes keep stable with the increase in λ1. It shows that s has a greater impact
on the clustering performance than λ1.

Of all the datasets, Cuprite is in sharp contrast with Samson and Jasper Ridge. The
indexes on Cuprite turn out to be the most stable. Especially in Figure 5, the indexes
have a relatively slight change, with s rising from 5 to 30. This has relations with the
spectral contrast of endmembers in datasets. As shown in Figure 4, Cuprite contains
endmembers with minor difference, while endmembers in Samson and Jasper Ridge have
high spectral contrast.

With the rise in s, both AvgPI and SvdPI trend down and Scatt trends up. It can be
inferred that a large s will lead to high dispersion degree and low spectral correlation as
each partition is expanded. However, a small s will increase the computational cost. As is
presented in Figure 5, the indexes keep steady as s rises from 5 to 10, so the best range for s
is set to 5–10. In our experiments, s is set to 6.

When λ1 is 0.05, the indexes have a sharp change, as the spatial measurement begins
to constrain clustering. Then, the indexes tend to be stable because of the limitation of the
search scope. Indexes on Samson and Cuprite have little change, but it is different on Jasper
Ridge. Specifically, AvgPI and SvdPI fall steadily and Scatt rises slowly. It is away from our
requirement of regional homogeneity. Hence, λ1 is set to 0.1 to keep the stability as well as
good performance of spatial clustering.

Figure 7 shows the results of spatial clustering with the parameters set above. For
better viewing, part of each image is enlarged and shown in the red box.
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Pt represents the percentage of pixels reserved from each partition for representative
endmember generation. To analyze the impact of Pt, an experiment is conducted. After
completing the spatial clustering with s and λ1 being 6 and 0.1, respectively, choose pixels in
each partition with Pt from 0.05 to 0.95 at an interval of 0.01, and the indexes are calculated
each time. The results are shown in Figure 8.

Compared to Samson and Cuprite, indexes on Jasper Ridge have the most obvious
change. It is caused by its poor spatial homogeneity. The increase in Pt results in the decline
in AvgPI and SvdPI and the rise in Scatt as more mixed pixels within each partition are
preserved. In terms of dispersion degree and spectral correlation, the smaller the Pt, the
better the updated partitions. Considering the prevalence of spectral variability, a small Pt
cannot help dealing with it by average the reserved pixels, otherwise it brings errors. In our
experiments, Pt is set to 0.4, and the good performance will be demonstrated in subsequent
experimental results.



Appl. Sci. 2022, 12, 7132 10 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 21 
 

 

(a)      (b)      (c) 

Figure 7. The results of spatial clustering. (a) Samson; (b) Jasper Ridge; (c) Cuprite. 

Pt represents the percentage of pixels reserved from each partition for representative 
endmember generation. To analyze the impact of Pt, an experiment is conducted. After 
completing the spatial clustering with s and λ1 being 6 and 0.1, respectively, choose pix-
els in each partition with Pt from 0.05 to 0.95 at an interval of 0.01, and the indexes are 
calculated each time. The results are shown in Figure 8. 

 
(a)      (b)       (c) 

Figure 8. The results of (a) Scatt; (b) AvgPI; (c) SvdPI with the change of Pt. 

Compared to Samson and Cuprite, indexes on Jasper Ridge have the most obvious 
change. It is caused by its poor spatial homogeneity. The increase in Pt results in the de-
cline in AvgPI and SvdPI and the rise in Scatt as more mixed pixels within each parti-
tion are preserved. In terms of dispersion degree and spectral correlation, the smaller the 
Pt, the better the updated partitions. Considering the prevalence of spectral variability, a 
small Pt cannot help dealing with it by average the reserved pixels, otherwise it brings 
errors. In our experiments, Pt is set to 0.4, and the good performance will be demon-
strated in subsequent experimental results. 

Moreover, compared to the indexes in Figure 6, AvgPI  and SvdPI  increase to 
above 0.99 and 0.85, respectively, and Scatt decreases to below 0.1. It further shows the 
important role of spectral purity analysis on regional homogeneity. 

3.2.2. Spectral Clustering Analysis 
There are two parameters involved in spectral clustering: the weighting factor λ2 

and the number of clusters k. The experimental basis of spectral clustering analysis is the 
completion of spatial clustering with s of 6 and λ1 of 0.1 and representative endmember 
generation with Pt  of 0.4. To choose the best value for λ2  and k , the following 

Figure 8. The results of (a) Scatt; (b) AvgPI; (c) SvdPI with the change of Pt.

Moreover, compared to the indexes in Figure 6, AvgPI and SvdPI increase to above
0.99 and 0.85, respectively, and Scatt decreases to below 0.1. It further shows the important
role of spectral purity analysis on regional homogeneity.

3.2.2. Spectral Clustering Analysis

There are two parameters involved in spectral clustering: the weighting factor λ2
and the number of clusters k. The experimental basis of spectral clustering analysis is the
completion of spatial clustering with s of 6 and λ1 of 0.1 and representative endmember
generation with Pt of 0.4. To choose the best value for λ2 and k, the following experiments
are carried out. First, set λ2 to 0.4, calculate Scatt, AvgPI and SvdPI on the spectral clustering
results with k from p to 10*p at an interval of p. The results are shown in Figure 9. Then,
set k to 5*p, and indexes are calculated on the k-means clustering results as λ2 increases
from 0 to 1 with an interval of 0.05. The results are demonstrated in Figure 10.
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It can be seen from the results that the response range of each index to k is greater than
that to λ2, which indicates that k has a greater impact on spectral clustering than λ2. Similar
to spatial clustering, indexes on Cuprite are the most stable compared to that on Samson
and Jasper Ridge. This has relations with the different spectral contrast of endmembers in
the datasets.
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When k is below 5*p, AvgPI and SvdPI rise rapidly, and then tend to stabilize. Scatt
shows a fall trend, and roughly takes k of 5*p as the cut-off point. That is, when the number
of clusters k is more than five times the number of endmembers, the spectral clustering
keeps good performance with low dispersion degree and high spectral correlation within
classes. At the same time, a large k may lead to over-clustering, as the same feature with
spectral variability will be divided into different classes. Taking all this into consideration,
set k to 5*p. This number improves the computational efficiency of searching for the
maximum simplex volume compared with other simplex-based algorithms.

With the increase in λ2, all indicators show a falling trend. That is, the reinforcement of
spectral distance constraint enhances the central tendency but weakens the spectral shape
similarity. To keep low dispersion degree and good spectral correlation, the best value of
λ2 is set to 0.4.

3.3. Evaluation Metrics

Metrics are used to evaluate the performance of all test algorithms in terms of end-
member extraction, abundance estimation and noise robustness.

SAD estimates the shape similarity between the spectra of the real endmember z and
the extracted endmember z∗ by calculating the angle of them. The smaller the value of
SAD, the more similar the two spectra.

SAD = cos−1
(

zTz∗

‖z‖·‖z∗‖

)
. (14)

The root mean square error (RMSE) calculates the error between the real abundance
vector m and the estimated abundance vector m∗ for each endmember. The fully constrained
least squares (FCLS) algorithm is utilized to obtain the abundance map in this work [34]. A
smaller RMSE means a higher unmixing accuracy with the extracted endmembers.

RMSE =

√
‖m − m∗‖2

2
n

. (15)

3.4. Results for Endmember Extraction

In this part, the performance of all algorithms on endmember extraction is compared.
According to the previous parameter analysis, s, λ1, Pt, λ2 and k are set to 6, 0.1, 0.4, 0.4 and
5*p respectively. Figures 11–13 give the comparison between the estimated and ground-
truth endmember spectral signatures of Samson, Jasper Ridge and Cuprite, respectively.
The SAD calculation results are shown in Table 1.
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Figure 12. Comparison between the estimated and ground-truth endmember spectral signatures on
Jasper Ridge. (a) Tree; (b) water; (c) soil; (d) road.

To clearly show the comparison, the results of several test algorithms that perform
better are drawn in the figures above, including VCA, AVMAX, SENMAV, SPEW and ECSO.
From Figure 11, most algorithms can accurately extract soil and tree, but have a relatively
large extraction error on water. CSVM achieves the best extraction accuracy on soil and
water, as the curves almost coincide with the ground truth. Figure 12 shows the comparison
for Jasper Ridge. According to the curves, all endmembers obtained by CSVM show the
best consistency with ground truth in terms of shape and reflectance value. Figure 13
depicts the results for Cuprite. It is difficult to directly evaluate the algorithms through the
curves since they all have difference with the ground truth in both shape and reflectance
value. Therefore, quantitative analysis is necessary for further evaluation.

Table 1 shows the results of SAD. In Samson, CSVM obtains the best SAD for Soil and
Water. SGA fails to extract water, as it gets a SAD more than 1, and KMEE fails to extract
tree. CSVM provides best SADs on all endmembers in Jasper Ridge. SGA and KMEE are
unable to extract water, and AMEE fails to extract road. All algorithms extract endmembers
in Cuprite. CSVM gets the best results on dumortierite and chalcedony. CSVM does not
achieve best extraction accuracy on all endmembers. For those that do not get the best SAD,
such as tree in Samson, muscovite in Cuprite and so on, CSVM obtains the results that are
very close to the best values. Overall, CSVM provides the best averages for all datasets,
corresponding to 0.0179, 0.0599 and 0.0873, respectively.
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Figure 13. Comparison between the estimated and ground-truth endmember spectral signatures on
Cuprite. (a) Alunite; (b) andradite; (c) buddingtonite; (d) dumortierite; (e) kaolinite1; (f) kaolinite2;
(g) muscovite; (h) montmorillonite; (i) nontronite; (j) pyrope; (k) sphene; (l) chalcedony.
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Table 1. SAD of all test algorithms on Samson, Jasper Ridge and Cuprite datasets.

Samson

EEAs VCA SGA AVMAX MVSA AMEE ECSO KMEE FSPM SENMAV SPEW CSVM

Soil 0.0404 0.0404 0.0404 0.0821 0.2853 0.0404 0.0404 0.0207 0.0404 0.0404 0.0109
Tree 0.0219 0.0407 0.0548 0.0489 0.0449 0.0713 0.4319 0.0495 0.0407 0.0407 0.0227

Water 0.1126 1.1483 0.1295 0.3712 0.2513 0.1552 0.1553 0.1299 0.1855 0.1305 0.0202
Average 0.0583 0.4098 0.0749 0.1674 0.1938 0.0890 0.2092 0.0667 0.0889 0.0705 0.0179

Jasper Ridge

EEAs VCA SGA AVMAX MVSA AMEE ECSO KMEE FSPM SENMAV SPEW CSVM

Tree 0.1559 0.1559 0.1559 0.1837 0.1173 0.2030 0.0950 0.1979 0.1180 0.1686 0.0262
Water 0.2494 0.8953 0.2453 0.4035 0.1190 0.2540 0.7566 0.2399 0.2453 0.2430 0.0757
Soil 0.1336 0.1336 0.1336 0.2169 0.1302 0.1632 0.2299 0.2263 0.1353 0.1257 0.1231

Road 0.1069 0.1069 0.1069 0.3523 0.9162 0.2300 0.1792 0.1792 0.0443 0.0443 0.0148
Average 0.1614 0.3229 0.1604 0.2891 0.1957 0.2125 0.3152 0.2108 0.1357 0.1454 0.0599

Cuprite

EEAs VCA SGA AVMAX MVSA AMEE ECSO KMEE FSPM SENMAV SPEW CSVM

Alunite 0.1023 0.0846 0.0846 0.1213 0.1062 0.0919 0.0919 0.0834 0.0919 0.1194 0.0931
Andradite 0.0880 0.0879 0.0706 0.1712 0.0817 0.0682 0.0658 0.0636 0.0717 0.0907 0.0698

Buddingtonite 0.0711 0.1008 0.0711 0.1537 0.1300 0.1093 0.1002 0.0824 0.1086 0.1072 0.1106
Dumortierite 0.0727 0.0761 0.0761 0.1420 0.1005 0.1195 0.1184 0.1019 0.0876 0.0684 0.0683

Kaolinite1 0.0904 0.0837 0.0837 0.2885 0.0758 0.1469 0.0837 0.0766 0.0852 0.0821 0.0853
Kaolinite2 0.0796 0.0806 0.0806 0.1995 0.0724 0.1235 0.0666 0.0740 0.0628 0.0590 0.0696
Muscovite 0.0816 0.0910 0.0878 0.3334 0.1945 0.0910 0.0816 0.1008 0.0910 0.1215 0.0878

Montmorillonite 0.0864 0.0899 0.0589 0.3252 0.1288 0.1493 0.0704 0.0796 0.0593 0.0921 0.0647
Nontronite 0.0700 0.0727 0.0703 0.4995 0.1289 0.1654 0.1248 0.0693 0.0939 0.0957 0.0804

Pyrope 0.0717 0.0677 0.1413 0.4173 0.0778 0.0874 0.0503 0.0622 0.0840 0.0641 0.0607
Sphene 0.2481 0.2374 0.2538 0.4798 0.0983 0.0581 0.0660 0.1174 0.2353 0.2840 0.1364

Chalcedony 0.1266 0.1621 0.1621 0.7734 0.2552 0.1602 0.2376 0.2027 0.1395 0.1301 0.1205
Average 0.0990 0.1029 0.1034 0.3254 0.1208 0.1142 0.0964 0.0928 0.1009 0.1095 0.0873

The best value in each line is bold.

Compared to Cuprite, CSVM performs better on Samson and Jasper Ridge and greatly
improves the extraction accuracy. The different performance on different datasets has
relation to the spectral contrast of endmembers in the datasets. Cuprite has spectrally
similar endmembers coupled with the effects of spectral variability, bringing difficulties to
accurate extraction [35].

In conclusion, CSVM exhibits the best performance on endmember extraction, as it
effectively alleviates the spectral variability. In addition, CSVM performs better for datasets
with high spectral contrast of endmembers.

3.5. Results for Abundance Estimation

To evaluate the performance of all algorithms on abundance estimation, the end-
members obtained by these algorithms are adopted to generate abundance maps through
the FCLS algorithm. RMSE is calculated between the estimated abundance vector and
ground-truth abundance vector. The results are shown in Table 2. Because there are no
ground-truth abundance maps for Cuprite, only Samson and Jasper Ridge are used in this
section. It is noted that the unmixing result is an indirect verification of EEAs, as it also
relies on the abundance estimation algorithm.

From the results, CSVM obtains the best RMSE on soil and the best average for
Samson. For Jasper Ridge, CSVM provides the best RMSE on tree, water and road and
the best average. It indicates that the endmembers extracted by CSVM reduce the error of
abundance estimation.
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Table 2. RMSE of all test algorithms on Samson and Jasper Ridge datasets.

Samson

EEAs VCA SGA AVMAX MVSA AMEE ECSO KMEE FSPM SENMAV SPEW CSVM

Soil 0.2696 0.4196 0.2636 0.3626 0.4205 0.2560 0.3441 0.2566 0.2619 0.2664 0.1794
Tree 0.2509 0.1671 0.2466 0.4537 0.4074 0.1869 0.3832 0.1821 0.2609 0.2515 0.2182

Water 0.4275 0.4520 0.4152 0.3251 0.2198 0.3516 0.3407 0.3489 0.4323 0.4237 0.3384
Average 0.3160 0.3462 0.3085 0.3804 0.3492 0.2648 0.3560 0.2625 0.3184 0.3139 0.2453

Jasper Ridge

EEAs VCA SGA AVMAX MVSA AMEE ECSO KMEE FSPM SENMAV SPEW CSVM

Tree 0.1603 0.1592 0.1599 0.5046 0.2164 0.1232 0.3004 0.1170 0.2694 0.1426 0.1031
Water 0.2172 0.3224 0.2085 0.4221 0.0589 0.1541 0.2371 0.1836 0.2288 0.1356 0.1113
Soil 0.1402 0.1618 0.1300 0.3829 0.3290 0.1319 0.2262 0.2106 0.3207 0.1060 0.1107

Road 0.1112 0.1904 0.1223 0.2277 0.2268 0.1287 0.1738 0.2824 0.2277 0.0762 0.0728
Average 0.1572 0.2085 0.1552 0.3843 0.2078 0.1345 0.2344 0.1984 0.2616 0.1151 0.0995

The best value in each line is bold.

Therefore, compared with other EEAs, our method achieves better performance in hy-
perspectral unmixing considering endmember extraction and abundance estimation, com-
prehensively.

Figures 14 and 15 demonstrate the comparison between estimated abundance maps
using endmembers extracted by CSVM and the ground truth. As is shown in absolute
error maps, CSVM obtains smaller estimation error on endmembers in Jasper Ridge than
that in Samson, which means CSVM performs better on Jasper Ridge than on Samson. In
addition, the results on both datasets show that the absolute error is large in areas with
complex ground objects distribution, especially in the transition areas with different land
cover types on both sides.
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3.6. Results on Noisy Datasets

To verify the noise robustness of the test algorithms, set the SNR of the datasets to
be 15 dB, 20 dB, 25 dB, 30 dB, 35 dB and 40 dB, then all algorithms are used to extract
endmembers on the datasets. The average SAD between estimated endmembers and
ground-truth endmembers are recorded in Table 3.
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Table 3. The average SAD of all test algorithms on noisy Samson, Jasper Ridge and Cuprite datasets.

Samson

SNR 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

VCA 0.3737 0.2469 0.1587 0.1083 0.0815 0.0756
SGA 0.4467 0.4264 0.4154 0.4112 0.3865 0.4100

AVMAX 0.3951 0.2467 0.1582 0.1105 0.0862 0.0743
MVSA 0.1707 0.1676 0.1685 0.1676 0.1674 0.1674
AMEE 1.0667 0.8954 0.5394 0.4595 0.1589 0.1493
ECSO 0.3486 0.2396 0.1505 0.1155 0.0792 0.0727
KMEE 0.3586 0.2491 0.2204 0.1952 0.1861 0.1836
FSPM 0.2499 0.2305 0.2284 0.0806 0.0701 0.0678

SENMAV 0.3896 0.2561 0.1511 0.1240 0.0873 0.0703
SPEW 0.3623 0.2478 0.1688 0.1022 0.0896 0.0748
CSVM 0.0556 0.0352 0.0337 0.0332 0.0306 0.0265

Jasper Ridge

SNR 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

VCA 0.3589 0.2831 0.2408 0.1897 0.1718 0.1561
SGA 0.3996 0.3189 0.3281 0.3113 0.3139 0.3233

AVMAX 0.3735 0.2466 0.1906 0.1694 0.1654 0.1626
MVSA 0.2977 0.2874 0.2778 0.2783 0.2836 0.2822
AMEE 1.2560 1.0092 0.5855 0.4614 0.3082 0.2004
ECSO 0.3475 0.2806 0.2734 0.2061 0.1884 0.2087
KMEE 0.3286 0.2541 0.2272 0.1677 0.1414 0.1378
FSPM 0.3003 0.2759 0.2491 0.2342 0.2288 0.2152

SENMAV 0.6655 0.2275 0.1702 0.1463 0.1277 0.1404
SPEW 0.6581 0.2821 0.2204 0.1606 0.1552 0.1488
CSVM 0.0762 0.0660 0.0673 0.0649 0.0609 0.0677

Cuprite

SNR 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

VCA 0.1920 0.1451 0.1193 0.1149 0.1016 0.1038
SGA 0.1924 0.1236 0.1196 0.1125 0.1166 0.1066

AVMAX 0.2084 0.1424 0.1186 0.1186 0.0996 0.0970
MVSA 0.3569 0.3750 0.4301 0.4020 0.3882 0.3670
AMEE 0.3406 0.2309 0.1662 0.1304 0.1198 0.1213
ECSO 0.2000 0.1810 0.1300 0.1202 0.1245 0.1014
KMEE 0.1918 0.1409 0.1222 0.1093 0.1065 0.1027
FSPM 0.1176 0.1130 0.1096 0.1065 0.1022 0.0953

SENMAV 0.2209 0.1473 0.1230 0.1079 0.1057 0.0993
SPEW 0.2191 0.1537 0.1091 0.1035 0.1011 0.0982
CSVM 0.1455 0.1121 0.1032 0.1033 0.0942 0.0955

The best value in each column is bold.

It can be seen from the results that with the increase in SNR, the average SADs
commonly decline and achieve the best results at 40 dB. It shows that noise will distort
the spectra of endmembers and reduce the extraction accuracy. There are special cases in
all test algorithms. Since SGA cannot extract all endmembers as previous analyzed, the
results of it have a slight change with the increasing of SNR. KMEE has anti-noise ability,
but its average SADs vary greatly due to the unstable endmember extraction results. FSPM
exhibits strong noise robustness, especially on the Cuprite dataset. As MVSA replaces
positive hard constraint on abundance with a soft constraint of hinge loss type, it also
shows good robustness to noise.

In addition, when SNR is below 30 dB, the results change obviously; when SNR is
above 30 dB, the results have little change. It can be inferred that when SNR is set to 30 dB
and above, the datasets may reach their best quality, thus limiting the extraction accuracy.
Compared to Samson and Jasper Ridge, most algorithms seem to show better anti-noise
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performance on Cuprite, as the average SADs on Cuprite rise slowly with the decrease in
SNR. This could be resulted from its low spectral contrast of endmembers.

Overall, AMEE exhibits weak noise robustness. It has larger averages than other
algorithms when SNR is at a low level. CSVM obtains best extraction accuracy for all
endmembers of datasets and achieves the best anti-noise performance.

3.7. Comparison on Processing Time

All the algorithms are implemented on Matlab R2019a with an Intel Core i5-10210U
CPU at 1.60 GHz. The processing time of each test algorithm is shown in Table 4.

Table 4. CPU processing time of all test algorithms on Samson, Jasper Ridge and Cuprite datasets
(in seconds).

Samson Jasper Ridge Cuprite

VCA 0.0386 0.0655 0.2258
SGA 0.4009 0.7169 17.1127

AVMAX 0.0641 0.0897 0.5941
MVSA 0.3790 0.6237 8.6719
AMEE 0.4283 0.1243 0.5960
ECSO 4.6723 12.4110 73.6082
KMEE 0.0497 0.1481 1.0280
FSPM 0.0975 0.1256 2.3582

SENMAV 0.7669 1.1362 28.0885
SPEW 0.1374 0.2175 1.9181
CSVM 0.7855 1.0408 7.6302

It is noted that ECSO is the most time-consuming algorithm, which requires a lot of
computations. VCA is the most efficient method, as it takes a short time and provides
high accuracy on endmember extraction. CSVM consumes a certain time due to the
spatial clustering operation. This issue can be solved by the graphics processing units
(GPU) parallel platform, as it shows superior performance in floating-point operations and
programming. The superpixel segmentation provides possibility for parallel acceleration
of CSVM.

4. Conclusions

In this paper, an endmember extraction method based on quadratic clustering is
proposed to better handle spectral variability. CVSM first adopts SLIC-based spatial
clustering to segment HSI into homogeneous partitions, and the average of pure pixels
obtained by spectral purity analysis in each partition is taken as representative endmember,
which reduces the effect of local-scope spectral variability. Then CVSM performs spectral
clustering to merge spectrally related representative endmembers to further alleviate
large-scope spectral variability, and the final endmembers are determined by simplex
with maximum volume. CSVM is implemented from spatial and spectral dimension,
which takes full of spatial and spectral information and effectively eliminates the effect of
spectral variability.

Experiments are conducted to evaluate the performance of CSVM in terms of end-
member extraction, abundance estimation, noise robustness and processing time. Through
parameter analysis, the optimal parameters are first set for our experiments and future use.
From the experimental results, the following can be concluded: (1) CSVM greatly improves
the extraction accuracy by reducing the effect of spectral variability and performs better
on datasets with high spectral contrast between endmembers; (2) CSVM provides better
performance on abundance estimation with FCLS abundance estimation algorithm; (3) be-
cause of the average operations after clustering, CSVM also shows strong noise robustness;
and (4) clustering makes CSVM consume lots of time, and it is one of our future research
topics to further accelerate our method.
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